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ABSTRACT Methane is one of the most dangerous gases produced in the process of coal mining. Because
of its flammable and explosive characteristics, it has seriously threatened the life and property safety
of coal miners. As a result, accurate and real-time gas concentration forecasting is becoming a crucial
but challenging issue for reducing methane risks and accidents. To further improve the efficiency and
accuracy of methane concentration forecasting, this paper proposes a graph convolutional encoder-decoder
(GCN-ED) network, which can train and infer all the sensors of a coal face as a unified entity. The proposed
GCN-ED is composed of the GCN module and the ED module with a parallel structure. The GCN module
constructs a priori graph structure through the adjacency relation between sensors in reality and uses a
learnable self-adaptive dependency matrix to precisely capture the hidden spatial dependency in the data.
The ED module is used to learn complex temporal features with LSTM cells and generate multi-step results
of the gas concentration prediction. Experiments are conducted on real coal mine datasets, whose results
demonstrate that the GCN-ED achieves the better performance than various state-of-the-art solutions and
largely improves the efficiencies of training processes.

INDEX TERMS Graph convolution, encoder-decoder model, spatio-temporal data, methane concentration
forecasting, coal mine safety.

I. INTRODUCTION

Throughout the world, there are too many deep underground
coal mines with naturally complex and frequently varying
environmental conditions. Coal mine safety needs to be given
more attention to address different hazards. Among those
underground accidents, coal mine gas hazard often accounts
for the highest proportion, and causes the most casualties.
Coal mine gas accident and other accidents caused by it, like
mine fire and explosion [1], have posed a great threat to the
safety of miners [2]. As shown in Table 1, methane and coal
dust explosions have caused major damage in different coun-
tries [3], [4]. As demand for coal resources is still going up
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every year, the mining conditions of mines is more severe and
the gas capacity of coal seams increases gradually. Then, gas
accident prevention becomes more difficult and challenging
[5]. Fortunately, before gas accidents occur, the change in
gas concentration can be observed [6]. Nevertheless, if oper-
ators make adjustments until the occurrence of exceed-limit
alarms, the operable window periods will inevitably shorten
and the probability of hazards occurring will increase. There-
fore, it is necessary to monitor and predict precisely the
real-time gas concentration in the areas of ongoing mining
exploitation [7].

Under the above background, timely and accurate predic-
tion of gas concentration is of great importance for coal mine
safety production. At the same time, the scientific efforts
of methane concentration forecasting have been a research
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TABLE 1. Major underground coal mine accidents due to methane explosion in different countries.

Year  Country Name of mine Cause of accident Casualties
2005  China Sunjiawan Colliery Methane explosion 214
2006  Poland Halemba Coal Mine Methane and coal dust explosion 23
2006  Mexico Pastade Conchos Methane explosion 65
2007  China Ruizhiyuan Mine Methane explosion 105
2009  China Xinxing Coal Mine Methane explosion 108
2010 New Zealand  Pike River Mine Methane explosion 29
2014  Poland Myslowice-Wesola Mine ~ Methane explosion 5
2014  Turkey Soma Coal Mine Methane and coal dust explosion 301
2015  China Xiangyangqu Mine Methane explosion 19
2017  China Xingyu Mine Outburst of methane 12
2019  China Lijiagou Mine Methane and coal dust explosion 21
2020  China Liaoyuan Mine Methane explosion 7
2021  Russia Listvyazhnaya Mine Methane explosion 51
R analysis models are employed for gas concentration predic-
R tion problems. Yet, they are usually used to predict a single
'Sy time series, ignoring the potential correlation between mul-
o Used air " tiple time series in relatively complex mining conditions.
Sy e—— 0SS, Second, traditional machine learning methods, such as ran-
T dom forest and support vector machine are developed to
model gas concentration data, but it is difficult for them to
i handle the spatio-temporal data with shallow learning in prac-
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FIGURE 1. The distribution of methane sensors of a coal face.

focus. Two mainstreams of methane concentration prediction
methods are the physical methods and data-driven methods.
Physical methods (e.g., [8], [9], [10]), which include ana-
lytical methods and numerical simulations methods, mainly
predict the gas concentration by establishing complex equa-
tions or using numerical simulations. However, the necessary
data of these methods are always difficult to accurately obtain
in practice. Moreover, some empirical assumptions beneath
the physical methods are too idealistic to react to the real
working conditions of coal mines. Although the physical
methods can, to some extent, reveal the general rules of gas
migration, they lack the ability to make real-time predictions.

Given the widespread deployment of sensor platforms,
data-driven models(e.g., [11], [12], [13]), which mainly
include time-series analysis methods, traditional machine
learning methods, and deep learning methods, have gained
increasing popularity. As shown in Fig. 1, numerous sen-
sors have been deployed in different locations of coal mines
to continuously and cooperatively collect amounts of data.
Apparently, the collected data has spatial and temporal char-
acteristics. Thus, the data-driven approaches need to solve
two challenging tasks.

(1) Capture the complex spatio-temporal correlations
of methane concentration data. Regarding this, many
researchers have already made great efforts. First, time series
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deep learning methods the most popular solution for current
gas concentration prediction. For example, recurrent neural
networks (RNN) and their variants, such as Long Short-
term Memory (LSTM), are widely adopted to extract the
temporal features of data. However, RNN-based models only
exploit the temporal features in single sensor data and ignore
the underlying spatial dependencies in sensor networks. In
other areas, some studies commonly employ a convolutional
neural network (CNN) to capture the spatial dependencies
[16], [17]. However, CNN-based models are more suitable
for large-scale datasets rather than several sensors on the
same coal face. As a result, many studies simply use a full
connection (FC) layer to learn spatial relationships.

(2) Reduce the training cost and the complexity of models.
When predicting the gas concentration of a certain sensor,
all data of the other sensors are extracted and fed into the
FC layer as spatial topological features. This method, while
easy to implement, uses a lot of invalid features for fore-
casting because of the ignorance of topological structure in
sensor networks, such as adjacency. Hence, it neither achieves
accurate prediction nor reduces the efficiency of the model.
In addition, existing methods predict the gas concentration
only for a single target sensor; thus, we have to train a
different model for each sensor, which lead to a huge waste
of resources.

