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ABSTRACT The subjective image quality of the Video Frame Interpolation (VFI) result depends on
whether image features such as edges, textures and blobs are preserved. With the development of deep
learning, various algorithms have been proposed and the objective results of VFI have significantly improved.
Moreover, perceptual loss has been used in a method that enhances subjective quality by preserving the
features of the image, and as a result, the subjective quality is improved. Despite the quality enhancements
achieved in VFI, no analysis has been performed to preserve specific features in the interpolated frames.
Therefore, we conducted an analysis to preserve textural detail, such as film grain noise, which can represent
the texture of an image, and weak textures, such as droplets or particles. Based on our analysis, we identify the
importance of synthesis networks in textural detail preservation and propose an enhanced synthesis network,
the Textural Detail Preservation Network (TDPNet). Furthermore, based on our analysis, we propose a
Perceptual Training Method (PTM) to address the issue of degraded Peak Signal-to-Noise Ratio (PSNR)
when simply applying perceptual loss and to preserve more textural detail. We also propose a Multi-scale
Resolution Training Method (MRTM) to address the issue of poor performance when testing datasets with
a resolution different from that of the training dataset. The experimental results of the proposed network
was outperformed in LPIPS and DISTS on the Vimeo90K, HD, SNU-FILM and UVG datasets compared
with the state-of-the-art VFI algorithms, and the subjective results were also outperformed. Furthermore,
applying PTM improved PSNR results by an average of 0.293dB compared to simply applying perceptual
loss.

INDEX TERMS Video frame interpolation, textural detail preservation, perceptual loss, synthesis network.

I. INTRODUCTION in deep learning, there have been significant improvements
Temporal resolution is an important factor in video quality, in the performance of deep-learning-based VFI algorithms
because a low frame rate may cause temporal jittering, [12], [13], [14], [15], [16], [17], [18]. As VFI performance
aliasing, and motion blur artifacts. This can be enhanced improves, the importance of VFI has increased, and recently,
using video frame interpolation (VFI), which generates an researches have been conducted to fuse it with various vision
intermediate frame between two consecutive frames. VFI tasks. For example, STVSR [19], [20], [21], [22], which
has been utilized in various fields including slow-motion fuses super-resolution to restore spatial resolution and VFI
generation [3], [4], [5], [6], [7], novel view synthesis [8], to restore temporal resolution, is being studied, and various
[9], and video restoration [10], [11]. With recent advances tasks such as VFI and deblurring [23], [24] are being studied.
The quality of an interpolated frame depends on image

The associate editor coordinating the review of this manuscript and features such as edge, texture, and textural detail. Among
approving it for publication was Jiachen Yang . these image quality factors, textural detail indicates film grain

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/
71994 P & Y VOLUME 11, 2023


https://orcid.org/0009-0007-7189-6560
https://orcid.org/0000-0001-7257-6787
https://orcid.org/0000-0001-9470-6060
https://orcid.org/0000-0003-0528-8755
https://orcid.org/0000-0003-2558-552X

K. Yoon et al.: Textural Detail Preservation Network for VFI

IEEE Access

GT

—
—

AdaCoF

RIFE

—
—

Ours

——

|

Frame 1

Overlay

Frame 2

—
p—
—

—

—

Frame 3 Frame 4 Frame 5

FIGURE 1. Visual comparison between the proposed algorithm and previous algorithms (AdaCoF [1], RIFE [2]). Frame 1, 3, and 5 represent the original

image and frame 2 and 4 are the images restored by the VFI algorithm.

noise, weak texture, etc. Film grain noise is a type of noise
that occurs during the process of digitizing analog film videos
and weak texture represents water droplets, fine objects,
etc. Textural detail is an important factor that represents the
characteristics of a video because it affects the mood and vibe
of the video. Therefore, the frames generated by VFI must
retain the textural detail of the original content. If textural
detail is not preserved in the VFI process, the resulting video
contains both the original frame with textural detail and the
interpolated frame without textural detail. This results in the
flicker phenomenon, where the textural detail part flickers on
and off when playing back the interpolated video, severely
degrading the subjective quality (as shown in 2nd and 3rd
rows in Fig. 1).

Several studies have been conducted to directly and
indirectly preserve the textural detail of the original content.
As the direct preserving method, there are video coding
algorithms [25], [26], [27] for efficiently encoding film
videos with film grain noise. These algorithms remove film
grain noise before compressing it because compressing the
noise is inefficient from a coding perspective. The film grain
noise can be preserved by adding synthesized noise to the
decoded video. These methods preserve film grain noise
similar to the original method, but have the disadvantage
that the noise is completely synthesized data and cannot be
guaranteed to be the same as the original pattern.

As an indirect methods, there is a method using perceptual
loss in the training process for deep-learning-based VFI [1],
[12], [28]. Perceptual loss extracts the features of an image
using existing classification networks such as VGG-Net [29],
ResNet [30], and AlexNet [31], and calculates the difference
of features between the original and restored image. When
perceptual loss was used, the subjective image quality and
textural detail were improved. However, previous studies
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focused on preserving the outline of the image instead of
the textural detail, they failed to preserve the textural detail
of the original contents in the interpolated frame. As shown
in Fig. 1, although AdaCoF [1] was trained using perceptual
loss, it failed to preserve the textural detail contained in the
ground truth (GT) frame. As a result, previous methods could
not avoid flickering in videos with textural detail.

