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ABSTRACT The self-training methods have been praised by extensive research in semi-supervised clas-
sification. Mislabeling is the main challenge in self-training methods. Multiple variations of self-training
methods are recently proposed against mislabeling from the following one of two aspects: a) using heuristic
rules to find high-confidence unlabeled samples that can easily be predicted correctly in each iteration;
b) enhancing prediction performance by employing ensemble classifiers composed of multiple weak classi-
fiers. Yet, they still suffer from the following issues: a); most strategies for finding high-confidence unlabeled
samples heavily rely on parameters; b) almost all employed ensemble classifiers originally designed for
supervised classifiers and may not be suitable for semi-supervised classification due to the limited number
and unrepresented distribution of the initial labeled data; c) few can overcome mislabeling from the above
two aspects at the same time. To advance the state of the art, a new self-training method based on density
peaks clustering and improved Adaboost is presented and named as STDPboost. In the iterative self-taught
process, a new density peaks clustering-based strategy is proposed to find high-confidence unlabeled samples
and a new ensemble classifier named AdaboostSEMI and more suitable for semi-supervised classification is
proposed to predict high-confidence unlabeled samples, which overcomes mislabeling and the mentioned
shortcomings of existing self-training methods. Intensive experiments on benchmark data sets have proven
that STDPboost outperforms 7 state-of-the-art self-training methods in average classification accuracy of
KNN classifier and CART classifier with the percentages of the initial labeled data from 10% to 50% due to
further alleviating mislabeling.

INDEX TERMS Semi-supervised learning, semi-supervised classification, self-training methods, oversam-
pling techniques, Adaboost.

I. INTRODUCTION
Supervised classification (SC) [1] is an active research field
and has featured extensive practical applications, such as
intelligent medical detection [2], target tracking [3], rec-
ommended system [4], and cross-language translation [5].
SC can use a supervised classification model learned from
apriori knowledge (i.e., labeled samples) to predict unseen
samples. It is widely known that the performance of
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supervised classification models in SC heavily depends on
the breadth and depth of prior knowledge (i.e., the quality
and quantity of labeled samples). Traditional SC needs man-
ual annotation of data to obtain sufficient prior knowledge,
which is a time-consuming and expensive job in the big data
era. Semi-supervised classification (SSC) [6] has recently
emerged to overcome the above bottleneck of data annotation
in SC by exploiting both labeled and unlabeled data.

After decades of development, various semi-supervised
classification paradigms are proposed by scholars, and
they can be generally divided into algorithm-level SSC
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methods [7], [8], [9] and data-level SSC methods [10].
Algorithm-level SSC methods modify traditional supervised
classification models to make them suitable for SSC. Semi-
supervised support vector machine (S3VM) classifiers [7],
semi-supervised optimization path forest (OPFSEMI) [8] and
semi-supervised k nearest neighbor classifiers [9] are repre-
sentative instances of algorithm-level SSC methods. Data-
level SSC methods improve the distribution and number of
the initial labeled data by iterative annotating available unla-
beled data. Self-training methods [10] are typical data-level
SSC methods. Compared to other SSC methods, self-training
methods are easier to understand and more simple but more
effective. Hence, self-training methods are easier to be imple-
mented in practical fields [11], [12], [13], [14], [15].

As shown in Fig. 1, Self-training methods are based on
an iterative self-taught (or self-labeled) idea. In detail, self-
training methods use classification models C learned from
the set of labeled data L to iteratively predict high-confidence
unlabeled samples XHCS selected from the set of unlabeled
data U . The predicted samples with pseudo labels Lnew are
added to the set of labeled data, and then classification mod-
els C are relearned from the extended set of labeled data L.
The above self-taught process is repeated until all unlabeled
samples are predicted. After that, self-training methods out-
put a given classifier C trained on the improved set of labeled
data L.

FIGURE 1. A flowchart of the standard self-training method.

Evidently, self-training methods expect their prediction
(i.e. the above pseudo labels) to be correct. However,
self-training methods inevitably mispredict unlabeled data
because the initial labeled data are usually rare, their dis-
tribution is usually unrepresented and the initial labeled
data may contain noise or outliers. If mispredicted sam-
ples with pseudo-label noise are added to the set of
labeled data, the performance of self-training methods will
degrade, which leads to more mislabeling [16]. Hence, the

mislabeling that refers to the mispredicting unlabeled sam-
ples is one of the main challenges in self-training meth-
ods [17]. To overcome mislabeling, multiple variations of
self-training methods [18], [19], [20], [21], [22], [23], [24],
[25], [26], [27], [28], [29], [30], [31] are recently developed
and can be classified into the following two categories:

The first category (self-training method based on heuris-
tic rules for finding high-confidence unlabeled samples)
employs heuristic rules, such as the maximum posterior
probability of classifiers, nearest-neighbor rules, clustering
algorithms, and graph models, to find high-confidence unla-
beled samples that can easily be predicted correctly in each
iteration. This indirectly improves prediction accuracy, thus
alleviating mislabeling. Typical instances are SETRED [18],
SNNRCE [19], MLSTE [20], Help-Training [21], STS-
FCM [22], STDP [23], STDPCEWS [24], STOPF [25] and
NaNG-ST [26].

The second category (self-training methods based on
ensemble classifiers) employs ensemble classifiers composed
of multiple weak classifiers to enhance prediction for unla-
beled samples in each iteration, which tends to directly
alleviate mislabeling. Typical instances are Co-Bagging [27],
Co-Adaboost [27], Co-Forest [28], Tri-training [29], Multi-
Train [30], and BoostSTIG [31].

Despite their effectiveness, the above two categories
of self-training methods still suffer from the following
shortcomings:

(a) Firstly, most strategies for finding high-confidence
unlabeled samples heavily rely on parameters in the first
category of self-training variations, leading to unstable per-
formance and difficulty in application.

(b) Secondly, almost all employed ensemble classifiers in
the second category of self-training variations were originally
designed for SC and may not be suitable for semi-supervised
classification due to the limited number and unrepresented
distribution of the initial labeled data, which may lead to the
misprediction for unlabeled samples.

(c) Additionally, few use both strategies of finding
high-confidence unlabeled samples and using ensemble clas-
sifiers to overcome mislabeling. Actually, the above two
strategies are easy to combine and can work together to
further alleviate mislabeling in self-training methods.

A. OBJECTIVES AND CONTRIBUTIONS
The main objective of this paper is to propose a new
self-training method (named STDBboost) based on density
peaks clustering and improved Adaboost. STDBboost can
further overcome mislabeling by designing a new strategy
for finding high-confidence unlabeled samples and a new
ensemble classifier, which overcomes the mentioned above
issues in the existing self-training methods.

