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ABSTRACT Deep neural networks have achieved impressive pattern recognition and generative abilities on
complex tasks by developing larger and deeper models, which are increasingly costly to train and implement.
There is in tandem interest to develop sparse versions of these powerful models by post-processing with
weight pruning or dynamic sparse training. However, these processes require expensive train-prune-finetune
cycles and compromise the trainability of very deep network configurations. We introduce sparsity-aware
orthogonal initialization (SAO), a method to initialize sparse but maximally connected neural networks with
orthogonal weights. SAO constructs a sparse network topology leveraging Ramanujan expander graphs to
assure connectivity and assigns orthogonal weights to attain approximate dynamical isometry. Sparsity in
SAO networks is tunable prior to model training. We compared SAO to fully-connected neural networks and
demonstrated that SAO networks outperform magnitude pruning in very deep and sparse networks up to a
thousand layers with fewer computations and training iterations. Convolutional neural networks are SAO
networks with special constraints, while kernel pruning may be interpreted as tuning the SAO sparsity level.
Within SAO framework, kernels may be pruned prior to model training based on a desired compression factor
rather than post-training based on parameter-dependent heuristics. SAO is well-suited for applications with
tight energy and computation budgets such as edge computing tasks, because it achieves sparse, trainable
neural network models with fewer learnable parameters without requiring special layers, additional training,
scaling, or regularization. The advantages of SAO networks are attributed to both its sparse but maximally
connected topology and orthogonal weight initialization.

INDEX TERMS Sparse neural networks, dynamical isometry, Ramanujan expander graph, expander neural
networks, model pruning, orthogonal neural networks.

I. INTRODUCTION
Deep neural networks (DNN) have demonstrated state-of-
the-art performance in learning complex patterns in a variety
of creative and choice-based tasks. A popularly accepted
maxim is that task complexity can be managed by increasing
the number of perceptrons (in width and depth) and the size
of the training dataset. This idea emerged from the success of
the deep CNN AlexNet in the 2012 ImageNet Large Scale
Visual Recognition Challenge (ILSVRC), which achieved
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significantly lower prediction error than the winners of the
previous years, enabled by advancements in hardware that
allowed efficient training of deep neural networks [1]. Due
to this, the development of DNN design leans towards the
construction of larger and deeper networks [2], [3], [4]. How-
ever, the continuously increasing size of DNNs to achieve
higher accuracy drives up the computational and energy costs
of model training and deployment [5], [6].

Model compression techniques are methods to reduce
these costs without degrading the model performance [7].
For example, pruning removes insignificant weights from
densely-connected neural network based on a significance
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criterion such as magnitude [8], [9] and dynamic sparse
training seeks to simultaneously learn sparse connections and
weights values together [10]. State-of-the-art model compres-
sion techniques can be computationally expensive, requiring
a series of iterated train-prune cycles. Model compression
may result in the loss of global connectivity because some
neurons lose a connective path to other neurons [11]. Taken
to the extreme, sparsification methods induce layer-collapse
where entire layers are disconnected [12].

Another risk of removing connections is that it may destroy
the dynamical isometry property of the network [13], [14].
This characteristic is essential to maintain stable training
dynamics for very deep neural networks and confers benefits
such as depth-independent learning rates [15] and success-
ful training of networks with thousands of layers without
specialized architectures like residual connections or tech-
niques such as batch normalization [16]. Several theoretical
studies support the importance of depth in neural network
performance, attributing to it the increase in representation
power [17], [18]. Early studies of deep convolutional neural
networks show that deep networks outperformed shallow net-
works by a large margin [1] which subsequently spurred the
success of deep convolutional neural networks in the ILSVRC
challenge [19], [20], [21], [22], [23].

The performance of neural networks is influenced more
by the graph expander-like properties of the topology rather
than on the density of network connections and neurons [24],
[25]. The benefits are attributed to the preservation of both
local connectivity and global connectivity, where each layer
is capable of sensing all of its inputs, and yet all information
from the input reaches the output [11]. This is supported by
studies which have incorporated expander properties in the
formation of sparse neural networks such as X-Net [11] and
RadiX-Net [26].

In this study, we combine the concepts of graph expander
properties and dynamical isometry and introduce the method
sparsity-aware orthogonal initialization (SAO), which allows
the explicit construction of a priori sparsely connected deep
neural networks. We accomplish this through the use of
Ramanujan expander graphs to define the sparse connectivity
of each neural layer whose weights are made orthogonal dur-
ing initialization scheme.We say the orthogonal initialization
is aware of the sparse topology of the network.

We were inspired to account for dynamical isometry in
the construction of our sparse neural networks a priori to
model training. Through SAO we can construct very sparse
but maximally connected neural networks without needing to
first train and adapt a dense network. SAO can also approach
dynamical isometry at initialization without iterative training
or regularization thus making sparse SAO instantiations of a
network trainable up to very deep configurations. We inves-
tigated SAO on fully-connected and convolutional neural
networks of various sizes and depths and report their advan-
tages over the equivalent dense network baseline and sparse
versions generated with various magnitude pruning configu-
rations.

II. RELATED LITERATURE
A. EXPANDER GRAPHS AND SPARSE NEURAL NETWORKS
Several studies have incorporated the properties of expander
graphs, which are sparse graphs with good connectivity, in the
construction of sparse neural networks [11], [24], [26]. Since
the layers are built to be sparse and not recovered from a
dense model, these techniques save on the computational
cost of training. The X-Net architecture [11] applied random
d-regular bipartite expander graphs generated from Cayley
graphs to form sparse layer connections with symmetric input
and output sizes. They preserved connectivity in the model
by ensuring that every input was connected to an output
and by making the number of edges to scale proportionally
to the product of the sizes of input and output vertices.
X-Net achieved 4%higher accuracy onMobileNet than group
convolutions for a given level of sparsity. RadiX-Net [26]
generalizes X-Net for unequal input and output sizes by
leveraging the concept of mixed-radix numeral systems. The
trainability of sparse neural networks based on Cayley graphs
is not explicitly addressed in the above-cited studies.

B. PRUNING DAMAGES DYNAMICAL ISOMETRY AND
DEGRADES NEURAL NETWORK PERFORMANCE
Pruning weights in neural networks leads to loss of dynam-
ical isometry, and this loss contributes to the degradation of
accuracy by hindering gradient error and signal propagation
during training [13], [14], [27], [28]. We can gain an intuitive
understanding of how pruning destroys dynamical isometry
by taking an orthogonal weight matrix, zeroing out some
of the entries, and then finding that the gram matrix of W
is no longer an identity matrix. This happens because the
orthogonalization precedes the sparse structure instead of
constructing specific sparse structures first and then assigning
the appropriate values to achieve orthogonality [29].

