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ABSTRACT Predictive maintenance (PdM) uses statistical and machine learning methods to detect and
predict the onset of faults. PdM is often used in industrial IoT settings in the energy sector, where research
works usually consider specific types of faults depending on the application. However, since PdM is mainly
data-driven and needs to work in real time, the public availability of datasets is required in order to build
efficient and effective models applicable across multiple domains. Unlike methods, the publicly available
datasets obtained from sensors in the energy sector have not been properly reviewed or categorized. In this
work, we consider five subsectors of the energy sector: wind, solar, oil & gas, diesel & thermal, and electrical
power grid.We provide a detailed description of the properties of the publicly available PdM datasets in these
subsectors. The review of the datasets is conducted on a number of scientific and commercial repositories:
IEEE DataPort, UCI Machine Learning Repository, Kaggle, EDP, and Mendeley Data. The datasets are
graded into three categories according to objective criteria. We also provide references to significant related
research work that uses the considered datasets. The observed challenges in using the datasets in this field
are thoroughly discussed. We find that there is a troublesome scarcity of publicly available datasets in the
energy sector, more so of data coming from real, non-simulated sources. Three datasets, 3W (oil & gas),
EDP-WT (wind), and OREC (wind) stand out as highly valuable for researchers in this field.

INDEX TERMS Datasets, deep learning, machine learning, predictive maintenance (PdM), energy sector.

I. INTRODUCTION
Predictive maintenance (PdM) aims to successfully estimate
the period in which in-service equipment maintenance should
be performed to avoid its potential failure and the associated
consequences. PdM encompasses many data-driven meth-
ods, mostly from statistics and machine learning, in order to
achieve the goal of efficient fault detection and prediction [1].
The advantages of using PdM include: 1) expenditure savings
through the lower cost of maintenance due to knowing in
advance when to buy a certain spare part or piece of equip-
ment, 2) energy savings through optimizing the exploitation
of non-renewable sources (oil & gas) and renewable sources,
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and 3) a safer work environment achieved by detecting a fault
and stopping production before failure happens. According
to a study that considered 268 European companies from
various sectors, PdM decreased costs by 12%, improved
availability by 9%, extended the lifetime of an aging asset by
20% and reduced safety, health, environmental and quality
risks by 14% [2].

PdM is broadly considered to be an important part of
Industry 4.0 [3], [4], [5]. It has been a part of industrial
development for many years, mostly in the context of sensor
networks [6], [7] and later, the Internet of Things (IoT) [8],
[9]. It is often applied to industrial IoT (IIoT) signal data
acquired under various levels of control [10], [11]. Fig. 1
depicts the number of published research papers in the field
of PdM in the industrial context from 2013 to 2022 according
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FIGURE 1. Published papers in the field of predictive maintenance in an
industrial context, compared with an explicit mention of IoT, from Web of
Science Core Collection database.

to the Web of Science Core Collection database. The number
of papers that explicitly mention IoT with PdM is also shown.
It can be observed that the field is becoming increasingly
popular and that the use of IoT in PdM is growing steadily.

Still, there are some challenges for PdM that can be
observed from the related work, such as: 1) the methods are
data-driven [12], which means that without adequate data
the models are unsuccessful; 2) the industry itself is mostly
closed, therefore, proprietary data, especially labeled data,
are usually not shared, which limits the research works; 3) the
optimal PdM models require close collaboration between the
academic sector and industry due to the significant domain
knowledge and artificial intelligence requirements posed to
such models, which is not often the case.

Currently, from the perspective of data science, researchers
observe a lack of available high-quality datasets in the field
of PdM that would allow them to construct wide-spread
and applicable PdM models [13]. This problem seems to
be pronounced in the IoT-supported energy sector, which
leads to suboptimal smart solutions and increased costs and
impacts on the environment. Namely, the research work in the
energy sector mainly focuses on a specific application and
a specific dataset [14], [15]. The developed models are not
applicable to other PdM datasets from the same subsector or
from different subsectors due to significant differences in the
datasets’ properties. This statement holds even when recent
approaches from deep learning, such as transfer learning, are
used [16] because the datasets are too specific.

As stated earlier, most PdM approaches are data-driven,
meaning that they are dependent on provided data. Due to
the importance of high-quality data availability topic, in this
paper, we present a detailed survey of the PdM datasets in
the energy sector. We show that there is indeed a scarcity of
publicly available PdM datasets in this field, especially the
non-simulated ones. The contributions of this review work
are the following:

• a detailed description of the properties of the pub-
licly available predictive maintenance datasets in the
IoT-supported energy sector,

• a reference list of significant research works that use
the considered datasets along with applied methods and
PdM tasks,

• a categorization (rating) of the datasets based on a small
set of objective criteria,

• a generalized data-driven pipeline for predictive mainte-
nance,

• a discussion of the observed challenges related to the
datasets in this field.

Unlike other research that focuses on various applicable
machine learning methods and constructed models, the focus
of this work is on the elaboration of the datasets that can be
used by researchers to build high-impact and versatile PdM
machine learning models in the energy sector. We consider
that this kind of work is important for future considerations,
methods and datasets alike, in this growing field.

The remainder of this paper is structured as follows.
In Section II, we review the related work in the field of
PdM. In Section III, we explain the precise methodology of
the review. Section IV deals with a detailed description of
the reviewed datasets, their properties and the corresponding
research work. Section V presents a data-driven pipeline for
PdM. We discuss the encountered challenges in Section VI
and conclude the paper in Section VII.

II. RELATED WORK
Numerous research works in the field of predictive mainte-
nance are focused on maintenance methods, the application
of machine learning (ML) and deep learning (DL) methods,
as well as types of failures in specific application domains.
However, hardly any attention was given to the review of
datasets on PdM.

Data-driven methods are the most common choice for
achieving PdM. The authors in [17] classify six ML and DL
algorithms in specific industrial applications and compare
five performance metrics for each classification algorithm.
Furthermore, they list the most common challenges in prac-
tice, which also include the challenges of data acquisition.
Similarly, the paper [4] gives a review of not only methods
but also architecture and provides a list of 13 crucial targets
for PdM in Industry 4.0 that are applicable to Small and
Medium Enterprises (SME). The authors observed that most
papers focused on increasing the remaining useful life (RUL)
of the system or detecting anomalous events, while the most
common choice of technology for applying PdM is ML and
DL. In comparison, the paper [18] gives a deeper insight
into common ML methods applied to four types of industrial
maintenance approaches: corrective, preventive, condition-
based, and PdM. Likewise, in [1], the authors focus on
four mainstream DL-based methods for Intelligent Predictive
Maintenance (IPdM). In there, all methods were compared in
terms of data characteristics, model performance, and appli-
cation scenarios.

