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ABSTRACT The current trend of newer cellular network technology, such as 5G, is using a higher frequency
spectrum that causes a smaller cell size. This will further cause amore frequent handover in the high-mobility
users like the ones that happen in the high-speed train. In a cellular network, the handover process is very
crucial as it may disrupt data transmission. Without a reliable handover process, the high-mobility users may
experience problems like a high bit error rate (BER) or even call-drop. The traditional handover algorithm is
proven reliable in ideal conditions but may not work correctly in a non-ideal condition such as the presence
of a coverage hole. Machine learning can be implemented to improve the handover performance in those
conditions. Open Radio Access Network (O-RAN) presents a solution to implement machine learning in the
cellular network using a Radio Intelligent Controller (RIC), where we can improve a lot of functionalities
in the Radio Access Network (RAN) modularly without modifying the existing RAN network element. The
RIC original software is using vector autoregression to determine the target cell by predicting the throughput
of each neighboring cell. In this paper, we performed two modifications to the original software: improve
the vector autoregression method to consider the User Equipment (UE) movement and replace the vector
autoregression method with a neural network. We also prove that these modifications present easier and
better target cell determination for the environment with a coverage hole that will be useful for frequent
handover in high-mobility users.

INDEX TERMS Cellular, handover, machine learning, neural network, O-RAN.

I. INTRODUCTION
One of the characteristics of the new fifth-generation
(5G/New Radio - NR) cellular technology is the usage
of high-frequency spectrum. While the fourth-generation
(4G/Long Term Evolution - LTE) technology is standardized
to use up to 3 GHz spectrum, 5G is standardized to use
up to 52 GHz [1]. The impact of this high-frequency
usage is the smaller cell coverage as high-frequency signals
will be attenuated easier. Therefore, in the heterogenous
network architecture, the higher frequency spectrum is
usually deployed for pico/femtocells and used for home and
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stationary usage (Fig. 1). For high-mobility usage, macro
cells are usually used with a lower frequency spectrum.

The main issue with the macro cell is the availability
of the spectrum. In most countries, the lower frequency
spectrum is already unavailable, and this forces the network
operator to use a higher frequency spectrum. This spectrum
scarcity is also the reason behind the standardization of
higher frequency in later technology like 5G. Some different
use cases also drive the operators to use the high-frequency
smaller cells, like in ultra-dense high-capacity sites the higher
frequency spectrum may give higher capacity. Using small
cells, the operator requires to deploy more cells to cover
an area. For high mobility users, such as users in a high-
speed train, this condition means more handover activities
(Fig. 2).
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FIGURE 1. Typical characteristic of Heterogenous Networks.

FIGURE 2. Impact of higher frequency and smaller cell.

A. HANDOVER ISSUES
Handover is the procedure that changes the serving cell
of a User Equipment (UE) in its connected mode [2] and
usually happens when the UE moves its position. This
procedure is very crucial in cellular telecommunication
as it may interrupt the data transmission [3]. Every han-
dover instance is a potential disruption in continuous data
transmission since it may not always be successful. In a
successful handover case, the UE always stays in a connected
state and the data transmission continuity is guaranteed.
However, if the handover is failed the UE is forced to
go to idle state and this will interrupt data transmission
as the UE must repeat the radio connection establishment
procedure.

In the high-speed train, the operator provides an onboard
mobile relay station to directly serve the devices inside the
trains (Fig. 3). However, to connect to the core network it has
to connect to the outdoor cellular network. Due to its extreme
speed, which may reach 300 km/h, the network still has to
perform frequent handovers, at least in the outdoor channel.
Even though the cells are deployed with macro configuration,
handover processes are still relatively frequent compared to
the stationary users.

FIGURE 3. The typical network inside a high-speed train.

The UE in a high-speed train may experience degradation
in radio conditions due to the doppler effect and this will
impact the bit error rate (BER) experienced by the UE. The
radio condition may be worsened by the handover process
that becomes more frequent because of the mobility speed
and typically-smaller cell size. Therefore in this high-speed
train case, a reliable handover process is required to ensure
transmission continuity in a degrading radio condition.