The second objective of this paper is to propose a new
ensemble classifier named AdaboostSEMI. Ensemble classi-
fiers in the second category of self-training variations are
not fully compatible with SSC since they can not utilize a
large number of unlabeled samples and only utilize a small
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number of labeled samples. AdaboostSEMI combining the
idea of oversampling techniques can generate synthetic
labeled samples to improve the labeled set and are more
suitable for SSC.

The third objective of this paper is to propose a new
parameter-free strategy (namedDPCStr) based onDPC (Den-
sity Peaks Clustering) [32] to find high-confidence unlabeled
samples. Strategies for finding high-confidence unlabeled
samples in existing self-training methods heavily rely on
parameters. DPCStr helps STDBboost find high-confidence
unlabeled samples without parameters.

The main contributions are highlighted as follows:
(a) A new self-training method named STDPboost is pro-

posed against mislabeling and the mentioned shortcomings
of existing self-training variations [18], [19], [20], [21], [22],
[23], [24], [25], [26], [27], [28], [29], [30], [31].

(b) A new DPC-based strategy named DPCStr is proposed
to find high-confidence unlabeled samples in each iteration
of STDPboost.

(c) A new ensemble classifier named AdaboostSEMI is
proposed to predict unlabeled samples in each iteration
of STDPboost. Although AdaboostSEMI is slightly similar
to SMOTEBoost [33] in some aspects, SMOTEBoost is
mainly used for imbalanced classification and AdaboostSEMI
is mainly used for SSC. Besides, SMOTEBoost aims to gen-
erate synthetic minority class samples, while AdaboostSEMI
aims to synthetic labeled samples for all classes.

(d) Empirical results and conclusions with 7 state-of-
the-art self-training methods and 2 popular classifiers on
extensive UCI and Kaggle benchmark data sets are reported.

The rest of the paper is organized as follows. Related
work is reviewed in Section II. Preliminaries are introduced
in Section III. STDPboost is introduced in Section IV. The
results of comparison experiments are reported in Section V.
Section VI makes conclusions.

II. RELATED WORK
The proposed STDPboost intends to overcome mislabeling
and the mentioned issues in two categories of self-training
methods [18], [19], [20], [21], [22], [23], [24], [25], [26], [27],
[28], [29], [30], [31] for overcoming mislabeling. Hence,
in this section, only recent self-trainingmethods, related solu-
tions [18], [19], [20], [21], [22], [23], [24], [25], [26], [27],
[28], [29], [30], [31] for overcoming mislabeling and com-
parative self-training methods are reviewed.

The earliest self-training method was first proposed by
Yarowsky [34] in 1995 and applied to intelligent word
sense disambiguation with a self-taught idea. The self-taught
idea refers to using samples predicted by itself to teach
itself. Although multiple variations of self-training meth-
ods are developed recently, some research [16], [17] has
found that self-training methods inevitably mispredict unla-
beled data due to the limited number and unrepresented
distribution of initial labeled data. Once pseudo-label noise
caused by misprediction is added to the set of labeled
data, self-training methods are highly likely to mispredict

more samples, leading to training an ineffective classi-
fier. Solutions for overcoming mislabeling of self-training
methods can be generally divided into self-training meth-
ods [18], [19], [20], [21], [22], [23], [24], [25], [26] based on
heuristic rules for finding high-confidence unlabeled samples
and self-training methods [27], [28], [29], [30], [31] based on
ensemble classifiers.

A. SELF-TRAINING METHOD BASED ON FINDING
HIGH-CONFIDENCE UNLABELED SAMPLES
SETRED (SElf-TRaining with EDited) [18], SNNRCE (Self-
training Nearest Neighbor Rule using Cut Edges) [19],
MLSTE (Multi-Label Self-Training with Editing) [20], Help-
Training [21], STSFCM (Self-Training with Semi-supervised
Fuzzy C-Means) [22], STDP (Self-Training with Density
Peaks) [23], STDPCEWS (Self-Training with Density Peaks
and Cut Edge Weight Statistic) [24], STOPF (Self-Training
with Optimum-Path forest) [25] and NaNG-ST (Natural
Neighborhood Graph-based Self-Training) [26] belong to the
first category solution (self-trainingmethods based on heuris-
tic rules for finding high-confidence unlabeled samples).
Some heuristic rules (e.g. the maximum posterior probability
of classifiers, nearest-neighbor rules, clustering algorithms
and graphmodels) are used to find high-confidence unlabeled
samples that can easily be predicted correctly in each iteration
of the first categories solution, which indirectly improves
prediction accuracy and alleviates mislabeling.

SETRED and SNNRCE employ nearest-neighbor rules to
find high-confidence unlabeled samples in each iteration,
where high-confidence unlabeled samples are close to their
k-nearest neighbors searched on one class, and far away
from their k-nearest neighbors searched on other classes.
MLSTE calculates a centroid of each class, and regards
unlabeled samples close to one centroid as high-confidence
unlabeled samples in each iteration. Help-Training uses the
maximum posterior probability of Naive Bayes [35] to find
high-confidence unlabeled samples in each iteration, where
high-confidence unlabeled samples have a relatively high
posterior probability. STSFCM, STDP and STDPCEWS
employ clustering algorithms to find high-confidence unla-
beled samples in each iteration. STSFCM executes SSFCM
(Semi-Supervised Fuzzy C-means clustering) [36] in each
iteration, where high-confidence unlabeled samples are close
to clustering centers and have a relatively high fuzzy mem-
bership. STDP and STDPCEWS execute DPC (Density
Peaks Clustering) [32] before the iteration of the self-taught
process begins. Then, they use the assigning strategy of
non-central samples to find high-confidence unlabeled sam-
ples in each iteration. Additionally, STOPF and NaNG-ST
use heuristic graph models to find high-confidence unlabeled
samples in each iteration. STOPF constructs an optimiza-
tion path forest [8] on labeled and unlabeled training data.
NaNG-ST constructs a natural neighborhood graph [37]
on labeled and unlabeled training data. Then, they regard
unlabeled samples connected with a labeled sample as
high-confidence unlabeled samples. In each iteration of the
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self-taught process, the mentioned above self-training meth-
ods first finds high-confidence unlabeled samples, and then
use high-confidence samples with pseudo labels predicted
by a given single classifier to update the labeled training set
iteratively.

In summary, the above self-training methods [18], [19],
[20], [21], [22], [23], [24], [25], [26] based on heuris-
tic rules for finding high-confidence unlabeled sam-
ples can alleviate mislabeling by finding easy-to-predict
high-confidence unlabeled samples. Yet, most strategies
(e.g. [18], [19], [20], [21], [22], [23], [24]) for finding
high-confidence unlabeled samples heavily rely on parame-
ters, leading to lower robustness. For instance, these strategies
in SETRED, SNNRCE, MLSTE, STSFCM, STDP and STD-
PCEWS heavily rely on the parameter k of neighbors, the
parameter dc of DPC or/ and the confidence thresholds of
finding top-n high-confidence unlabeled samples.