To tackle the above challenges, we propose a novel deep
learning model, consisting of a graph convolutional network
module (GCN) and an encoder-decoder module (ED), to col-
lectively predict methane concentration on the coal face.

VOLUME 11, 2023



Y. Gao et al.: GCN-ED Model for Methane Concentration Forecasting in Coal Mines

IEEE Access

In contrast to CNN and FC, the GCN module provides a
more efficient and feasible way to capture spatial correla-
tion. It can naturally utilize the inherent graph structure of
sensor networks to model the dependencies between sensors
and achieve the final task through the transfer, aggregation
and update of node information [18]. In the GCN module,
we directly adapt the adjacency within a sensor network
to build graphs based on prior knowledge. However, this
graph structure based on prior knowledge does not neces-
sarily represent the real dependencies between sensors. So,
in our model, a learnable self-adaptive dependency matrix is
simultaneously used to capture the hidden spatial dependency
among sensors. The ED module is used to learn complex
temporal features with LSTM cells and generate multi-steps
predictions for gas concentrations. This model can predict
the methane concentration directly on the original sensor data
and effectively capture the complex spatio-temporal patterns.
The main contributions of this paper are summarized as
follows:

o We present an effective and efficient model composed of
the GCN and ED modules, which considers the spatial
and temporal dependencies, respectively. The proposed
model can simultaneously predict the gas concentration
for all the sensors on a coal face instead of a certain
Sensor.

« A self-adaptive adjacency matrix is designed and applied
into the GCN module to improve the ability of capturing
real spatial correlations.

o The ED module can capture long-term temporal depen-
dency, including temporal closeness and daily period,
and can generate a multi-step prediction.

o We evaluate the proposed model on real-world coal mine
data collected from coalface sensors and achieve state-
of-the-art results with low computation costs.

Il. RELATED WORK

A. METHANE CONCENTRATION FORECASTING IN COAL
MINES

After years of continuous research and practice, many
achievements have been made in the field of methane con-
centration forecasting. In general, the methane concentration
forecasting methods fall into five major categories: analytical
methods, numerical simulations methods, time-series analy-
sis methods, traditional machine learning methods, and deep
learning methods.

1) ANALYTICAL METHODS

Through the continuous study of gas concentration laws,
the constitutive equations for the gas concentration from
different gas sources are established [8]. These equations
provide meaningful insights and aid the gas extraction and
ventilation design [19]. However, the methane concentration
is influenced by geological conditions, the gas content of coal
and rock, the depth of coal, the way of mining, and so on
[20]. There are dynamic nonlinear relationships among these
factors [21]. However, in practice these factors are difficult
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to be accurately measured and obtained in the mine, so it is
difficult for analytical methods to predict gas concentration
in advance and give early warning.

2) NUMERICAL SIMULATIONS METHODS

Numerical simulations have been a key player in recent
progress in coal mine methane forecasting [22]. The flow
of methane within coal satisfies the gas diffusion law. When
methane is produced in the coal mining process, it together
with the air forms a mixed gas and diffuses in the roadway
network along with the wind [23]. To reveal the movement
law of gas specifically and directly in the coal face, a lot of
numerical simulation models have been proposed [9], [10].
However, the numerical simulation of the gas migration is
based on some ideal assumptions. For example, the state of
mining equipment, the movement of workers, and the change
in environmental factors are not easy to simulate in reality
[24]. So, it is difficult to apply numerical simulation models
in forecasting methane concentration in practice.

3) TIME-SERIES ANALYSIS METHODS

Compared with the above methods, data-driven methods
provide more flexible alternatives for gas concentration fore-
casting. So, many researchers have turned their attention to
gas time series prediction. Many methods have been proposed
in the gas forecasting field, including chaos time series [11],
[25], [26], gray theory [27], [28], fuzzy mathematics [29],
[30], [31]. Although these methods have yielded good results
in some situations, there is still a desire for improvement
regarding the effectiveness and efficiency of the methods. For
example, ARIMA and its variants are commonly adopted for
linear predictions of stationary single time series. However,
owing to the non-stationary fluctuations and chaotic prop-
erties of the gas concentration time series, the models only
utilize the original raw data from a single sensor and often
cannot provide satisfying forecast results.

4) TRADITIONAL MACHINE LEARNING METHODS
Traditional machine learning methods are important
approaches for gas concentration forecasting. Many effective
methods have been used, e.g., traditional neural networks
[32], [33], support vector machine [12], Gaussian process
regression [34]. To incorporate useful features into the fore-
casting model, some feature extraction methods have been
proposed, such as WELM (wavelet-based ELM) [35], EMD-
MFOA-ELM [36] and CAPSO-ENN [37]. However, these
methods have one common limitation: they cannot pro-
cess spatio-temporal data efficiently and often rely on prior
knowledge.

5) DEEP LEARNING METHODS

Recently, deep learning methods have gained intensive
growth in capabilities and wide usages in many domains,
such as marketing, finance, e-commerce, and the health
field. Owing to its powerful feature extraction ability, deep
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learning models hardly rely on the manual work of feature
engineering, which offers new ideas for methane concentra-
tion forecasting [3], [38]. As a popular model in sequential
learning tasks, the RNN network has been used for methane
concentration forecasting. However, most practices still uti-
lize the data from a single sensor, lacking the fusion of data
from multiple sensors. To fusion multi-sensor information
and achieve multi-step prediction, [13] propose to use an
LSTM-based encoder-decoder model for short-term predic-
tions, and obtain good experimental results. However, the
model may ignore the hidden and dynamic spatial dependen-
cies from the data. Encouraged by this, [39] proposed a gas
concentration prediction method based on attention mecha-
nism. However, most of the existing methods are adopted
to predict the gas concentration of a single target sensor by
taking all measured data as inputs. As a result, there is still an
improvement in the accuracy and efficiency.