Besides the traditional handover algorithm that will be
further described in Section III, a lot of algorithms are
proposed including the ones based on machine learning [4].
Neural networks are one of the most widely used methods for
handover improvement [5], [6], [7], [8], [9], [10]. The main
issue with those proposed methods is their implementation
to cellular networks since machine learning is not originally
part of the cellular networks [11]. Most of those studies
require major modifications in the existing cellular networks
for their implementation. This will raise many problems in
the implementation stage.

B. MACHINE LEARNING FOR HANDOVER: STATE OF THE
ART
The traditional handover algorithm is sometimes not reliable
in a non-ideal network condition like the presence of a
coverage hole. This is because the radio condition, and
thus the target cell, cannot be predicted solely by the UE
measurements. The process of traditional handover algorithm
will be described further in Section III.
Some alternative methods are required to determine the

target cell in a non-ideal network condition, and one of
the approaches is the predictive handover using machine
learning. Several studies [4] have implemented machine
learning to improve handover performance using the pre-
dictive handover method (i.e. predict the target cell using
machine learning).

There are several approaches to machine learning: super-
vised learning, unsupervised learning, and reinforcement
learning [12]. Supervised learning is the machine learning
task of learning a function that maps an input to an output
based on example input-output pairs [13]. Unsupervised
learning looks for previously undetected patterns in a data set
with no pre-existing labels and with a minimum of human
supervision [14]. Reinforcement learning is concerned with
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how software agents ought to take action in an envi-
ronment in order to maximize the notion of cumulative
reward [15].

Supervised learning is widely used for handover improve-
ment. The neural networks (NN) method is one of the most
popular techniques used in several studies [5], [6], [7], [8],
[9], [10]. Some studies use support vector machine [16]
and K-nearest neighbor [17], [18]. Unsupervised learning
techniques are also used by some studies, for example,
K-means [19], [20] and long short-term memory [21].
Reinforced learning is used by some researchers that usually
employ Q-learning algorithms [22], [23].

The neural networks method seems popular in mobility
management improvement studies. The basic idea behind
these studies is to use the concept of neural networks to learn
amobility-basedmodel for every user in the network and then
make predictions of which cell the user is most likely to be
next [4].

C. RESEARCH MOTIVATION AND CONTRIBUTION
The limitation of those existing studies is they perform
simulations on improving base station algorithms by adding
machine learning techniques. Therefore, to implement
machine learning in RAN, the base station software must be
heavily modified.

With the emergence of Open Radio Access Network
(O-RAN), especially the introduction of Radio Intelligent
Controller (RIC), there is a possibility to implement machine
learning to RAN without modifying the existing network
elements. The machine learning algorithm can also be
implemented modularly without disturbing the existing base
station software.

O-RAN consortium [24] introduces the Near Real Time
Radio Intelligent Controller (Near-RT RIC), a new addi-
tional network element in the radio access network (RAN)
that can host any application to control base stations.
Using this Near-RT RIC, a machine learning algorithm for
improving the handover process can be implemented mod-
ularly without major modifications to the existing cellular
networks.

Our research implements machine learning in Near-RT
RIC because of its modularity aspect. The machine learning
algorithm can be implemented modularly outside the base
station without modifying the current software of the base
station.

The motivation of this research is to solve the han-
dover reliability issue in a non-ideal network by using
Near-RT RIC where the machine learning algorithm to
control the handover process can be implemented modu-
larly without major modification of the existing network
elements.

The contribution of this research is designing and imple-
menting a machine-learning-based handover algorithm in
Near-RT RIC to control the handover process modularly.
In this paper, we performed modifications in Near-RT RIC
original software. We have done two modifications: adapt

FIGURE 4. Solution Taxonomy for Handover Improvement.

the vector autoregression (VAR, the original algorithm used
in Near-RT RIC) to consider the UE movement (described
in Section V) and replaced the vector autoregression with
neural network (described in Section VI). We have done
simulations to test the performance of those methods and
we also studied the effect of training data amount on the
handover performance (described in Section VII). Finally,
we compared the performance of our two proposed methods
with the traditional handover algorithm and showed that the
machine-learning-based handover in Near-RT RIC performs
better in a non-ideal condition, in this case, a network with a
coverage hole (described in Section VIII).

D. RESEARCH SCOPE AND LIMITATION
This research focuses on the usage of a machine learning
algorithm in Near-RT RIC to control the handover process.
In this study, we compare the performance of the handover
control in Near-RTRICwith the baseline traditional handover
algorithm.

