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ABSTRACT Face cognition mechanism has changed throughout the SARS-CoV-2 pandemic because of
wearing masks. Previous studies found that holistic face processing enhances face cognition ability, and
covering part of the face features lowers such an ability. However, the question of why people can recognize
faces regardless of missing some clues about the face feature remains unsolved. To study the face cognition
mechanism, event-related potential (ERP) evoked during the rapid serial visual presentation task is used. ERP
is often hidden under large artifacts and needs to be averaged across the tremendous number of trials, but
increasing the trial number can cause fatigue and affect evoked ERP. To overcome this limitation, we adopt
machine learning and aim to investigate the partial face cognition mechanism without directly considering
the pattern characteristic of the ERP. We implemented an xDAWN spatial filter covariance matrix method
to enhance the data quality and a support vector machine classification model to predict the participant’s
event of interest using ERP components evoked in the full and partial face cognition tasks. The combination
of the missing two face components and the physical response was also investigated to explore the role of
each face component and find the possibility of reducing fatigue caused during the experiment. Our results
show that the classification accuracy decreased when the eye component was missing and became lowest
(p < 0.005) when the eyes and mouth were absent, with an accuracy of 0.748 ± 0.092 in the button press
task and 0.746 ± 0.084 in the no button press task (n.s.). We also observed that the button press error rate
increased when the eyes were absent and reached its maximum when the eyes and mouth were covered
(p < 0.05). These results suggest that the eyes might be the most effective component, the mouth might also
play a secondary role in face cognition, and no button press task could be used in substitution of a button
press task to reduce the workload.

INDEX TERMS Partial face cognition, event-related potential, P300, machine learning, Xdawn.

I. INTRODUCTION
The SARS-CoV-2 pandemic brought not only a signifi-
cant epidemiological experience for the people but also an
unprecedented experience in terms of face recognition—
wearing facial masks. Face cognition is a fundamental and
essential skill in social interaction.When people interact, they
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first identify a person, then recognize social cues such as their
facial position, emotional expressions, eye gaze, and physical
changes to understand each other, decide how to make the
next move and establish a pleasant interaction. Covering part
of the face forced the mechanism of face cognition to change
from full to partial face. Previous studies of face cognition
reported that the processing of faces holistically increases the
face identification judgment and improves both visual short-
term and long-term memory for face recognition [1], [2], [3].
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Having part of the face covered weakens face cognition and
matching performance abilities [1], [4], [5], [6], [7], [8], [9].
Missing the eye component delays the response time while
missing the nose component leads to the loss of configural
information about the face [10]. Despite many studies on
partial face cognition, how people can recognize partial faces
correctly is still in question. What are the psychophysiologi-
cal effects of wearing a mask on face perception? This study
addressed this question using electrophysiological measure-
ments and machine learning.

A typical method to study face cognition mechanism in
visual perception is to use the rapid serial visual presen-
tation (RSVP) paradigm to obtain the target event-related
response [11]. It is a visual oddball task that presents a
stream of target and non-target stimuli at an extremely high
rate, during which the target is presented more infrequently.
The stimuli used in the RSVP can be either static stimuli,
such as images [12] or dynamic stimuli, such as videos [13].
A response to the RSVP can be captured by electroen-
cephalography (EEG). During the RSVP task, an event-
related potential (ERP) corresponding to cognition is induced
when a participant perceives the target image. The induced
ERP is a time-locked response associated with the stimulus
onset [14], [15]. It is a temporal waveform with components
named according to their polarity and latency. One of themost
commonly used biomarkers for visual perception is P300,
the positive peak induced 250–700 msec after stimulus onset
responsible for the rare target perception [11].