B. GRAPH CONVOLUTION NETWORKS

The application of traditional convolution on standard grid
data such as images has achieved great success due to the
automatic extraction and learning of local patterns of the data.
In order to generalize this efficient feature learning method
to data with graph structure, graph convolution theory and
methods have developed rapidly in recent years. Existing
graph convolution approaches mainly fall into two categories:
the spatial methods and the spectral methods.

The key idea of the spatial method is to aggregate infor-
mation on the nodes of the graph and its neighboring nodes.
Therefore, the neighborhood selection of nodes becomes the
main challenge of such methods. Reference [40] proposed a
neighborhood heuristic linear method for determining each
central node in a social network. Reference [41] introduced
graph convolutions into human action recognition tasks. Sev-
eral partitioning strategies were proposed here to divide the
neighborhood of each node into different subsets and to
ensure the numbers of each node’s subsets are equal.

Spectral methods learn local patterns of graph-structured
data through spectral analysis. Reference [42] proposed a
graph convolution framework based on graph Laplacian,
which was further optimized by using Chebyshev polynomial
approximation to achieve eigenvalue decomposition [43]. In
these methods, the adjacency matrix is considered as prior
knowledge, which is fixed throughout the training process.
To address this problem, [44] proposed a model that learns
the weights of node neighbors through a Gaussian kernel.
Furthermore, a method to update the weights of node neigh-
bors through an attention mechanism was proposed by [45].
Although these methods set each neighbor’s contribution to
the central node as a learnable parameter, they are still based
on a predefined Laplacian matrix. In addition, GCN-based
hybrid models are increasingly popular by combining tem-
poral features. For instance, [46] solve the temporal-spatio
prediction of traffic flow by proposing a diffusion convolu-
tional recurrent neural network (DCRNN).
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Motivated by the aforementioned studies, we employ the
graph convolutions with an adaptive dependency matrix
and a LSTM-based ED network to model the complex
spatio-temporal patterns of the methane concentration data
collected from the coal mine sensor network.

lil. METHODOLOGY

In this section, we discuss the motivation and detailed steps
for the construction of the proposed model. At the very
beginning, we briefly introduced the related symbols in this
paper and the mathematical definition of the methane con-
centration forecasting task. Then, we elaborate on the two
constituent modules of the framework, the graph convolu-
tion module (GCN) for spatial dependency capture and the
encoder-decoder module (ED) for temporal feature learning.
Finally, we describe the overall framework of the graph
convolutional encoder-decoder model (GCN-ED) model,
as shown in Fig. 2

A. PROBLEM DEFINITION

Considering the spatial correlation of sensors and the tem-
poral characteristics of gas diffusion, gas concentration
prediction is a typical spatio-temporal forecasting problem.
We intend to predict the methane concentration in the future
by leveraging historical methane concentration data and topo-
logical structure of sensor network. The sensor network can
be denoted as G = (V, E), where V = {v{,--- , vy} is a set
of N methane sensor nodes and E is a set of edges connecting
these nodes. The graph can be represented by a symmetric 0-1
adjacency matrix A € RV*N, where A[i, j] = 1 denotes the
existence of a link between nodes v; and v;, and O otherwise.
The existence of a link is determined by the geographical
proximity between the two sensors.

We regard the methane concentration as the attributes of
the nodes in the network, denoted as X; € RN (t=1,...T),
where T represents the length of the historical time series and
x! € R denotes the value of the node i at time 7. Assume that
the current time is 7y and the size of prediction interval is 7.
Given a graph G and its historical T step graph features, our
problem is to learn a function f that can forecast its next t
step graph features. The mapping relation is represented as
follows:

Koot X1 X))

ey

o Xigre] = (G Kig-141, -

B. HISTORICAL TIME SERIES SAMPLING

The methane concentration in a location is a typical time
series, which is affected by historical data, both near and
far. To make better use of historical information and capture
high-levels of temporal features for methane concentration
data, we categorize the historical time series data into two
parts: the recent samples and daily-periodic samples. Suppose
the sampling frequency is g times per day. Assume that the
current time is 7o and the size of predicting window is t. As
shown in Fig. 3, we intercept two time series segments of

VOLUME 11, 2023



Y. Gao et al.: GCN-ED Model for Methane Concentration Forecasting in Coal Mines

IEEE Access

Graph Convolution

Input Graph

Output Graph

Output of GCN

XL()+]
Xt()+2
— LSTM LSTM Y1 E} FC-layer
S
Xh l l /
— LSTM
es] LSTM Yeo-1+41
=4 . o Xip+r-1
l g l / .
g O
o
l % LT e
Y,
LSTM & LSTM to+1 .
Xq l l ] :
— LST™M LSTM Y, .
Enconder Decoder Output of ED
FIGURE 2. The framework of the GCN-ED model.
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FIGURE 3. An example of historical time series sampling (Suppose that T T
the prediction interval is 30 minutes.).
1 T

length T, and T; along the time axis as the input of the recent
and daily-period component respectively, where T}, and T,
are all integer multiples of t. Details about the two time series
segments are as follows:

(i) The recent segment: X, = (X;—7,41, Xi—7542, .x,) €
RN*Th Ty, is a segment adjacent to the predicting period,
as shown by the green part of Fig. 3. Intuitively, the adjacent
period has a greater impact on predictions than the far periods.

(ii) The daily-periodic segment: Xy = (X;—(7,/7)xg+1, -
X (T Jryeq+2s + - s Xe—(Ty/rygts Xe—(Tg/r—Drg+1s Xi—(Ty/
T—1)xq+2s -+ o s Xt (TgJT—1)kqTs o> Xt—qtls  Xt—gt2s - -+ s
Xi—g+7) € RN*T4 consists of the segments on the past few
days at the same period as the predicting period, as shown by
the red part of Fig. 3. Due to the regular daily routine of coal
miners, such as the daily lunch break, methane concentrations
may show similar patterns from day to day. Hence, we use
the daily-period segment to capture the daily periodicity of
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FIGURE 4. The architecture of graph convolution module.

methane concentration, which does not occur in most existing
methods.