Nowadays, PdM often utilizes the IoT for real-time data
acquisition in order to efficiently prepare the maintenance
works. The application of IoT in PdM was surveyed in
a recent paper [19] using scientometric analysis to point
out the most common keywords, cited authors, contributing
countries, and cited journals. The authors also presented
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the applications of PdM in industries, including the energy
sector, along with the main benefits of PdM, which are
safety, security, reliability, and efficiency. Contrary to the
considered benefits, the authors in [20] presented the
main challenges in the IoT-Enabled PdM. Those challenges
include the selection of the components that would benefit
most from PdM, the proper design of the IoT infrastruc-
ture, the development of the algorithms and methods, and
lastly, the exploitation of IoT-enabled monitoring to really
ensure that PdM brings added value. One of the innovative
uses of IIoT as the main tool is a new paradigm called
Hybrid Self-Corrective Maintenance (Hybrid-SCM) [21].
The paradigm was proposed after reviewing PdM indus-
try case studies. The Hybrid-SCM combines Condition-
basedMaintenance (CbM) with Self-CorrectiveMaintenance
(SCM) to create a subsystem that can learn about its condition
by itself and take corrective actions when necessary.

Other research papers focus on specific use-cases of PdM,
such as PdM for motors [22], [23], wind turbines [14], [24],
[25], hydraulic cylinders [26], power transformers [15], etc.
In these papers, the focus is on the applications of different
data analysis methods in the corresponding fields. We will
now review some of these papers.

As summarized in [22], different approaches can be fol-
lowed for applying PdM in motors. All of them included
ML methods, where the most common one was Random
Forest (RF), combined with different motor features, e.g.,
vibration, acoustical and speed oscillations, motor current,
etc. A similar review was done for induction motors [23],
with emphasis on the types of faults. The most common faults
were bearing faults, which also had the best detection accu-
racy. In wind turbines (WT) for the energy sector, SCADA
systems usually collect data that can be used for power pre-
diction, fault detection, optimal control settings, performance
evaluation, and necessary maintenance. Since the number
of offshore wind turbines has been growing, research has
focused on PdM and fault diagnosis techniques focused on
windings and insulation failures [25]. Furthermore, in [14],
the emphasis was on predicting the RUL for offshore wind
turbine power converters. The authors reviewed the existing
methods and proposed a novel methodology using a digital
twin framework for implementing PdM. Understanding the
types of failures and how often they might occur in wind
turbines showed how the growing size of WT generators
brings new maintenance problems, even though they seem
to be more robust and reliable [24]. On the other hand,
hydraulic cylinders are widely used in different industries
as mechanical actuators, and they are affected by a variety
of factors, such as fluid contamination, fluid leakage, worn
piston rods, or internal corrosion. In [26], the results of using
various sensors to diagnose these faults are reviewed. Another
approach to using RUL was shown in [15], where winding
hot-spot temperature usually determined the remaining life
of the power transformer, an important unit used in electric
power generating stations.

Another field of research in PdM is the use of various sig-
nal processing and analysis techniques, such as Fast Fourier
Transform, Wavelet Transform, and Artificial Neural Net-
work (ANN). This line of work is important because PdM
is mainly based on industrial time series, which are affected
by noise and artifacts. In a recent work [27], a review of pro-
cessing methods was done for current, vibration, and acoustic
signal analysis for PdM. Paper [28] focused only on the
vibration signal analysis due to its low cost and better results
compared to others, especially when using features with a
higher dimension, as opposed to stationary signal processing
techniques, such as the ones described in [29].

To our knowledge, there is only one paper that gives
an overview of the datasets available for a specific indus-
try. This paper [30] presented a summary of datasets from
wind industry-related resources. The study also offered a
review of research papers that made use of these datasets.
The research topics range from evaluating wind potential
to predicting wind speed and the consequent output power.
The listed datasets were grouped into three domains: open
datasets of wind turbine capacity and wind farm projects,
wind resources, and wind farm monitoring. While interesting
for the wind subsector, this study did not consider a broader
perspective on the available PdM datasets in the energy sec-
tor. Nevertheless, the paper was motivational for this study.

Our review of the literature did not find any research
work that would provide a more general overview of the
available datasets for PdM. Review papers in the field of
PdM are focused on the review of maintenance methods,
signal processing methods, and types of failures in a specific
application.

III. REVIEW METHODOLOGY
An overview of the reviewmethodology for selecting datasets
is depicted in Fig. 2. The datasets were reviewed in a num-
ber of scientific and commercial repositories, namely IEEE
DataPort, UCI Machine Learning Repository, Kaggle, EDP,
and Mendeley Data. The keywords used for searching the
datasets were: fault, fault detection, predictive maintenance,
oil well, oil and gas, wind turbine, wind power, solar power,
photovoltaic farm, boiler, diesel engines, electric grid, electric
power, and transmission line.

A. INCLUSION CRITERIA
A dataset had to meet certain criteria in order to be included
in the review: 1) the dataset had to have logs containing
information about faults, anomalies, or maintenance so that it
could be used for PdM; 2) the dataset had to be related to the
energy sector and its five considered subsectors: wind, solar,
oil & gas, diesel and thermal power, electrical power grid;
3) the dataset had to be IoT-related and not be for general
industrial use (such as hydraulics, gearboxes, bearings, etc.)
due to the significant expansion of the published scientific
papers related to IoT; 4) the data had to be in the format of
a time series (images or graphs were not considered). Only
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FIGURE 2. Review methodology for selecting datasets.

the datasets that satisfy all of the criteria are selected and
reviewed in this paper.

B. DATASET GRADING
For evaluating the quality of the considered datasets for
PdM, we devised a grading system, where each dataset was
graded as class I, II, or III, with class I being the highest
grade and class III being the lowest grade. Several simple
and objective criteria were used for grading the datasets,
as follows. A class I graded dataset can not contain data from
simulations. Also, for accessibility reasons, if the dataset was
not open-access, but required significant effort (aside from
registration), it can not be graded as class I. The grade of
the dataset is lowered if it has a relatively small number
of instances (less than 1,000), predictive variables (only 1),
or fault events (5 or fewer). The motivation for using these
thresholds is that ML and DL models may not work properly
if the above criteria are not met. If a dataset has missing or
limited documentation describing the data, or if the licence
information is not available, the dataset is graded as class III.
The grading criteria are summarized in Table 1.