To address this problem, this paper proposes a VFI
algorithm that preserves the textural detail of the original
content. We determined the reason why textural detail was not
preserved by analyzing the change in textural detail for each
output of each sub-network (e.g., flow estimation network
and synthesis network). Through this analysis, we discovered
that textural detail disappeared during warping and merging
during the VFI process and confirmed that they could be
restored in the synthesis network. Therefore, we propose a
new synthesis network, textural detail preservation network
(TDPNet), and a training scheme to preserve textural detail.
In addition, we propose a novel training method to enhance
the performance at various resolutions, addressing the
problem of performance degradation at resolutions different
from the training data.

Our contributions can be summarized as follows:

1) This paper presented the problem that the existing VFI
algorithms do not preserve textural detail, and raised
the possibility of flicker. To the best of our knowledge,
we were the first to raise an issue with this.

2) We have mathematically analyzed the reason why
textural detail is not preserved in the previous deep
learning-based VFI algorithms.

3) Based on the analysis, we confirmed the importance of
a synthesis network in the VFI algorithm for preserving
textural detail, and we proposed an enhanced synthesis
network called Textural Detail Preservation Network
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(TDPNet). And propose a Perceptual Training Method
(PTM) that can appropriately utilize perceptual loss to
preserve textural detail with minimal PSNR degrada-
tion in VFL

4) To address the problem of poor performance of the VFI

algorithm at resolutions different from the training data,
we propose Multi-scale Resolution Training Method
(MRTM), which can improve performance at various
resolutions.

In Section II, we discuss previous works on VFI and
efforts in other fields to preserve the textural detail of images.
In Section III, we present our proposed network and training
methods. And we validate our proposed network and training
method in Section IV. Finally, the conclusions of our study
are provided in Section V.

Il. RELATED WORK

A. VIDEO FRAME INTERPOLATION

VFI is a technique for generating one or several non-existent
frames I;(0 < t < 1) between two frames Iy and I;.
With the development of deep learning, VFI methods using
deep learning have been widely studied, including flow-based
methods [2], [3], [5], [6], [7], [13], [17], [18], [32], [33],
[34], [35], [36], [37], [38], [39], [40], [41], kernel-based
methods [1], [4], [12], [28], [42], [43], and hallucination
methods [16], [44], [45].

The kernel-based VFI algorithms estimate an adaptive
convolution kernel for every pixel value in the input frames,
and synthesize intermediate frames by convolving local
patches. This method was first proposed by Nikalus [42].
However, this method has a high computational cost and
requires a large amount of memory, therefore the size of the
kernel is limited due to GPU memory limitations. To address
the GPU memory issues, SepConv [4] was proposed to
estimate the kernel using a separate 1D kernel instead of the
previous 2D kernel estimation method, which successfully
resolved the GPU memory problem. However, the problem
of a limited kernel size still exists, which means that the
algorithm cannot estimate motions larger than the kernel size.
Subsequently, various algorithms have been proposed [12],
[28] to address the issue of the existing method, which
always refers to a fixed area, such as an algorithm that
uses Deformable Convolution to add offsets to each kernel
position [1], [43]. However, there is still the challenge of
difficulty in estimating a large motion due to the problem of
the computation complexity and the limitation of the kernel
size.

On the other hand, flow-based VFI algorithms can estimate
large motions without limiting the kernel size. A typical
flow-based VFI algorithms process is as follows. The flow
estimation network [2], [17], [41], [46], [47] estimates the
flows Fo_.1 and F|_,o between input frames /o, /1, and based
on the estimated flow, the intermediate flows F;_.¢, Fr—1
are calculated. The intermediate frame ?, is thereafter created
by warping the input frames with the estimated intermediate
flow using Eq. (1) and a mask (M) learned by the flow
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estimate network using Eq. (2).

losr = warp(lo, Fi—0), Ti—, = warp(ly, Fi1) (1)
L=MOl,+(0-M)0I_, 2

In addition, for the final frame synthesis, the residual (R)
of the image is obtained through a synthesis network such as
U-Net [48], GridNet [49], and the final frame jt is synthesized
by adding it to the intermediate frame 1, as follows Eq. (3).

I, =1, +R (3)

Flow-based VFI algorithm was first proposed by
Jiang et al. [5]. Subsequently, various algorithms have been
proposed [2], [6], [32], [34], [37], such as adding context
and depth information to estimate residuals more accurately
through synthesis networks, learning intermediate flows
directly through flow estimation networks [2], and using
algorithms that remove synthesis networks [33]. Through
these studies, the objective performance of the interpolation
results has been improved. An algorithm that applies
perceptual loss to enhance subjective image quality has been
proposed [18]. However, when using perceptual loss, there is
a problem in which objective performance is degraded while
subjective quality improves. Moreover, there has been no
analysis on the appropriate use of perceptual loss to address
this issue in VFL In this paper we analyze the appropriate use
of perceptual loss in VFI and propose a novel network and
training method.