C. GRAPH CONVOLUTION MODULE
In our model, a novel graph convolution module is pro-
posed to model the complex spatial dependencies of sensor
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networks. In this section, we introduced the structure and
operation of graph convolution module. Due to using dif-
ferent graph matrices to generate the Laplace matrix, graph
convolution module is composed of two parts, as shown in
Fig. 4. In the left part, we use an adjacency matrix based
on prior knowledge to build the initial graph structure, while
in the right part, a self-adaptive adjacency matrix is used to
capture hidden spatial relations. After obtaining the Laplace
matrix, both parts learn the final spatial features through the
stacked Chebyshev convolution layers.

1) CHEBYSHEV CONVOLUTION LAYER

In this study, we regard the methane sensor network as a
graph, and the features of each node can be regarded as the
signals on the graph [47]. The spectral method transforms
a graph into an algebraic form to analyze the topological
attributes of a graph, such as the connectivity in the graph
structure. In spectral graph analysis, a graph is represented
by its corresponding Laplacian matrix. The properties of
the graph structure can be obtained by analyzing the Lapla-
cian matrix and its eigenvalues. The Laplacian matrix of a
graph is defined as L = D — A, and its normalized form
is L = Iy — D7'2AD712 e RN*N_ where A is the
adjacent matrix, Iy is a unit matrix, and the degree matrix
D e RVN*VN is a diagonal matrix, consisting of node degrees,
D;; = Zj Aj;. The eigenvalue decomposition of the Laplacian
matrix is L = UAUT, where A = diag([ro, -+ , \v—1)])
is a diagonal matrix, and U is the Fourier basis. Taking the
methane concentration at time ¢ as input, the signal all over
the graph is X, € RV, and the graph Fourier transform of the
signal is defined as X, =UTX,. According to the properties
of the Laplacian matrix, U is an orthogonal matrix, so the
corresponding inverse Fourier transform is X; = UX;. The
graph convolution is a convolution operation implemented by
using linear operators that diagonalize in the Fourier domain
to replace the traditional convolution operator [48]. Based on
this, the signal X; on the graph G is filtered by a kernel:

80 %6 X, = go(L)X; = go (UAUT) X, = Ugo()UTX,;
@)

where *x; denotes a graph convolution operation. Since
the convolution operation of the graph signal is equal to
the product of these signals which have been transformed
into the spectral domain by graph Fourier transform, the
above formula can be understood as Fourier transforming
go and X; respectively into the spectral domain, then mul-
tiplying their transformed results, and doing the inverse
Fourier transform to get the final result of the convolution
operation. However, due to the computational complexity,
when the eigenvalue decomposition of the Laplacian matrix
of a large-scale graph is directly performed, the computa-
tional resource requirements are very demanding. Therefore,
Chebyshev polynomials are adopted in this paper to achieve
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the approximate result efficiently [49]:
K—1

g0 %G Xi = go(L)X; = D O Tk (L)X, 3)
k=0

where the parameter # € RX is a vector of polynomial
coefficients. L = ﬁL — In, Mg 1s the maximum
eigenvalue of the Laplacian matrix. The recursive definition
of the Chebyshev polynomial is Tx(X;) = 2X;Tr_1(X;) —
Ti—2(X;), where To(X;) = 1, T1(X;) = X;. Solving this
formula using an approximate expansion of the Chebyshev
polynomial is equivalent to aggregating 0 to (K — 1) order
neighbor information for each node in the graph through a
convolution kernel gyp. The graph convolution module uses
the Rectified Linear Unit (ReLLU) as the final activation func-
tion, i.e., ReLU(gg *G X;).

2) SELF-ADAPTIVE ADJACENCY MATRIX

To dynamically adjust the correlations between nodes and
precisely capture the hidden spatial dependency in the data,
we propose a self-adaptive adjacency matrix Augp. Aadp is a
learnable matrix that trains along with the model. We achieve
this by randomly initializing two transformation matrices
with learnable parameters M|, M, € RV*N Specifically, the
self-adaptive adjacency matrix is defined as follows:

Aadp = M1EM> @

where E is a matrix of all ones. We use the E to represent all
possible connections in the graph, and derive the actual spatial
dependency weights through the matrix transformation. In the
same way, we can get iadp by taking A,y as the matrix of the
graph and define the graph convolution based on the I:ad[, as:

K
g0 %G X = D_ 0{Tk(Lagp)Xi )
k=0
In our GCN-ED model (see Figure. 4.), we stack P Cheby-
shev convolution layers as follows,

21 = 0(zp: 6) ©)

where 7,11 and z, are the input and output of the
p™ Chebyshev convolution layer, respectively; G is the
graph convolution function (i.e., two combinations of
“ReLU + Chebyshev convolution™), and 6, includes all
learnable parameters in the p* Chebyshev convolution layer.
And, the impacting weights of the two matrixes for each
node are different at each time slice, and they should be
learned from the data. By combining spatial dependencies of
predefined graph structures and hidden spatial dependencies
learned from data, the final result of the GCN module after
the fusion is:

06 =Wo O 2+ Wagp © 2% )

where © is the Hadamard product. W, and W,q, are learn-
ing parameters, reflecting the influence di:igrees of the two
matrixes on the forecasting target. zj, and z‘;, P are results after
P-layer graph convolution.
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FIGURE 5. The architecture of an LSTM-based encoder-decoder network and an LSTM memory cell.

D. LSTM-BASED ENCODER-DECODER MODULE

The data generated by methane sensors are typically
time-series data with periodicity and proximity character-
istics. There exist complex correlations between the gas
concentration in different time slices, and the correlations
are also varying under different situations. To capture the
temporal dependency, we adopt the LSTM-based encoder-
decoder model to process the sequence information. LSTM
is an improved model of RNN to solve the gradient vanishing
problem. The major innovation of LSTM is its memory cell c,
which essentially is used to store temporal states. As shown in
Fig. 5, each memory cell is accessed, updated, and cleared by
forget gate f, input gate i, and output gate o to control the flow
of sequential information. As a result, LSTM can effectively
extract and transfer important historical data features, which
is crucial in modeling time dependence. The LSTM maps the
input sequence to an output sequence by calculating various
unit activations using the following equations:

fi=o (Wf (-1, %] + bf)

ir =0 (Wi lh—1, %]+ b))

¢; = tanh (W, [A;—1, x;] + b)

Cr =fr®ci—1 + i %Ct

or =0 (Wo [hi—1, x:] + bo)

h; = o; x tanh (¢;) (8)

where the matrix W (e.g., Wy) and the bias vector b (e.g., by)
are learnable parameters and o represents the standard sig-
moid function. The /; denotes the hidden state at time ¢
and x; is the input at time ¢, and ¢; is the temporary cell
state.