To sum up, only datasets that contain data from a real
source, have more or equal to 1,000 instances, more than
1 predictive variable, more than 5 faults, have complete doc-
umentation and licence information and easy access to the
data, can be graded as class I datasets. Simulated datasets,
or datasets with a number of instances, variables or faults
under the threshold, or datasets that have a harder access
to data (aside from the registration process) are graded as
class II. Datasets that are both simulated and have a number
of instances, variables or faults under the threshold, or hard
access, or missing documentation and licence information

TABLE 1. Criteria expressions for class affiliation.

are graded as the lowest class: class III. To promote future
datasets, the criteria were intentionally devised in such a way
that a newly published high-quality dataset that is not yet cited
in relevant literature can still be graded as class I.

IV. DATASETS
After taking into account all of the criteria in the inspected
repositories, 15 datasets were selected and are considered in
this review.

Table 2 shows the main properties of the obtained datasets.
For each dataset, the type of data is listed. For wind tur-
bines, the datasets are usually in SCADA system format
together with meteorological (MET) data. On the other hand,
other data are collected from a variety of sensors (e.g., tem-
perature, pressure, vibration, voltage, and current sensors)
that are specific to each dataset. We also list the usage
licences. Most licences are CC-BY, which allows users to
freely distribute, remix, adapt, and more, as long as the
creator is properly credited. This type of licence also allows
commercial use of datasets. Whether a dataset contains doc-
umentation describing the data is noted in the Doc column,
as is information about whether the dataset is simulated in
the Sim column. To better understand the datasets from a
data science viewpoint, the table also shows the granularity
of the data, the number of instances (No ins), the number
of variables (No vars), the number of faults (No faults) and
the name of the repository where the dataset is provided.
The last column contains the grades (I, II or III) for each
dataset.

Table 3 shows the properties of 26 published journal and
conference papers from the Web of Science Core Collection
(WoSCC) database where research work was done on one of
the considered datasets. The statistical, ML and DL methods
used in each paper were listed. The last described property
is the type of PdM task done. Exploratory data clustering
searches for feature clusters correlated to faulty states. Fault
prediction refers to predicting a fault in advance, while fault
detection tries to detect whether a fault is happening in a
specific instance. Fault type classification focuses on differ-
entiating types of faults, while predicting decay state focuses
on estimating the actual decay state of a specific component
so proper decisions can be made later. Not all the datasets
had published papers that reported their use, i.e., only 10 of
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TABLE 2. The overview of the main properties of the obtained datasets.

the 15 datasets included in this review were cited in published
articles indexed in WoSCC. In the selected articles, the most
commonly used statistical method was principal component
analysis (PCA). Among the ML methods, RF was used in
50% of the articles studied. After RF, the second and third
most frequently used methods were Support Vector Machine
(SVM) and Decision Tree (DT). Most of the published papers
used more than one ML method, either in an ensemble or for
cross-comparison of models. Less than 50% of the included
papers used both statistical and ML methods. DL methods
(e.g., CNN, LSTM)were used only occasionally, despite their
recent popularity in the AI community.

The EDP-WT dataset [31] has the most papers (six of
them), and the second dataset, 3W [32], has five published

papers in WoSCC. In both cases, a high number of papers
correlates with the highest grading of the dataset, class I. The
Naval Propulsion Plant dataset (1&2) has the same number
of published papers as dataset 3W, although in this case the
papers were authored by only three different research groups
that used similar ML methods.

More detailed properties of the considered datasets are
described below.

A. EDP-WT
The EDPWind Turbine dataset is part of the EDP-WTFailure
Detection Challenge, which evaluated predictive capabili-
ties for detecting early failures in WTs. The components
monitored are the gearbox, generator, generator bearing,
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TABLE 3. Datasets in articles.
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transformer, and hydraulic group [31]. The inspection, repair,
and replacement costs of these parts can be found in the
documentation and are used to assess the savings and pre-
dictive power of the algorithm. According to the ranking of
the proposed methods on the challenge, the highest savings
achieved was 76,000=C.
The dataset includes 2 years of SCADA data (10-minute

period) from 5 WTs (Wind Farm 1) located in the West
African Gulf of Guinea and the meteorological mast, includ-
ing fault detections and event logs. These datasets are also
already split into training and test datasets (80/20 ratio).
The training dataset is from 2016 (a full year) and the test
dataset consists of nine months of data, from January 2017 to
September 2017, with a minimal number of records missing.
All datasets are only available to registered users of the
EDP Open Data Platform where the process of registering is
simple.

Some of the SCADA signals (81) are the average tem-
peratures of various WT components (e.g., gearbox, oil in
hydraulic group, and generator bearing), average rotor speed,
total active power, average nacelle direction, etc. Some of
the signals from the meteorological mast (40) are maximum,
minimum, and average wind speed, wind direction, pressure,
and humidity from multiple sensors. The dataset contains
28 faults altogether. On the other hand, the WT logs show
various remarks for the five WTs over the course of two
years. Examples of ∼100 different remarks include: pause
pressed on a keyboard, hot generator, pause over RCS, high
wind speed, oil leakage in the hub, etc. However, there is no
documentation available for all the values (codes) in the log
records. These logs may carry some useful information about
the data, but the information is not necessary for application
of PdM, so the lack of documentation does not lower the
grade of the dataset.

B. WT-IIoT
WT-IIoT dataset comes from a single unknown WT. The
dataset is available on the Kaggle domain and originates from
the Microsoft Azure Predictive Maintenance Template [33].
The data could be used to classify fault modes based on
various SCADA components. The problem is that while
the fault log and maintenance documentation are provided
(tables fault_data and status_data), the dataset lacks a full
description of the variables and status/fault codes. Licence
information is also not included. Out of the provided data,
the status data have the longest recorded time span from
January 2014 to December 2015. The shortest is SCADA
data from April 2014 to April 2015. There are some missing
values, such as when SCADA timestamps don’t match fault
timestamps, simply because at certain times there are no
faults happening.

Some of the 64 SCADA variables are: reactive power,
blade angle, nacel position, and temperatures of the various
systems (e.g., bearing, rotor, and stator). The meteorological
variables are limited to minimum, maximum, and average
wind speed. The status_data table contains 9 variables, the

most useful variable for applying PdM being the status text
describing the current operating state of WT. Other variables
include main status, sub status, full status, T, service, fault
message, and value 0, which could be useful if additional doc-
umentation were provided to describe each categorical value.
In the fault data, there were five types of faults represented
through 553 fault events, even though what they represent is
unknown.

C. OREC
OREC (Offshore Renewable Energy Catapult) is the UK’s
leading technology innovation and research centre for off-
shore renewable energy. OREC’s Levenmouth Demonstra-
tion Turbine (LDT) is located off the coast of Fife in Scotland
and is the world’s most advanced open access offshore
wind turbine (7 MW, Samsung) dedicated to research and
development. The OREC’s data collection consists of a mete-
orological and a LDT SCADA dataset provided at 1-second
and 10-minute intervals, respectively [34]. The collection
can be searched through the POD (Platform for Opera-
tional Data) service, where a small data sample can also be
retrieved. To gain full access to the data, a POD registration is
required, where the customer must specify how the data will
be used. The terms and conditions agreement is extensive (24
pages) and differs for each dataset.