In ERP analysis, the process involves the grand averaging
procedure to the signal-to-noise ratio so that the obtained ERP
has high consistency with less contamination of artifacts [16].
Many studies claim that averaging a few trials (14 to 20) could
yield reliable ERP [17], [18], [19]. Still, it would preferably
be averaged about 100 trials [20]; hence, the appropriate
number of trials is still in question. The reason is that it
depends on many factors, such as the types of task (auditory
or visual task), the nature of the participants (age and health),
the sample size, the focused ERP component, or even the
noise environment of the experimental room [16], [17], [21],
[22]. Although increasing the number of trials may improve
data quality, more extended experiments may lead to fatigue,
which could lead to more noise contamination in the actual
experiment [22].
Thus, in this paper, we applied a machine learning

approach to decode the ERP evoked by target and non-target
in RSVP tasks for further application with few trials [23],
[24]. We hypothesized in this study 1) covering part of the
face lowers the ability to recognize faces and results in
lower classification accuracy, and 2) the button press and
no-button press tasks would perform comparably so that we
could reduce the workload by substituting the button press
task with the no-button press task. Our experiment designed
using stimuli consisting of full face and face with each
component covered, aimed to compare the similarity of full
face and partial face cognition using the machine learning

model to classify the target and non-target images using
evoked ERP features straightforwardly. An xDAWN covari-
ancematrix, whichmaximizes the signal-to-signal-plus-noise
(SSNR) [25], [26], with tangent space mapping [27] was
used for feature extraction. Then, support vector machine
(SVM) was used in the ERP classification of face cognition
tasks [28], as the combination of xDAWN and SVM was
suggested as a suitable model for face cognition in RSVP
tasks [11]. Furthermore, we tried to reduce the fatigue caused
during the experiment due to the physical response, which
is a concern in the face cognition task using EEG. We also
investigated how physical response (button press) affects the
model’s accuracy.

II. MATERIALS AND METHODS
A. PARTICIPANTS
Eighteen participants (nine males and nine females with an
average age of 26.05±2.61 years and an age range of 22–
31 years) voluntarily participated in the experiment after
providing written informed consent. The study was approved
by the Research Ethics Committee of the Tokyo University of
Agriculture and Technology (N02-14-E87 and N02-14-E92).
All participants self-reported normal or corrected-to-normal
vision and had no neurological disorders. None of the student
participants were encouraged to participate in this experiment
by their professors, nor did they obtain any credits for doing
so.

B. STIMULUS DESIGN
Colorful face images from a public dataset of the ‘‘Eth-
nic Origins of Beauty (Les origines de la beauté)’’ project
by Ivanova N. (available at lesoriginesdelabeaute.com) [29]
were used as an RSVP stimulus. The stimulus presentation
was created using the Psychophysics Toolbox Version 3 [30]
in MATLAB 2020a. Asian-like faces with black hair, dark
eyes, and fair skin were selected due to the other-race effect
or other-race bias, an observed phenomenon that people can
learn and recognize faces of their own race faster and better
than other races [31], [32], [33], [34]. The ethnic group of
the face images used in this experiment was Uyghurs, Han,
Korean, Tuvan, and Buryat.

The images were resized to 710× 555 pixels and trimmed
to a visual angle of 7.4 × 5.2 c/d so that only the face area
was visible. Previous studies have shown that distinctive faces
are easier to recognize than typical faces [35], [36]; therefore,
one distinctive face was set as the target image based on the
shape of the nose and mouth, which stood out from other
faces. Since all images were unfamiliar to the participants,
we allowed them to learn the target face by performing a
training task.

The experiment was divided into two parts, a training task
and a main task, which consisted of two response tasks (a
button press task and a no button press task). Each response
task consisted of seven blocks with seven face conditions pre-
sented individually in respective blocks. The face conditions
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used in the experiment were the full face images condition
(all parts of the face were exposed to the participants) and six
partial face images conditions (the images with the eyes cov-
ered, images with the nose covered, images with the mouth
covered, images with the eyes and nose covered, images
with the eyes and mouth covered, and images with the nose
and mouth covered). At the beginning of each task, the text
instruction and a full face target image were shown for the
participant to remember.