Several studies have presented methods to recover
dynamical isometry in pruned models [13], [14], [28].
Wang et al. [14] proposed finetuning the pruned model using
an orthogonalized version of its weight matrix obtained with
QR decomposition. The recovered neural network outper-
forms the pruned model, and the speed of recovery increased
with the learning rate. Lee et al. [13] trained the pruned
model with regularization of the weight matrix by optimizing
min
Wl

||(Cl
⊙ Wl)⊤(Cl

⊙ Wl) − Il ||F , where (Cl
⊙ Wl) is the

pruned weight matrix. They found that layerwise dynamical
isometry provides better results with models pruned at ini-
tialization as it improves connection sensitivity which is used
as the saliency criterion. Orthogonality preserving pruning
(OPP) [28] which adds a penalty term for the gram matrix
G = WW⊤ of the weights attempts to orthogonalize ‘‘impor-
tant’’ filters and drive the rest to zero. They also penalized
the learnable scale and offset parameters of batch normaliza-
tion layers so that activations from pruned filters would not
be propagated to deeper layers and harm dynamical isom-
etry. These methods employ regularization and additional
training on the pruned model, which introduces additional
computation.
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To preserve dynamical isometry in convolutional neural
networks, Xiao et al. [16] proposed an orthogonal initial-
ization algorithm appropriate for the block-circulant fil-
tering matrix based on orthogonal wavelets. They dubbed
the method Delta-Orthogonal Initialization and successfully
trained a 10,000-layer vanilla convolutional neural network.
Sedghi et al. [30] demonstrated how to explicitly compute
the singular values of the convolutional weight matrix.
They expressed the multichannel convolution as an operator
defined by a doubly block-circulant matrix and showed how
to derive its singular values from the 2D Fourier Transforms
of the circulant matrices. Their work laid the foundation for
explicitly constructed orthogonal convolutions [31], which
we apply in this study.

III. PRELIMINARIES
Our work attempts to integrate both sparse weight connec-
tions and dynamical isometry into an a priori sparse neural
network topology for both fully-connected and convolutional
neural networks without introducing special layers. We aim
to circumvent the difficulties associated with training spar-
sified models to convergence. In this section, we define the
fully-connected deep neural network and convolutional deep
neural network architectures, which serve as the basis for
our experiments. Next, we describe the orthogonal weight
initialization in the context of fully-connected and convolu-
tional neural networks since we will later adopt orthogonal
initialization to our sparse topology to preserve trainability.
Finally, we describe several variants of magnitude pruning,
which will be benchmarked against our method, sparsity-
aware orthogonal initialization (SAO).

A. NOTATION
Variables are denoted by italicized letters n, vectors are
denoted by bold small letters v, matrices by bold capital
letters M, and tensors by bold calligraphic letters T . The
weight matrix of a fully-connected layer is denoted byWfc ∈

Rnout×nin and the weight tensor of a convolutional layer
by Wconv ∈ Rk×k×cout×cin , where Wconv[:, :, s, t] denotes
the kernel sensing the t th input for the sth output channel.
As we will deal with sparse matrices, let M ∈ {0, 1}nout×nin
denote the pruning mask for a fully-connected layer, where
M[i, j] = 1 denotes the connection between the jth input
node the ith output node, where i ∈ [1,m] and j ∈ [1, n].
DFT2D(·) denotes the 2D discrete Fourier transform (DFT)
while IDFT2D(·) denotes the inverse 2D DFT. The Jacobian
of the weight matrix is denoted by J while σ (·) denotes the
singular values of a matrix.

B. DYNAMICAL ISOMETRY IN NEURAL NETWORKS
Neural networks attain dynamical isometry when all singular
values of the input-output or end-to-end Jacobian matrix J
are unity, corresponding to factorizing the Jacobian into an
orthogonal transformation via singular value decomposition.
The input-output Jacobianmatrix of a fully-connected layer is
given by the weight matrixW, while for convolutional layers,

it is given by the associated doubly-block circulant matrix of
all the kernels [32]. Given a function f : Rn

→ Rm, the
Jacobian matrix J of f is an m× n matrix defined by [33]:

Ji,j =
∂fi
∂xj

(1)

where Ji,j is the (i, j)th element of J, and ∂fi
∂xj

is the partial

derivative of the ith component of f with respect to the jth

variable. In other words, the Jacobian matrix J expresses the
local linear approximation of f near a point x as a matrix
transformation. Specifically, the Jacobian matrix J at a point
x is given by:

J(x) =


∂f1
∂x1

∂f1
∂x2

. . .
∂f1
∂xn

∂f2
∂x1

∂f2
∂x2

. . .
∂f2
∂xn

...
...

. . .
...

∂fm
∂x1

∂fm
∂x2

. . .
∂fm
∂xn

 (2)

The Jacobian matrix for a deep neural network with L
layers with input x0 ∈ Rn as J ∈ Rm×n may also be defined
as follows [34]:

J =
xL

x0
=

L∏
l=1

DlWl (3)

where Dl
ij = φ′(hli)δij and δij is the Kronecker delta function

and Wl is the weight matrix of the l th layer in the neural
network. The singular values of J are computed from the
singular value decomposition:

U , 6,V ∗
= SVD(J) (4)

where the singular values are the diagonal elements of 6 ∈

m× n and U ∈ Rm×m and V ∈ Rn×n are complex unitary
matrices representing rotations or reflections.

For linear neural networks, dynamical isometry is perfectly
attained through orthogonal weight initialization. Non-linear
activation functions compromise dynamical isometry, but it
was empirically observed that employing orthogonal weight
initialization [13], [15] may still produce a well-conditioned
Jacobian sufficient to mitigate vanishing and exploding gra-
dients [35] when the singular values of the Jacobian closely
approximate unity. ReLU networks do not attain approximate
dynamical isometrywith simple orthogonal weight initializa-
tion [34] but possible with shifted and smoothed variants [35].

C. FULLY-CONNECTED DEEP NEURAL NETWORKS
We benchmark against fully-connected neural network
(FNN), where N specifies the number of layers between the
input and the final output activations. We use L0 to denote the
512 × 256 layer while L1 and LN−1 denotes the first and last
symmetric layers, respectively. We trained FNN models with
several depths ranging from N = 50 to N = 1000 on MNIST
with Stochastic Gradient Descent (SGD) with momentum =

0.9 and weight decay = 10−4. We scaled the magnitude of
the weights from all networks by a factor of 1.1.
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TABLE 1. Architecture of fully connected neural network (FNN) with a
selectable number of layers parameterized by N.

TABLE 2. Learning rates are gradually decreased with increasing depth of
Fully-connected neural networks (FNN).

TABLE 3. Learning rates are gradually decreased with increasing depth of
Convolutional neural networks (CNN) for CIFAR-10.

The learning rates used are listed in Table 2 and are chosen
to encourage the sparse network to train to convergence.

1) ORTHOGONAL WEIGHT INITIALIZATION FOR
FULLY-CONNECTED DEEP NEURAL NETWORKS
The Jacobian of the weight matrix, J of a fully-connected
layer is given by the transpose of the weight matrixWfc, such
that orthogonalizingWfc results in an orthogonal J. [15].

D. CONVOLUTIONAL NEURAL NETWORKS
1) VANILLA CNN
We implemented a vanilla convolutional neural network
which does not use any special layers or techniques such
as batch normalization, residual connections and dropout
to assist the training of the network and only consists of
convolutional layers interleaved with either Tanh or ReLU
activation function. All the layers use a kernel size of 3 × 3,
zero-padding, and stride equal to 1, except for the second and
third convolutional layers with stride = 2. Before the linear
output layer, an average pooling layer is used. We trained
models with N = 32, 128, 256, 512, and 768 convolutional
layers on CIFAR-10 with SGD (momentum = 0.9, weight
decay = 10−4) and without weight rescaling. At a specific
network depth, we experimented with layers with widths of
W = 32, 64, 128 and 256. The initial learning rates are listed
in Table 2 and are decayed by a factor of 0.1 at the 50th and
150th epochs. A learning rate warm-up (10 epochs) was used
at N = 768 for ReLU and N = 512 and above for Tanh
with Cosine Annealing. Deep vanilla CNNs are trainable
to convergence only with orthogonal weight initialization,
described in Section III-B above.