The encoder-decoder is a common framework in the deep
learning model and is firstly used for machine translation.
It has been proven to be stable and powerful for extracting
long-range dependencies of historical data in various previ-
ous studies. The LSTM-based encoder-decoder model takes
in a sequence of data and outputs a new sequence of data,
which is a way to solve the sequence-to-sequence problem
[50]. As shown in Fig. 5, the model consists of two parts
- an encoder and a decoder. The encoder is mainly used to
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learn the important information from the historical time series
data. We feed the X; as the input to the encoder and update
the hidden state at time ¢ by using h; = fe(h;—1, X;), where
fe is an LSTM unit. In the decoder, once we get the hidden
state d;_; at a future time step 7, we combine it with the
last output of decoder Y;_; to update the decoder hidden
state with d; = fy(d;_, Y;_;), where f; is an LSTM unit
used in the decoder. Finally, we use a linear transformation
to generate the final output of LSTM based encoder-decoder
module as follows:

Or = WY +b, ©)

where the matrix W, and the vector b, are learning
parameters.

E. COMBINATION OF THE GCN AND ED MODULES

Most of the existing studies commonly model the spatial
dependencies first and then the temporal dependencies. For
example, in [51], the methane concentration data are sequen-
tially fed into the FC layer and the LSTM network. However,
the original temporal patterns may be distorted after complex
spatial convolution so that the outputs generated by the neu-
ral network layers no longer fully represent the patterns of
the raw methane concentration data. Therefore, in order to
better capture the spatio-temporal dependencies in the data
separately, a novel framework is proposed in this paper. The
framework maximizes the effectiveness of the spatial and
temporal modules by running the GCN and ED modules in
parallel and then combining their respective results. As shown
in Fig. 2, the methane concentration data is first organized
into two forms, sensor graphs G and time series X; then these
two forms of data are used as the inputs of the GCN and ED
modules to capture the spatial and temporal dependencies,
respectively, and their outputs are represented by OG and
OT, respectively; Finally, the results of the two modules are
concatenated and a fully connected layer is used to generate
predictions for future time, which can be expressed by the
following formula:

X = Wy(06 ® Or) + by (10)
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FIGURE 6. Plots of the methane concentration values of SXMine.
TABLE 2. Statistics of the two datasets used in experiments.

Dataset ~ Sensors  Sampling interval — Training set  Test set
SXMine 6 1 min 17280 4320
CQMine 3 2 min 4320 720

where Wy, and by, are the model parameter used to obtain the
prediction results X. @ isused to represent the concatenation
operation.

Our GCN-ED model is trained by minimizing the loss
function, which is defined as the mean squared error (MSE)
between the predicted value and the ground truth data.

=N j:T

o)=Y

i=1 t=1

o il
Xy — X¢

(1)

where 0 are all learnable parameters in the GCN-ED model.

Unlike previous works such as [51], our GCN-ED model
outputs X = [X¢+1, - .., Xi47] as a whole rather than gen-
erating X recursively through T steps, which solves the
problem of multi-step prediction for methane concertation.
More importantly, our GCN-ED model can train and infer-
ences all sensors on the same coal face as a whole. Compared
with existing approaches that target a single sensor, the GCN-
ED model undoubtedly greatly improves the efficiency in
practical applications.

IV. EXPERIMENTS

A. DATA DESCRIPTION

A real sensor dataset called SXMine from a coal mine mon-
itoring system in Shanxi, China, was used to validate the
effectiveness of the proposed GCN-ED model. To accurately
monitor the gas concentration of coal face, the administrative
department of coal mine safety has specified the number and
locations of gas sensors. This dataset contains six methane
sensors installed at different locations on the same coal face,
as shown in Fig. 1. The sampling interval of the sensors is
Imin, so each sensor can generate 1,440 samples per day. The
missing values are filled by linear interpolation. For effective
training and testing, we used the methane concentration data
of the first 12 days to construct the training set and the
remaining data to construct the test set. The specific statistical
information of the dataset can be referred to in Table 2. The
time series values of gas concentration at some measuring
points are shown in Fig. 6.
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B. EXPERIMENT DESIGN

Different from the previous point prediction task, the
multi-time step prediction task on SXMine is a typically
sequence-to-sequence problem. As a result, classic coal mine
methane prediction methods, including ARIMA [52], LSTM
[53], and FC-LSTM [51] are not suitable for comparison.
LSTM-based encoder-decoder [13] is the state-of-the-art
model for predictions of multi-time step gas concentration.
To better illustrate the effectiveness of the GCN-ED model,
multi-time step prediction tasks were conducted by taking
an LSTM-based encoder-decoder as the control method.
Specifically, we design two tasks on SXMine to verify the
performance of the GCN-ED model:

e Task 1 (30 to 15) is to generate the next 15 sample
prediction results given 30 historical samples, which
include 15 periodic samples and 15 recent samples.

e Task 2 (60 to 30) to obtain the next 30 sample pre-
diction results using 30 periodic samples and 30 recent
samples.

To verify the impact of the ED module, we also design
a degraded version of the GCN-ED model, named GCN,
which gets rid of the LSTM-based ED module. The set-
tings of GCN are the same as those of GCN-ED, except for
removing the ED module. In addition, to evaluate the impact
of different graph structures, we build a simplified version
of the GCN-ED model that uses only the adjacency matrix
without the self-adaptive matrix, denoted by GCN-ED(a pri-
ori), and a model that uses only the self-adaptive adjacency
matrix without the a priori adjacency matrix denoted by
GCN-ED(adaptive).