C. TRAINING TASK
The training task used three Asian-like faces: two non-target
faces and one designated target face. Each face was randomly
shown 10 times (30 trials in total), and each trial was pre-
sented until the participant responded by pressing a button.
The odd-numbered participants were asked to respond by
pressing the left button, and the even-numbered participants
were asked to respond with the right button when the tar-
get face was shown to avoid a decision-making response
bias [37]. Auditory feedback was provided for both cor-
rect and incorrect responses to help participants learn the
target face more easily. In this task, both visual and audio
stimuli were used simultaneously, the beeps at 800, 1,300,
and 2,000 Hz were played for correct responses, and only
the 800 Hz beep was played consecutively for incorrect
responses. According to [38], there are discrepancies between
the saliency of auditory stimuli when compared to visual
stimuli since visual stimulus has more than one salient point.
To overcome this biased, they suggested using audio with a
frequency of 800 Hz. However, the audio stimulus was only
used in the training task which there were no biosignal or
behavioral responses recorded, the frequency used as audio
stimuli might not have had a great impact on the EEG record-
ing task.

D. MAIN TASK
The stimulus presentation contained 120 trials. The face
images used in this task were a target face trained in the
training task and five non-target Asian-like faces that had
never been used in the training task. Each face was randomly
presented 20 times (0.16 probability rate of the target). The
task started with an instruction, followed by fixation for
500 msec to avoid attentional blinks, in which the second
target image cannot be perceived up to 500 msec after the
first target image is identified [39].

To investigate the effect of the button press response,
two response tasks (button press and no button press tasks)
were performed. The stimulus presentation was set to
200 msec [40], [41]. However, the participant will unlikely
respond by pressing the button within 200msec of the presen-
tation duration. Therefore, we have extended the presentation
time to 1000msec for the button press task. Consequently, the
image stimuli were presented at 1,000 msec for the button
press task and 200 msec for the no button press task, with
500 msec of fixation between each image. During the button

press task, the participants were asked to respond when the
target face was shown by clicking the left mouse. In addition,
the participants were also asked to count the number of the
target faces they saw and fill in the number at the end of each
block for both tasks (Figure 1). In the no-button press task,
the participants were asked to count the number of the target
faces seen in the same manner as the button press task with-
out providing any physical responses. EEG, eye movements,
button press action (only for the button press task), and the
number of target faces recognized were recorded.

E. DATA ACQUISITION
EEGwas recorded at a sampling frequency of 2,048 Hz using
Polybench software (Twente Medical Systems International
B.V., TMSi, Oldenzaal, Netherlands). Participants wore a
64-electrode EEG gel head cap, based on the 10-10 interna-
tional system (Fp1, Fpz, Fp2, AF7, AF3, AF4, AF8, F7, F5,
F3, F1, Fz, F2, F4, F6, F8, FT7, FC5, FC3, FC1, FCz, FC2,
FC4, FC6, FT8, M1, T3, C5, C3, C1, Cz, C2, C4, C6, T4,
M2, TP7, CP5, CP3, CP1, CPz, CP2, CP4, CP6, TP8, T5,
P5, P3, P1, Pz, P2, P4, P6, T6, PO7, PO5, PO3, POz, PO4,
PO6, PO8, O1, Oz, and O2). A disposable ground electrode
was placed on the participant’s left wrist to reduce artifact
interference compared to the EEG ground electrode, as sug-
gested by the TMSi manual. As a reference, the average of
the input EEG signals was amplified using a 72-channel Refa
Amplifier (TMSi, Oldenzaal, Netherlands). Eye movements
were measured simultaneously to detect eye blinks. They
were recorded with two channels, vertical and horizontal,
using a pair of microelectrodes (bipolar, TMSi, Oldenzaal,
Netherlands). The vertical eye movement channel was placed
above the right eye with a reference electrode on the left ear
lobe. The horizontal eye movement channel was placed near
the outer canthus of the right eye with a reference electrode
on the right ear lobe. Each participant placed their head on
chin support and sat 60 cm from a VIEWpixx display (120-
Hz refresh rate, 1, 920 × 1, 200 pixels, Vpixx Technologies,
Saint Bruno, Canada) in a soundproof room.