For CINIC-10 and CIFAR-100, the average pooling layer
before the classifier was replaced with two convolutional
layers with stride = 2. The same hyperparameters were used,

TABLE 4. Architecture of LipConvNet [31] parameterized by depth, N.

except for the adoption of the Cosine Annealing scheduler
with warm-up for 1 epoch for all values of N . A selection
from networks with N = 8, 16, 32 and 128 were trained
on CINIC-10, depending on the orthogonalization technique,
with the same learning rates as Table 3 and 10−2 for N <

32. For CIFAR-100, a selection from networks with N =

8, 16, 32 were trained with the same learning rates. Only
ReLU was used for these datasets. For all of the experiments,
the training set was augmented using random crop, random
horizontal flip, and AutoAugment [36].

2) LipConvNet-N
We adopt the 1-Lipschitz compliant network from [31] to
apply an alternative weight orthogonalization method for
CNNs. The complete network comprises of five blocks. Each
block consists of a single-strided convolutional layer repeated
(N/5−1) times followed by a convolutional layer with stride,
s ̸= 1 to down-sample the feature space. The Max-Min
activation function is applied after every convolutional layer.
The first two blocks are initialized with Skew-Orthogonal
Convolutions (SOC) from [37] while the last three blocks are
initialized with Explicitly-Constructed Orthogonal Initializa-
tion (ECO) - see Section III-C.5 below. This construction
yields better performance than purely ECO initialized layers
as shown by [31] as dilated convolutions early on leads to
deterioration of recognition capabilities. We trained the Lip-
ConvNet with Stochastic Gradient Descent for 200 epochs
with a learning rate of 0.01 which is decayed by a factor of
0.1 in the 50th and 150th epochs, and weight decay 5× 10−4.

3) DELTA-ORTHOGONAL INITIALIZATION FOR CNNs
Delta-Orthogonal Initialization for convolutional neural net-
works enabled training of a 10, 000 layer CNN without
special layers like batch normalization and residual con-
nections [16]. The initialization algorithm is summarized
in Table 5. Two-dimensional kernels are initialized with a
single, non-zero parameter at its center. The construction was
adopted from the literature on generating block-circulant,
random orthogonal matrices and is specific to CNNs with
sigmoidal activation functions, i.e Tanh.

The same algorithm can be applied to CNNswith the ReLU
activation function, only that the orthonormal matrix H is
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TABLE 5. Delta-Orthogonal Initialization algorithm for CNN kernels.

given by:

Hl
=

[
H0 −H0

−H0 H0

]
(5)

where H0
l
∈ R

Nl−1
2 ×

Nl
2 is an orthonormal matrix [38].

4) EXPLICITLY-CONSTRUCTED ORTHOGONAL
INITIALIZATION FOR CNNs
Orthogonal convolutional weights may be achieved by con-
straining all singular values of the Jacobian weight matrix to
unity. Rather than explicitly orthogonalizing the block circu-
lant weight matrix, orthogonality was imposed by initializing
matrices with all-unity singular values in the Fourier domain
and subsequently constructing the orthogonal weight matrix
using the inverse Fourier Transform [30].

For an expanded convolution kernel Wconv ∈ Rn×n×c×c,
for each p, q ∈ [n] × [n], let P (p,q) be the c × c matrix
computed by:

P (p,q)[s, t] = (F⊤
n W[:, :, s, t]Fn)p,q, ∀s, t ∈ [c] × [c] (6)

Orthogonal convolution kernels may be obtained according
to the following process:

1) Construct the orthogonal matrices P[p, q, :, :] =
(DFT2DW)[p, q, :, :]

2) Recover W[:, :, s, t] through IDFT2DP[:, :, s, t]
3) Perform the dilated convolution with W with

dilation n/k

E. NEURAL NETWORK SPARSITY THROUGH WEIGHT
PRUNING
We benchmark the performance of sparse networks with sev-
eral variants of pruning, namely: global magnitude pruning
(GMP), local magnitude pruning (LMP), and local random
pruning (LRP). In fully-connected neural networks, individ-
ual weights are pruned. In convolutional neural networks,
two-dimensional kernels are removed en bloc. Fig. 1 illus-
trates the process of creating sparse neural networks with
weight pruning applied after training a dense network, indi-
cated by a suffix ‘‘T’’, e.g. LMP-T indicates performing local
magnitude pruning on a trained dense network which is then
finetuned for the same duration as in training. The suffix
‘‘S’’ implies that upon initialization, the model is immedi-
ately pruned without training, e.g. GMP-S implies global
magnitude pruning performed on initialized weights prior to

FIGURE 1. Creating a sparse neural network by weight pruning involves a
four-step process (denoted by suffix -T). Models are also initialized as
sparse according to Lottery Ticket Hypothesis [39] and the Train step prior
to Pruning is omitted (denoted by suffix -S).

network training, such that the pruned model undergoes only
half the total training epochs of GMP-T from initialization.
Pruning was performed after orthogonal initialization but
prior to network training in the spirit of the Lottery Ticket
Hypothesis [39].

IV. METHODS
In this section, we formulate our SAO method and describe
how we compare the performance of SAO construction to
using conventional pruning methods when introducing spar-
sity to fully-connected and convolutional neural networks.
We apply sparsity-aware orthogonal initialization (SAO) by
forming a sparse, orthogonal matrix S and then using this as
the orthogonal matrix from which the weight matrix will be
derived from to attain orthogonal transformations, distinct for
fully-connected neural networks and two different methods,
ECO and Delta-Orthogonal Initialization, for convolutional
neural networks. Forming the S ∈ Rm×n comprises two
key steps: generating the sparse, Ramanujan binary matrix
M ∈ {0, 1}m×n and orthogonalizingM to generate the matrix
S ∈ Rm×n. The sparse structure comes first before the values
are assigned, such that the orthogonal initialization is aware
of the sparsity.

The sparsity of individual neural layers is controlled by set-
ting the connectivity parameter of each neuron, d . Parameter
d is equivalently the number of non-zero weighted connec-
tions emerging from each neuron to the next layer.

To understand if the advantages of SAO are due to topology
alone or co-dependent on the dynamical isometry property,
we also compare against neural networks initialized with only
sparse Ramanujan topology (indicated with RG). RG uses
the same sparse topology as SAO but without orthogonal
weight initialization. We evaluated the RG layers with dif-
ferent weight initialization schemes: random normal (RG-N),
random-uniform (RG-U), and random orthogonal weights
(SAO).

A. SPARSE NEURAL LAYERS WITH RAMANUJAN
EXPANDER GRAPH TOPOLOGY
In this work, we leverage (c, d)-regular bipartite graph
expanders, i.e., graphs whose input and output nodes have
degree c and d , to form the sparse structure of the neural net-
works layers as in [11], but we use a specific type of expander
graphs called Ramanujan graphs which aremaximally sparse.

Each layer of a neural network may be represented as
a bipartite graph. Bipartite graphs G(U ,V ,E) are graphs
with two disjoint sets of nodes U and V and edges E that
connect nodes between but not within sets. Thus, U and V

VOLUME 11, 2023 74169



K. Esguerra et al.: Sparsity-Aware Orthogonal Initialization of Deep Neural Networks

are the neural input and output activations, respectively. The
biadjacency matrix, B ∈ {0, 1}u×v represents the connections
between input and output neurons of a layer. Each entry of
the matrix indicates the presence (1) or absence of (0) of an
edge between nodes from set U and set V . The biadjacency
matrix is the matrix transpose of the binary mask, M, which
describes the topology of the neural layer.