The large number of available variables can be filtered
by functional groups (cooling system, machinery enclosure,
met mast, general, alarms, etc.), measured variables (temper-
ature, pressure, rotation, etc.), units, and data types. After
specifying the variables and time interval, a small fee is
charged to cover the cost of data retrieval, depending on the
size or complexity of the query. It is charged only after the
responsible person has received the query.

All data are available as of January 2017 and are updated
every month, except for LDT Substation data, which are
available as of September 2017. Therefore, the estimated
number of the meteorological mast and SCADA entries is
1.5 · 108 and 2.5 · 105 for 1-s and 10-min data, respectively.
Since data access is limited, the number of missing values is
unknown. Some of the SCADA signals (573) are: yaw brake
pressure, yaw motor temperature state, mainframe and hub
temperatures, generator export energy, and rotor speed. Some
of the signals from themeteorological mast (14 for 1-Hzmea-
surements and 66 for 10-minute measurement intervals) are:
wind speed at different heights, wind direction, pressure, and
temperatures at different heights. The alarm log contains ten
columns, some of which include: the time the alarm started
and ended, the downtime, the reference number indicating the
event code, and the source of the stoppage. The alarm log
could be used as a target variable when applying PdM. Some
of the SCADA signals from the LDT substation (16 for 1 Hz
measurements and 72 for 10-minute measurement intervals)
include: power factor, reactive power, voltage, and current.
A detailed description of the SCADA, meteorological and all
other variables is available on site. In addition, documentation
is included with the SCADA records explaining the WT
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status codes and abbreviation entries. Event codes and their
descriptions are also available on the LDTAlarm Log Record
page.

D. WIND TURBINE PMSG
Permanent Magnet Synchronous-based Generator (PMSG)
are commonly used as wind generators in wind turbines.
They recurrently interrupt their operation due to stator faults.
These faults usually occur between turns (turn-to-turn fault)
or between a turn and the machine housing (turn-to-ground
fault) [69]. The most common type of internal fault is the
leakage current of the coils through connections caused by
faults in the insulation of the components. The objective of
the dataset is to enable evaluation of the effects of the fault
severity due to different positions of the fault in the stator coil
and the number of turns [35].

The dataset comes from simulating a mathematical model
of PMSG using Simulink/MATLAB. There are several
parameters varied for the simulation:

1) types of operation: normal, turn-to-turn, turn-to-ground
2) generator load [%]
3) switching frequency of the power converter [kHz]
4) percent of faulty turns [%]
5) fault resistance: range from 0 (total insulation break) to

∞ (no faulty).
The dataset contains instances representing current signals

from normal stators and faulty stators in the range of 1%
to 10% of faulty turns of type 1 and type 2. The data were
saved in .mat format, with the file name containing event
information (switching frequency, type of fault, and fault
resistance). Each file contains two variables: Is measures
current values, and tempo measures time steps. The dataset
includes 42 events, 40 of which are of the faulty type and 2 of
the normal type. Since this is a simulated dataset, there are no
missing data.

E. FAULT DETECTION IN PV FARMS
This dataset consists of measurements on a simulated
250-kW PV system created using Simulink/MATLAB [36].
The purpose of the dataset is to evaluate the effects of faults
happening on various locations and various conditions on PV
systems. The PV system consists of 88 parallel strings, each
including seven series modules. Each module has 128 cells,
a maximum power of 414.801 W at 72.9 V, a current of
5.69 A, an open-circuit voltage of 85.3 V, and a short-circuit
current of 6.09 A.

The data were split into training (600 instances) and test
(100 instances) datasets. There are four defined states:

1) free-of-fault (16.67%)
2) string fault, tested on string 1 (25.50%)
3) string to ground fault, tested on string 1 (24.83%)
4) string-to-string fault, tested between strings 1 and 2

(33%)
There are 12 attributes, 6 of which are currents measured by
2 ammeters at the top and bottom of the strings 1, 2, and
3 during simulation, total average DC voltage, total average

DC power, total average current, temperature, radiation, and
class. For each current measurement, an average, maximum,
minimum, and variance value were extracted, giving a total of
30 features. The temperature, radiation, and fault resistance
measurements ranged from 10Â◦C to 35Â◦C, 100 W2 to
1,000 W2, and 1 � to 2,000 �. The total simulation time was
0.4 s, and it was assumed that a fault occurs at 0.2 s. In the
training dataset, all measurements were made after the fault
occurred in the period from 0.2 s to 0.4 s.

F. GPVS-FAULTS
The Grid-connected Photovoltaic System Faults (GPVS-
Faults) dataset is the result of laboratory experiments on faults
in a PV microgrid application [37]. The data were obtained
from sensor measurements and a virtual Phasor Measure-
ment Unit (PMU). Experiments ran for approximately 10 to
15 seconds, with faults manually inserted halfway through the
experiments. Each experiment was run in twomodes: Limited
Power Mode (IPPT) and Maximum Power Mode (MPPT).

There are 16 data files corresponding to seven types of
faults (inverter fault (F1), feedback sensor fault (F2), grid
anomaly (F3), PV array mismatch (F4, F5), MPPT/IPPT
controller fault (F6), and boost converter fault (F7)) and one
fault-free experiment. The faults have different severities and
occur at different locations. The data files are available in both
.mat and .csv formats. Each data file contains 14 variables:
time, PV array current and voltage measurements, DC volt-
age measurements, phase A, B, and C current and voltage
measurements, and positive-sequence estimated current and
voltage magnitude and frequency. A more detailed descrip-
tion of the individual faults and the experimental setup can
be found in the documentation [53].

Unlike other simulated experiments, the exact timestamp
of fault occurrence is not known, the high-frequency mea-
surements are noisy, and there are temperature and insolation
disturbances and variations during and between scenarios.
Different modes (MPPT or IPPT) have adverse effects on
detecting low-magnitude faults. The challenge is to detect the
faults before they cause total failure.