C. EXPERIMENTAL SETUP

We compiled and tested the model on a desktop with an
AMD processor Ryzen 7 4800HS and an NVIDIA RTX
2060 running Windows 10. In addition, we implemented each
prediction model based on the Pytorch framework. During
the training phase, the batch size is 64 and the learning rate
is 0.001. We built our model with two GCN layers, which
proved to be the most effective in many studies. According to
[49], we test the number of the terms of Chebyshev polyno-
mial K € {1, 2, 3}. And we directly build the prior adjacency
matrix according to whether the sensors are adjacent in the
coal face. Additionally, we use three commonly used metrics
to evaluate the performance of either model, including Root
Mean Squared Error (RMSE), Mean Absolute Error (MAE)
and Mean Absolute Percentage Error (MAPE), which are
expressed as follows:

< n
MAE=;Z X — X;
1

1 n )Xi—X,‘
MAPE=-> - |
n - Xi

1
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TABLE 3. Experimental results of different models on task 1.

Model MAE RMSE MAPE TIME(s/epoch)
ED 0.0435 0.0626 0.0812 4% N
FC-ED 0.0395 0.0568 0.0750 6% N
GCN 0.0369 0.0551 0.0824 2
GCN-ED(a priori) 0.0343 0.0550 0.0725 5
GCN-ED(adaptive)  0.0361 0.0542 0.0781 5
GCN-ED 0.0329 0.0513 0.0698 5

TABLE 4. Experimental results of different models on task 2.

Model MAE RMSE MAPE TIME(s/epoch)
ED 0.0769 0.1077 0.1102 7+ N
FC-ED 0.0564 0.0771 0.1041 9% N
GCN 0.0633 0.0919 0.1137 3
GCN-ED(a priori) 0.0526 0.0716 0.1105 8
GCN-ED(adaptive) 0.0476 0.0725 0.1084 8
GCN-ED 0.0469 0.0660 0.1057 8

I (s 2

RMSE= |- > (% - X)) (12)
n =
1

As an early warning model, the proposed model should be
sensitive to outliers in methane concentration data. Since
MAPE and MAE are relatively more robust to abnormal
value, we use RMSE, as the main evaluation metric for our
experimental comparison.

D. COMPARISON AND RESULT ANALYSIS
Tables 3 and 4 show the performance of different models on
Tasks 1 and 2, respectively. It can be seen that our GCN-
ED model obtains superior results on both tasks in terms of
the evaluation metrics, MAE, RMSE, and MAPE. Among all
tested models, ED obtains the worst accuracies with RMSE
values of 0.0626 and 0.1077 for Tasks 1 and 2, which suggests
the limited effectiveness of learning only temporal features
for methane concentration prediction. By using both FC to
capture spatial and LSTM to capture temporal dependen-
cies, FC-ED can achieve better performance than the ED
model, with RMSE values reduced to 0.0568 and 0.07711 in
Task 1 and Task 2, respectively. However, the model that
used a FC layer to capture the spatial dependencies is easy to
ignore the relationship from the realistic topology and adopts
a lot of invalid features for forecasting. Hence, it reduces
not only the accuracy but also the efficiency of the model.
The GCN model significantly improves the accuracy with
an RMSE value lower than 0.0551 in Task 1. But in the
long-term prediction task 2, it performs significantly worse
than the FC-ED model. This indicates that the graph convolu-
tion operation can achieve information fusion in a short term
and the RNN-based models have a stronger ability to capture
long-term time dependence. Because the proposed GCN-ED
model combines the GCN module and ED module to capture
complex spatio-temporal dependencies, it achieves the lowest
RMSE values of 0.0513 for Task 1 and 0.0660 for Task 2.
The results of the ablation experiments further empha-
size the effectiveness of each adjacency matrix of graph in
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FIGURE 7. Results of GCN-ED with different values of K.
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FIGURE 8. Comparison of ground-truth and prediction results.

GCN-ED: (1) compared with the results of the GCN-ED, the
GCN-ED(a priori) achieved worse performance, i.e., RMSE
of 0.0550 and 0.0716, which illustrates the importance of
incorporating adaptive matrices into the GCN module; (2) the
accuracy of the GCN-ED (adaptive) further decreased, whose
RMSE is 0.0542 and 0.0725, indicating the positive effect
of a priori adjacency matrix in GCN module. Although the
prediction accuracy of these ablation models decreased to
varying degrees. However, compared with other test models,
it still shows obvious superiority, which verifies the validity
of the overall structure of the model.

In order to test the effect of different K values on model
performance, we set K ranging from 1 to 3 in our experiments,
and the RMSE values of the corresponding models are shown
in Fig. 7. It can be seen that RMSE reach its minimum at
K =2fortask 1 and 2, and then increases as K becomes larger.
Larger K means that more spatial dependence information
is used in the prediction model. The reasonable dependence
information is helpful for improving prediction accuracy;
however, overmuch information may result in overfitting. So,
considering the forecasting performance of the model, we set
K =2 in the experiment.
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FIGURE 9. Loss of FC-ED and GCN-ED model.

1) VISUALIZATION OF PREDICTION RESULTS

We plot predicted values vs. real values of the GCN-ED
model and FC-ED model on a snapshot of the test data in
Fig. 8. It shows that the GCN-ED model generates more
accurate predictions than the FC-ED model. In particular,
when methane concentrations fluctuate wildly at high levels,
our model is closer to the real value. Since gas accidents
are usually caused by the increase and accumulation of gas
concentration, the prediction models should be sensitive to
the fluctuation of data in the danger range. In summary, the
proposed GCN-ED achieves better predictions both in the
whole data and in the large-value intervals.