The full graph adjacency matrix [40] of each layer is
defined as:

A =

[
0u,u B
B⊤ 0v,v

]
(7)

All nodes have the same number of edges, d in a d-
regular bipartite graph. For d-regular bipartite graphs to be
expanders [11], the eigenvalues of the adjacency matrix, A
obey |λ1 − λ2| ≤ 1 − λ2/d , where λ1 and λ2 are the largest
eigenvalues. A graph is a Ramanujan expander if λ2 also
satisfies λ2 ≤ 2

√
d − 1. For asymmetric neural layers where

c and d are the degree of the input and output nodes, this
condition generalizes to λ2 ≤

√
c− 1 +

√
d − 1.

We construct the mask M to be the transpose of a biadja-
cency matrix describing a (c, d)-regular graph that is a block
matrix comprised of identical blocks or submatrices. We con-
trol the degree which corresponds to the smaller dimension of
the graph by specifying the degree c if m > n, where d =

cn
m

and d ifm < n, where c =
dm
n . With an equal number of input

and output nodes, the graph simplifies to a d-regular graph.
We first construct the block M1 which comprises M. For

m > n, we construct the (c, 1)-regular block matrix M1 ∈

{0, 1}m×
m
c which is copied cn

m −1 times and then concatenated
in the vertical axis to get M = [M1M2 . . .M cn

m
]. For m < n,

we construct the (1, d)-regular block matrix M1 ∈ {0, 1}
n
d ×n

which is copied dm
n − 1 times and then concatenated in the

horizontal axis to get M = [M1;M2; . . .M dm
n
]. The number

of blocks in M will be referred to as r in the following
discussions. For m = n, any of these two construction
methods can be used. The sparse, Ramanujan matrices that
can be generated through this process has two constraints: the
larger dimension between n and m should be divisible by the
specified degree, and the ratio of n and m should be equal to
the degree divided by a number r ∈ Z to guarantee a degree
of at least 1 in the larger dimension.

Convolutional neural networks are (c, d)-regular by def-
inition where the local k × k kernel are the (c, d)-sparse
connections. Unlike fully connected networks, we modulate
the sparsity of convolutional neural networks in increments
of the kernel size k × k , which is equivalent to pruning entire
kernels in a channel. We illustrate this in Fig. 2, wherem = n.

B. VISUALIZING INPUT-OUTPUT REACHABILITY OF
SPARSE LAYERS
Sparsity in neural layers may restrict inputs from contributing
to neural processing in deeper layers. It could compromise
neural network accuracy by excluding sections of the input
from local neural decision-making or by limiting the train-
ability of networks by constraining the paths for gradient error

FIGURE 2. Neural networks can adopt d -regular bipartite graph
connectivity (left) and in convolutional layers, this appears like
kernel-level sparsity (right).

FIGURE 3. An example computation of the reachability matrix for two
sparse layers based on 2-regular bipartite graphs illustrates that all
inputs nodes are still able to influence all output nodes despite the
regular sparse structure.

propagation to individual weights. We introduce a method to
visualize the influence of sparse topologies on connectivity
of information and gradient error propagation called reach-
ability. The reachability matrix Ri→j ∈ Rmi×ni is acquired
through (

∏j
i=i M

⊤
i ) ∈ F2 and we binarize the matrix, M.

When Ri→j[p, q] = 1, the pth input node in Li is connected
to the qth output node in Lj. Through R, we can determine if
all the inputs may reach and contribute to decision-making at
all of the output nodes.

C. DYNAMICAL ISOMETRY FOR SPARSE SAO LAYERS
We construct the sparse-orthogonal matrix S by process-
ing the mask matrix, M to have mutually orthogonal row
vectors. This produces an orthogonal matrix for m = n,
and a semi-orthogonal matrix when m ̸= n. We gener-
ate min{m, n}/r sets of orthogonal vectors where each set
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FIGURE 4. This illustration depicts how a sparse-orthogonal matrix of size 8 × 8 based on 2-regular expander graph: i) an 8 × 4 binary block matrix is
first generated and ii) duplicated to form the mask matrix M, where the shaded and unshaded pixels represent 1 and 0 respectively. iii) Four
2 × 2 orthogonal matrices are generated and iv) the rows of the orthogonal matrices are assigned to the block matrix, M.

has r number of vectors with length equal to the specified
degree. One set of orthogonal vectors correspond to one set
of identical columns (m > n) or rows (m < n). The values
of each vector are then assigned to the non-zeros of each
row or column for each set. Fig. 4 illustrates the process of
generating an S ∈ R8×8 matrix with c = d = 2.
When SAO is applied to fully-connected layers, S ∈ Rm×n

is simply assigned as the weight matrix. The density of a
(c, d)-regular layer is given by c/m = d/n, where c and d
refer to the degree of the input and output nodes, respectively.

We compared the performance of SAO to the baseline
fully-connected model and variants pruned with one-shot
magnitude global pruning with and without pretraining
(GMP-T and GMP-S), local random pruning (LMP) as well
as networks with a priori sparse Ramanujan construction
with random uniform and Gaussian initialization (RG-U and
RG-N).

SAO was applied to convolutional neural networks by
adapting two methods for orthogonal weights initializa-
tion (i) Delta-Orthogonal Initialization (SAO-Delta) and
(ii) Explicitly Constructed Orthogonal Initialization (SAO-
ECO).

With the SAO-Delta scheme, for a convolutional layer
with weight tensor W ∈ Rk×k×cin×cout , we generate the
sparse orthogonal matrix S ∈ Rcout×cin and then assign
S[s, t] to Wconv[[ k2 ], [

k
2 ], s, t] ∀s, t , as illustrated in Fig. 5.

All non-center weights are zeroed at initialization but the
weights are not removed. The weights initialized to zero
can assume nonzero values during training as illustrated in
Fig. 5. Sparsity in SAO-Delta is controlled by removing entire
kernels, corresponding to kernel-level pruning.

With the SAO-ECO Scheme, all convolutional layers are
constructed with the sparse orthogonal matrix, S ∈ Rcout×cin

assigned to the Fourier domain kernel P[p, q, :, :]. To keep
the Wconv real, P[i, j, :, :] := P[(k − i)%k, (k − j)%k, :, :]
for each (i, j) ∈ [k] × [k] [31]. Due to this constraint, only L

FIGURE 5. This illustration depicts the SAO-Delta initialization of
convolutional neural network weights with 3 × 3 kernels and 16 channels,
are populated from a sparse orthogonal matrix, S.

unique orthogonal matrices are generated, where L = (k2 +

1)/2 if k is odd and L = (k2 + 4)/2 if k is even. Sparsity in
SAO is controlled by removing kernels, which corresponds
to kernel-level pruning.

For layers where cin < cout , we set Wconv ∈

Rk×k×cout×cout then pad the input with zeros in the chan-
nel dimension to match the number of output channels as
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in [31]. For cin > cout , we perform the convolution with
k × k × cin × cin then only select the first cout channels. For
the final block with input X ∈ Rn×n×cin , we apply dilation
n/k and cyclic padding d(k − 1)/2 on each side of the input
as in [31]. When the stride s is greater than 1, we reshape the
input tensor into X ∈ R

n
s×

n
s×cins

2
and perform the convolu-

tion with Wconv ∈ Rk×k×cins2×cout with s = 1 [31], [41].
SAO-Delta and SAO-ECOCNNs are benchmarked against

vanilla CNN with Delta-Orthogonal and ECO weight initial-
ization and versions pruned using RG-S, LRP, LMP-T and
LMP-S. The first convolutional and linear layers are excluded
from pruning.