As described in Fig. 4, there are various solutions
to improve the handover performance. In our research,
we focus only on the machine-learning-based solution that
is implemented externally for modularity reasons. The usage
of another innovation on top of the traditional handover
algorithm such as soft handover, conditional handover, make-
before-break, is not considered and not compared with our
proposedmachine-learning-based algorithm inNear-RTRIC.
The state-of-the art machine learning algorithms for handover
improvement are also not considered.

II. SYSTEM AND NETWORK MODEL
As defined by 3GPP [25], the cellular network is divided into
the Radio Access Network (RAN) and Core Network (Fig. 5).
In this research, we are working mainly in the RAN. The
RAN consists of base stations that provide cells to serve the
User Equipments (UE). As the UE moves, it may be served
by another cell from another base station and this involves
the handover process. The handover process will be further
described in Section III.
Additionally, as defined byO-RAN, Radio Intelligent Con-

troller (RIC) can be connected to the base stations. RIC will
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FIGURE 5. 5G NR System and Network Model [25].

FIGURE 6. Traditional Handover Algorithm [2].

provide additional functions including the machine-learning-
based handover algorithm. More detailed explanation about
O-RAN RIC can be found in Section IV.

The functions run by base stations, cells, and UE are
simulated using the NS3 network simulator [26]. The RIC
is implemented as an application on an Ubuntu-based virtual
machine. The simulation design and process will be explained
in detail in Section VII.

III. TRADITIONAL HANDOVER ALGORITHM
In a traditional handover algorithm [27], the UE sends
measurement reports about the serving cell and neighbor
cells to the serving base station. This measurement report
typically contains information about the cell’s signal strength
(Reference Signal Received Power - RSRP) and/or signal
quality (Reference Signal Received Quality - RSRQ). The
measurement reports will be analyzed by the serving base sta-
tion to determine the target cell for the handover destination,
typically the best-measured neighbor cell (Fig. 6).

The handover process introduces some interruptions in the
data transmission since it disconnects theUE from the serving

cell (thus temporarily stopping the data transmission) and
connects again to the target cell. These interruptions must
be minimized and the performance of the handover process
can be improved by minimizing the Mobility Interruption
Time (MIT). 3GPP defines MIT as the shortest time duration
supported by the system during which a user terminal cannot
exchange user plane packets with any base station during
transitions [28]. MIT can be calculated as [3]:

TMIT = {(1 − PHOF) × THIT} + {PHOF × THOF} (1)

TMIT = Total MIT
PHOF = Probability of either a handover failure (HOF) or a

radio link failure (RLF) during handover
THIT = Handover Interruption Time, MIT in a successful

handover
THOF = Handover Failure Time, MIT in a HOF or RLF
In LTE Network, THIT is reported around 50 ms while

THOF ranges from several hundred milliseconds to a few
seconds [29]. Since THOF contributes a more significant
portion in total MIT (TMIT), reducing the TMIT can be
better done by reducing PHOF, i.e. avoiding unnecessary
handovers or handover to a wrong cell. Therefore, target cell
determination is very important in the handover process to
minimize MIT and ensure network connectivity.

In this paper, we performed simulations to test the
reliability of the traditional handover algorithm. Based on
our study, the traditional handover algorithm is reliable in
ideal conditions, where the real condition of the neighbor
cells can solely be determined by RSRP/RSRQmeasurement,
thus the target cell is always the best cell to continue the
network connection. In a non-ideal condition, such as the
presence of a cell coverage hole due to an obstacle, the
RSRP/RSRQ measurements may not reflect the real network
condition. A UE may be handed over to a target cell with
the best RSRP/RSRQ, but it enters the target cell’s coverage
hole after the handover, and the connection fails. In this
case, the traditional handover algorithm is not reliable to
determine the target cell correctly and ensuring network
connectivity.

Several methods have been explored to reduce MIT
by reducing PHOF , for example by implementing fast
measurements [30], dual connectivity [31], conditional
handover [5], [32], [33], and predictive handover [5], [19],
[21], [22], [34], [35].

Fast measurement enables the UE to react faster to the
channel changes and can improve mobility robustness, as the
source base station sends a handover command before an
abrupt deterioration of the radio link to the UE. However,
it increases the battery consumption of the UE.