G. 3W
The 3W dataset consists of data collected by the Brazilian
company Petrobras on naturally flowing offshore wells [32].
The goal of this dataset is to evaluate the effects of different
types of events using eight process variables. The name 3W
was chosen because the dataset is composed of instances from
3 different sources (real, simulated, and hand-drawn) that
contain adverse events in oilWells. The eight types of events
are:

1) Abrupt Increase of Basic Sediment and Water (BSW)
2) Spurious Closure of the Downhole Safety Valve

(DHSV)
3) Sever Slugging
4) Flow Instability
5) Rapid Productivity Loss
6) Quick Restriction in the Production Choke (PCK)
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7) Scaling in Production Choke (PCK)
8) Hydrate in production line

The adverse events are characterized by eight process
variables: pressure at the permanent downhole gauge (P-
PDG), pressure (P-TPT) and temperature at the temper-
ature/pressure transducer (T-TPT), pressure upstream of
production choke (P-MON-CKP), temperature downstream
of production choke (T-JUS-CKP), gas lift flow rate (QGL),
pressure (P-JUS-CKGL) and temperature downstream of gas
lift choke (T-JUS-CKGL).

The data were collected from 21 different wells, with the
oldest event occurring in April 2012 and the most recent in
June 2018. The data are divided into folders according to
the event type, and there are a total of 1,984 instances with
a total of 15,872 variables. There are two types of instance
labeling. Each instance was labeled with a single code repre-
senting one of the adverse events or normal operation, a total
of nine different codes. The second labeling was done at
the observation level, so that each instance has up to three
periods: normal, faulty transient, and faulty steady state. Only
the following units were used: Pascal [Pa], standard cubic
meters per second [m3/s], and degrees Celsius [◦C]. The
source of each instance was specified in the name of the file.
All instances were obtained at a fixed sampling rate of 1 Hz.
There are several difficulties with the actual data described
in the documentation: missing variables (31.17%), frozen
variables (9.67%) and unlabeled observations (0.01%). Some
events are less frequent than others, so for some adverse
events, most of the available data are simulated and hand-
drawn events. Although there are difficulties with the data,
the dataset is not degraded to a lower class due to the large
amount of high quality data and the well-written documen-
tation. Rather, this dataset stands out among all others as the
only one that has labeled transition periods that facilitate the
implementation of PdM by using domain knowledge specific
to each type of failure.

H. VALHALL OP
The data were collected from a single compressor on the Aker
BP’s oil platform (OP), located in the North Sea in the Valhall
field [10]. The dataset includes time series data, maintenance
history, process and instrumentation diagrams for Valhall’s
first (of four) stage natural gas compressor and associated
process equipment: a first stage suction cooler, a first stage
suction scrubber, and first stage discharge coolers. The gas
compressor is used to compress and treat the gas to meet
the required export pressure and specifications. Only the first
stage compressor was selected because it is a subsystem with
clearly defined boundaries.

The dataset is available as part of the Open Industrial Data
Project with the goal of analyzing changes in the provided
time series data due to maintenance history. The project
is the result of a collaboration between Aker BP, one of
Europe’s largest independent oil companies, and Cognite,
a Nordic software company. A live data stream is provided
on a subscription basis and is free of charge. Full access is

available to registered users via Cognite’s Asset Data Insight,
a web-based visualization tool for analyzing, monitoring and
planning data, and an API key. SDK installation is required to
retrieve data frommultiple data sources and make it available
as one complete dataset. The terms of use are specified in a
document available upon registration. Depending on the vari-
able and time interval selected, some values may be missing.
In reviewing the data, it was found that themajority of the data
prior to 2013 has significant gaps. Some examples of time
series that can be accessed with Asset Data Insight from Cog-
nite are valve position, valve temperature, compressor suction
pressure, compressor discharge flow, and motor vibrations.

I. NAVAL PROPULSION PLANT (1 & 2)
These two datasets include data necessary for apply-
ing predictive maintenance for naval propulsion systems,
specifically to gas turbines. The data were simulated
using a numerical simulator of a naval vessel (frigate) in
Simulink/MATLAB.

The first data edition is characterized by a gas turbine
(GT) propulsion plant [38]. The various blocks that make up
the complete simulator (propeller, hull, GT, gear box, and
controller) have been developed and fine-tuned on several
similar real propulsion plants in their previous works [70],
[71]. Measurements of 16 features that indirectly represent
the state of the system subjected to performance decay have
been acquired and stored in the dataset through the parameter
space. Some of these features are lever position, ship speed,
GT shaft torque, GT and gas generator rate of revolutions,
GT compressor inlet and outlet air temperature and pressure,
and fuel flow. In addition, the degradation coefficients of the
compressor and turbine are also calculated. Each possible
degradation state can then be described by a combination
of the compressor degradation coefficient, the turbine degra-
dation coefficient, and the ship’s speed (which is a linear
function of lever position). The range of compressor and
turbine degradation was sampled with a uniform grid of
0.001 precision to achieve good granularity of representation.
The ship speed was investigated by sampling the range of
possible speed from 3 knots to 27 knots with a granularity
of representation of 3 knots.

The second dataset edition is characterized by a COmbined
Diesel ELectric And Gas (CODLAG) propulsion plant [39].
The blocks describing the behavior of the main components
of the system are the GT, the GT compressor, the hull
and the propeller. Each entry contains a 25-feature vector
and additional five degradation coefficients: propeller thrust
and torque decay state coefficients, GT compressor and tur-
bine state coefficients, and hull decay state coefficient. Both
datasets are simulated and there are no missing values. The
stated licence for the second edition is CC BY-NC, meaning
that any commercial use is prohibited.

J. 3500-DEFAULT
The objective of this dataset is to diagnose diesel engine faults
and support predictive maintenance, which was achieved

VOLUME 11, 2023 73513



E. Jovicic et al.: Publicly Available Datasets for Predictive Maintenance in the Energy Sector

by analyzing the variation of cylinder pressure curves and
crankshaft torsional vibration response [40]. The engine cho-
sen as a case study is the MWM Acteon 6.12TCE diesel
engine with a four-stroke cycle. The database includes a total
of 3500 different fault scenarios for 4 different operating
conditions: normal (no fault, 250 scenarios), pressure reduc-
tion in the intake manifold (250 scenarios), compression ratio
reduction in the cylinders (1500 scenarios), and reduction in
the amount of fuel injected into the cylinders (1500 scenar-
ios). The dataset is simulated and does not contain missing
values. In all scenarios, the engine rotation frequency was
set at 2500 RPM because it had the lowest joint error rate
in the estimation of the mean and maximum pressures of the
combustion cycle between the experimental data (according
to the data provided by the manufacturer) and the simulated
data during the validation phase of the thermodynamic and
dynamic models. However, this high rotation frequency is not
characteristic of naval ships

The dataset has 97 variables. The first 84 columns cor-
respond to a feature vector. The last 13 columns refer to
the severity (up to 50%) of the engine operating variables.
The adopted feature vector was selected from the thermo-
dynamic model and obtained from the processing of signals
such as pressure and temperature inside the cylinder and the
torsional vibration of the engine flywheel. The vector was
created by estimating themean andmaximum pressure values
from the six pressure cylinder signals (12 variables) and
obtaining spectral information from the torsional vibration
curves (72 variables). The cylinder and vibration signals were
simulated at a sampling frequency of 15 kHz for 1.008 s,
giving a total of 15120 samples for each channel signal. The
spectral variables include the first 24 harmonics (the first
24 half orders of the engine) of torsional spectrum frequency,
amplitude, and phase.