2) ANALYSIS OF THE COMPUTATIONAL EFFICIENCY

To apply the model in practice, the efficiency of the model
is also crucial. Tables 3 and 4 summarize the training time
per epoch for all tested models. We can see that GCN is the
most efficient model among all the tested models, and the
GCN-ED proposed in this paper is the second most efficient
model with requirements of 5s and 8s for task 1 and task 2,
respectively. Although the average training time of our model
is slightly higher than that of GCN, it is much lower than
the other models, which shows the competitiveness of our
model in terms of efficiency. In contrast, the FC-ED model
with the second-best prediction accuracy on both tasks is
the least efficient model. Because it is modeled for a single
sensor, the training time of the model is proportional to the
number of sensors. Specifically, FC-ED takes (6*N)s and
(9*N)s during the training process of each epoch of tasks
1 and 2, respectively, which is more than N times longer than
the proposed GCN-ED. The reason of this huge difference in
efficiency is that the FC-ED is modeled for a single sensor,
whereas our model is built for all sensors across the entire
working face. Therefore, our model can realize the simulta-
neous training and inference of all sensors, which saves a lot
of manpower and computing resources. Fig. 9 outlines the
training and validation accuracy and loss curves respectively.
Compared with task 1, the convergence speed of task 2 is
relatively slow, which indicates that longer sequence data
needs longer training. Due to the superiority of the model,
compared with the FC-ED model, the proposed GCN-ED
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FIGURE 11. Visualization of self-adaptive adjacency matrix.

model not only converges faster but also achieves better
results after convergence.

3) ANALYSIS OF MODEL INTERPRETABILITY

In order to provide better explanations for the model, we ana-
lyze model performance for three different adjacency matrix
configurations. The last three rows Table 3 and Table 4
show the average score of MAE, RMSE, and MAPE on
taskl and task 2. We find that the performance of the GCN-
ED(adaptive) model is similar to that of GCN-ED(a priori)
on RMSE. When the graph structure is uncertain, GCN-ED
(adaptive) can still obtain good prediction accuracy. And the
GCN-ED model significantly outperforms other models on
all evaluation metrics. It indicates that the combination of the
graph structural information and the self-adaptive adjacency
matrix could introduce new and useful information to the
model.

As shown in Fig. 6, there is a clear similarity in the trend of
gas concentration values among different monitoring points
within the same workface. The Pearson correlation coeftfi-
cient is a widely used measure for quantifying the degree of
correlation between two sequences. Therefore, in this paper,
the correlation coefficient is used to describe this dependency
effect. Its calculation is given by Equation (13).

2i(Xi—X)(vi—Y)
n N2 —n —\2
V=% S (- 7)
In this equation, X; represents the gas concentration at point
X at time i, Y; represents the gas concentration at point Y
at time i, X represents the mean gas concentration at point

X, Y represents the mean gas concentration at point Y. The
visualization of the correlation coefficients between the gas

COR(X,Y) =

(13)
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concentration data of all sensors and the gas concentration
data of the target sensor is shown in Fig. 10.

Similarly, to emphasize that our model can learn the depen-
dency patterns in the data, we performed an experiment:
picking out the coal face with 6 methane sensors from the
SXMine and showing learned self-adaptive adjacency matrix
under the configuration of the GCN-ED model trained on
task 2. The self-adaptive adjacency matrix is shown on the
right side of Fig. 11, where the i-th row represents the impact
strength from all sensors to the i-th sensor. By comparing two
heatmaps, we can clearly observe that our model can learn
the correlations among the gas concentration data from dif-
ferent sensors. Furthermore, based on the two components of
Fig. 11 and the actual mining environment, we have provided
explanations for the data correlations. Some columns have
more high-value points than others, such as columns 1 and 2.
It illustrates that some nodes have more influence than others
in the sensor network. This may be because these influential
sensors are located at the upstream points of wind flow,
and therefore control the trend of gas concentration change.
So, the self-adaptive adjacency matrix can help capture the
direction of methane diffusion in the prediction tasks. In
addition, distance is also an important factor affecting spatial
dependence. Combined with the left side of Fig. 11, we can
know adjacent sensors has a great influence on the target
sensor. In particular, s5 and s¢, because they are in a separate
tunnel, have a significantly stronger influence between them.
Through the above analysis, we can find that the hidden
dependencies learned by the matrices demonstrate an inter-
pretability advantage of the GCN-ED model.

4) ANALYSIS OF MODEL GENERALIZATION

To validate the effectiveness of our proposed model on dif-
ferent datasets, we conducted experiments using real data
from another coal mine. The dataset was collected from
April 21 to April 27, 2020 based on sensors provided by the
coal mine monitoring system in Chongqing, China, hence,
we call it CQMine. The sensors have a sampling interval of
two minutes, resulting in the generation of 720 data points
per day. We divided the dataset into a training set and a
test set, using the first six days of data as the training set
and the data from the last day as the test set. The specific
statistical information of the dataset can be referred to in
Table 2. The safety management department has specific
regulations regarding the number and placement of methane
sensors in the coal mine working face. As aresult, the quantity
and locations of methane sensors may vary among different
working faces in the coal mine. However, every working
face has an upper corner monitoring point (s2), a working
face monitoring point (s3) and a return air monitoring point
(s4), as shown in Fig. 1. Therefore, we used the data from
these three sensors in the CQMine dataset as our prediction
targets to validate the generalization and effectiveness of our
model. Due to its superior performance and its similarity
to the proposed model, we chose the FC-ED model as the

VOLUME 11, 2023

comparative method in our generalization experiments. The
detailed experimental results are presented in Table 5.

The experimental results in Table 5 demonstrate that the
proposed model outperforms the baseline model across all
evaluation metrics. This indicates the robustness and gen-
eralization capability of our model, further showcasing its
potential application in the production operations of different
coal mines.

TABLE 5. Experimental results of different models on CQMine dataset.