Dual connectivity allows UE to have two separate con-
nections to different radio resources simultaneously, such as
4G and 5G. The packet duplication in Dual Connectivity
may improve mobility robustness but increases the network
complexity.

Conditional handover prepares in advance multiple candi-
date target cells in the network. This enables the handover
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FIGURE 7. O-RAN Architecture [24].

command to be sent to the UE earlier than at the traditional
handover when the radio conditions are still good. In tra-
ditional handover, the handover command is sent when the
radio conditions start to get degraded [33].

Predictive handover usually refers to an additional mech-
anism on top of conditional handover. In pure conditional
handover, the candidate target cells are selected based on
radio conditions, similar to traditional handover. In Predictive
Handover, the candidate target cells may be predicted based
on the user behavior and may employ machine learning
techniques.

Machine learning is an application of artificial intelligence
(AI) that provides systems the ability to automatically
learn and improve from experience without being explicitly
programmed [36]. It studies the computer algorithms that
improve automatically through experience [37].

IV. O-RAN NEAR-RT RIC
O-RAN is a relatively novel standard and currently intro-
duces several applications for open and intelligent RAN.
It standardizes new network elements called Radio Intelligent
Controller (RIC) to add intelligence to the cellular radio
network. There are two variants of RIC: Near-Real Time
(Near-RT) and Non-Real Time (NRT) RIC (Fig.7).

As the name implies, Near-RT RIC is used to host
applications that require immediate or real-time response,
including mobility management applications like handover
control. Due to this response requirement, Near-RT RICmust
be implemented in an Edge Cloud, a virtual environment that
is placed physically near the radio network.

FIGURE 8. Anomaly detection use case of Near-RT RIC [45].

NRT-RIC is used to host applications that do not require
immediate response such as network monitoring and opti-
mization. This network element can be implemented in
Central Cloud and typically colocated with the existing
network management system.

O-RAN Alliance already describes some use cases [38]
to be implemented in O-RAN to provide RAN openness
and intelligence, for example, Context-Based Dynamic HO
Management for V2X, Flight Path-Based Dynamic UAV
Radio Resources Allocation, QoE Optimization, and Traffic
Steering. However, the exact implementation of the use case
is given to specific vendors. For example, Nokia prioritizes
Traffic Steering and Network Anomaly Detection use case
for its RIC solution [39].

Several studies already use O-RAN RIC architecture for
many applications such as connection management [40],
mobility management [41], and scheduling policy opti-
mization [42]. Various machine learning algorithms are
implemented in RIC including reinforcement learning [43].

Near-RT RIC can be implemented in any virtualized envi-
ronment. In our research, we installed it on an Ubuntu-based
virtual machine by installing the open-source software
provided by the O-RAN Software Consortium (SC) [44].

The Near-RT RIC use case example from O-RAN SC that
is mostly corresponding to our research need is the Anomaly
Detection use case [45]. However, we have to perform some
modifications to fit our simulation scenario.

The Anomaly Detection Use Case consists of three
applications (called xApp): Anomaly Detection, Traffic
Steering, and Quality of Experience (QoE) Predictor. They
work together by exchanging messages in RMR protocol,
the Near-RT RIC internal communication. Currently, in this
research, the Near-RT RIC works stand alone without any
connection to the RAN, and all simulation data is stored in
the database.
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The use case begins with Anomaly Detection xApp
detects an anomalous UE, for instance, the UE experiencing
degradation of RSRP. In this research, this information is
obtained from the database but in the real implementation,
this information is notified by RAN (i.e. base station). The
Anomaly Detection xApp then informs the anomaly to the
Traffic Steering xApp.

Traffic Steering xApp then consults to QoE Predictor
xApp by sending the identity of the UE experiencing an
anomaly. QoE Predictor xApp predicts the score of QoE of
the UE if the UE is placed in the neighboring cells. In the
original software, this score is the throughput of the data
transmission and is predicted using the vector autoregression
(VAR) method. Therefore, QoE Predictor predicts the
throughput experienced by the UE if it is placed in a certain
cell.

This prediction is sent back to Traffic Steering xApp.
Based on this prediction, it will perform some necessary
actions. The action can be a handover command to the cell
where the throughput prediction is the highest one.