B. IMAGE FEATURE PRESERVATION AND EVALUATION
METRICS
Subjective image quality is an important factor for images
and videos. In image restoration tasks such as VFI and Super-
Resolution (SR), preserving image features such as texture,
edges, blobs, textural detail, and structure of the original
image has a significant effect on the subjective image quality.

Studies on preserving features in images have mainly
been conducted in the field of SR. One of the methods for
preserving the features of an image in SR is using a loss
function. When using traditional pixel loss (e.g., L1 and L2
loss), objective metrics such as the PSNR can be improved.
However, they do not consider the structural characteristics
of the image, and calculating the average pixel value can lead
to over-smoothing or blurring of the restored image, resulting
in a limited representation of the edge, texture, and textural
detail of the image. Perceptual loss was proposed to address
this problem [50], [51]. Perceptual loss extracts the features
of an image using existing classification and recognition
networks VGG-Net [29], ResNet [30], and AlexNet [31], and
calculates the difference in features between the original and
restored images. However, there is a problem that PSNR is
degraded when using perceptual loss.

Subsequently, the analysis was performed in a SR task to
appropriately utilize the perceptual loss. This involves iden-
tifying the appropriate convolution layer of the pre-trained

VOLUME 11, 2023
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FIGURE 2. Visual quality changes when passing through sub-networks in a video frame interpolation algorithm. We use Inter4K [56] dataset for

comparison.

CNN [52], [53]. A comparison of the features extracted
by VGG-Net and ResNet suggested utilizing two features
simultaneously for perceptual loss [54]. A method was
proposed to appropriately use the perceptual loss for each
segment such as the edge, boundary, and background of the
images [55].

In addition, it is important to evaluate the restored images
using metrics such as Video Quality Assessment (VQA)
and Image Quality Assessment (IQA) that measure how
well they align with the perception of human visual system.
To quantify perceptual similarity between the restored and
original images, metrics such as SSIM [57], MSSIM [58],
and FSIM [59] have been proposed. Subsequently, deep
learning-based evaluation metrics such as LPIPS [14] and
DISTS [15] have been proposed to improve the accuracy
of perceptual similarity evaluation. LPIPS utilize neural
networks to extract features from images, which are then used
to assess the perceptual similarity between the original and
restored images. DISTS also utilizes neural networks, but is
proposed to evaluate the sensitivity to structural distortion and
texture resampling. In this paper, we use DISTS to evaluate
the preservation of textural detail. These deep learning-based
metrics have the advantage of being able to evaluate more
complex and abstract image feature similarities.

ill. PROPOSED METHOD

The proposed methods and analysis for preserving textural
detail, which is part of image features are illustrated in
this section. First, we analyzed the reasons for the lack of
preservation of textural detail in previous VFI algorithms.
Second, we introduce the proposed network architecture to
preserve textural detail, TDPNet. Finally, we introduce a
PTM that can preserve more textural details and an MRTM
that can address the problem of performance degradation
when there is a resolution difference between the training and
test datasets.

A. WHY TEXTURAL DETAIL IS NOT PRESERVED IN VIDEO
FRAME INTERPOLATION

We conducted experiments to analyze textural detail changes
during VFI algorithm. For this analysis, we used the RIFE [2]
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FIGURE 3. Contain Film Grain Noise in left 800 x 2160 area of the Beauty
data in the UVG.

algorithm. And we compared the image quality of the warped
frames io_> ; and 1 1— generated using Eq. (1), merged frame
I generated by Eq. (2), and the final interpolated frame I,
generated by Eq. (3). Moreover, to analyze the impact of
the VFI algorithm on the loss function, end-to-end training
was performed using the traditional pixel loss (L1 loss) and
perceptual loss. To train with perceptual loss, we used the
3rd convolution in the 4th layer of the VGG-16 network [29].
Conventional pixel loss improves the objective performance,
but the subjective quality is poor because the image is
over-smoothed or blurred. In contrast, perceptual loss is a
loss function that can preserve image feature by utilizing the
difference between feature maps. As a result, the subjective
quality of the restored image is improved, but the objective
quality is relatively poor compared to the pixel loss. This
comparison of the two loss functions can identify structural
issues in the VFI algorithm.

Fig. 2 shows the subjective results obtained using each
loss function during VFI. When using pixel loss, it can be
observed that the textural detail is preserved in I; before the
residual is added, however, in the final interpolated result
i, where the residual is added, the textural detail becomes
blurred. In contrast, when examining the results obtained
using perceptual loss, we observed that textural detail was
preserved not only in 1, before adding the residual, but
also in the final interpolated frame I, where the residual is
added. This is in contrast to the results obtained using pixel
loss, where the textural detail becomes blurred in the final
interpolated frame I, after adding the residual.

To quantitatively compare the preservation of textural
detail, we utilized LPIPS [14] and DISTS [15] as the
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TABLE 1. Change in quantitative metrics DISTS, LPIPS, and PSNR as video frame interpolation passes through each sub-network for HD and UVG datasets.