F. DATA ANALYSIS
1) PRE-PROCESSING
The recorded EEG was analyzed using MNE package
1.3.0 [42] in Python 3.5.8. The data were first re-referenced
using an average of the EEG around the earlobe electrodes
(M1 and M2) and filtered with one to 30 Hz FIR bandpass
filter. The artifacts such as eye blink were removed using
an extended infomax independent component analysis (ICA)
algorithm on the continuous data. The 64 electrodes were
grouped into 12 groups based on the brain lobe: frontal, pari-
etal, occipital, and temporal area (Figure 2, Table 1) [43] and
combined into one electrode by means. The obtained EEG
data (120 trials) were sliced into 120 epochs from 100 msec
before stimulus onset to 1,000 msec. To confirm the quality
of data, we have calculated the signal-to-noise ratio on the
grand average of each participant was calculated for each

86124 VOLUME 11, 2023



I. Chanpornpakdi, T. Tanaka: Role of the Eyes: Investigating Face Cognition Mechanisms

FIGURE 1. Experimental flow for the main tasks (The face images used in the real experiment were the dataset from les origines de la beauté
project).

FIGURE 2. Electrode group with yellow representing the left hemisphere,
red representing the right hemisphere, blue representing the center of the
EEG electrode position, and orange representing the common electrodes
in their corresponding groups.

condition (both button press and no button press) by dividing
the P300 peak amplitude by the standard deviation of the
amplitude across the pre-stimulus interval (−100 to 0 msec)
[44], [45], [46])

2) BEHAVIORAL RESPONSE
The button press error count was calculated by counting the
number of times that participants missed the task or press the
button incorrectly. If the target face was shown and partici-
pants did not press the button, it was considered an error count
for the target. On the other hand, if the participants pressed the

TABLE 1. The brain region and EEG electrode position correspond to the
brain lobe.

button when the target face was not shown, it was considered
an error count for the non-target.

Two-way repeatedmeasures analysis of variance (ANOVA)
with Greenhouse-Geisser correction in multiple comparisons
was used to calculate the button press error rate (Er ) of
18 participants, defined as

Er =
|va − vo|

va
(1)

where va and vo denote the ideal value (va = 20) and observed
value, respectively. Eq. (1) yields the error rate of the button
press response for each face and the error rate of the target
face count of each task.

The two factors used in ANOVA analysis were the type of
faces and face cognition conditions. The hypotheses were 1)
all the face types had an equal mean of error rate, 2) all the
face cognition conditions had an equal mean of error rate, and
3) the error rate of face types and face cognition conditions
were independent of each other. The target face error count on
both button press and no button press tasks were calculated by
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subtracting the face count number from the correct number of
20 target faces and using the absolute value of that face error
count to find the total face error count among 18 participants.
However, the target face error count’s results were in doubt
because the count on the correct target image could not be
clarified. There are chances that the participants could have
counted on the non-target and coincidentally got the count
correctly. For that reason, we cannot take this result into
account and did not perform the statistical test for the face
count error rate.

3) MACHINE LEARNING-BASED ANALYSIS
The whole epoch of the pre-processed data was used in both
the training and testing models. The data contained 20 trials
of target images and 100 trials of non-target images, with
12 electrode groups and 2,254 samples each.

a: STRATIFIED SAMPLING
Since the data were imbalanced, the non-target data were
divided into five sets according to the face images. We then
selected four trials from each non-target face without replace-
ment. This resulted in 20 trials of the non-target faces for each
set, with each non-target face event equally distributed. With
this method, 40 trials for each set of data were achieved when
combining the non-target data with the target data. Thus,
we obtained five datasets with 40 samples each; 20 target
samples and 20 non-target samples.