In this research, we modified the original Near-RT RIC
xApps in the Anomaly Detection Use Case to adapt to
our simulation scenario. We mainly performed modifications
in QoE Predictor xApp as it is the one that performs
predictions that will determine the target cell. We performed
two modifications to the original QoE Predictor xApp. The
first modification is to adapt the original software to our
simulation scenario. The prediction is still done by the
vector autoregression method. The second modification is
completely replacing the vector autoregression with a neural
network. The neural network design is based on our previous
studies [46], [47] that yield optimum results.

V. PROPOSED METHOD: MODIFIED VECTOR
AUTOREGRESSION
In the original QoE Predictor xApp software provided by
O-RAN SC, the prediction is done using the VAR method.
However, the original software is not immediately usable for
our research case. Our research aims to predict the target cell
in a non-ideal network containing a coverage hole. This target
cell is determined by the movement of the UE that is reflected
in the RSRP/RSRQ measurements.

Vector Autoregression (VAR) is a statistical time series
model used to analyze the relationship between multiple
variables. In a VAR model, each variable in the system is
modeled as a function of its past values and the past values
of all the other variables in the system. A VAR model of
order p, denoted as VAR(p), is a set of linear equations that
relate each variable in the system to its own past values
and the past values of all the other variables in the system
up to p lags. The equations can be written in matrix form
as:

Yt = A1Yt−1 + A2Yt−2 + . . . + ApYt−p + ut (2)

where Yt is a k-dimensional vector of the current values of the
k variables in the system, A1, A2, . . . , Ap are k × k matrices

of coefficients that capture the dynamic relationships between
the variables at lags 1 to p, and ut is a k-dimensional vector of
error terms that represent the unexplained part of the system
at time t .

The unmodified original QoE Predictor xApp determines
the target cell by predicting the throughput of each cell using
time-series throughput data in the training data. However, this
software only considers the position of the UE, i.e. what the
neighbor cells are. It does not consider the movement and the
trajectory angle of the UE. If we use the unmodified original
software and training data, the prediction will always give the
same target cell for all simulation cases.

Our proposed modified method using VAR can be
expressed in the following pseudocode (Algorithm 1) and can
be illustrated in (Fig. 9). The italic expression in Algorithm 1
indicates our modification.

Algorithm 1 Predict the Throughput of All Cells
Require: list of all cells serving and neighboring UE
and the RSRP measurements of those cells
for all cells in list do
Query throughput of cell over time from Training Data
(where RSRP measurement is similar with the one
reported by UE)
Remove outliers of the query result
Predict the next throughput of the cell using Vector
Autoregression

end for
Report the throughput prediction of all cells in list to
Traffic Steering xApp

The QoE Predictor xApp works based on the request
from the Traffic Steering xApp that sends the UE identity
experiencing anomaly such as RSRP/RSRQ degradation. The
QoE Predictor xApp software checks the neighbor cells of
the UE in the current position and queries the training data to
get the throughput trend of that cell. The training data used
in the original software contains time series throughput data
of all available cells in the network. The throughput trend of
all cells is increasing but at a different rate (Fig. 10). This
training data is suitable if the target cell is only determined by
the UE’s current position only. Using VAR, the QoE Predictor
xApp can predict the throughput of those neighbor cells in the
future and send this prediction to the Traffic Steering xApp.
Traffic Steering xApp will then execute handover to the cell
that has the highest predicted throughput.

To adapt the original software to our simulation scenario,
we reconstructed the software and training data to put the UE
movement into account. The UE movement and its trajectory
angle can be reflected by the RSRP measurement variations.
From the training data generation process described in
Section VII, we construct the new training data that considers
the UE movement to predict the next throughput by
evaluating RSRP values. In this training data, the trend of
throughput of each cell is not always the same but depends
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FIGURE 9. Workflow of the VAR-based QoE Predictor xApp.

on the RSRP difference of each cell. In our case, we only use
two neighbor cells (Cell 2 and Cell 3) and we can use the
RSRP difference between those two neighbor cells to reflect
the UE movement (Fig. 11).

FIGURE 10. Training data in the unmodified QoE predictor xApp.

FIGURE 11. Training data in the modified QoE predictor xApp.

Using this modified training data, the target cell is
determined by the UE movement, not only the UE position
like the original QoE Predictor xApp.