K. EDP - INSIDE A BOILER
The EDP Boiler Dataset contains three years of data recorded
at two boilers (X and Y) used in a thermal power plant as
part of an EDP challenge to predict the onset of slag forma-
tion [41]. Therefore, previously detected slagging events with
different corresponding intensity levels are included. There is
a minimum number of missing values. Years are anonymized
(e.g., ‘‘xxx0’’ is the first year of data, ‘‘xxx1’’ is the second
year of data, etc.). This dataset is only available to registered
users of the EDP Open Data Platform.

The dataset includes 141 variables, the description of
which is included in the dataset documentation. Some of
the variables are boiler furnace pressure, drum temperature,
reheated steam temperature at inlet and outlet, main steam
pressure, and so on. The documentation states that the data
were recorded every minute. However, the records indicate
a sampling frequency of 5 minutes. The task of the EDP
challenge was to successfully predict the next slagging event.
A total of 2 slagging events are labeled. The EDP challenge is
scored based on the total predicted savings and costs caused
by true and false positive predictions. Savings from true

positive predictions can be as high as 350,000 =C, depending
on how early the slagging event was predicted.

L. SIMULATED BOILER FAULT DATA
The dataset consists of data simulated for the Viess-
mann Vitorond 200 Gas Fired Boiler VD2 Series
380 using Simulink/MATLAB based on the Simscape boiler
model [42]. The purpose of the dataset is to evaluate three
types of faulty states under varying conditions. The data
consist of five simulated variables:

1) fuel flow rate [kg/s],
2) ambient air condition [K],
3) heating hot water return temperature [K],
4) heating hot water supply temperature [K],
5) boiler loop flow rate [kg/s].

The variables are usually monitored by building automation
systems (BAS). The model was validated by replicating the
test conditions of ANSI/AHRI Standard 1500 - Performance
Rating of Commercial Space Heating Boilers, comparing the
outputs with published manufacturer data. The data were
split into one normal state and three faulty states: excess
air (15-50%), fouling of the heat exchanger (1-46%), and
scaling of the water-side heat exchanger element (1-46%).
All faults were simulated with a step size of 5%. Differ-
ent iterations were performed by changing the gas fuel rate
(1-4 kg/s), water mass flow rate (3-12.5 kg/s), and combus-
tion temperature (283-303 K). A total of 27,281 simulations
were performed using a factorial sampling method. Since
the dataset was simulated, there are no inconsistencies or
missing data. An IEEE DataPort subscription is required for
full access to the dataset.

M. TRANSMISSION LINE FAULTS
Transmission lines are the most important part of the power
grid. In this dataset, fault detection on transmission lines is
studied because quick detection and classification of faults
can help keep the power grid stable [43]. The complete dataset
is located on Kaggle, under the title Electrical Fault Detection
and Classification. The dataset comes from measurements
made on a power system simulated with Simulink/MATLAB.
The system consists of two 400 kV generators located at each
end of the transmission line. The length of the transmission
line is 300 km and the model was simulated for various types
of faults at different locations along the transmission line
length with different values of the fault resistance.

There are two datasets present, each having six input vari-
ables: three voltages of the respective three phases and three
currents of the respective three phases. Both are normal-
ized with respect to the pre-fault values of the voltages and
currents, respectively. The first dataset, detect_dataset.csv,
deals with the fault detection problem and contains 12,001
instances. All instances are binary labeled, with 0 repre-
senting the No-fault state and 1 representing the Fault is
present state. The second dataset, classData.csv, addresses
the problem of classifying the type of fault. Instead of one,
there are four output variables, each corresponding to the

73514 VOLUME 11, 2023



E. Jovicic et al.: Publicly Available Datasets for Predictive Maintenance in the Energy Sector

fault condition of each of the three phases, and one output
for the ground line. The output is either 0 or 1 and represents
the absence or presence of a fault on the corresponding line
A, B, C, or G (where A, B, and C represent the respective
three phases of the transmission system and G represents
ground). There are ten possible fault types, but only five of
them are present in the dataset, along with a no-fault state.
This dataset contains 7861 instances. Both datasets contain
5,496 fault events. Since the dataset was simulated, there are
no inconsistencies or missing data.

N. TRANSFORMER AND PAR TRANSIENTS
This dataset consists of 3-phase differential currents from
internal faults and six other transient cases in a 5-bus intercon-
nected system for phase angle controllers (PAR) and power
transformers [44]. PARs are a special class of transformers
used to control active power flow in parallel transmission
lines. In systems using parallel transmission lines, detecting
and classifying the type and location of faults is important to
enable a timely reaction and contain the failure locally. These
types of faults cannot be predicted in advance, so this dataset
can be used to implement supervisory system control. The
dataset was created using PSCAD/EMTDC software to sim-
ulate power transformers and indirect balanced phase angle
regulators (ISPAR) with the same voltages at the transmit
and receive ends and with two transformer units. By vary-
ing different system parameters, 100,908 transient cases are
simulated. The simulation was performed for three types of
internal faults and six types of transient disturbances. The
internal faults are:

1) power transformer internal faults (36720 files),
2) ISPAR series transformer internal faults (36720 files),
3) ISPAR exciting transformer internal faults (14688

files),
where each has 11 types of faults defined (e.g., phase A to
Ground, Phase AB to Ground, Phase AB,. . . ) together with
turn-turn fault and winding-winding fault case. The six types
of transient disturbances are:

1) capacitor switching: 180 files,
2) external faults with current transformer (CT) satura-

tion: 7920 files,
3) ferroresonance: 720 files,
4) magnetizing inrush: 1800 files,
5) non-linear load switching: 360 files,
6) sympathetic inrush: 1800 files.

Each text file has 726 rows and 4 columns: time, phase A
of the differential current, phase B of the differential current,
and phase C of the differential current. In each text file,
time starts at 0.05 s and ends at 0.1225 s. The internal faults
and transients occur 15.0 s after the start of each simulation
case for the internal faults and transients. In the text files,
there are 3-phase differential current samples from 15.0 s
(0.05 s) to 15.0725 s (0.1225 s), forming 726 rows. An IEEE
DataPort subscription is required for full access to the
dataset.