b: xDAWN SPATIAL FILTER
The obtained data were randomized and inputted into a super-
vised learning model to classify the brain response patterns
of the target and non-target images. To improve the noise-to-
signal ratio of the EEG data, the xDAWN covariance matrix
with tangent space mapping was calculated [27] using pyRie-
mann v0.3. The xDAWN is the spatial filter which is given as

w∗
k

= argmax
w

wTP(k)P(k)
T
w

wTXXTw
(2)

where w ∈ RE×1, E is the number of electrodes, k denotes
the class index, P ∈ RE×T represents the grand average of
the E electrodes with T time samples and X ∈ RE×T is the
signal including two classes: 0 and 1 [25], [26]. The matrix
Z̃i ∈ R4F×T of filtered evoke potential of both classes and
the filtered data were used to calculate the covariance matrix
6i ∈ R4F×4F where F is the number of xDAWN filters. The
matrix Z̃i is defined as

Z̃i =

W (0)T P(0)

W (1)T P(1)

W TXi

 (3)

where W (k)
∈ RE×F is the selected filter of class k and i is

the index of a trial from Nk trials, in which 1 ≤ i ≤ Nk [27].

c: TARGET CLASSIFIER AND EVALUATION
After obtaining the xDAWN covariance matrix from the pre-
processed data, we mapped it on the tangent space, and input
it into a linear support vector machine learningmodel without
tuning the parameters. The extracted features were used to
train the model to identify the target face with 0.33 of the
data used as the test data. The accuracy and the area under
the curve (AUC) of each model were calculated by averaging
five accuracies and the AUCs obtained from each set of data.

d: STATISTICAL TEST
Two-way repeated measures ANOVA with Greenhouse-
Geisser correction was applied to our accuracy results to
examine our hypotheses that 1) all the face condition groups
have equal mean accuracies, 2) all the button press conditions
have equal mean accuracies, and 3) the factors are indepen-
dent, or the interaction effect of the face cognition conditions
and button press conditions does not exist. The two factors in
our ANOVA test were seven face cognition conditions (full
face and six partial face conditions) and button press condi-
tions. The dependent variable was the number of participants,
which was 18 in this study. After identifying the conditions
that were significantly different, pairwise t-tests were per-
formed to explore the relationships that showed significant
differences using Benjamini/Hochberg (non-negative) cor-
rection.

III. RESULTS
A. BEHAVIORAL RESPONSE
Figures 3 and 4 show the total error count of the button
press response and the target face count of 18 participants,
respectively (Supplementary Tables 1 and 2 for error rate
details for each subject). From Figure 3, we can see that the
button press error count was highest when the eyes andmouth
component of the face were covered and second highest when
the eyes and mouth were covered. On the other hand, the
button press error count was similar in full face cognition and
partial face cognition with the eyes component presented.

Significant differences were also found between the face
cognition condition (F(6, 102) = 9.681, p < 0.001, ηp2 =

0.209), but could not find the difference in the type of faces
that participants made mistakes while pressing the button;
missing the button press on the target face and pressing
the button during non-target face presentation (F(1, 17) =

0.500, p > 0.05, ηp2 = 0.002). No interaction between the
face cognition condition and the type of face where the error
occurred was found (F(6, 102) = 3.239, p < 0.05, ηp2 =

0.058) (see Table 2). A pairwise t-test shows that the button
press error rate during the face with eyes and mouth covered
is significantly different from all other conditions except the
face with eyes and nose covered; full face (p < 0.001), the
face with eyes covered (p < 0.05), the face with nose covered
(p < 0.001), the face with mouth covered (p < 0.001), the
face with nose and mouth covered (p < 0.001). In addition,
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TABLE 2. The two-way repeated measures ANOVA result of button press
error rate in button press task.

FIGURE 3. Total button press error count of 18 participants in the button
press task, where yellow and gray colors represent the button press error
count when the target face image and non-target face image are shown,
respectively. The total number of errors for the target face image was 360,
and that for the non-target face image was 1,800.

FIGURE 4. Total number of target face error counts of 18 participants in
both button press and no button press tasks, where yellow and grey
colors represent the error count in the button press and no button press
tasks, respectively. The total number of errors for both the button press
and no button press tasks was 360.

the pairwise t-test also shows the button press error rate of
the condition when the face with eyes and nose covered has
significant differences between the full face (p < 0.05), the
face with nose covered (p < 0.05), and the face with nose and
mouth covered (p < 0.05) (see the t-values and effect sizes
in Supplementary Table 3 ).