VI. PROPOSED METHOD: NEURAL NETWORK
For our second proposed method, we completely replaced
the VAR in the QoE Predictor xApp with a neural network.
In this preliminary stage, we use a very simple neural
network regression model to predict whether the download is
successful or failed using RSRP and RSRQ samples as input.
In the currentmodel, even though the input is time-series data,
our neural network does not treat it as time-series data but
collects a few samples and puts them as the model input at
once.

We designed a neural network containing 18 input nodes,
4 hidden nodes, and 1 output node (Fig.12). The inputs are
the last 3 samples of RSRP and RSRQmeasurements from all
the 3 cells. The output is whether the download is successful
or not, represented by the number 0 (failed download) or 1
(successful download). When the neural network is used, the
output node is actually a floating point continuous number
between 0 and 1 that can be used as the prediction score. The
cell with the highest score will be the target cell. As a result,
we do not need throughput data to determine the target cell in
this modification.
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FIGURE 12. Neural network design.

The neural network design can be represented mathemat-
ically as follows. The input is represented as x, a vector
of 18 variables (m = 18) representing RSRP and RSRQ
measurements. The hidden nodes are represented as z, in this
case, a vector of 4 variables (d = 4). The output is y
which value is between 0 (representing failed download)
and 1 (representing successful download). The matrix w(1) is
representing the weight of the connection between input and
hidden nodes, and matrix w(2) is for the connection between
hidden nodes and output.

The value of hidden nodes is defined as:

zi = w(1)
0,i +

m∑
j=1

xjw
(1)
j,i ,m = 18 (3)

While the value of the output is defined as:

y = g

w(2)
0,i +

d∑
j=1

g(zj)w
(2)
j,i

 , d = 4 (4)

Here g is the activation function to introduce non-linearity
in the neural network. In our case, we use the sigmoid
function:

g(z) =
1

1 + e−z
(5)

During the training process, the z, w(1), and w(2) values are
generated from the known x and y in the training data. The
obtained values then are saved in the neural network model
to be used to predict the output y from the input x.

The neural network implementation is using Tensor Flow
Keras API. In the current implementation, the training
process is done with 150 times iterations through the whole
training data (epoch = 150), and the model is updated every
10 training data (batch size = 10).

VII. SIMULATION DESIGN AND DATA COLLECTION
In this research, we created an environment containing three
cells, one moving UE, and a building creating a coverage
hole (Fig.13). This environment is built using NS3 LTE

TABLE 1. NS3 simulation parameters.

FIGURE 13. Environment for simulation.

network simulator [26] based on previous studies [18], [48].
The simulation parameters are reusing the previous work as
described in Table 1.

On each simulation, the UE moves to the right side of
the network with a random trajectory angle. Due to this
movement, the UE needs to perform a handover from Cell
1 to either Cell 2 or Cell 3, depending on the trajectory angle.
The UE also downloads files during the movement and in
the end, the download may be successful or may not. For
every simulation, we noted down the target cell, the download
success status, and the RSRP/RSRQ measured by UE.

To create the training data, we ran 200 simulations. The
first 100 simulations are deterministic handover cases where
the UE is forced to perform handover to Cell 2 regardless
of the trajectory angle. The next 100 simulations are also
deterministic handover cases but this time to Cell 3. The flow
chart of this training data generation is described in Fig. 14.
In this flow chart, the amount of target cells is 2 (Cell 2 and
Cell 3), thus n=2. We ran 100 simulation runs for each cell,
thusm=100. The RSRP, RSRQ, and download success status
of each simulation run are then saved as Training Data.

To compare the performance of the handover algorithms,
we ran another 1000 simulations of non-deterministic
handover. The flow chart can be seen in Fig. 15, and
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FIGURE 14. Flow chart: Training data generation.

in this case m=1000. In these simulations, the UE may
perform a handover to either Cell 2 or Cell 3, using a
traditional handover algorithm, based on the RSRP/RSRQ
measurements. The result of these traditional handover
simulations (download success status and RSRP/RSRQ
measurement) is used as a baseline to be compared with
machine-learning-based algorithms run in Near-RT RIC. The
RSRP/RSRQ measurement for these simulations is also used
as input for RIC-based handover algorithm.