V. RESULTS AND DISCUSSION
Deep neural networks (DNN) are conventionally constructed
with many more neurons and higher representation capac-
ity than what is necessary for learning complex patterns in
data. Neural network models are designed with excess neu-
ral capacity to remain trainable by gradient learning which
enables convergence to a high-accuracy model. Oftentimes,
the number of neurons can be reduced by almost a factor of
10 without noticeable degradation in performance based on
longstanding results from network compression, pruning, and
transfer learning methods.

It remains an open problem to determine the optimal
topology and neural capacity of a DNN for a given task
and training dataset, though there is emerging interest to
develop DNNs that use computational resources efficiently.
Optimal capacity DNN models consume less energy to
deploy and develop, and therefore support climate sus-
tainability goals. Optimal-capacity models are also more
amenable to deployments in edge and mobile devices with
limited compute resources without compromising inference
latency.

Sparse DNN topologies are difficult to train from scratch
as these do not easily or robustly converge to accurate models
presumably due to reduced flexibility in evolving feature rep-
resentations during gradient learning. Sparse topologies may
impede the forward and backpropagation of error gradients
during gradient learning. There are no known sparse topolo-
gies and learning algorithms that converge to accurate models
as robustly as equivalent DNN models with overcapacity.
Model reduction can still be achieved using repeated learning
cycles to perturb the network to discover gradually sparser
topologies with algorithms like weight pruning and dynamic
sparse training at the cost of additional computations and
learning time.

Our work investigates the feasibility of defining a sparse
DNN topology a priori to gradient learning which generates
robust convergence to an accurate model. We propose to
adopt expander graph topologies to predefine sparse connec-
tivity between neural layers. We complement the a priori
topology with weight initialization to create dynamical isom-
etry that mitigates vanishing and exploding gradients across
all network layers.

A. SPARSE AWARE ORTHOGONALIZATION (SAO): A
SPARSE TOPOLOGY WITH DYNAMICAL ISOMETRY FROM
RAMANUJAN EXPANDER GRAPHS
Expander graphs are a type of graph topologywithmaximally
connected and sparse nodes. Graphs possess the expander
property if the topology fulfills the edge expansion, ver-
tex expansion, or spectral expansion criteria. Generating
expander graph topologies are more challenging, but sev-
eral construction algorithms are known for selected expander
graph families. Since expander graphs are maximally con-
nected, we reason that this type of topology would not unduly
impede the forward and backward propagation of gradients
between neurons while the sparsity property achieves the
fewest weights to connect layers.

Ramanujan graphs are a family of expander graphs with
maximally sparse connectivity and are described as the opti-
mal expanders [42]. We expect that Ramanujan topology
would consist of the fewest edges (and hence the fewest
number of weights in a neural layer) as compared to other
expander graph families. Ramanujan graphs satisfy the spec-
tral expansion condition λ2 ≤ 2

√
λ1 − 1 where λ1 is the

largest eigenvalue of the binary adjancency matrix and λ2 the
second largest eigenvalue [43].

We designed the topology of each neural network layer
to be a bipartite Ramanujan graph, achieved by constructing
M as a (c, d)-regular block matrix with identical blocks as
discussed in Section IV-A. We can prove that M is always
Ramanujan through properties inherent to bipartite graphs
and those which are specific to the construction.

The eigenvalues of an adjacency matrix A of a bipartite
graph comes in pairs λ and −λ where |λ| is a singular value
of the biadjacency matrixB [40]. To check for the Ramanujan
property, we can evaluate the singular values of B, which are
equal to that ofM as its transpose. Thus, we take interest in the
singular values of M as it is the structure directly controlled
in SAO.

We conjecture that M, through elementary matrix opera-
tions, i.e. row and column interchanges, can be transformed
into a block diagonal matrix Mbd comprised of blocks with
dimension c × d with entries all equal to 1. For instance, M
in Figure 4 can be transformed into a block diagonal matrix
through row interchanges: r1 ↔ r5, r4 ↔ r7, r3 ↔ r6, and
r4 ↔ r5. This allows ease of analysis of the singular values,
especially as the blocks comprising its diagonal are the same
and therefor have the same singular values.

As all the entries of the block are equal to 1, it has rank 1
(all the rows and columns are linearly dependent) [44], and
Frobenius norm equal to

√
cd . Meanwhile, the L2 norm of

the singular values of a matrix is equal to the Fobrenius
norm [45], and since each block has only one non-zero
singular value as indicate by the rank [46], it should be
equal to

√
cd . Then, all of the blocks comprising Mbd have

singular values equal to
√
cd . By taking the union of these

singular values, we deduce that the singular values of Mbd ,
and consequentlyM, consist only of

√
cd and zero [44]. The

eigenvalues ofA are then comprised only of
√
cd ,−

√
cd , and
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FIGURE 6. This illustration depicts the SAO-ECO initialization of convolutional neural network weights with 3 × 3 kernels and 16 channels. Four sparse
matrices are generated and populated as sparse samples of the Fourier transform of the weights, P[p, q, :, :] p, q ∈ [n] × [n]. The orthogonal
convolutional weights are obtained by applying the 2D inverse Fourier Transform on selected slices of P .

0 which guarantees that λ2 ≤ 2
√

λ1 − 1 is always satisfied
as λ2 is always zero.

We verified this property by computing the distribution
of eigenvalues of d-regular bipartite graphs with 128, 256,
512, and 1024 neurons each, as shown in Fig. 7. With this
construction, the sparsity of the topology can be controlled
by selecting the value of d, which corresponds to the num-
ber of weighted connections to each output neuron. These
sparsely-connected neural layers can then be cascaded to
form sparse deep neural networks prior to gradient learning.

We expect this structure to have advantages over standard
pruning methods. First, as we use d-regular graphs, all input
nodes have a path toward the output nodes of a layer, and
all output nodes receive signals from the input nodes. This
assures that there won’t be any dead neurons in the neural
network, i.e. neurons that do not contribute to the output of
the model. Second, as the d-regular graphs we use are also
expander graphs, we assure that every input node is sensed
by every output node, thus providing global connectivity as
proved in [11] in their work on expander neural networks.
These two benefits point to the maximization of the connec-
tivity, which is one of the factors affecting information flow
in the network during training [11], [47]. Furthermore, as we
use Ramanujan expanders, which are described as the opti-
mal expanders, we are maximizing the benefits of expander
properties in our construction of sparse neural networks.

The benefits of having Ramanujan layers are not limited
to the connectivity within each layer. Reference [11] showed
that using expander graphs for each layer can assure global
connectivity for a given number of layers. They defined
global connectivity as having all the inputs have a path
towards the outputs. In our work, we refer to this quality
as reachability. We illustrate this in Fig. 8, where we com-
pare the reachability of a sparse neural network uncovered
through magnitude pruning and one which was constructed

using Ramanujan graphs. The figure labeled N = 1 is the
transpose of the mask of a single 256 × 256 layer, where the
colored pixels indicate the presence (1) or absence (0) of a
connection between the input nodes (rows) and the output
nodes (columns) of this specific layer. While the connections
in magnitude pruning are sporadic, a pattern can be seen in
the Ramanujan construction, coming from the d-regularity
and in a characteristic specific to our construction, where the
second half of the graph is identical to the first half. AtN = 5,
RG achieved full connectivity, i.e. all the input nodes reach
the output nodes, in contrast to magnitude pruning where
some input nodes are disconnected from some output nodes.
The connectivity in RG is carried over in deeper layers, which
agrees with the report of [11], thus proving that Ramanujan
networks are able to achieve full connectivity despite the
sparsity.