Similarly, we could see from Figure 4 that the target face
count rate was higher when the eye component was covered,
especially when either nose or mouth was also covered in the
no-button press task. However, the target face error count was
relatively high during full face cognition in the button press
task which was opposed to the button press error count.

B. CLASSIFICATION PERFORMANCE
Figure 5 shows the example of ERP obtained from the full
face and the partial face cognition in the button press task.
The ERP was obtained by grand averaging the EEG data

FIGURE 5. P300 evoked by the target and non-target images during full
face and partial face cognition condition in button press task at the
parietal area. The conditions shown were a face with a nose covered as
an example of a partial face with one face component covered and a face
with eyes and mouth covered as an example of a partial face with two
face components covered. The ERP was obtained by grand averaging
across 18 participants and the P300 component was highlighted in blue
color. The blue line represents ERPs evoked by the target image and the
dotted line represents the ERPs evoked by non-target images.

of 20 trials across 18 participants. We could see that the
P300 evoked by the target image was relatively larger when
compared with that of the non-target images.

We inputted the processed EEG data through the xDAWN
filter and linear SVM model for target and non-target clas-
sification. The results of the classification model are shown
in Figure 6. It represents the average accuracy across the five
datasets extracted by balancing the ERPs evoked by target
and non-target faces during full and partial face cognition in
both button press and no-button press tasks. The accuracywas
calculated by averaging the accuracy obtained from 18 par-
ticipants. The results show that the classifier model of all
the conditions provided the accuracy above the chance level
which is at 0.50. We could see that the accuracy of the button
press task was almost the same as the accuracy of the no-
button press task except when the facewith nose covered, face
with mouth covered and face with nose and mouth covered.
In the mentioned three conditions, the accuracy during the
button press task was slightly higher than the no-button press
task. The highest accuracy of 0.860 when the participants
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TABLE 3. The two-way repeated measures ANOVA result of target and
non-target classification accuracy for full and partial face cognition in
button press and no-button press task.

recognized the face with the nose and mouth covered during
the button press task. In contrast, the highest accuracy for the
no-button press task was 0.862 obtained when the participant
recognized the full face.

Moreover, when comparing the accuracy of the face cogni-
tion condition with eyes being invisible including, the differ-
ences in accuracy changed between the two physical response
conditions were unremarkable (Figure 6). The accuracy also
became lowest when the eyes andmouth were covered in both
button press and no-button press tasks.

The two-way repeated measures ANOVA test of the
ERP classification accuracy results were shown in Table 3.
We could see that the accuracy in ERP classification sig-
nificantly affected only the face cognition condition groups
(F(6, 102) = 11.139, p < 0.001, ηp2 = 0.164), but no sig-
nificant difference in the button press conditions (F(1, 17) =

1.409, p = 0.252, ηp2 = 0.011), and the interaction between
the face cognition conditions and button press conditions
(F(6, 102) = 1.201, p = 0.317, ηp2 = 0.014) were found.
The pairwise t-test shows the significant differences between
the accuracy of the face with eyes and mouth covered condi-
tion and the other face condition; full face (p < 0.005), the
face with eyes covered (p < 0.001), the face with nose cov-
ered (p < 0.005), the face with mouth covered (p < 0.001),
the face with eyes and nose covered (p < 0.01), and the
face with nose and mouth covered (p < 0.005). Furthermore,
significant differences between the face with eyes and nose
covered condition and the following four face conditionswere
observed; the full face (p < 0.01), the face with nose covered
(p < 0.05), and the face with mouth covered (p < 0.05) (see
the t-values and effect sizes in Supplementary Tables IV).