. Pixel Loss Perceptual Loss
Dataset Metric — — — ~ - = = =
Io, In, It Io—t I Iy Iy Io, In, It Io—t e I Iy
DISTS - 0.036 0.045 0.057 0.069 - 0.041 0.052 0.063 0.032
HD (Stockholm) LPIPS - 0.117 0.124 0.130 0.166 - 0.122 0.132 0.135 0.103
PSNR - 34.162 33.738 35.076 35317 - 33.033  32.806 33.441 34.248
DISTS - 0.039 0.039 0.064 0.127 - 0.041 0.045 0.067 0.022
UVG (HoneyBee) LPIPS - 0.178 0.178 0.192 0.296 - 0.179 0.180 0.190 0.154
PSNR - 37.084 37.088 38.019 38.672 - 37.030 37.046 37.886  36.502
DISTS - 0.090 0.086 0.112 0.186 - 0.096 0.090 0.110 0.054
LPIPS - 0.331 0.333 0.326 0.426 - 0.333 0.334 0.321 0.302
UVG (Beauty)
PSNR - 28.710  28.726  29.957  30.294 - 28.633  28.622  29.835 29.124
Variance 29.594 16.851 16.872 9.303 3.297 29.594 16.826  16.838 9.437 24.459
metrics. LPIPS measures the perceptual similarity between Py | Ax P,
the interpolated and original frame, whereas DISTS measures B
the texture similarity, which compares the similarity of the xy)
textural detail positions in the interpolated frame to the Ay (F + Ax £, + By)
. .. . . . X 5%
textural detail positions in the original frame. we use DISTS B
) . . ; (x",y")
to evaluate the degree of preservation of film grain noise
within the textural detail. To measure the degree of textural P p
. . . . 2 3
detail, the variance of the interpolated images was referenced. | R
Furthermore, to assess the change in the objective result, 0 Ioe
we calculated the PSNR. Table 1 presents a quantitative FIGURE 4. An illustration of the backward warping process.
comparison of the degree of textural detail preservation
using the PSNR, LPIPS, DISTS, and variance. The variance
was evaluateq using only the left 800 X 2160. area of the original number.
beauty data in the UVG dataset to avoid the influence of
the 1nterp.01at%on results depending on the estimated flow, fo=1fi] +Ax, 0<Ax<l
as shown in Fig. 3.
As shown in Table 1, the variance decreases when the H=WUh1+4y, 0=<Ay<lI “)

estimated flows F;_. ¢, F;—1 and the input images Iy and
I are backward warped to generate the warped frames
I()a + and 1 1—¢. A decrease in variance indicates degradation
of the textural detail. The reason for the degradation in
textural detail is that, when performing backward warping,
the position of each pixel in the warped frame is mapped
to a pixel in the input frames, and the position of the
mapped pixel is not always an integer. At this point, four
integer pixels around the floating-point pixel are used for
weighted averaging. A more detailed explanation is provided
as follows.

For instance, as shown in Fig. 4, warped frame io_,,(x, y)
is mapped to input frame Iy(x’, y') according to the estimated
flow Fyo(x,y) = (f.fy). The pixel positions in the input
frame, denoted as x’ and y’, were obtained by adding the
estimated flow values f; and fy, respectively, to the pixel
coordinates in the warped frame (x, y). This can be expressed
asx’ = x+f; andy’ = y+f,. When the estimated flow values
are non-integers, they can be calculated using Eq. (4), where
|| represents rounding to the nearest integer smaller than the
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If the pixel location x’ and y' are not integers, bilin-
ear interpolation is performed using the values of four
neighboring integer pixels, namely Py, Pi, Py, and Ps3,
which are calculated using Equation (5). The pixel position
corresponding to each pixel values are (x + [fy|, ¥y + [fxl),
x+ ]+ Ly+AD G+ ALy+ AT+ D G+ AT+
Ly+lfel +D.

It = AXAYP3 + (1 — AX)AyP,
+ Ax(1 — Ay)P1 + (1 — AX)(1 — Ay)Py  (5)
Assuming that each random variable is independent and
identically dlstrlbuted neighboring pixels have the same
variance, o2 . Therefore, the variance of Io_>, calculated by
bilinear interpolation is equal to Eq. (6). Var() denotes the
variance. Within the range of Ax and Ay, the variance of f0_> '
has a minimum value of 0.250% when Ax = Ay = 0.5, and
a maximum value of o2 when Ax = Ay = 0. Therefore,
the variance is reduced when backward warping because the

VOLUME 11, 2023
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FIGURE 5. Overview of our proposed synthesis network architecture.

pixels are not always mapped to integer values.