B. SAO LAYERS RETAIN TRAINING DYNAMICS OF
FULLY-CONNECTED, ORTHOGONAL WEIGHT LAYERS
Linear, fully connected networks may attain dynamical isom-
etry with orthogonally initialized weights [15]. All singular
values of the weight Jacobian matrix are unity, and there
are no dynamical modes that cause vanishing or explod-
ing gradients during model training. Nonlinear activations
compromise dynamical isometry [34] by introducing sin-
gular values that are both greater and less than unity,
which engenders dynamical modes capable of propagat-
ing exploding and vanishing gradients, respectively, through
deep networks. Sigmoidal activation functions may attain
approximate dynamical isometry with the majority of singu-
lar values being arbitrarily close to unity [15]. ReLU did not
achieve dynamical isometry due to the sizeable presence of
zero-valued singular values which engender vanishing gradi-
ents, in contrast to its smoothed variant, SiLU [34].
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FIGURE 7. Neural network layers constructed according to our sparse
d -regular graph topology always fulfill the Ramanujan graph spectral
expansion condition. The distribution of eigenvalues always consist of d ,
−d , and 0, irrespective the number of neurons in the layer.

FIGURE 8. An illustration of the reachability matrix from sparse neural
networks obtained through magnitude pruning and constructed using
Ramanujan graphs shows that the Ramanujan construction achieved
global connectivity by the 5th layer, as indicated by the solid color. The
colored pixels indicate the presence (0) or absence (0) of a connection
between the input nodes (columns) and the output nodes (rows) at the
N th layer. For magnitude pruning, the white strips indicate some output
nodes are disconnected from some input nodes.

To illustrate, we plotted the distribution of singular values
of the weight Jacobian from a single layer of fully-connected
neurons in Fig. 9. Local magnitude (LMP), local random
pruning (LRP), and sparse Ramanujan layers up to 99.2%
sparsity introduced null singular values into the training
dynamics of fully-connected, linear layers and destroyed
dynamical isometry. In contrast, SAO preserves the distribu-
tion of singular values of fully-connected layers as illustrated
in Fig. 10 and Table 6. Thus, SAO retains the beneficial

FIGURE 9. Plot of the singular value distribution of the Jacobian weight
matrix from a single layer of fully-connected, orthogonally initialized
neurons is overlayed with the distributions from sparse layers with 99.2%
sparsity. With linear and non-linear activation functions, local pruning
(LMP and LRP) and Ramanujan layers distort dynamical isometry by
shifting singular values towards and to zero.

TABLE 6. The distribution of singular values between SAO, Ramanujan
layers and local pruning are compared to fully-connected orthogonal
layers with the Kolmogorov-Smirnov test. The singular values of Jacobian
weight matrix from SAO layers are indistinguishable from dense,
orthogonal layers. The p-values indicate that all other sparsity techniques
produce significantly different singular value distributions.

training dynamics granted by orthogonal initialization on
dense networks, along with the added advantage of sparse
connectivity. We expect SAO layers to remain trainable to
thousands of layers with fast convergence [15], [16].

C. SAO CREATES DEEP AND SPARSE NEURAL NETWORKS
Despite the sparsity of individual neural layers, all input
nodes have a path towards all output nodes and provide
global connectivity according to [11], which implies that all
input nodes can influence every receptive field in the output
layer. The maximization of input-output node connectivity is
a factor that affects information flow in the network during
training [11], [47]. We introduce the concept of a reachability
matrix (Section III-D) to visualize the influence of input
nodes on output nodes when propagated across deep layers.
A dense reachability matrix implies that all input nodes can
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FIGURE 10. Despite achieving 99.2% sparsity over fully-connected
neurons, SAO preserves the distribution of singular values with linear and
non-linear activations.

contribute information toward the computation of the output
receptive fields.

Table 7 compares the classification accuracy achieved by
deep sparse networks against deep, dense fully-connected
networks between 50 to 1000 layers for theMNIST classifica-
tion task.We compared pruning via global magnitude pruning
(GMP) with training sparse, deep networks configured a pri-
ori using Ramanujan graph topology with random uniform
(RG-U), random Gaussian (RG-N) and random orthogo-
nal (SAO) initialization. Random orthogonal initialization
encourages dynamical isometry, and we dub the combination
of d-regular graph topology and random orthogonal weight
initialization as Sparsity-Aware Orthogonalization (SAO).

Sparse, deep networks cannot be robustly obtained from
global magnitude pruning (GMP) of dense layers because the
algorithm does not train to convergence. The distribution of
singular values of the input-output Jacobian for each layer
approaches 0 and indicates that GMP suffers from vanishing
gradients [15], which impedes gradient learning (see Fig. 11).

Utilizing the Ramanujan graph topology to define a priori
neural layers helps these sparse, deep networks (RG-U and
RG-N) train towards convergence but still appears insuffi-
cient to achieve good accuracy consistently (see Table 7).
The singular value distributions of J in RG-U and RG-N
have a mean close to 1 but large variance (see Fig. 11),
implying the presence of very large and very small singular
values. The extreme singular values indicate that the network
occasionally suffers from vanishing and exploding gradients
which hinder gradient learning and necessitates more training
epochs to converge [34]. Only SAO reliably converges to
a high-accuracy model for deep, sparse networks of 50 up

TABLE 7. The advantage of SAO over standard pruning methods and
Ramanujan pruning proves the importance of sparse-orthogonality and is
demonstrated by comparing the accuracy of tanh fully-connected
networks (Dense) on MNIST with pruned, Ramanujan topology and SAO
with d = 4 at increasing network depth, N. Only RG-U, RG-N, and SAO
remained trainable up to 1000 layers, while only SAO did not experience
drastic accuracy degradation.

FIGURE 11. Plot of the mean and variance of singular values of the
Jacobian from networks trained on MNIST with increasing depth, N,
shows that SAO keeps the distribution of singular values relatively close
to unity just like fully connected networks. Ramanujan topology alone
does not preserve approximate dynamical isometry since RG-U, and RG-N
have high variance indicating the presence of very small and large
singular values, while dense and SAO have relatively low variance
indicating approximate dynamical isometry.

to 1000 layers within the same 100 training epochs [16] as
indicated in Table 7. The distribution of singular values of
J are close to unity with tight variance [15] as illustrated in
Fig. 11.

The implications of these results are: 1) the Ramanu-
jan property is a prerequisite that promotes sparsity and
reachability of gradients but is not enough to guarantee train-
ability in very deep sparse neural networks, and 2) dynamical
isometry can be created in deep, sparse networks to engen-
der convergence to high accuracy models. This evidence
suggests that SAO, which is comprised of both the sparse
Ramanujan graph topology and orthogonal weight initializa-
tion to enforce dynamical isometry, grants trainability in very
deep, sparse neural network. Sparse but regular connectivity
assures that sparsity can be increased in a principled way,
and yet no layer or neuron will be entirely disconnected.
The maximal connectivity property retains pathways in the
sparsely connected network for information to propagate
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from input to output nodes. As the network grows in depth,
we observe that more input nodes have pathways to influence
the choice at every output node despite topological sparsity.
Meanwhile, orthogonality not only conditions the Jacobian
to avoid vanishing or exploding gradients but also reduces
the interdependence of weights and thereby improve the effi-
ciency and efficacy of learned feature representations.