The area under curve of each model and also averaged
across the results of five datasets and shows similar results
with the accuracy results we observed. The level of AUC
obtained from all condition were above 0.80 and the highest
AUC achieved was at 0.943± 0.056 in the full face cognition
condition during the no button press task. Moreover, the AUC
decreased when the eyes of the face stimulus were covered in
both the response tasks (button press task: 0.891 ± 0.071; no
button press task: 0.907 ± 0.065) and became lowest when
the face was shown with the eyes and mouth covered (button
press task: 0.829 ± 0.097; no button press task: 0.819 ±

0.110). (see Supplementary Table V for more details)

IV. DISCUSSION
In this study, we performed classification using P300 data in
the supervised model to explore the role of the face com-
ponents in face cognition with only a few trials of data.

FIGURE 6. The accuracy of participant dependent cross-validation in
target face classification using xDAWN covariance matrix, tangent space
mapping, and linear SVM model where blue color represents button press
task and orange color represents no-button press task. The error bar
denotes the standard deviation around the mean.

The accuracies of the classification model in all conditions
were above the chance level (0.50) and the AUC levels were
above 0.80 in all conditions. We found that the accuracy
dropped when the eyes and nose were covered and became
lowest among all the conditions when the eyes and mouth
were covered. We also investigate our hypothesis that the
no physical response (no button press) task would lower
the fatigue caused during the cognition task. We found that
the ERP evoked in the button press task provided slightly
better accuracy than the no button press task in partial face
cognition. However, no significant differences were observed
between the accuracy of the button press and the no-button
press task.

A. BEHAVIORAL RESPONSE
The behavior responses of the button press, and target face
count error rate showed comparable results that the error
became higher when the eyes and nose or mouth were cov-
ered. However, no statistical test was performed for the target
face count error rate due to the reliability of the data. On the
contrary, a significant difference was found in the button error
rate in the condition when the eyes and another component
were missing compared to the other face conditions.

When the eye components were hidden together with
another face component, the error rate of both the button
press response and the target face count increased and was
markedly higher than the task with only more components
hidden. These results indicated that many participants made
more mistakes when eye components were invisible and
made the face cognition task become harder when the other
component of the face was covered along with the eyes and
suggesting that eye components might be crucial in face cog-
nition. We also observed that the error rate of the face count
was not associated with that of the button response as we saw
that the full face target image count error rate was higher than
when the eyes were covered in the button press task result.
Regardless of the higher target face count error rate, partic-
ipants were able to respond to the target image by pressing
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the button correctly. Some participants also reported that they
were too focused on the button press task and might have
miscounted the target face number, which caused a higher
error rate in the target face count. However, as we mentioned
in the Methods section the result of face count might not
be accurate and reliable enough to make a conclusion. Only
the number of times the participants counted the face was
recorded. The issue was that if the participants counted on
the wrong face but got the number of counts correct, it would
be recorded as a correct task, and without clarification, such
a flaw could lead to the wrong result if the face count is also
considered. For that reason, we neglected the results of the
face count error rate.

Our result obtained in this behavior responses showed that
the button press error rate was similar in the case of full face
and partial face with the eyes visible. These results implied
that there is a possibility that people can recognize a partial
face with the eyes at a similar level as in full face cognition.
However, many studies reported that covering parts of the
face such as having a mask on the face reduces the ability
of face perception especially for face identification [5], [6]
and emotional categorization [7], [8], [9]. One reason why
our result of the partial face with the nose and mouth covered
(equivalent to wearing a mask) had a similar level of button
press task error might be that we trained the participants to
learn the face prior to the experiment and they performed the
same target face cognition task for 7 blocks. The participants
might become more familiar with both the target face and the
partial face cognition task as they performed the experiment
and make the cognition of the partial face with the nose and
mouth covered, which is the last block to perform, became
easier than it could be.