Var(Io—r) = {2(Ax — 0.5)> + 0.5}{2(Ay — 0.5)*> + 0.5}52
(6)

As summarized in Table 1, the variance of the merged
frame degrades. 1,, which is obtained using Eq. (2), combines
the warped frame fo_> ¢+ and 1 1—»¢ With a mask. In this process,
the variance of I, changes according to Eq. (7), assuming
that the random variables are independent and identically
distributed. By assumption, the values of Var(fo_),) and
Var(io_) ;) are equal to o2. Because the value of the estimated
mask is 0 < M < 1, the variance has a minimum value
of 0.50%2 when the mask is 0.5, and a maximum value of
o2 when the mask is 0 or 1. As a result, when merging warped
frames, the values of the mask are not always O or 1, which
leads to variance degradation in the variance.

Var(l,) = M? x Var(lp—,) + (1 — M)? x Var(i—,) (7)

Therefore, the variance of the frame inevitably decreases
when backward warping and merging of warped frames are
performed. As summarized in Table 1, the variance of the
warped and merged frames were degraded compared with
that of the input frame. When perceptual loss is used, the
variance value can be degraded in a manner similar to pixel
loss because it involves backward warping and merging
operations.

However, when the residuals trained by the synthesis
network were added to it, the resulting variance differed
depending on the loss function used. Specifically, using pixel
loss reduces the variance, whereas using perceptual loss
increases the variance. This shows that the residual contains
the textural detail of the image.
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FIGURE 6. Overall Video Frame Interpolation algorithm.

Similar to the change in variance, we observed that
both LPIPS and DISTS metrics exhibited similar trends.
This analysis demonstrated the importance of residual
training using a synthesis network to preserve textural detail.
To generalize these results, we conducted experiments on
additional datasets containing textural detail, and the results
are summarized in Table 1.

Based on this analysis, it is clear that to preserve the
textural detail effectively, an improvement in the performance
of the synthesis network is necessary. Therefore, we propose
an improved synthesis network, the Textural Detail Preser-
vation Network, to preserve the textural detail of images.
Furthermore, the results demonstrate that even if perceptual
loss is used in the VFI algorithm, the textural detail is not
restored until a residual is added. Therefore, it is inefficient
to use perceptual loss end-to-end, and we propose a new
learning method to address this problem.

B. TEXTURAL DETAIL PRESERVATION NETWORK

The overall architecture of the proposed algorithm is shown
in Fig. 6. To estimate the flow, we employ IFNet from
a pre-existing RIFE algorithm [2]. The proposed synthesis
network comprises a context extractor that can extract context
features from the input image and a refine network that learns
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FIGURE 7. Overview of context extractor for generate context feature.
Context extractor extracts context features at 1, 1/2, 1/4, and 1/8
resolution of the input frame.
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FIGURE 8. Overview of Textural Detail Preservation Block (TDPBlock).

the residual containing textural detail information using the
extracted features, flow estimated from the input, and other
input images.

The context extractor generates features by convolving the
input image I, (n=0,1) and warping it with the flow F;_,,
estimated by the flow estimator. This generated contextual
features correspond to the middle frame. To generate context
features of varying scales, we employed bilinear downsizing
by 1/2, resulting in a total of four context feature scales. Fig. 7
illustrates the detailed structure of the network.

The refine network uses the flow, mask, warped image,
input images, and context features learned from previous
networks, flow estimation network and context extractor,
as inputs to learn the residual. The refine network adopted a
U-Net structure that incorporated a skip-connection structure
to utilize information at different resolutions. Within the
U-Net structure, we utilize ConvBlock and Textural Detail
Preservation Block (TDPBlock). The detailed network struc-
ture is illustrated in Fig. 5.

The TDPBIock in the proposed refine network is an effec-
tive structure for enhancing the performance and reducing
the inference time. To improve the performance, we used
layer normalization, which is insensitive to mini-batch size
and data distribution, instead of batch normalization, which
is used on a mini-batch basis. To reduce the computational
complexity, we implemented SimpleGate as an activation
function. SimpleGate is a simplified form of computation
compared with GeLU, which was proposed in NAFNet [60].
SimpleGate is a method that divides the feature map into
channel dimensions and performs element-wise multiplica-
tion, as shown in Eq. (8). Furthermore, we utilize depth-wise
convolution, which is calculated separately for each channel
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to preserve the spatial information of each channel, while
also having a lower computational complexity than 2D
Convolution.

SimpleGate(X,Y)=X0OY ®)

C. TRAINING METHOD

1) PERCEPTUAL TRAINING

Previous algorithms that used perceptual loss achieved an
improved subjective quality. However, when calculating the
loss, input frame passes through a deep convolution layer to
calculate the difference between the original and interpolated
frames with reduced resolution, which affects the flow
estimation in end-to-end training. Consequently, the flow
estimation is inaccurate, resulting in poor performance [1],
[18], [28]. To address this problem, we propose a novel
training method that improves the subjective image quality
and objective results compared with a simple application
of perceptual loss. Based on our analysis of the synthesis
network preserving textural detail using perceptual loss, the
proposed PTM comprises two stages. In the first stage, the
our proposed network is trained end-to-end using the loss
function L,y as shown in the following Eq. (9).

Etotal = Erec + Adg Ldis (9)

We use the distillation loss Ly, in IFNet, which is a flow
estimation network based on the RIFE [2] algorithm. This
distillation loss accurately estimates the flow by leveraging
the difference between the flow learned by the student and
the teacher models. The pixel loss L, was also utilized
to measure the difference between the interpolated and the
GT frames. The detailed formula for L, is provided in the
following Eq. (10).