Interval  Model MAE RMSE MAPE TIME(s/epoch)

40 min FC-ED 0.0344 0.0454 0.0620 1% N
GCN-ED 0.0241 0.0361 0.0397 1

60 min FC-ED 0.0415 0.0531 0.0636 2% N
GCN-ED 0.0256 0.0390 0.0412 3

5) ANALYSIS OF MODEL UNCERTAINTY

In the field of coal mine methane prediction, prior works
have mostly focused on point estimates without quantifying
the uncertainty of the predictions. However, in this high-risk
domain, being able to generate probabilistic forecasts with
confidence intervals is critical to risk assessment and decision
making. Therefore, building upon relevant works, this study
conducted uncertainty quantification of the proposed model
and the baseline model using three different methods. We
utilized the Mean Interval Score (MIS) metric provided by
[54] to quantify the uncertainties in our paper. It rewards
narrower confidence or credible intervals and encourages
intervals that include the observations (coverage). Therefore,
MIS is defined to estimate the upper and lower confidence
bounds for the predictions. For a one-dimensional random
variable Z ~ Pz, if the estimated upper and lower confidence
bounds are u and /, where u and [ are the (1 — §)and 5
quantiles for the (1 — p) confidence interval, MIS is defined
using samples z; ~ Pz and 1{-} is an indicator function:

1 < 2
MISy (u, ; p) = + DHw—-h+ @l {zi > u}

i=1

+ % (I —z) Mz < I} (14)

We adapt FC-ED and GCN-ED to implement various UQ

methods with the following settings.

o Quantile Regression We can use the one-sided quantile
loss function to generate predictions for a fixed confi-
dence level p. Given an input x, and the output f(x) of
a neural network, parameterized by 6, quantile loss is
defined as follows:

LQuantile (ny(-x)a 97 ,0)
= min {E( y~pl6 = f0D(p — Iy < fI} (15)

In the experiments, we set the corresponding quantile to
(0.025, 0.5, 0.975) and kept the rest of the settings the
same as point estimation.
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« MIS Regression For a fixed confidence level p, we can
directly minimize MIS to obtain estimates of the confi-
dence intervals. Specifically, we use MIS as a loss func-
tion for deep neural networks, we use a multi-headed
model to jointly output the upper bound u(x), lower
bound /(x), and the prediction f(x) for a give input x,
and minimize the neural network parameter 6:

Lvis(y, u(x), [(x), f (x); 0, p)

2
= min {E(x,y)~D[(u(X) —1(x) + ;(y — u(x))

2
x 1y > u(X)H;(l(x)—y)l{y <l@)}+1y —f(X)I]]
(16)

« MC Dropout Monte Carlo (MC) drop-out method
serves as a simple alternative to variational Bayes meth-
ods which involves performing multiple forward passes
with dropout to obtain a distribution of predictions,
allowing for the quantification of uncertainty. We imple-
ment the algorithm provided by [55] and simplify the
model by only considering the model uncertainty. We
apply random dropout through the testing process with
5% drop rate and use the average value of the 10 trails
as the final comparison result.

Table 6 presents the results of uncertainty quantification
for the GCN-ED model and FC-ED model using three dif-
ferent methods. It is evident that the proposed model exhibits
better performance in terms of both prediction accuracy and
reliability compared to the baseline model. Furthermore,
in terms of different uncertainty quantification methods,
quantile regression has demonstrated better performance in
both MAE and MIS. In summary, by quantifying the uncer-
tainty of the model, we have further revealed the credibility
of our model, which can provide reliable support for safety
decision-making in coal mines.

TABLE 6. Performance comparison of different models for uncertainty
quantification using three evaluation methods.

Interval Model MAE MIS

MIS
30 min FC-ED 0.0479  0.3977
GCN-ED | 0.0441  0.3698
60 min FC-ED 0.0591  0.5651
GCN-ED | 0.0575 0.4158
Quantile
30 min FC-ED 0.0395 0.1893
GCN-ED | 0.0342 0.1875
60 min FC-ED 0.0497  0.2618
GCN-ED | 0.0510 0.2287
MC Dropout
30 min FC-ED 0.0488  0.4236
GCN-ED | 0.0420 0.3975
60 min FC-ED 0.0602  0.4918
GCN-ED | 0.0556 0.4782

V. CONCLUSION AND IN FUTURE

Methane concentration prediction is one of the crucial
and challenging tasks for coal mine safety production.
Considering the complex spatio-temporal dependence of the
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sensor data in a coal face, deep learning models show strong
superiority, owing to their revolutionary feature representa-
tion capability. However, due to the negligence of the real
topology of sensor networks or the deficiency in capturing
representative spatio-temporal patterns, existing deep learn-
ing models utilizing the recurrent neural network can hardly
provide accurate prediction. In addition, the current methods
are based on a single target sensor model, which results
in inefficiency and waste of resources in practical applica-
tions. Focusing on improving the accuracy and efficiency
of methane concentration prediction, a new methane con-
centration prediction model GCN-ED is proposed in this
paper, which consists of GCN and ED modules with a par-
allel structure. In the GCN module, a fixed graph structure
through the adjacency relation between sensors in reality and
a novel adaptive dependency matrix are used to precisely
capture the hidden spatial dependency in the data. The ED
module can learn complex temporal features with LSTM
cells and generate multi-step results of the gas concentration
prediction. In addition, the parallel structure of the overall
framework maintains the independence between the spatial
dependency learning module and the temporal dependency
learning module; thus, it can avoid the uncertainty caused by
mutual interference. In experiments based on real datasets,
the GCN-ED model achieves the best prediction accuracy
compared with various state-of-the-art solutions and largely
enhances the efficiencies of training processes.

Certainly, our model also has some limitations and con-
straints. Firstly, our approach is based on a unified model
constructed using data from all sensors in the working face.
Although this approach can greatly improve the efficiency
and effectiveness of the model, it relies on the segmentation
of sensors based on the working face using information from
the raw data, which is currently not feasible in some coal
mines. Additionally, our model is a standard data-driven end-
to-end model. Therefore, like typical deep learning models,
there is still room for improvement in terms of interpretability
in the proposed model. Hense, there are still some mean-
ingful works to be explored in the future. First, we can
consider more environmental factors and human factors that
may affect the diffusion of gas concentration to improve
the prediction accuracy of the model. Second, we will try
the application of GCN-ED model on large-scale datasets
and explore methods for learning the spatial correlation of
dynamic graph-structured data, which allows our model to
solve more practical problems.
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