D. SAO PROVIDES A UNIFYING FRAMEWORK TO TUNE
SPARSITY IN ORTHOGONALLY INITIALIZED
CONVOLUTIONAL NEURAL NETWORKS
Convolutional Neural Networks (CNNs) are locally con-
nected networks (not full) with the same set of weights
applied across all neurons in each channel of a neural layer.
CNN models reduce the number of model parameters for a
regularizing effect [48], which makes the model less prone to
overfitting. CNNs have been especially successful inmachine
vision applications compared to fully connected networks.
The computation is implemented by convolving small weight
matrices across the input image to produce neural feature
maps [49]. Repeated weight parameters may be efficient for
computation, storage, and model convergence. However, it is
challenging to impose orthogonality on weight vectors that
are shifted versions with repeated values [32], [50] and more
so if the weight vectors must also be sparse. Fig. 12 shows a
visual illustration of the 2-dimensional convolution operation
expressed as a doubly block-circulant Toeplitz (DBT) matrix
where the 2-dimensional weight ‘‘filter’’ has been unwrapped
into a basis of 1-dimensional vectors comprising of spatially
shifted versions of the same vectors.

Achieving orthogonal weights has been attempted through
regularization [32] and workarounds to remove spatial over-
laps of shifted vectors such as the Delta-Orthogonal Ini-
tialization [16]. Sparsity has been achieved on orthogonally
initialized CNNs through rescaling methods. Dynamical
isometry was restored in pruned networks by rescaling
weights using a scaling factor derived from the weights,
width, and the pruning mask [51]. Such rescaling presented
up to 4.25% higher accuracy than just magnitude pruning
at 98% sparsity on ResNet-104 trained on CIFAR-10. Reg-
ularization was applied during model training to scale the
trace of the gram matrix of the pruned weight matrix towards
identity to restore dynamical isometry [13], while the diag-
onal entry which corresponds to the unimportant channels
are driven to zero [28]. [13] showed the benefits of such
regularization on the accuracy of various CNNs such as VGG
and ResNet, where the pruned models that were trained with
regularization after pruning achieved up to 0.70% accuracy
improvement than without regularization. Meanwhile, [28]
showed up to 1.30% higher accuracy compared to standard
pruning methods on ResNet-56 trained on the CIFAR-10
dataset at 95% sparsity. None of these studies implemented
their methods on a very deep sparse vanilla convolutional
neural networks without means of maintaining trainability
such as batch normalization and residual connections.

FIGURE 12. The single-strided 2D convolution operation on a 4 × 4 image
with 3 × 3 filter can be represented as a Doubly block-circulant Toeplitz
(DBT) matrix applied to the vectorized image. Each row of the DBT matrix
represents the application of the filter at one spatial location. To achieve
orthogonal CNNs, all row vectors in the DBT matrix must be mutually
orthogonal. This is difficult to explicitly orthogonalize because each row
is a shifted version of the same vector. Delta-Orthogonal Initialization
circumvents this difficulty by setting all values in the kernel to zero
except for E11.

Viewed from the lens of SAO, CNN layers are inherently
d-regular graphs with additional constraints that edges are
localized to spatially-connected neighbor nodes and edge
weights are repeated. Therefore CNNs are compliant with the
Ramanujan property. By extension, any method that provides
orthogonal weight initialization (which is not the same as
having orthogonal kernels) with CNN may be interpreted as
SAO.

To adapt SAO for CNNs, we build upon two explicitly-
orthogonal convolution schemes: first, the Delta-Orthogonal
Weight Initialization [16], [34], [38] and second, the
Explicitly-Constructed Orthogonal (ECO) convolutions [31].
While both methods are already forms of SAO by definition,
we apply the SAO framework to generalize the concept of
tunable sparsity levels and refer to these two implementations
as SAO-Delta and SAO-ECO, respectively.

The Delta-Orthogonal Initialization [16] is similar to ini-
tializing the CNN with depth-wise convolutions [52] but
allows the network to learn wide filters duringmodel training.
Since each 2D kernel has only a single non-zero weight,
controlling the sparsity of the d-regular Ramanujan graph is
achieved by removing the 2D kernel of individual channels,
which is structured (kernel-level) pruning.

We report the performance of SAO-Delta CNN for the
CIFAR-10 classification task using sigmoidal and linear unit
activations, i.e. Tanh and ReLU, in Table 8, with a variety of
depth, width, and sparsity (50% and (1 −

4
Cin

)%) configura-
tions. We benchmark the sparse SAO-Delta CNN against an
equivalent vanilla CNN (Dense) baseline. In our experiments,
the vanilla CNN required Delta-Orthogonal Initialization to
remain trainable to a practical accuracy beyond a depth of
128 layers. We also attempted to compare local magnitude
pruned (LMP-S and LMP-T) version of the vanilla CNN and
CNN with Ramanujan-only constructions (RG-S and RG-T).
However, only SAO remained trainable for all but one case
at (1 −

4
Cin

)% sparsity and on 256 layers and above at 50%
sparsity.
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To test the generalization capabilities of SAO on larger
datasets, we analyze the performance of SAO-Delta CNN
on CINIC-10. This dataset bridges the gap in complexity
between ImageNet and CIFAR-10 by combining their sam-
ples, resulting in a dataset 450% larger than CIFAR-10 [53].
Table 9 reports the accuracy of SAO-Delta on CINIC-10 for
a variety of depth and sparsity levels. The models utilize the
ReLU activation function with a fixed layer width of 128, i.e.,
Cin = Cout = 128. We compared SAO-Delta to the dense
baseline network and to LMP-S. Similar to the results of
CIFAR-10, SAO can maintain trainability at large depths and
sparsity, in contrast to the standard pruning method LMP-S
which failed at high sparsity levels at shallow depths, and
even at low sparsity levels at greater depths. Notably, among
depths ofN = 8, 16, 32, the robustness of SAO-Delta against
sparsity increased with depth. This could be attributed to the
increase in model capacity with depth, just before reaching
a point where training complications start to arise. At N =

128, the accuracy for both the dense baseline and SAO-Delta
decreased and could be attributed to the presence of very
large and small singular values relative to unity which is
exacerbated in deeper networks [16]. At N = 128, a lower
learning rate is required to maintain trainability and slows
down convergence [16]. The SAO-Delta model achieved
higher accuracy than that of N = 8 at 96.875% sparsity; it
is evidence that SAO improves robustness of training in very
sparse networks with greater depth.

SAO-Delta was also tested on the CIFAR-100 dataset,
which has 10 times more classes and 10 times fewer training
images per class as compared to CIFAR-10. The performance
of SAO-Delta on CIFAR-100 is limited by the baseline dense
model and are summarized in Table 10. At very high sparsity
levels, SAO stabilizes and improves the model performance
with increasing network depth.

SAO-Delta does not yet achieve comparable performance
with state-of-the-art CNN networks with special layers, but
it contributes an incremental improvement towards sparse
and energy-efficient deep CNN. State-of-the-art ResNet-101,
which incorporates batch normalization and skip connections
with customized training algorithms, achieves accuracy in
excess of 93% on CIFAR-10 [54]. Meanwhile, other network
variations such as ResNet-104 achieves 75.24% on CIFAR-
100 [51], while ResNet-18 achieves 90.27% accuracy on
CINIC-10 [53]. In a selected few SAO-Delta configurations
with improved performance, we attribute the slight accuracy
boost to the regularizing effect of sparsity and optimal sizing
of network width and depth [55].