B. TARGET CLASSIFICATION PERFORMANCE
The classification model we employed in this study provided
accuracies over 0.70, having AUC over 0.80, which are both
above the chance level of 0.5. These results suggest that the
model performed well in classifying the ERPs evoked in the
face recognition task although only 20 trials per image were
used, which is considerably small for the analysis of ERPs.
The reason that the ERP data yielded high accuracy in target
image classification is that we used the xDAWN covariance
matrix for feature extraction. It is calculated with the matrix
of both filtered average data or evoked and filtered data
which improves the signal-to-noise ratio (SNR) [27]. With
this method of analysis, we can solve the problem in analysis
ERP with fewer trials. This could help not only reduce the
burden of the participants during the experiment but also
increase the opportunity for ERP application in the future.

From the partial face cognition results, we found that the
accuracy decreased when the eyes and nose were covered
and became lowest when the eyes and mouth were covered.
We also observed that the highest accuracy in the button press
taskwaswhen the participants recognized the facewith a nose
and mouth covered whereas the highest accuracy in the no-
button press task was during the full face cognition. These

results imply that the presence of eyes plays a crucial role in
partial face cognition [4], [47] which supports our behavioral
response finding. From the results, we can interpret that the
mouth might play a second important role in face cognition
since missing the mouth component along with the eyes led
to lower accuracy and AUC too.

In addition, the accuracy in the button press task and the no-
button press task was almost the same in all the face cognition
conditions except in the partial face cognition with the eyes
visible. In partial face cognition with the eyes visible (the face
with nose covered, the face with mouth covered, and the face
with nose and mouth covered), the accuracy in the button
press task was higher than the no-button press task but no
significant differences were observed between the accuracy
of the two tasks. Gerson et al. [48] studied the effect of button
press and no button press on the surveillance RSVP task by
presenting the images for 100 msec and found similar results
to our finding that there were no significant differences in the
button press and no-button press task performance. Although
the button press response might not affect the classification
performance, we should further investigate the ERP charac-
teristic changes in both button response tasks to achieve a
stronger conclusion.

In the comparison of behavioral response and classifi-
cation performance statistical results, the two-way repeated
measures ANOVA results in both behavioral response and
classification performance show significant differences in the
face cognition condition. In particular, we observed that the
face with eyes and nose covered and the face with eyes and
mouth covered have significant differences in accuracy when
compared with the full face, the face with nose covered and
the face with mouth covered in both behavioral responses
and classification performance results. From these results,
we could assume that the full face, the face with the nose
covered, and the face with the mouth covered might have a
similar cognitive response pattern, having eyes as the most
important component.

C. EFFECT ON EXPERIMENTAL DESIGN
We only recorded the button press accuracy to confirm the
behavioral responses. Nevertheless, to understand the brain
motor activity of the button press mechanism, the reaction
time of the button press is also an important key that could
provide a fruitful meaning to our results. In addition, the pre-
sentation time for the button press task was set to 1,000 msec,
whereas in the no button press task, it was set to 200 msec.
The significant difference in the presentation time can cause
a better perception of the button press task due to a longer
time to expose to the stimulus and process the presented
information of the image. Consequently, the target count
number might be inaccurate due to shorter or longer memory
maintenance periods and the combination of all these factors.
This difference in time could also affect the accuracy as previ-
ous studies [49] found that the classification performance of
the RSVP task improves when presented with the images for
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100–200 msec compared with that of 50 msec presentation
time.

To overcome such a problem, we should also investigate
a similar presentation period to diminish any inconsistency
in our experiment and investigate the effect of workload on
button press tasks. It was suggested that 500 msec could
be the most suitable for the RSVP face cognition task [11].
Presenting the face image stimulus for 500 msec might also
yield a better brain response in the no-button press task and
reduce the accuracy-workload trade-off in the classification
model.

D. LIMITATION AND FUTURE WORK
Several factors such as the length of the experiment [50] can
also affect the quality of EEGwhen the experiment is run for a
long time. These factors can lower the ERP level, resulting in
lower accuracy, and hence, they also need to be investigated
along with the button press task. In the next stage, we would
like to examine the mechanism of partial face cognition by
exploring the characteristics of ERP: amplitude, and latency,
with a more significant trial number of the task to compare
our classification results so that this study can reveal more
details on how to face components affect the brain response
during the face cognition and the role of button press task.
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