B. SELF-TRAINING METHOD BASED ON ENSEMBLE
CLASSIFIERS
Co-Bagging [27], Co-Adaboost [27], Co-Forest [28], Tri-
training [29], Multi-Train [30] and BoostSTIG [31] belong
to the second category solution (self-training methods based
on ensemble classifiers). Some ensemble classifiers com-
posed of multiple weak classifiers are employed in them,
aiming to directly alleviate mislabeling by enhancing pre-
diction for unlabeled samples in each iteration. Co-Bagging
or Co-Adaboost employs Bagging [38] or Adaboost [38] to
construct a homogenous ensemble classifier in each iteration,
and then Co-Bagging or Co-Adaboost uses the constructed
ensemble classifier to predict unlabeled samples selected ran-
domly from the unlabeled set. Co-Forest employs the random
forest classifier [39] composed of multiple decision tree clas-
sifiers to predict unlabeled samples randomly selected from
the unlabeled set in each iteration. The classification error rate
of the sample is used to resample the training set to generate
three different classifiers in Tri-training. In the iteration of
Tri-training, an unlabeled example is labeled for a classifier
if the other two classifiers agree on the labeling. Multi-train
generates some homogenous or heterogeneous classifiers that
use different classification models and/or different features.
During the self-taught process, each classifier is refined using
unlabeled data with the strategy of the majority vote. Boost-
STIG first generates synthetic labeled samples to improve
the set of initial labeled data. Then, it uses AdaBoost, Mad-
aBoost [31], MultiBoost [31] or ReweightBoost [31] to train
a homogenous ensemble classifier in each iteration, intending
to improve the prediction for unlabeled samples.

In summary, the second category self-training meth-
ods [27], [28], [29], [30], [31] can alleviate mislabeling by
using ensemble classifiers to improve prediction accuracy.
Yet, almost all ensemble classifiers (e.g. [27], [28], [29], [30])
are not suitable for SSC because they only utilize a small
number of labeled samples with an unrepresented distribu-
tion, easily leading to misprediction for unlabeled samples.

C. SUMMARIES AND DIFFERENCES BETWEEN
STDPBOOST AND EXISTING METHODS
Generally, existing self-training variations use strategies for
finding high-confidence unlabeled samples or ensemble clas-
sifiers to alleviate mislabeling. Nevertheless, as analyzed
in Section I, they still suffer from the following issues:
a) most strategies for finding high-confidence unlabeled sam-
ples heavily rely on parameters; b) almost all employed
ensemble classifiers are not suitable for SSC due to the lim-
ited number and distribution of initial labeled data; c) few can
overcome mislabeling by using both of strategy for finding
high-confidence unlabeled samples and ensemble classifiers.

To this end, a new self-training method (STDPboost)
based on density peaks clustering and improved Adaboost
is presented in this paper. The main differences between
STDPboost and each of the existing self-training methods are
highlighted as follows:

(a) Compared to the first category of self-training varia-
tions [18], [19], [20], [21], [22], [23], [24], [25], [26], a new
strategy (DPCStr) based on DPC is proposed in STDPboost
and can find high-confidence unlabeled samples without
parameters.

(b) Compared to the second category of self-training vari-
ations [27], [28], [29], [30], [31], a new ensemble classifier
(AdaboostSEMI) is proposed in STDPboost and is more suit-
able for SSC due to generating synthetic labeled samples for
all classes to improve the labeled set.

(c) Compared to the mentioned two categories of self-
training variations [18], [19], [20], [21], [22], [23], [24], [25],
[26], [27], [28], [29], [30], [31], STDPboost can further
overcome mislabeling by using both of a new strategy (DPC-
Str) for finding high-confidence unlabeled samples and a
new ensemble classifier (AdaboostSEMI) in the self-training
process.

III. PRELIMINARIES
This section describes the main notations and preliminaries,
such as SMOTE [40] and Adaboost [34], which provides a
theoretical basis for STDPboost.

A. NOTATIONS
The main notations of this paper are described as follows:
XSSL = {x1, x2, . . . , xnL xnL+1 , . . . , xn} is the data set with

n labeled and unlabeled samples. L = {(x1, y1), (x2, y2), . . . ,
(xnL , ynL ,)} and U = {xnL+1 , xnL+2 , . . . , xn}. yi (i = 1, . . . , n)
is the class label of xi, where yi ∈ ω = {ω1, . . . , ωK }. XSSL =

L ∪ U , where L is the set of labeled data and U is the set of
unlabeled data. xi = {xi,1, . . . , xi,nattr } is the ith sample with
nattr attributes.

• NNk (xbase, Xinput ) is the set of k nearest neighbors of
sample xbase and searched on Xinput .

• xnew is a newly generated synthetic sample.
• Xsyn is the set of synthetic minority class samples.
• fm (m = 1, 2, . . . ,M ) is the weak classifier in the
ensemble classifier F .
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Algorithm 1 Synthetic Minority Oversampling Technique (SMOTE)

Input: Xinput (The set of input data), N (The number of synthetic

Time complexity
samples for each minority class sample), k (The parameter of
searching for k nearest neighbors)
Output: Xsyn (The set of synthetic samples)
1: Xsyn = ∅; O(1)
2: for xi ∈ Xinput O(ninput )
3: xbase = xi; O(ninput )
4: TempN = N ; O(ninput )
5: while TempN > 0 O(N × ninput )
6: xr is one of NNk (xbase,X ) and is randomly selected; O(N × ninput × log(ninput ))
7: for j = 1 to nattr O(N × ninput )
8: dif = xr,j − xbase,j; O(N × ninput )
9: xnew,j = xbase,j + rand(0, 1) × dif ; O(N × ninput )
10: end for O(N × ninput )
11: Xsyn = Xsyn ∪ {xnew}; O(N × ninput )
12: TempN = TempN − 1; O(N × ninput )
13: end while —
14: end for —
15: return Xsyn; O(1)

• am (m = 1, 2, . . . ,M ) is the weight of each weak
classifier fm.

• W = {w1, . . .} is the sample distribution.
• F(xi,ωj) returns the prediction of the ensemble classifier
F for sample xi in class ωj.

• H (xi) returns the class label of sample xi by using the
ensemble classifier F .

• p(xi) is the local density of sample xi.
• δ(xi) is the offset distance δ(xi) of sample xi.
• next(xi) = xj denotes that sample xi points to xj in the
DPC-based strategy (DPCStr).