The flow chart in Fig. 16 describes the RIC-based handover
simulation. First, we train the model using the result of the
previous process (training data generation, Fig. 14). For each
simulation run, we performed prediction using the machine-
learning-based algorithm inNear-RTRIC by providing RSRP
and RSRQ measurement of the same simulations that we
ran in the traditional handover algorithm process (Fig. 15).
The algorithm in Near-RT RIC would then get the score of
each existing neighbor cell in the network. The cell with the
highest score is then chosen as the target cell. This process is

FIGURE 15. Flow chart: Traditional handover simulation.

the same for both our proposed method (modified VAR and
NN).

From Near-RT RIC we only obtained the target cell, but
not yet the download success status. Therefore, we need to
perform verification using NS3 to check if the download is
successful or not, given the target cell from Near-RT RIC
(Fig. 17). Next, we performed deterministic handover again
using NS3 but using the target cell obtained by Near-RT RIC.
From here we get the download success status if the handover
is controlled by Near-RT RIC.

We choose download success rate as the main performance
metric. As stated in Equation 1 in Section III, the handover
process is best improved by reducing the probability of
handover failure, thus avoiding unnecessary handover and
handover to a wrong cell. Based on this statement, we focus
on the target cell determination process. We decide the
performance metric as download success rate if we use a
certainmethod to select the target cell: Traditional Algorithm,
Near-RT RIC using Modified VAR, and Near-RT RIC using
neural network.

VIII. SIMULATION RESULT AND DISCUSSION
As described in Section VII, we performed three sets
of simulations: the traditional handover, Near-RT RIC
handover using VAR (first modification), and Near-RT RIC
using neural network (second modification). The traditional
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FIGURE 16. Flow Chart: RIC handover simulation.

handover was done 1000 times using the NS3 simulator
and we noted down the RSRP/RSRQ measurement and
the handover results (target cell and download success
status). The RSRP/RSRQ measurement of those simulations
was used as input in Near-RT RIC handover simulations.
After that, we compared the download success rate of all
simulations among the three methods (Fig.18).

The successful download rate for the traditional handover
algorithm is 86.2%, not 100% due to the presence of the
coverage hole. All of the simulations with failed downloads
happen when the UE was handed over to Cell 2 (based
on the best RSRP/RSRQ measurement) but it entered the

FIGURE 17. Flow chart: RIC target cell testing.

coverage hole behind the building after the handover. If it was
handed over to Cell 3 instead of Cell 2, the download may be
successful because Cell 3 was not obstructed by the building.
This result shows that sometimes the traditional handover
algorithm is not reliable in a non-ideal condition.

When we determined the target cell using Near-RT RIC,
the successful download rate is mostly increasing, depending
on the method and the amount of training data. If the QoE
Predictor xApp uses vector autoregression (VAR), modified
in our first modification, the success rate can reach 95.3%
using all 100 available training data, 94.1% with 50 training
data, and 92.7% with only 25 training data. If we use NN in
our second modification, the success rate is slightly lower but
still higher than the traditional algorithm in most cases. Using
NN, the download success rate can reach 91.9 % using all
100 available training data and 88.4% using only 50 training
data. However, the performance plummeted to only 58.8% if
we only use 25 training data (even lower than the traditional
handover algorithm).

As mentioned earlier, we intend to implement this
machine-learning-based solution for ultra-dense small-cell
environments to support high-speed users. Therefore we also
test this method for two UE speed variation. If the original
simulation is simulating the UE speed of 16.6667 m/s, i.e.
60 km/hour a typical car speed, we add the simulation with
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FIGURE 18. Simulation result comparison.

150 km/hour (user speed in a typical train) and 300 km/hour
(a user in a high-speed train). We performed simulations
using our proposed neural network method and the result can
be seen in Fig. 19. As can be seen in the graph, the neural
network method can improve significantly to the download
success rate, even with a small amount of training data.

It is shown that machine-learning algorithms can provide
better handover performance by determining the correct
target cell in a non-ideal network condition. However,
this performance is determined by the amount of training
data, the more training data, the better the performance.
From the simulation result, the first proposed method using
modified VAR performs better than the neural network
method.

Besides the successful download rate, we also compare
the processing time of the two proposed methods in QoE
Predictor xApp. This is the time required by the QoE
Predictor xApp to predict the performance or score of each
neighbor cell and thus determines the target cell. The time is
calculated from the moment the QoE Predictor xApp receives
the request fromTraffic Steering xApp until it gives the result.
This processing time varies among simulation cases and we
took the average time from several cases.