Lais= D |Fimi—Fl], (10)
i€0,1
Erec = ”It - Igt ||1 (11)

In the second stage, we perform fine-tunning to preserve
the textural detail of the residuals trained by the synthesis
network. In the second stage, we used a loss function that
combined Lfine, Lioal, and the perceptual loss Ly, to train
the model. The detailed equations for this loss function are
shown in Egs. (12). We set Ay = 0.01, A, =0.1.

When using perceptual loss, selecting an appropriate value
for A, is important because textural detail may not be
preserved to the maximum. To best preserve textural detail,
we conducted experiments using the RIFE algorithm and
employed Eq. (12) as the loss function. In this experiment,
we fixed A4 to 0.01 and varied only A, in the second stage of
the PTM to obtain the results for DISTS. The dataset used to
obtain the experiment results is the Beauty data in the UVG
dataset. In Fig.9, we observe that DISTS is minimal when A,
is 0.1, thus we select 0.1 as the value that preserves the most
textural detail.

Efine = ‘Crec + )\dﬁdis + kpﬁper (12)
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FIGURE 9. DISTS tendency according to the percentage of perceptual loss.
The x-axis refers to 1p, and the y-axis refers to DISTS values.

Before RelLU After RelLU

FIGURE 10. Compare VGG feature before activation function and after.

The perceptual loss £, is defined by Eq. (13), where &
denotes the output of the 3rd covolution in the 4th layer of
the VGG-16 network [29]. As shown in Fig. 10, most of the
features are lost when passing through the activation function,
thus we extract the features before the activation function
after the convolution layer.

Lper = || @U) — (L) | (13)

2) MULTI-SCALE RESOLUTION TRAINING

A multi-scale resolution training method (MRTM) was
proposed to address the problem of decreased performance
when there is a resolution difference between the training and
test datasets. This is achieved by adding various resolutions
to the training dataset and training the network. To increase
the resolution, the EDSR network was used to perform 2x
upsampling. In each iteration of the training process, the
training data were randomized to ensure that the network was
trained at various image resolution. The detailed experimental
results are discussed in Section I'V-C.

IV. EXPERIMENT RESULT
In this section, we introduce the implementation details for
training the proposed network and the evaluation metric,
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which is the benchmark used to evaluate our method.
We thereafter quantitatively and qualitatively compare our
method with recent state-of-the-art approaches. Finally,
an ablation study is conducted to analyze the effectiveness
of our proposed method.

A. IMPLEMENTATION DETAILS

1) TRAINING DATA

We used Vimeo90K and Vimeo90K (X2) upsampled by x2
using EDSR [61]. The Vimeo90K data consists of 51,312
triplets and has a resolution of 448 x 256. We augment the
datasets by randomly horizontal and vertical flipping and
cropping 224 x 224 patches.

2) TRAINING STRATEGY

We implemented our proposed network using PyTorch
1.9.0 version. During training we used AdamW [62] to
optimize our proposed model with a weight decay 1073,
and the learning rate was gradually reduced from 3 x 10~*
to 3 x 107 using cosine annealing. For end-to-end training,
we used a batch size of 64 for 230k iterations, and for fine-
tuning, we used a batch size of 64 for 76k iterations. Our
training was performed on a single NVIDIA RTX A6000,
taking 48 hours for end-to-end training and 12 hours for
fine-tuning.

3) EVALUATION METRICS

To evaluate the proposed model comprehensively, we eval-
uated it on datasets of various resolutions using PSNR
for objective image quality evaluation and LPIPS [14] and
DISTS [15] for perceptual similarity.

4) EVALUATION DATASETS

Vimeo90K [63]: 448 x 256 resolution with triplets frames per
clip. It consists of 3782 clips in total.

SNU-FILM [44]: 1280 x 720 resolution with a total of
1240 frames, categorized into easy, medium, hard, and
extreme according to the motion magnitude.

HD [35]: It consist of 11 videos. The HD dataset consists of
four 1080p, three 720p and four 544p videos, and we used the
first 100 frames of each video

UVG [64]: It consists of 7 videos with 3840 x 2160 resolution,
and we used the first 300 frames of each video.

B. COMPARISONS WITH THE STATE-OF-THE-ART

To compare our proposed algorithm, we used recent flow-
based algorithms, such as ABME [32], RIFE [2], and
IFRNet [33], kernel-based algorithms AdaCoF [1] and
CDFI [28], and the hallucination-based algorithm CAIN [44].
‘We measured the inference time, PSNR, LPIPS, and DISTS
using NVIDIA RTX A6000 to ensure a justified comparison.
Previous algorithms were compared using pre-trained weight
files and publicly available code. In terms of inference time,
we used the 720p HD dataset [35] to evaluate the performance
of each algorithm.
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GT CAIN

AdaCoF

ABME

RIFE IFRNet Ours

FIGURE 11. Visual results between the proposed algorithm and previous algorithm.