The explicitly constructed orthogonalization (ECO)
scheme was first created as one of several adaptions to
CNNs to ensure trainability by preserving the gradient
norm. CNNs compliant to 1-Lipschitz constraints [56] learn
well-conditioned and improved feature representations with
better generalization capabilities on unseen data [57]. These
more interpretable gradient errors facilitate tracing sources
of error or biases in the model [58] and enhanced robustness
against adversarial attacks since variations in the network

TABLE 8. SAO-Delta helps sparse and deep CNN converge to models with
good performance. On CIFAR-10 classification task, SAO and CNN are
trainable up to 768 layers with Delta-Orthogonal Initialization. With
256 or deeper layers, magnitude pruned CNN was not trainable while
RG-U and RG-N CNN did not exceed 25% accuracy.

output are bounded by the magnitude of perturbations to the
input [59]. To meet 1-Lipschitz constraint, the modified CNN
dubbed LipConvNet [31], [60] utilized the gradient norm
preserving MaxMin activation function [61] and orthogo-
nalized the input-output Jacobian matrix with the weight
initialization schemes, SOC and ECO. ECO cleverly defines
orthogonal kernels in the Fourier domain to generate orthog-
onal convolutions in the spatial domain.

Our SAO-ECO makes a novel contribution by showing
how spatial domain sparsity can be achieved by sparsify-
ing the Fourier kernels. If a sparse orthogonal matrix S
is used to generate slices of the Fourier domain kernel
P[p, q, :, :] ∀p, q, there will be several P[:, :, s, t] comprised

VOLUME 11, 2023 74177



K. Esguerra et al.: Sparsity-Aware Orthogonal Initialization of Deep Neural Networks

TABLE 9. SAO-Delta facilitates convergence of sparse and deep CNN
models to achieve high performance on the larger CINIC-10 dataset with
configurations comparable to the dense baseline model, in contrast to
standard pruning methods.

TABLE 10. At high sparsity, the performance of SAO-Delta on CIFAR-100
dataset stabilizes and improves accuracy with increasing depth, N and
shows a similar trend with the CINIC-10 dataset but its performance is
limited by the dense baseline model.

entirely of zeros. Consequently, the spatial kernel W[:, :
, s, t], which will be recovered through the inverse Discrete
Fourier Transform will also be sparse. Therefore, defining
sparse orthogonal Fourier kernels is equivalent to kernel-level
pruning, where entire spatial-domain filter kernels are zeroed
out. Kernel-level sparsity in the spatial domain can be directly
related to d-parameterized sparsity of the orthogonal Fourier
domain vectors.

We compare SAO-ECO to pruned versions of LipConvNet
on CIFAR-10. At lower sparsity levels, the pruning methods
outperformed SAO, but only SAO was able to maintain train-
ability at 93.75% sparsity and above for all N . LipConvNet
initialized with sparse RG-S and RG-T topology also failed
to train to convergence beyond> 50% sparsity. We examined
the singular values of the Jacobian from all pruned networks,
which failed to converge, and found that mean singular values
approached zero as training progressed. Pruning destroys
orthogonality in LipConvNet and compromises the trainabil-
ity of the CNN [34].

We also implemented SAO-ECO on a vanilla CNN with
Cin = Cout = 128 on the CINIC-10 dataset. Similar to SAO-
Delta, deeper SAO-ECO networks are also found to be more
robust at high levels of sparsity as reported in Table 12.
For both SAO-Delta and SAO-ECO, we show that the

trainability of deep CNN can be maintained with tunable
levels of sparsity without requiring special layers. Absent
the use of special layers like residual connections [21] and
batch normalization [62], our results for CNNs are consistent
with behaviors observed in the fully connected networks

TABLE 11. SAO-ECO preserves the performance and trainability of CNNs
on CIFAR-10 especially for very sparse configurations. The gradient
limiting advantages of LipConvNet did not preserve the performance of
pruned networks or Ramanujan layers in deep and sparse CNN networks.

TABLE 12. SAO-ECO preserves the trainability of vanilla CNNs with ReLU
activation on CINIC-10 especially with very sparse configurations.

in Section IV-A, where both Ramanujan connectivity and
weight orthogonality are integral to maintaining trainability
of deep and sparse neural networks.

We argue that the SAO framework for tunable sparsity
adds value to applying dynamical isometry to CNNs. SAO
preserves trainability while deep CNN ismade sparse without
additional parameter or computational overheads. SAO does
not introduce additional model parameters [62] and provably
minimizes uncontrolled gradients [63] through dynamical
isometry unlike batch normalization nor does it impose
additional gradient computations as in the case of residual
connections. Without the benefits of sparsity, the advantages
of dynamical isometry in CNNs are less clear. Similar to [34],
we observed no clear performance benefits when increasing
the depth of CNNs beyond 200 layers. Furthermore, CNN
with ReLU activations do not possess dynamical isometry
but are still favored for image recognition tasks [64] and
outperform CNNs with sigmoidal activations. We observe
these results empirically, and ReLU CNNs are trainable to
convergence.

E. LIMITATIONS OF SAO
SAO permits sparse weight and model topology initializa-
tions without reference to a dense model but has several lim-
itations. Firstly, SAO imposes dimensional constraints where
the inputs, outputs, and their connectivity must obey the con-
dition in Section IV-A. The (c, d)-regular graphs to achieve
Ramanujan property also imposes discrete increments in
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sparsity levels in each layer. Second, it is observed from
experiments that the performance of the baseline densemodel
serves as the ceiling on the performance of SAO networks
in most cases. As there are not yet CNN and MLP models
that achieve state-of-art performance without special layers
like batch normalization and skip connections, SAO models
are not yet competitive accuracy-wise. Finally, SAO cannot
leverage the many, publicly available foundational and pre-
trained dense models as a good starting point because of
differences in network topology. However, SAO networks
may still benefit through knowledge distillation approaches
albeit with the SAO network acting as a student network to
the dense model as teacher network.

VI. CONCLUSION
We introduced the method sparsity-aware orthogonal initial-
ization (SAO), which explicitly initializes a neural network
with sparse connections and orthogonal weights prior to
model training. SAO networks simultaneously achieve sparse
construction and approximate dynamical isometry with a
principled approach to tuning the sparsity level. SAO net-
works achieve comparable accuracy to their dense equivalents
with far fewer trainable parameters whilst allowing network
configurations with very deep layers to converge during
model training and outperform popular network pruning
methods. For a plain 1000-layer fully-connected neural net-
work on MNIST, SAO minimized the accuracy loss to 1.65%
at 98.4% sparsity, in contrast to conventional pruning meth-
ods and other Ramanujan constructions which did not train
past 10.00% accuracy. SAO attains this using fewer compu-
tations than pruning or dynamic sparse training because no
special layers or additional training iterations are required.
SAO is attractive for applications with tight computation or
energy budgets, such as edge computing applications.

Seen through the SAO framework, CNNs already possess a
sparse d-regular bipartite graph topology. Adding orthogonal
weight initialization converts the network to SAO with added
constraints - spatially-localized connections with repeated
weight values. SAO contributes new insight to unify the
interpretation of kernel pruning on CNNs employing differ-
ent weight orthogonalization schemes. Introducing sparsity
to Delta-Orthogonal initialization and explicitly constructed
orthogonalization is equivalent to kernel pruning. The num-
ber of pruned kernels may be determined from the outset prior
to model training and conditioned on the desired sparsity
level of the CNN rather than on weight-dependent heuristics.
SAO showed greater robustness against sparsity and depth in
plain convolutional neural networks, achieving comparable
accuracy to the dense baseline network on certain configura-
tions and maintaining trainability up to 768 layers, in contrast
to other methods which rendered the networks untrainable
beyond 128 layers.
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