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ABSTRACT Neural-based sequence-to-sequence methods (Seq2Seq) have proven to be highly effective
for Context-sensitive Thai spelling correction. However, they also inherit the drawbacks of Seq2Seq, such
as a fixed vocabulary and large data requirements. However, dictionary-based methods and their typical
applications are insufficiently robust to produce correctionswith reduced error rates. These drawbacks inhibit
the application of these methods in a broader range of use cases. In this paper, we provide a practical guide on
how to build correction systems progressively and efficiently with three main contributions. First, we present
a process for efficiently and progressively producing training data for both neural-based and dictionary-
based methods. Our annotation process enables existing methods to be trained with only two percent of
the data hand annotated. Second, we propose the Extendable Neural Contextual Corrector (XNCC), a novel
text correction approach that decouples the dictionary from the neural model. This enables the dictionary
to be extended post-training. Finally, we compare text correction systems with various configurations to
demonstrate how these systems can be effectively used to produce corrections. Our experiments show that
1) minor changes to dictionary-based methods can significantly improve correction performance, 2) neural-
based correction systems can be trained using a fraction of the data, and 3) XNCC can have the dictionary
extended to generalize to new datawithout re-training. Lastly, we provide recommendations for progressively
building text correction systems at multiple levels of implementation effort based on our findings.

INDEX TERMS Natural language processing, machine learning, artificial neural networks, text generation,
spelling correction, text normalization, Thai language.

I. INTRODUCTION
With the ubiquitousness of the Internet and smart devices,
text-based communication has increased to an unprecedented
scale. Accurate spelling correction systems have become
essential for businesses when conducting critical written
communications (e.g., Emails, customer support chats, and
social media presences). In addition, proper application of
spelling correction on user-generated social text has been
shown to improve accuracy in downstream Natural Language
Processing tasks [1]. Nevertheless, the development of
such systems remains difficult. The complexity of the
Thai language, with its ambiguous word boundaries and
multiple valid alternative words for minor character-level
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approving it for publication was Long Xu.

modifications, poses challenges for accurate spelling correc-
tion. Existing dictionary-based methods lack the necessary
robustness without human assistance [2]. On the other
hand, state-of-the-art approaches like Seq2Seq models rely
on expensive human-annotated corpora of erroneous and
corrected text.

A significant hurdle in spelling correction is handling out-
of-vocabulary (OOV) tokens [2], [3], [4]. While dictionary-
based methods can be easily extended by the user, Seq2Seq
models are limited by the initial vocabulary. As a result,
special structures are employed to enable correctors to
produce OOV tokens. However, these techniques only allow
the model to leave out OOV tokens and not produce
corrections outside the initial vocabulary.

This brings us to the more general issue that dif-
ferent use-cases for correctors will have different target
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vocabularies. Despite the existence of official Thai dic-
tionaries [5], [6], they are rarely used in isolation by
dict-based correctors since new words, borrowed words,
slangs, and domain-specific words are a significant part
of written communication. Off-the-self correctors often use
dictionaries built from the target text corpus [7] or add
external dictionaries1 to alleviate this issue. Although these
general-purpose dictionaries are far from perfect, they can be
extended to fit the needs of the users.

In this study, we demonstrate how to build text correction
systems progressively and effectively. First, we introduce our
data annotation pipeline that efficiently produces data that is
applicable to a variety of existing text correction methods.
Our approach to annotation allows us to produce both data
for both dictionary-based and neural-based text correction
systems. Second, we introduce Extendable Neural Contextual
Corrector (XNCC), a neural-based text correction method
that can be extended with new vocabulary post-training. Our
corrector decouples the internal dictionary from the neural
text embeddings, allowing extensions to the dictionary during
inference time like traditional dictionary-based methods
while producing correction based on context provided by the
surrounding text. Finally, we outline steps implementors can
take to progressively build effective text corrector at different
total effort and resources.

This paper is structured as follows. Section II outlines
works relating the Thai text correction. Section III details
our recommended annotation pipeline for efficient data
annotation. Section IV layout our proposed text correc-
tion method, the Extendable Neural Contextual Corrector
(XNCC). Section V describes our experimental setup to
evaluate various text correction methods at various stages
of development. Section VI discusses the results of the
experiments. Section VII concludes the trade-offs of various
text correction systems and provides recommendation for
progressively building effective text corrector.

II. RELATED WORKS
The aim of spell correction is to correct erroneous words
into the words originally intended. Spell correctors can be
viewed as noisy channel models which aim to produce the
most probable correction. In noisy channel modeling [8],
the corrector models the signal (language modeling) and the
channel (i.e., errors being introduced into the text) to produce
corrections. In addition to the corrector, correction systems
often feature a detector to improve both speed and accuracy.
In this section, we will examine the various approaches to
spell correction by formulating how each method models the
noisy channel problem.