TABLE 2. Quantitative results comparison on benchmark datasets. (Red indicates best PSNR values within each dataset, and Blue indicates second best).

. Vimeo90K  HD SNU-FILM UVG Param  lnjerence
Algorithm . Average Time
easy medium hard extreme M) (ms)

PSNR(1) PSNR(f) PSNR(Y) PSNR(1) PSNR(1) PSNR(1) PSNR(1)

CAIN [44] 34.645 31.795 39.893 35.606 29.895 24.777 31.115 32.532 42.8 46.4
AdaCoF [1] 34.379 31.010 39.855 35.074 29.473 24311 30.547 32.093 21.8 62.7
ABME [32] 36.201 31.665 39.640 35.797 30.590 25.426 32.167 33.069 18.1 326.7
CDFI [28] 35.194 31.470 40.120 35.526 29.753 24.543 OMM OMM 49 431.6
RIFE [2] 35.558 32.140 39.984 35.761 30.116 24.869 31.191 32.802 9.8 39.1
IFRNet [33] 35.799 32.151 39.975 35910 30.399 25.049 31.339 32.894 5.0 41.3
Oursy,y 36.045 32.659 40.144 36.069 30.571 25.401 32.226 33.301 12.4 70.2
Ours 35.669 32.108 40.008 35.831 30.307 25.075 31.271 32.894 124 70.2

Fig. 11 presents a subjective image quality comparison
between the previous VFI algorithms and our proposed
network for SNU, HD, and UVG datasets that contain textural
detail. The comparison shows that the previous algorithms
failed to preserve the textural detail of the video, such as the
film grain noise shown in 5th and 7th rows of Fig. 11, while
our proposed network preserves it. Moreover, the previous
algorithms tended to over-smooth weak textures shown in 2nd
and 3rd rows in Fig. 11. In contrast, our proposed network
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preserve the weak textures. In addition, when comparing
AdaCoF [1] and CDFI [28] twhich use perceptual loss, the
preservation of textural detail remains poor. However, our
proposed network preserves both the film grain noise and
weak texture due to the appropriate use of perceptual loss.
The PSNR, inference time, and parameter comparison
results of recent and proposed networks are summarized
in Table 2. In the table, Ours,, represents the results of
end-to-end training with the loss function L, without
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TABLE 3. Quantitative results comparison on benchmark datasets. (Red indicates best LPIPS/DISTS values within each dataset and Blue indicates second

best.).
Algorithm Vimeo90K HD SNU-FILM UvG
easy medium hard extreme
LPIPS(}) DISTS({) LPIPS(J) DISTS(}) LPIPS({) DISTS(}) LPIPS(}) DISTS(}) LPIPS(]) DISTS({) LPIPS(}{) DISTS(}) LPIPS({) DISTS()

CAIN [44] 0.051 0.05 0.196 0.106 0.036 0.025 0.059 0.037 0.118 0.063 0.207 0.106 0.38 0.177
AdaCoF [1] 0.049 0.048 0.182 0.082 0.035 0.023 0.059 0.034 0.112 0.052 0.197 0.082 0.334 0.148
ABME [32] 0.036 0.037 0.177 0.094 0.035 0.025 0.055 0.037 0.093 0.052 0.165 0.077 0.360 0.175
CDFI [28] 0.030 0.027 0.142 0.062 0.025 0.013 0.042 0.021 0.091 0.036 0.171 0.066 OMM OMM

RIFE [2] 0.039 0.037 0.174 0.085 0.032 0.021 0.051 0.030 0.094 0.045 0.176 0.076 0.338 0.139
IFRNet [33] 0.035 0.035 0.153 0.072 0.032 0.021 0.049 0.029 0.085 0.040 0.159 0.065 0.287 0.105

Ours 0.025 0.020 0.114 0.048 0.022 0.010

0.037

0.015 0.072 0.025 0.144 0.047 0.213 0.053

GT

AdaCoF

IFRNet Qurs

FIGURE 12. Film scanned real video [65] visual comparison between the proposed algorithm and previous algorithm.

applying the proposed PTM to measure the performance
of the proposed synthesis network. OMM denotes out of
memory, it was not possible to measure the UltraVideo
data for the CDFI algorithm due to exceeding the memory
available on out GPU. The results of the proposed synthesis
network demonstrate that the PSNR performance is improved
for most of the test data compared to existing algorithms.
The proposed network has the best PSNR for the HD,
SNU-FILM (easy), SNU-FILM (medium), and UVG datasets
and the second-best performance for the remaining datasets.
Moreover, the proposed network has an average PSNR
improvement of 0.232dB compared to ABME [32], which
has the best overall performance among existing algorithms.
The inference time of the proposed network is approximately
6 times faster than that of ABME, and it has fewer parameters.
When the PTM was applied, the PSNR was degraded
compared to Oursy,, because the PSNR was degraded when
perceptual loss was applied. However, there is still an
improvement in PSNR compared to AdaCoF and CDFI,
which use perceptual loss for training.