• XHCS = {xj, . . .} is the set of high-confidence unlabeled
samples.

B. SMOTE
SMOTE (Synthetic Minority Oversampling TEchnique) is
proposed by Li et al. [40]. It aims to improve the class dis-
tribution by generating minority class synthetic samples,
in which minority class synthetic samples are generated by
the random interpolation between each minority class sample
and one of its k nearest neighbors. The interpolation can be
indicated by formula (1):

xnew,j = xbase,j + rand(0, 1) × (xbase,j − xr,j) (1)

In formula (1), xnew is a newly generated synthetic sample.
xbase is a base sample selected from the minority class. xr is
one of k nearest neighbors of xbase. The set of k nearest neigh-
bors of xbase and searched on Xinput is denoted as NNk (xbase,
Xinput ). xnew,j, xbase,j or xr,j is the jth (j = 1, . . . , natrr )
attribute of xnew, xbase or xr , respectively. The function
rand(0, 1) returns a random number between 0 and 1. The
pseudo-code of SMOTE is described in Algorithm 1 which
needs to set two parameters (i.e., N and k).

Algorithm 1 takes minority class samples as input data.
At Lines 2-3, each minority class sample is regarded as a base
sample. Lines 4-14 show the random interpolation process of
SMOTE, where the class label of xnew is the same as that of
xbase. Finally, Algorithm 1 returns the set of synthetic minor-
ity class samples Xsyn. The time complexity of Algorithm 1 is
O(N×ninput×log(ninput )), whereN is the number of synthetic
samples for each sample in Xinput and ninput is the sample
number in Xinput . For more details on SMOTE, please refer
to the work [40].

C. ADABOOST
The Adaboost [31] is one of the most successful methodolo-
gies for constructing an ensemble classifier denoted as F .
The ensemble classifier usually has a better classification
accuracy because it combines the performance of multiple
weak classifiers fm (m = 1, 2, . . . ,M ). M is the number of
weak classifiers. As a general rule, Adaboost continuously
modifies the sample distribution W = {w1, . . .}, and then
uses the sample distribution to train each weak classifier
fm. Finally, an ensemble classifier F can be constructed by
formula (2).

F(xi, ωj) =

M∑
m=1

(am × fm(xi, ωj)) (2)

F(xi, ωj) returns the prediction of the ensemble classifier
F for sample xi in class ωj. It combines the prediction of
multiple weak classifiers linearly. The variable am (m =

1, 2, . . . ,M ) is the weight of each weak classifier fm and is
calculated by the classification error rate ε of fm. The variable
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Algorithm 2 Adaboost
Input: Xinput (The set of input data with ninput sample),M (The number of weak classifiers in Adaboost) Time
Output: F (The trained ensemble classifier) complexity
1: ∀xi ∈ X , wi = 1/ninput ; O(ninput )
2: for m = 1 to M O(M )
3: Training a classifier fm learned from X ′ and X′ is obtained by usingW to resample Xinput ; O(M × f )
4: Calculating the error rate ε of fm by using formula (5); O(M × f )
5: if ε > 0.5 O(M )
6: am = 0; O(M )
7: Reset W : ∀ xi ∈ Xinput , wi = 1/ninput ; O(M × ninput )
8: else if ε == 0 O(M )
9: am = 10; —
10: Reset W : ∀ xi ∈ Xinput , wi = 1/ninput ; —
11: else —
12: am = (1/2) × ln((1 − ε)/ε); O(M )
13: for each xi ∈ Xinput O(M × ninput )
14: if fm(xi) = yi O(M × ninput )
15: wi = wi/(2 × (1 − ε)); O(M × ninput )
16: else —
17: wi = wi/2 × ε; O(M × ninput )
18: end if —
19: end for —
20: NormalizingW ; O(M × ninput )
21: end for —
22: return F by using formula (2); O(M )

am (m = 1, 2, . . . ,M ) is calculated by formula (3).

am =


am = 0 if ε > 0.5
am = 10 if ε == 0

am =
1
2

× ln(
1 − ε

ε
) otherwise

(3)

H (xi) returns the class label of sample xi by using the
ensemble classifier F and can be calculated by formula (4).

H (xi) = argmax
ωj∈ω

(F(xi, ωj)) (4)

The classification error rate ε of fm can be calculated by
formula (5).

ε =
1
n

n∑
i=1

wi × I (fm(xi) ̸= yi) (5)

If I (fm(xi) ̸= yi), the function I () returns 1, otherwise 0.
Based on the general principle, the pseudo-code of Adaboost
is described in Algorithm 2which needs to set a parameterM .
At Line 1, the sample distribution wi for each sample xi in

Xinput is initialized. At Lines 2-21, theweight am of eachweak
classifier fm is calculated, and then sample distribution wi for
each sample xi in Xinput is updated according to the error rate
ε. Finally, the ensemble classifier F is obtained at Line 22.
The time complexity of Algorithm 2 is O(M × f ), where
M is the number of weak classifiers and O(f ) is the time
complexity of the adopted weak classifier. For more details
on Adaboost, please refer to the work [31], [33], [38].

FIGURE 2. A general flowchart of the proposed STDPboost.

IV. PROPOSED ALGORITHM
In this section, STDPboost is described at length. A general
flowchart for STDPboost is shown in Fig. 2. As visually
illustrated in Fig. 2, STDPboost is an iterative algorithm and
includes the following iterative self-taught process: a) First,
An ensemble classifier F is trained on the set of labeled
data L by using the proposed AdaboostSEMI; b) Second,
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the proposed DPC-based strategy (DPCStr) is used to find
high-confidence unlabeled samples XHCS from the set of
unlabeled data U ; c) Third, the trained ensemble classifier F
is used to predict high-confidence unlabeled samples XHCS ;
d) Four, predicted high-confidence samples with pseudo
labels Lnew are added to L. The above iterative self-taught pro-
cess repeats until all unlabeled samples fromU are predicted.
After that, STDPboost outputs a given classifier C trained on
the improved L.

In the following, Section IV-A introduces the pro-
posed DPC-based strategy for finding high-confidence
unlabeled samples. Section IV-B introduces the proposed
AdaboostSEMI. Section IV-C introduces the pseudo-code of
the proposed STDPboost.

A. DPC-BASED STRATEGY FOR FINDING
HIGH-CONFIDENCE UNLABELED SAMPLES
In STDPboost, a new parameter-free DPC-based strategy
(DPCStr) is proposed to find high-confidence unlabeled sam-
ples that can easily be predicted correctly in each iteration.