O. TRANSIENTS IN ISPARS
This dataset consists of simulated data for internal faults
and transient cases for ISPARs [45]. Similarly to the dataset
Transformer and PAR transients, these types of faults cannot
be predicted in advance, but classifying the type and location
of faults in a timely manner is important to minimize the
effect on the whole network. One possible implementation of
this dataset is supervisory system control. The data were sim-
ulated using PSCAD/EMTDC software. The internal faults
are simulated on the primary and secondary sides of the
exciting and series units. They include the faults that occur
inside the enclosure and at the locations of CTs. Basic internal
faults include short circuits and phase faults, turn-turn faults,
and winding-winding faults. Transients include magnetizing
inrush, sympathetic inrush, external faults with CT saturation
and overexcitation conditions.

The variable inputs to the simulations were the percent-
age of turns shorted, fault resistance, faulty unit, fault type,
fault inception time, phase shift: forward & backward, and
PAR tap positions. This resulted in a total of 60,552 fault
cases, of which 46,872 were internal faults and 13,680
were transient faults. The dataset consists of 12 files. Files
fault_location contain measurements of phase A, B, and C
for the internal fault cases. Each row represents one cycle and
consists of 167 samples. File fault_location_target contains
information on the location of the fault (series or exciting
unit). The files called transients contain measurements for
phases A, B, and C for the transient fault cases. The type
of transient fault is marked in the file fault_transient_target.
Since the dataset was simulated, no inconsistencies or
missing values are present. The dataset also includes files
fault_transient for which no documentation is provided.

The total run time of the simulation is 10.2 s, the switching
time is 10.0 s, and the duration of faults is 0.05 s (3 cycles).
An IEEE DataPort subscription is required for full access to
the data.

V. DATA-DRIVEN PIPELINE FOR PREDICTIVE
MAINTENANCE
As mentioned earlier, data-driven approaches are the most
common choice for achieving efficient PdM. A typical data-
driven PdM pipeline for the reviewed datasets is shown in
Fig. 3. Any data-driven method starts with the acquisition of
data from a repository. The next step is data preprocessing,
where the data are processed and transformed so that they
can be efficiently processed by a statistical, ML or DLmodel.
Common preprocessing activities include data transforma-
tion (normalization), data cleaning (removing noise, outliers,
missing or frozen variables), and data reduction [72].

The following step is feature extraction. In some cases,
the dataset consists of already extracted features (e.g., EDP-
WT [31]) such as minimum, maximum, mean, and standard
deviation of the signal. In other cases, the dataset contains
time series coming from different sensors (e.g., 3W [32]).
After feature extraction, a recommended step is feature selec-
tion, which is used to reduce the dimensionality of the dataset
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FIGURE 3. Common data-driven pipeline for PdM.

by selecting the most relevant features and eliminating the
redundant and irrelevant ones. The final step is the training
of one or more models (model development) and valida-
tion (evaluation of model performance). The best model is
selected based on its performance metrics related to the goal.
The goal is to predict/detect/classify faulty conditions or
predict the RUL of a system or a machine part.

After getting the information about fault diagnosis or RUL,
maintenance can be scheduled, and/or spare parts can be
ordered. Scheduling maintenance according to these predic-
tions reduces the number of unnecessary equipment checks,
extends the lifetime of aging assets, and resolves equipment
problems before faults occur, thus increasing the safety of the
work environment [2], [46].

VI. DISCUSSION
The main challenge in this study was the small number of
datasets with maintenance logs or recorded faults that are
publicly available. Without maintenance logs or recorded
faults, it is impossible to implement PdM because the exist-
ing approaches are mainly data-driven. Most of the datasets
originating from the energy industry focus on predicting the
generated power output, such as the Yalova WT dataset [73]
and the La Houte BourneWind Farm [74], or the profitability
of a plant, such as the Russian Oil Well dataset [75]. Some
datasets were made with the intent of gathering information
that can help address maintenance and energy management
problems, such as the Sunlab Faro dataset [76], where labs
were set up to test the performance and reliability of PV
modules under different weather conditions and installation
techniques, and the Container Vessel dataset [77], where data
could be used to incorporate decision strategies to reduce
human intervention to improve the shipboard energy man-
agement system in real time. However, none of these datasets
contained any type of anomaly, fault, or maintenance logs,
making them useless for the PdM problem.

The datasets included in this review can be divided into two
groups depending on the source of the data: simulated or real-
life. More than 50% of the datasets contained data simulated
usingMATLABor collected in an artificial environment (e.g.,
an experimental setup). These datasets could be useful in
obtaining a proof-of-concept, but depending on the setup, the
results could vary significantly from real-life data. In Table 4,
a comparison of real-life and simulated datasets is given in
terms of advantages and disadvantages for PdM.

The listed advantages and disadvantages of datasets,
together with other remarks on good practices, are further
discussed along several topics: quality of data, data labeling,
data collection, and evaluating PdM solutions. Afterwards,
the results of the new grading system are analyzed and guide-
lines for creating new PdM datasets are given. In the end,
we discuss the direction of future research.

TABLE 4. Comparison of real-life and simulated datasets.

A. QUALITY OF DATA
The main concern when analyzing datasets is data quality.
When working with real-life datasets, many problems can
occur during the process of measuring and recording data,
such as broken sensors or inconsistent labeling. Most real-life
datasets need to go through preprocessing (removing noise,
missing or frozen variables, and outliers), which is not the
case with simulated datasets.

Another point in data quality is the dataset size, such as
the number of events, number of variables, and number of
instances. When applying PdM, it is important to have a good
number of faulty events that are the focus of observation.
The problem is that real-life datasets mostly contain a small
number of fault events, due to the nature of machines that
rarely fail. For example, the EDP - Inside a Boiler dataset
[41] contains only 2 faulty events, whereas the EDP-WT [31]
contains 28 of them. This problem also leads to imbalanced
datasets, where the simulated datasets usually have an equal
number of instances with faults and normal states. To address
this problem, data would need to be collected from real
sources over longer periods of time, not just months, but
years. Such a long period of data collection presents several
challenges, such as storage, speed of data analysis, and the
cost of constantly updating and annotating the data.

Simulated datasets, aside from usually being balanced,
also have the possibility to vary different conditions that can
lead to a fault. In this way, the behaviour of the system can
be studied more thoroughly, allowing the construction of a
better PdM model. On the other hand, the main problem
with simulated datasets is that they can never describe a real
system completely accurately. When building a simulation
model, the focus is usually on simulating specific parts of
the system or processes, not the whole system. This is one of
the reasons why most of the simulated datasets have a small
number of variables, such as Transformer and PAR transients
(4 variables) [44], Transients in ISPARs (4 variables) [45],
and Wind Turbine PMSG (2 variables) [35].
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Considering all the listed advantages and disadvantages,
the 3W dataset [32] stands out in several ways. This dataset
contained more faults (1387 instances) than other similar
datasets, and it was also the only dataset that contained data
from three different sources: real (428 instances), simulated
(939 instances), and hand-drawn (20 instances). Neverthe-
less, some faulty events were more prevalent than others,
which can lead to the aforementioned class imbalance prob-
lems in machine learning PdM models [78].