In Table 3, the results of LPIPS and DISTS are summarized
to determine whether the existing and proposed networks
preserve textural detail. The results indicate that the proposed
network preserves the textural detail for all test data. Among
the existing algorithms, CDFI which uses perceptual loss
exhibited the best performance on average for both LPIPS and
DISTS. However, the proposed network outperformed CDFI
on all datasets in terms of both LPIPS and DISTS.
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TABLE 4. BMPRI results on film scanned real video.

\ [ CAIN | AdaCoF | ABME | CDFI | RIFE | IFRNet | Ours |
| MBPRI | 51.28 | 4566 | 42.65 | 15.83 | 31.61 | 2368 | 7.03 |

Finally, we performed a subjective image quality compar-
ison using the film scanned real video [65] to compare the
results to see if textural detail is restored in real-video. In the
second column of Fig. 12, we can see that the textures of
the tablecloth are restored in the proposed network. In the
third column, we can see that the film grain noise of the film
scanned real video is not restored by the existing networks,
but it is restored by the proposed network. We measured
the VFI results using BMPRI [66], an NR-IQA, as a image
quality assessment for real video scanned to film. The
results are shown in Table 4, which shows that our proposed
algorithm outperformed the existing VFI algorithms.

C. ABLATION STUDY

To evaluate the effectiveness of our proposed training
methods, PTM and MRTM, we conducted an ablation study.
Table 5 compares the PSNR results based on the proposed
training method. A comparison of LPIPS and DISTS results
based on the proposed training method is listed in Table 6.

1) MULTI-SCALE RESOLUTION TRAINING METHOD
The baseline model was trained end-to-end using the
proposed synthesis network without the proposed training
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TABLE 5. PSNR results for ablation studies of the proposed training method.

. SNU-FILM
Perceptual Loss PTM  MRTM Vimeo90K HD . UvG Average
easy medium hard extreme
PSNR PSNR PSNR PSNR PSNR PSNR PSNR PSNR
X X X 36.069 32250  39.999 35.859 30.166 24.953 31.189 32.926
X X (0] 36.045 32.659 40.144 36.030 30.571 25.401 32.226 33.301
(0] X (0] 35.189 31.908 39.926 35.598 30.102 24.869 30.612 32.601
(0] (0] (0] 35.660 32.108  40.008 35.831 30.307 25.075 31.271 32.894
TABLE 6. LPIPS and DISTS results for ablation studies of the proposed training method.
Perceptual Loss PTM  MRTM ~ Vimeod0K HD MUY uve
P easy medium hard extreme
LPIPS DISTS LPIPS DISTS LPIPS DISTS LPIPS DISTS LPIPS DISTS LPIPS DISTS LPIPS DISTS
X X X 0.037 0.036 0.172 0.086 0.032 0.021 0.051 0.032 0.096 0.048 0.176 0.080 0.338 0.137
X X (6] 0.038 0.038 0.174 0.088 0.034 0.023 0.054 0.035 0.092 0.050 0.168 0.077 0.345 0.146
o X o 0.026 0.021 0.115 0.048 0.022 0.011 0.037 0.015 0.074 0.025 0.151 0.051 0.223 0.059
(0] (6] o 0.024 0.020 0.114 0.048 0.022 0.010 0.037 0.015 0.072 0.025 0.144 0.047 0.213 0.053

method. When applying multi-scale resolution training,
PSNR was improved for large resolution such as HD,
SNU-FILM, and UVG datasets compared to the baseline
by training with various resolutions. In particular, for the
extreme data of SNU-FILM with large motion, the PSNR
was improved by 0.447 dB, and for the UVG dataset
with a 4K resolution video, the PSNR improvement was
1.037 dB. The average PSNR overall test dataset improved
by 0.375 dB. It can be observed that the performance of
the MRTM is improved for various resolutions, and the
results for datasets with large motions are significantly
improved. However, as summarized in Table 6, the results
for DISTS and LPIPS with MRTM were similar to the
baseline.

2) PERCEPTUAL TRAINING METHOD

The results indicate that using only perceptual loss improves
the performance of DISTS and LPIPS compared with the
baseline model, but the PSNR results are degraded. However,
applying our proposed PTM enhanced the PSNR results
compared with not applying our method. The proposed
method improved the PSNR for the entire dataset by an
average of 0.293 dB compared with a model that simply
applied perceptual loss, with a specific improvement of
0.659 dB for the UVG dataset. Moreover, the performance
of LPIPS and DISTS has also been improved. These
findings confirm the importance of the residuals learned by
the synthesis network in enhancing the subjective image
quality, and demonstrate the effectiveness of the proposed
Perceptual Optimal Training method in optimally preserving
the residuals.
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V. CONCLUSION

In this paper, we presented an analysis for preserving
textural detail in VFI and proposed a synthesis network
and learning method optimized for preserving such details
based on this analysis. Our proposed synthesis network
demonstrated improved objective performance compared
with those of existing algorithms. Moreover, subjective
and objective improvements were observed when using our
proposed PTM compared with simply applying perceptual
loss. We successfully resolved the problem of performance
degradation at different resolutions of the training data using
MRTM. However, the issue of PSNR degradation when
perceptual loss is used, remains to be addressed.
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