The DPC can find data characteristics by calculating the
local density and the offset distance of each sample. Then,
it takes the sample with both a high local density and a high
offset distance as the cluster center, where non-central sam-
ples are assigned to its nearest neighbor with a higher local
density. Inspired by DPC, the proposed DPCStr employs the
ideas of the local density, the offset distance and the assign-
ing strategy of non-central samples to find high-confidence
unlabeled samples.

First, DPCStr calculates the local density p(xi) of each
sample xi in XSSL by formula (6).

p(xi) =

∑
xj∈XSSL

sign(dist(xi, xj) − dc) (6)

The function dist() returns the Euclidean distance between
two samples. The sign function sign() is formulated by for-
mula (7).

sign(t) =

{
1 t < 0
0 t ≥ 0

(7)

In formula (6), the cutoff distance dc is calculated by
formula (8).

dc =
n

max
i=1

(
n
min
j=1

(dist(xi, xj))) (8)

Next, DPCStr calculates the offset distance δ(xi) of each
sample xi in XSSL by formula (9).

δ(xi) =


n
min
j=1

(dist(xi, xj)) ∀xj, p(xi) < p(xj)
n

max
j=1

(dist(xi, xj)) ∀xj, p(xi) ≥ p(xj)
(9)

After calculating the local density and offset distance of
each sample, DPCStr makes each sample point to its nearest
neighbor with a higher local density, as shown in Fig. 3.

FIGURE 3. Using toy data to illustrate the proposed DPCStr.

Fig. 3 contains labeled samples of two classes with yellow
or green circles and unlabeled samples with white hollow
circles, where each sample points to its nearest sample with
a higher local density. In DPCStr, if sample xi points to
sample xj, we denote it as next(xi) = xj. For instance in Fig. 2,
next(A) = B, next(B) = C, next(C) = H, next(D) = C and
next(E) = D. Based on the above theory, the high-confidence
unlabeled samples can be found by using Definition 1.
Definition 1 (High-Confidence Unlabeled Samples): Let

XHCS = {xj, . . .} be the set of high-confidence unlabeled
samples. If sample xi belongs to XHCS , a labeled sample
points to sample xi or sample xi points to a labeled sample
in each iteration of STDPboost. The set of high-confidence
unlabeled samples can be calculated by formula (10).

XHCS = {xi|(next(xj) == xi or next(xi) == xj) and xj ∈ L}

(10)

According to Definition 1, samples B, C, E, G and I belong
to XHCS because next(A) = B, next(D) = C, next(E) = D,
next(J) = I and next(G) = H. According to the analysis
in Fig. 3 and Definition 1, the high-confidence unlabeled
samples are some unlabeled samples close to labeled samples
in a local manifold structure formed by DPC.

The pseudo-code of the proposed DPCStr is described in
Algorithm 3 which returns next. Note that next is the set
indicating space structure revealed by DPC. Specifically, the
local density and the offset distance are calculated for each
sample in XSSL at Lines 1-5. Then, DPCStr makes each sam-
ple point to its nearest neighbor with a higher local density at
Lines 6-9. Please note for Algorithm 3, several points need to
be explained:

(a) At Line 2 and Line 5 of Algorithm 5, the proposed
DPCstr helps STDPboost find high-confidence unlabeled
samples. Compared to strategies for finding high-confidence
unlabeled samples in existing self-training methods, DPCSt
is parameter-free.
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Algorithm 3 DPCStr
Input: L (The set of nL labeled samples), U (The set of nU unlabeled samples)

Time complexity
Output: next (The set indicating space structure revealed by DPC)
1: XSSL = L ∪ U ; O(1)
2: for ∀xi ∈ XSSL O(n)
3: Calculating local density p(xi) by formulas (6)-(8); O(n2)
4: Calculating the offset distance δ(xi) by formula (9); O(n2)
5: end for —
6: for ∀xi ∈ XSSL O(n)
7: Finding the nearest neighbor xj of xi and xj is with a higher local density than xi; O(nlogn)
8: next(xi) = xj; O(n)
9: end for —
10: return next; O(1)

Algorithm 4 AdaboostSEMI
Input: L (The set of nL labeled samples),M (The number of weak classifiers), N (The number

Time complexity
of synthetic samples for each base sample in SMOTE), k (The parameter of searching for k
nearest neighbors in SMOTE)
Output: F (The trained ensemble classifier)
1: ∀xi ∈ L, wi = 1/nL ; O(nL)
2: for m = 1 to M O(M )
3: UsingW to resample L, thus forming labeled sample set L ′; O(M × nL)
4: Xsyn = SMOTE(L ′,N , k); % using SMOTE to generate synthetic samples

O(M×N×nL×log(nL))based on L ′;
5: Xtraining = L ′

∪ Xsyn; O(M )
6: Using Xtraining to train a weak classifier fm; O(M × f )
7: Calculating the error rate ε of fm by using formula (5); O(M × f )
8: if ε > 0.5
9: am = 0; O(M )
10: Reset W : ∀ xi ∈ L, wi = 1/nL ; O(M × nL)
11: else if ε == 0
12: am = 10; O(M )
13: Reset W : ∀ xi ∈ L, wi = 1/nL ; O(M × nL)
14: else
15: am = (1/2) × ln((1 − ε)/ε);
16: for each xi ∈ L O(M × nL)
17: if fm(xi) = yi O(M × nL)
18: wi = wi/(2 × (1 − ε)); O(M × nL)
19: else
20: wi = wi/2 × ε; O(M × nL)
21: end if
22: end for
23: NormalizingW ; O(M × nL)
24: end for
25: return F by using formula (2); O(M )

(b) As analyzed in the column labeled ‘‘Time complexity’’,
the time complexity of DPCStr is O(n2).

B. ADABOOSTSEMI
After finding high-confidence unlabeled samples by the
proposed DPCStr, an improved Adaboost is proposed to
construct an ensemble classifier used to predict found
high-confidence unlabeled samples in STDPboost. The

improved Adaboost is named AdaboostSEMI and is inspired
by SMOTE [40] and Adaboost [31].