From Fig. 20 can be seen that the processing time of QoE
Predictor xApp, when we use the VAR and neural network
method, varies slightly. The neural network still performs
slightly slower than the VAR but it is still comparable. The
time required to predict the QoE using the proposed neural

FIGURE 19. Simulation result comparison for high speed cases.

FIGURE 20. QoE predictor processing time comparison.

network is still reasonable and similar to the VAR. Some
optimizations are still required to improve the speed of our
neural network.

Our neural network method may perform less than the
VAR method but it has some advantages in the simplicity
issues. The VAR method determines the target cell based on
the throughput data on each cell. This will require intensive
measurements during training data generation. Our neural
network method will determine the target cell based only on
the RSRP/RSRQ measurement, the metrics that are already
available by default in the RAN system. The advantage of
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TABLE 2. Comparison of the original Near-RT RIC method (VAR) and the
proposed method (NN).

FIGURE 21. Simulation design with 2 coverage holes.

RSRP/RSRQ measurement is it can be measured by the
UE without connecting to the cell, unlike the throughput
measurement that requires the UE to connect to the concerned
cell.

The neural network method does not require throughput
measurement to generate the training data. From this
RSRP/RSRQ measurement, the neural network will deter-
mine the score of each cell which also means the probability
of a successful download. Another advantage of using a
neural network is that the model can be saved to be
used later. This will simplify and speed up the prediction
process. In the VAR method, the software needs to query
the time-series throughput information from training data
for each case in order to predict the next throughput
(Table 2).

IX. EXTENDED SIMULATION: NETWORK WITH 4 CELLS
AND 2 COVERAGE HOLES
In addition to the current simulation, we performed another
simulation to further prove the usability and effectiveness of
Near-RT RIC over the traditional handover algorithm. Here
we cr eated a new network environment with 4 cells and two
buildings creating two coverage holes (Fig. 21).

The methods used in this simulation are the same, the
modified VAR and the neural network. Obviously, the models

FIGURE 22. Simulation result with 2 coverage holes.

must be adapted to the current network model. The neural
network input is modified to 24 nodes, but still uses 4 hidden
nodes and one output node.

Fig. 22 shows the result of this simulation scenario.
It can be seen in this more complex non-ideal network,
the traditional handover algorithm performance is very low.
The download success rate using the traditional handover
algorithm is only about 29%.

Using Near-RT RIC can bring improvement to the han-
dover performance, but due to the complexity of the network,
the download success rate is relatively low compared to the
previous one-coverage-hole scenario. However, it still brings
improvement over the traditional handover algorithm. The
modified VAR method can only bring improvement only if
using 100 training data. If the training data is 50 or less, it does
not improve the handover performance. The NN method
is proven more robust in improving handover performance.
Interestingly, 100 and 50 training data using NN do not give
significant difference and sometimes 50 training data has
better performance.

X. CONCLUSION AND FUTURE WORK
The usage of the higher frequency in the newer cellular
technology will cause smaller cell size and this will further
cause frequent handover in a high mobility user like the
ones in the high-speed train. The handover process may
cause an interruption in the data transmission, moreover
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in a high-mobility condition where the radio condition
may worsen because of the user speed. Increasing the
probability of successful handovers, such as making sure to
perform handover to the correct target cell, can minimize
this interruption. Therefore, target cell determination is very
important in the handover process.

In this paper, we presented the result of our two proposed
methods, the modified VAR and neural network, using
O-RAN Near-RT RIC to determine the target cell in the
handover process. From the simulation result, it can be
concluded that machine-learning-based algorithms as in our
two proposed methods can be used and are proven better to
determine the target cell compared to the traditional handover
algorithm. The performance of the algorithms depends on the
method and the amount of training data.

The proposed neural network may currently underperform
the VAR method in Near-RT RIC software but it has a
simpler implementation since it uses only RSRP/RSRQ
measurement without a throughput measurement. This neural
network method can be faster as the model can be saved and
reused without necessarily querying the training data on each
prediction. However, some optimizations are still required to
speed up the process. In a more complex scenario like the
presence of two coverage holes, the neural network method
is proven more robust than VAR.

In the future, we will improve the neural network to get
better performance. We plan to test this method in another
non-ideal network environment other than the coverage hole
case.
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