Depending on the quality of the data, some of the listed
problems can render a dataset unusable in the worst case.

B. DATA LABELING
Almost all of the datasets included just two types of data
labels: normal and faulty. The 3W dataset is unique in being
the only dataset that includes not only data from a faulty state,
but also labels of the transition periods for each type of fault.
Knowing the transition period for different types of faults
is important because it allows for the prediction of faults
and the detection of anomalies before they occur. For many
types of faults in different systems, there is a lack of domain
knowledge that could indicate how early a faulty state can
be detected. Another important problem is the time period
over which a prediction of a faulty state is considered use-
ful. For example, if a correct prediction is made minutes
or hours rather than days or months before a fault event
occurs, does that make a difference in terms of reducing
maintenance costs? In the EDP-WT Dataset Challenge [31],
the authors set a fixed transition period of 60 days before a
fault event. If the fault event was correctly predicted between
2 and 60 days before the fault event, it was considered a
true positive, meaning savings were achieved. The problem
with a fixed transition period is that the dataset includes
many types of faults occurring on five different components
(gearbox, generator, bearings, transformer, hydraulic group),
which means that each fault is unique and should be treated
differently.

C. DATA COLLECTION
The data for all real-life datasets were gathered using a variety
of sensors integrated into the systems under consideration.
The most common sensors measured temperature, pressure,
current, voltage, and vibration. We note that although all of
the sensors can be integrated into a system in an IoT setting,
the datasets considered do not include information about
the protocols used. Among the non-simulated datasets, the
Valhall OP dataset [10] stands out as the only dataset whose
data are being directly live-streamed via Open Industrial Data
(OID) project. Free access to the data is the result of a
collaboration between Aker BP and Cognite, whose goal is
to accelerate innovation in data-intensive fields. On the other
hand, three out of four datasets in the wind subsector use
data gathered from SCADA systems. If we compare IoT and
SCADA systems, we could say that IoT is a natural extension
and evolution of SCADA, with one of the common concepts
being machine-to-machine (M2M) communication [79].

D. EVALUATION OF PdM SOLUTIONS
To evaluate ML models used for PdM in the obtained dataset
cases, authors typically use common metrics such as accu-
racy, precision, and recall [52], [55], [58], [80]. The EDP-WT
dataset [31] and EDP - Inside a Boiler dataset [41] stand out
as the only datasets that include costs for replacement, repair,
and inspection for each component. The authors also included
a formula for calculating total prediction savings to evaluate
solutions for PdM. In this way, the benefits of using PdM
models are clearly visible [48], [81].

E. GRADING RESULTS AND GUIDELINES FOR NEW PdM
DATASETS
Finally, after analyzing all criteria, only three datasets in
Table 2 were graded as class I (EDP-WT, OREC, and 3W).
In contrast, two datasets were graded as class III because of
various problems, such as missing documentation or license
information, or a relatively small number of instances or
faulty events. These problems make it difficult to implement
PdM. Among the datasets that were graded as class II, many
are of good quality and can be used for PdM, but the datasets
are simulated.

When creating a new dataset for the PdM use case, the
focus should be on getting real-life data, because simulated
datasets can never accurately describe the real system. The
most important point is recording a larger number of fault
events, which can be done by gathering data for a longer
period of time on one system or gathering data from multiple
instances of the same system. The data should be prepro-
cessed (frozen or missing variables removed) and the data
labeling should be done consistently. Documentation describ-
ing variables, types of faults, and system components must be
provided. If possible, it is recommended to include the cost
of specific faults or maintenance, to better evaluate different
PdM solutions. Expert knowledge of specific faults is encour-
aged and can be included in data labeling, such as adding
labels for transition states, not labeling only faulty or normal
states.

F. FUTURE RESEARCH
Some of the datasets obtained through search, but not elab-
orated in this review, were datasets that did not include
time series, instead, they consisted of images. Those datasets
are: PV cell anomaly detection dataset [82] that contains
infrared images of PV cells with different types of anomalies,
Vibration time-frequency images of wind turbine planetary
gearboxes [83] that contains a total of 160 vibration time-
frequency maps, and Frequency occurrence plots for motor
fault diagnosis based on image recognition [84] that has
150 three-second sampling motor current signals.

In addition to the inspected PdM datasets that are specific
to the energy sector, there are also PdM datasets that are
for general use, meaning the focus of the dataset is on a
specific part of a machine that is widely used in different
types of industries, such as Intelligent bearing fault diagnosis
dataset [85], Gearbox Fault Diagnosis [86], Composed fault
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dataset (COMFAULDA) [87], and Microsoft Azure Predic-
tive Maintenance dataset [88]. While the focus of this work
was on energy sector datasets, for further research, some of
these datasets could also be considered.

VII. CONCLUSION
Predictive maintenance is an important part of Industry
4.0 and has the potential to improve maintenance processes
and reduce costs and environmental impact in the energy
sector. One of the keys to applying PdM to the energy industry
is the availability of high-quality datasets that would allow
researchers to build models with broader applicability. In this
paper, existing datasets and their properties were examined,
their advantages and limitations were highlighted, and an
objective grading was proposed. A total of 15 datasets were
included and described for five subsectors of the energy
sector: wind, solar, oil & gas, diesel & thermal, and electrical
power.

Less than half of the datasets received had data that came
from real sources. The datasets included data collected by a
variety of sensors, with temperature, pressure, current, and
voltage being the most common. The Valhall OP dataset [10]
went a step further than other datasets in that it provided
a live stream of data that was freely available. Whereas
non-simulated datasets are the most valuable, they often
contain a small number of faults because machines rarely
experience them. Unlike other datasets that use two labels for
data: normal and faulty, the 3W dataset [32] stands out as the
only one that introduces a new label, the transition period.
Knowing the transition period of a fault can help understand
how early a fault can be detected.

A grading system was devised to evaluate the quality of
each dataset. According to the criteria, two datasets were
graded as class III, ten datasets were graded as class II, and
only three datasets (EDP-WT, OREC, and 3W) were graded
as class I, standing out as highly valuable for PdM research
in the energy sector.

From our review of the field, it can be concluded that
many more high quality datasets need to be made avail-
able to achieve a wider dissemination of effective predictive
maintenance models. Future work will include exploration of
other datasets mentioned earlier in the discussion that either
contain PdM data that are not specific to the energy sector
or contain other data formats, such as images instead of time
series.
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