As described in Section III-C, Adaboost can construct
an ensemble classifier by using an iterative process and
combining multiple weak classifiers linearly. However, the
effectiveness of the ensemble classifier constructed by
Adaboost heavily depends on the diversity and accuracy of
multiple weak classifiers. Due to the limited number and
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Algorithm 5 STDPboost
Input: L (The set of labeled data), U (The set of unlabeled data), N (The

Time complexity
number of synthetic samples for each labeled sample),M (The number
of ensemble classifiers), k (The neighbor parameter in AdaboostSEMI)
Output: C (The trained classifier)
1: XSSL = L ∪ U ; O(1)
2: next = DPCStr(L,U ); O(n2)
3: while |U | ̸= 0 O(T )
4: F = AdaboostSEMI (L,M ,N , k); O(T )×(O(M×N×nL×log(nL))+O(M×f ))
5: Finding XHCS by Definition 1 and next; O(T )

6:
Using the trained ensemble classifier F to predict XHCS , O(T ) × O(F)
thus forming the set of newly predicted sample Lnew;

7: L = L ∪ Lnew; O(T )
8: U = U − XHCS ; O(T )
9: end while —
10: return a given classifier C trained on the improved L; O(1)

unrepresented distribution of the initial labeled data in
SSC, it is hard to train multiple weak classifiers with suf-
ficient diversity and high accuracy in Adaboost. Hence,
AdaboostSEMI improves Adaboost by using SMOTE to cre-
ate synthetic labeled samples in each iteration of Adaboost.
In AdaboostSEMI, synthetic labeled samples generated by
SMOTE can improve the number and distribution of the ini-
tial labeled data, which enhances the diversity and accuracy
of multiple weak classifiers trained on the initial labeled data.

The pseudo-code of the proposed AdaboostSEMI is
described in Algorithm 4 which returns a trained ensemble
classier F . Their main difference between AdaboostSEMI
and Adaboost is that AdaboostSEMI uses SMOTE to create
synthetic labeled samples at Line 4. Then, AdaboostSEMI
uses synthetic labeled samples to improve the training set
of each weak classifier in each iteration at Line 5. Next,
AdaboostSEMI employs the idea of Adaboost to calculate the
error rate ε, the weight am of each weak classifier fm and
the sample distributionW at Lines 6-24. Finally, an effective
ensemble classifier can be obtained F at Line 25. Please note
for Algorithm 4, several points need to be explained:

(a) SMOTE is originally used to generate synthetic minor-
ity class samples, where the set of minority class samples
is used as input. In AdaboostSEMI, because the labeled set
L ′ formed by the sample distribution W is used as an input
of SMOTE at Line 4, SMOTE generates synthetic labeled
samples for each class, which improves the sample number
and distribution of each class.

(b) As analyzed in the column labeled ‘‘Time complex-
ity’’, the time complexity of AdaboostSEMI is O(M × N ×

nL × log(nL)) + O(M × f ), where M is the number of
weak classifiers, N is the parameter in SMOTE, O(f ) is the
time complexity of the adopted weak classifier and nL is the
sample number in L.

(c) The adopted weak classifier fm is the same as the
final trained classifier C in STDPboost. More specifically,
if STDPboost is used to train a k nearest neighbor (KNN) [41]

classifier, the KNN classifier is used as the weak classifier in
AdaboostSEMI.

(d) SMOTEBoost [33] also use SMOTE to improve
Adaboost. Yet, SMOTEBoost is mainly used for imbal-
anced classification and aims to generate synthetic minority
class samples. Compared to SMOTEBoost, the proposed
AdaboostSEMI is mainly used for SSC. AdaboostSEMI can
generate synthetic labeled samples to improve the insufficient
labeled samples for each class, which make itself more suit-
able for SSC.

C. PSEUDO-CODE OF STDPboost
The pseudo-code of STDPboost is described in Algorithm 5.
Line 2 shows the idea of the proposed DPCStr. Lines 3-9
show the iterative self-taught process of STDPboost: a) First,
an ensemble classifierF is constructed byAdaboostSEMI on L
at Line 4; b) Second, the proposed DPCStr is used to find
the set of high-confidence unlabeled samples XHCS Line 5;
c) Third, the ensemble classifier F is used to predict the
set of high-confidence unlabeled samples XHCS , thus form-
ing a newly predicted sample set Lnew at Line 6; d) Four,
Lnew is added to L at Line 7 and the set of unlabeled data
U is updated at Line 8. The above self-taught iteration stops
until all unlabeled samples are predicted at Line 3. Finally,
a given classifier C is trained on improved L and obtained at
Line 10. Please note for Algorithm 5, several points need to
be highlighted:

(a) Some existing self-training methods (e.g. STDP [23]
and STDPCEWS [24]) also use DPC to find high-confidence
unlabeled samples. Compared to them, DPCStr in STDP-
boost is parameter-free.

(b) Compared to existing self-training methods with
ensemble classifiers [27], [28], [29], [30], [31], the ensem-
ble classifier F constructed by the proposed AdaboostSEMI
is more suitable for SSC since AdaboostSEMI can improve
the sample number and distribution of the labeled set L by
generating synthetic samples for each class.
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FIGURE 4. Results of the self-taught process of STDPboost on two toy data.

(c) As analyzed in the column labeled ‘‘Time complexity’’,
the time complexity of STDPboost isO(n2)+O(T )×(O(M×

N×nL×log(nL))+O(M×f ))+O(T )×O(F), whereM is the
number of weak classifiers, N is the parameter in SMOTE,
O(f ) is the time complexity of the adopted weak classifier,
nL is the sample number in L, O(F) is the time complexity
of the ensemble classifier F and T is the maximum number
of iterations in STDPboost. The computational efficiency of
STDPboost will be validated in Section V-D.

(d) Fig. 4 visualizes the results of the self-taught process
of STDPboost in two toy data, where the CART (Classi-
fication And Regression Tree) classifier [42] is adopted in
AdaboostSEMI. It can be proved from Fig. 4 that STDP-
boost can correctly predict unlabeled samples on spherical or
non-spherical data with a limited number and unrepresented
distribution of the initial labeled data, which indirectly indi-
cates the effectiveness of STDPboost.

V. EXPERIMENTS
Experiments are performed on a server that has a CPU of the
Inter Core i7 with 3.10 GHz, a memory with 32GB, and a
64-bit Windows 10 operating system.

A. EXPERIMENTAL SETTINGS
Experimental benchmark data sets are selected from
the machine learning open databases, such as UCI
(https://www.uci.edu/) and Kaggle (https://www.uci.edu/).
These benchmark data sets from UCI or Kaggle are often
used to prove the effectiveness of machine-learning algo-
rithms [18], [19], [20], [21], [22], [23], [24], [25], [26], [27],
[28], [29], [30], [31].

To provide a clearer introduction to the experimental
benchmark data sets, Table 1 describes experimental bench-
mark data sets in terms of data set name, sample number
(#Examples), attribute number (#Attributes), class number
(#Classes), and application areas. Observed from Table 1,
the sample number of the experimental benchmark data sets
ranges from 351 to 5000, the class number of the experimen-
tal benchmark data sets ranges from 2 to 7, and the attribute
number of the experimental benchmark data sets ranges
from 4 to 57. It can be seen from the column labeled ‘‘Appli-
cation Areas’’ of Table 1 that experimental benchmark data
sets come from 7 fields, such as medicine, business, computer
security, physical, life, game, and bioinformatics. Generally,
various benchmark data sets with different distributions are
used to validate the effectiveness, robustness and practi-
cality of the proposed STDPboost. Especially, challenging
benchmark data sets (e. g. Cervical Cancer, Biodegradation,
Wine Quality White, Ionosphere, and Wisconsin Diagnos-
tic Breast Cancer) with relatively high dimensions, multiple
classes, or/and relatively large sample sizes in frequently
applied fields (e.g. medicine, business, and bioinformatics)
are adopted.