Dictionary-based correctors have the most simplistic mod-
eling. Error detection is quite simple, a token is considered
erroneous if it does not exist within the dictionary [9]. For lan-
guages without explicit token boundaries (e.g., Thai), a word

1LibreOffice dictionaries GitHub and SyafiqHadzir, Hunspell-TH
GitHub.

tokenizer is required for preprocessing. These correctors
are publicly available as Free open-sourced software (e.g.,
Peter Norvig [10], SymSpell [9], Hunspell2 and often come
with ready-to-use dictionaries. Dictionary-based correctors
(e.g., Peter Norvig, SymSpell) use lexical methods to model
the channel. For example, Peter Norvig and SymSpell use
Damerau-Levenshtein distance, that is correction candidates
with higher distance are less prefered. Simplistic forms of
language modeling such as word frequency and word grams
are used for tie breaking.

To better model the corrections, methods have been
proposed to augment both the channel model and the
language model. Character confusion [11], multi-character
edits [12] have been proposed for error correction in Thai
optical-character-recognition systems. References [13] and
[14] have proposed Soundex with multi-model reranking for
error correction in Thai search engine queries.

Since tokenizers are not accurate on noisy text, propagation
errors from tokenization are problematic for token-based
correctors. Specialized correctors such as [3] and [11] for
Thai and [15] for Chinese operate on the character-level and
utilize a pruned search algorithm.

Modern Thai correction adopted neural-based sequence-
to-sequence (Seq2Seq) methods from the English grammati-
cal error correction literature. Seq2Seq methods model both
the channel and the language in an end-to-end manner. This
exploits neural-based ability to learn features automatically
from erroneous-correct text pairs. In addition, modern
correctors meant for automatic correction have structures
to handle OOV tokens (e.g., names, new words). Copy-
Augmented Transformer [4] can copy tokens from the
source text, allowing the model to produce corrections with
unaltered OOV tokens. The two-stage corrector [2] uses a
detection-stage to mask out non-erroneous OOV tokens prior
to correction. However, these only allow leaving OOV tokens
uncorrected. On the other hand, dictionary-based methods
can produce correction with new tokens by adding them into
the dictionary. Since internal vocabulary of Seq2Seq models
is tied to the learnt neural embeddings, model re-training
and additional text with tokens are required to expand the
dictionary.

Modern English grammatical error correction (GEC)
research has focused on expanding the model training stage
(e.g., training on noisy annotated data [4], [16], training on
synthetic data [4], [17], [18]). In addition, researchers have
reformulated GEC into iterative editing task to utilize large
language models pre-trained on unannotated data [19], [20].

III. ANNOTATION
Our purposed annotation routine aims to address two issues:
expanding compatibility with text correctors and reducing
human effort required to annotate data.

Producing annotation data that is compatible with a variety
of text correctors allows implementors to pick text correction

2Hunspell website.
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methods that best suit their needs without locking them
into a specific class of models in the future. We annotate
at the character-level instead of word-level, corrections are
marked with the goal of one annotation covering one word
instead of a contiguous segment of errors. For example,
the erroneous text ‘‘I sea u’’ would be annotated as ‘‘I see
you’’ instead of ‘‘I see you’’ or ‘‘I see you’’. This lets us
derive a dictionary of individual correct and erroneous tokens
required for dictionary-based methods. Unlike previous
methods [2], [21] where the absence of corrective annotation
denotes correct tokens, annotators explicitly annotate both
correct and erroneous tokens. We found this method to
be highly effective at preventing erroneous tokens from
being introduced to the correct-tokens vocabulary, which is
important for dictionary-based text correctors.

To reduce the effort required to build enough data to
develop text correction systems, we utilize a dictionary-based
maximum-matching tokenizer to dynamically produce auto-
matic annotations. This exploits the fact that most errors are
non-word errors (erroneous tokens outside of the dictionary),
as shown in Table 7, and thus can be detected by dictionary-
based methods. Erroneous tokens detected are automatically
annotated with the most common correction. As a result,
texts that feature tokens from previous annotations are
automatically annotated and only require verification from
the human operators. Unannotated data are queued up for
annotation by the number of meaningful characters not
covered by the automatic annotations. To prevent train-test
leakage, annotations from the test-sets must not be used by
the automatic annotator when developing the training-sets
and the development-sets. All development-sets and test-sets
are fully annotated to ensure accurate evaluation. As a
result, for a each data source we recommend annotating the
development-set first, followed by the training-set, and then
test-set. This ordering maximizes vocabulary coverage since
the annotators do not need to label tokens already present
in the development-set. Fig. 1 shows annotation coverage of
our Channel A data (see Section V-B) as we annotate the
data. 89.4% character coverage 89.8% token coverage on the
training set is achieved from automatic annotation purelywith
data from the development-set.