As with the existing work [18], [19], [20], [21], [22], [23],
[24], [25], [26], [27], [28], [29], [30], [31], the inductive
semi-supervised classification is focused on. The 10-fold
cross-validation is used to divide each real data set into
10 parts, where the training set contains 9 parts and the test
set contains 1 part. To simulate the semi-supervised learning
environment, 10% of samples are labeled and 90% of sam-
ples are unlabeled in the training set of each data set. All
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TABLE 1. Experimental real data sets.

TABLE 2. The description of comparative self-labeled methods and base classifiers.

experiments were repeated 10 times with the 10-fold cross-
validation and the above strategy for partitioning labeled and
unlabeled samples.

The average inductive classification accuracy (ACA) and
the average running time of 10 executions are adopted as
evaluation metrics. The ACA is formulated in formulas (11).

ACA =

10∑
i=1

|CorX itest |
|X itest |

10
(11)

In formula (11), X itest is the test set of ith experiment.
CorX itest is the set of samples correctly predicted by the
trained classifierC inX itest . The relatedmetrics of imbalanced
classification (e.g. F-measure, G-mean) are not considered
since our work mainly focuses on balanced classification.

To validate the effectiveness, popular base classifiers
(i.e., trained classifiers) and state-of-the-art-self-labeled
methods are adopted for comparison and are described
in Table 2. Due to their popularity, stability and clas-
sicality, the KNN classifier [45] and the CART clas-
sifier [46] have been favored by scholars in image
recognition, natural language processing, speech analy-
sis, etc. Hence, KNN and CART are adopted as trained
classifiers.

STSFCM [22], STDP [23], STDPCEWS [24], NaNG-
ST [26], Co-Adaboost [28], Tri-training [29] and Boost-
STIG [31] are adopted as comparative self-training methods
because they have the same objective (i.e., overcoming
mislabeling in the self-training method) as the proposed
STDPboost. STSFCM, STDP, STDPCEWS and NaNG-ST
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TABLE 3. ACA of comparative self-training methods in training KNN (%).

TABLE 4. ACA of comparative self-training methods in training cart (%).

employ clustering-based or graph-based strategies for finding
high-confidence unlabeled samples in each iteration to alle-
viate mislabeling. Co-Adaboost, Tri-training and BoostSTIG
employ the ideas of ensemble classifiers to alleviate mis-
labeling. In BoostSTIG, Adaboost is adopted to predict
unlabeled samples in each iteration of STDP. Parameters
of the above comparative methods are set as their standard
versions. The proposed STDPboost needs to set 3 parame-
ters (i.e., M , N , and k). M is set to 10, N is set to 2 and
k is set to 5 in experiments as some suggestions in the
studies [31], [33].

B. COMPARING STDPboost WITH POPULAR SELF-
TRAINING METHOD IN CLASSIFICATION ACCURACY
In order to prove the effectiveness of STDPboost, STDPboost
is compared with 7 state-of-the-art self-training methods in
training the KNN classifier and the CART classifier. The
percentage of the initial labeled data is set to 10%, and others
on the training set of each benchmark are unlabeled data. The
empirical results of ACA for comparative methods in terms
of the KNN classifier and the CART classifier are reported
in Tables 3-4. The highest value of each row in Tables 3-4 is
bold.
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FIGURE 5. ACA of comparative self-training methods in training KNN classifier with different ratios of the initial labeled data.

STDPboost achieves the highest ACA for 11 of 18 data
sets in Table 3, the highest average ACC for 9 of 18 data sets
in Table 4. The row labeled ‘‘Average’’ indicates the average
results of all data sets. Observing the row labeled ‘‘Average’’
of Tables 3-4, STDPboost also achieves the highest average
results of all data sets in Tables 3-4. The above results prove
that STDPboost outperforms comparative self-training meth-
ods in training the KNN classifier and the CART classifier
on most data sets. Additionally, the ACA of STDPboost
may be lower than that of comparative self-training meth-
ods on a few data sets. For example, STDP outperforms
STDPboost on 3 data sets (Cardiotocography, Spambase and
WaveForm) in Table 3. The reason may be that none of
the self-training methods can be applied to all data sets
due to the complex data distribution for various data sets.
Despite all this, STDPboost can apply to and can be robust
to more data sets than other comparative self-training meth-
ods because it can achieve the highest ACA on most data
sets.

The results of Tables 3-4 may be incommensurable by
averaging the ACA of all data sets [43]. Hence, the results
of Tables 3-4 also are analyzed by the mean ranks of the
Friedman test [43] in the row labeled ‘‘Mean Rank’’. The
mean rank first sorts the results of each row (For instance,
the sorting values of comparative self-trainingmethods on the

data set WaveForm in Table 3 are 8, 2, 1, 6, 4, 5, 3 and 7).
Then, the ‘‘Mean Rank’’ averages the sorting values of all
rows. A better algorithm can be with a larger mean rank. The
row labeled ‘‘Mean Ranks’’ proves that STDPboost with the
largest mean ranks is better than others.

The post-hoc Nemenyi test [43] with a significance level
of 0.05 is also used to analyze the results in Tables 3-4.
The row labeled ‘‘Nemenyi test’’ indicates the post-hoc
Nemenyi test. In the row labeled ‘‘Nemenyi test’’. The
symbol ‘‘+’’ indicates that STDPboost is significantly better
than the comparative self-training method in the given col-
umn. The symbol ‘‘=’’ indicates that there is no significant
difference between STDPboost and the comparative
self-training method in the given column. The row labeled
‘‘Nemenyi test’’ have proven that STDPboost is statis-
tically significantly superior to comparative self-training
methods (e.g. STSFCM, STDP, STDPCEWS, NaNG-ST, Co-
Adaboost, Tri-training and BoostSTIG) in training the KNN
classifier and STDPboost is statistically significantly superior
to most comparative self-training methods (e.g. STDP, STD-
PCEWS, NaNG-ST and Co-Adaboost) in training the CART
classifier.

Additionally, the column labeled ‘‘Average’’ of Tables 3-4
has shown that STDPboost with the CART classifier can
achieve a higher average classification than STDPboost with
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FIGURE 6. ACA of comparative self-training methods in training CART classifier with different ratios of the initial labeled data.

the KNN classifier. Hence, STDPboost is recommended to
combine the CART classifier to complete SSC tasks.

Generally, Tables 3-4 can prove that STDPboost out-
performs STSFCM, STDP, STDPCEWS, NaNG-ST, Co-
Adaboost, Tri-training and BoostSTIG in training the KNN
classifier and the CART classifier on most benchmark
data sets, possibly due to the superiority of the proposed
DPC-based strategy for finding high-confidence unlabeled
samples and the proposed AdaboostSEMI in STDPboost.

C. EXPERIMENTS IN DISCUSSING THE INFLUENCE OF
DIFFERENT RATIOS OF THE INITIAL LABELED DATA
To further illustrate the effectiveness of the proposed
STDPboost, STDPboost is compared with 7 comparative
self-training methods with different percentages of the initial
labeled data. The results of ACA for comparison methods
with different percentages of the initial labeled data are
reported in Figs. 5-6, in which the percentage of the initial
labeled data is increased from 10% to 50%. Due to time and
resource constraints, representative 4 real benchmarks (Mam-
mographic Masses, Indian Liver Patient, Cardiotocography
and Spambase) are used in Figs. 5-6.

It is not difficult to find from Fig. 5 that a) STDP-
boost achieves the best ACA on the data set Mammographic
Masses in training the KNN classifier when the percentages
of labeled samples are 10%, 20% and 50%; b) STDPboost
achieves the best ACA on the data set Indian Liver Patient in
training the KNN classifier when the percentages of labeled

samples are 10%, 20%, 30% and 50%; c) STDPboost achieve
the best ACA on the data set Cardiotocography in training the
KNN classifier when the percentages of labeled samples are
20% and 50%; d) STDPboost achieve the best ACA on the
data set Spambase in training the KNN classifier when the
percentages of labeled samples are 20%, 40% and 50%;

Additionally, it is not difficult to find from Fig. 6 that
a) STDPboost achieves the best ACA on the data set Mam-
mographic Masses in training the CART classifier when
the percentages of labeled samples are 10%, 20%and 50%;
b) STDPboost achieves the best ACA on the data set Indian
Liver Patient in training the CART classifier when the
percentages of labeled samples are 20%, 30% and 50%;
c) STDPboost achieve the best ACA on the data set Car-
diotocography in training the CART classifier when the
percentages of labeled samples are 20%, 40% and 50%;
d) STDPboost achieve the best ACA on the data set
Spambase in training the CART classifier when the percent-
ages of labeled samples are 10%-50%;

With the increase in the proportion of the initial labeled
data, the initial labeled data can better approach the real dis-
tribution of the original data. If so, comparative self-training
methods may more accurately estimate the confidence of
unlabeled samples and make a more accurate prediction for
unlabeled samples. Hence, as the percentage of labeled data
increases from 10% to 50%, the overall performance of
ACA for all comparative self-training methods will be better
in Figs. 5-6.
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TABLE 5. Average running time of comparative self-training methods (seconds).

Generally, Figs. 5-6 can prove that STDPboost outper-
forms 7 comparative self-training methods with various
percentages (from 10% to 50%) of the initial labeled data.

D. EXPERIMENTS IN VALIDATING THE COMPUTATIONAL
EFFICIENCY
STDPboost is compared with 7 state-of-the-art self-training
methods in the average running time of 10 executions. The
CART is used as the trained classifier in STDPboost and com-
parative self-training methods. Table 5 reports the average
running time of STDPboost and 7 comparative self-training
methods. Observing Table 5, although STDPboost has no
absolute advantage in average running time, STDPboost is
still faster than STDPCEWS and BoostSTIG on most data
sets.

VI. CONCLUSIONS AND PLANS
Mislabeling is one of the main challenges for self-training
methods. Existing self-training variations overcoming misla-
beling from one of two main aspects: a) using heuristic rules
to find high-confidence unlabeled samples; b) enhancing
prediction performance by employing ensemble classifiers.
Yet, they still have the following shortcomings: a) strate-
gies for finding high-confidence unlabeled samples heavily
rely on parameters; b) employed ensemble classifiers orig-
inally designed for supervised classifiers and may not be
suitable for semi-supervised classification due to the lim-
ited number and unrepresented distribution of the initial
labeled data; c) few can overcome mislabeling from the
above two aspects at the same time. To overcome the above
issues, a novel self-training method (named STDPboost)
based on density peaks clustering and improved Adaboost is
proposed.

The main ideas of STDPboost include the following
iterative self-taught process: a) An ensemble classifier is
trained on the set of labeled data by using the proposed
AdaboostSEMI; b) the proposed DPCStr is used to find

high-confidence unlabeled samples from the set of unla-
beled data; c) the trained ensemble classifier is used to
predict high-confidence unlabeled samples; d) predicted
high-confidence samples with pseudo labels are added to the
set of labeled data. The above iterative self-taught process
repeats until all unlabeled samples are predicted. After that,
STDPboost outputs a given classifier trained on the improved
set of labeled data.

The main advantages of the proposed STDPboost are con-
cluded as follows: a) it is parameter-free; b) it can overcome
mislabeling by a new parameter-free strategy (DPCStr) for
finding high-confidence unlabeled samples and a new ensem-
ble classifier (AdaboostSEMI) more suitable for SSC.

The main contributions are highlighted as follows:
(a) A new self-training method named STDPboost is

proposed.
(b) A new parameter-freeDPC-based strategy (DPCStr) for

finding high-confidence unlabeled samples in STDPboost is
proposed.

(c) A new ensemble method named AdaboostSEMI for con-
structing an ensemble classifier in STDPboost is proposed.

(d) Intensive experimental results with extensive real
benchmarks, 2 trained classifiers (KNN and CART),
7 state-of-the-art self-training methods (STSFCM, STDP,
STDPCEWS, NaNG-ST, Co-Adaboost, Tri-training and
BoostSTIG) are reported.

Empirical experiments with various benchmark data
sets from UCI and Kaggle comprehensively conclude that
a) STDPboost outperforms 7 state-of-the-art self-training
methods on most benchmark data sets with various percent-
ages of the initial labeled data; b) STDPboost is faster than
STDPCEWS and BoostSTIG.

In plans, we are interested in overcoming the defect of the
parameter selection (N , M and k) in the proposed STDP-
boost. We are interested improve STDPboost to make it
suitable for class-imbalanced data sets and consider more
evaluation metrics (e.g. F-measure and G-mean) for
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imbalanced classification. We are also interested to apply
the proposed STDPboost to more non-real-time practical
applications, such as intelligent medical detection, financial
risk control, and intelligent management decision-making.
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