For our experiments in Section V, we explicitly instruct
our annotators to verify every automatic annotation for every
line they annotated. However, our preliminary experiment
on similar data only required our annotators to fill in the
gaps left by the automatic annotations (see Appendix B).
Both methods have their own pros and cons. Although, only
annotating the gaps left by the automatic annotations reduced
the effort required for each data entry. This approach can lead
to more unique non-word errors being discovered given the
same annotation effort but at the expense of real-word errors
left unannotated.

At training time, unannotated data are annotated using the
same method for producing automatic annotations. Although
some of the automatic annotations are mislabeled, they
are still helpful when either in-domain data is abundant,

FIGURE 1. Estimated coverage of Channel A training-set as data is being
progressively annotated. The vertical line at the 750th annotation marks
the switch to queuing data based on number of noncovered characters.
Only 859 out of 60,405 lines of the training set were annotated by
humans, coverage primarily comes from automatic annotations. Coverage
is only an estimatation since some automatic annotations are mislabeled.

or annotation capacity is limited. Nevertheless, our results
(in Section VI) demonstrate that performant neural correctors
can be built using this practice.

IV. EXTENDABLE NEURAL CONTEXTUAL CORRECTOR
(XNCC)
Our proposed method, XNCC, consists of four modules:
text normalization, tokenization & masking (TokM), error
detection, and correction. The overall structure is shown
in Fig. 2. The primary contribution of XNCC is the novel
correction module which utilizes neural-based generation
techniques to separately model the error channel and the
language. The input text is passed to the text normalization
module (detailed in Appendix A). The normalized text
is tokenized with tokens outside our scope masked out
by predefined rules (see Section IV-B). Concurrently, the
normalized text is detected for errors using a neural-based
error detector (see Section IV-C). The error ranges produced
from the detection module are projected into the tokenized
text with masking. The unmasked tokens that overlap with
error ranges are merged into erroneous segments (requiring
correction). The tokens, along with erroneous segments, are
passed to the correction module (see Section IV-D), which
produces the final corrected sequence.

A. EXTENDABLE DICTIONARIES
In addition to the static vocabularies used by neural models,
XNCC also features two extendable dictionaries: the error
dictionary (error-dict) and the correct dictionary (correct-
dict). This allows recognition and correction of new words
without model retraining.

The error-dict is a many-to-many mapping from mis-
spellings (error-tokens) to their possible corrections (correct-
tokens). For example, the erroneous token ‘‘ ’’ is mapped
to two correct tokens: ‘‘ ’’ and ‘‘ ’’. The error-dict can
be produced from the individual annotations that contain a
correction. Moreover, frequently misspelled words can also
be directly added to the error-dict.
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FIGURE 2. Structural overview of the Extendable Neural Contextual
Corrector (XNCC). The figure shows the model operating on an example
input ‘‘I sea u #U’’. The English example is chosen for clarity, XNCC
operates on Thai.

The correct-dict is a many-to-one mapping from
correct-tokens to a token in the neural-based Language
Model vocabulary (LM-vocab). Since both the correct-dict
and LM-vocab are built from the correct-tokens present in
the training data, the tokens in the correct-dict are typically
mapped to LM-token of the same spelling. On the other
hand, rare correct-tokens that are cut off from LM-vocab are
mapped to the UNK token. When a correct-token is added to
the correct-dict, it should be mapped to LM-token that is a
synonym. If a synonym does not exist, it is mapped to UNK
token.

Manual additions to the extendable dictionaries are highly
task specific. Our preliminary experiment of directly adding
the whole official Thai dictionary [5] has resulted in
unsatisfactory performance since archaic words are not
present in our data.

B. TOKENIZATION & MASKING (TokM)
Our TokM module enables the model to recognize tokens
present in the correct-dict, while masking out some portion
of the text to prevent correction. The TokM module consists
of four stages: multi-mask-tokens, dictionary-tokens, single-
mask-tokens, and special-tokens. Each stage extracts tokens
in positions not previously marked by the prior stages.
Since each stage also masks the stages after it, the stages
are ordered according to their size. For our task, we have
categorized six types of mask-tokens: URLs, Hashtags,

numbers, alphanumeric codes, English text, and text from
other languages. First, the multi-mask-tokens stage is respon-
sible for extracting URLs and Hashtags, which can contain
other regular tokens. Second, the dictionary-tokens stage uses
the maximum-matching tokenizer with the correct-tokens
dictionary to extract regular tokens. Third, the single-mask-
tokens stage extract and mask-out numbers, alphanumeric
codes, English text, and text from other languages. Lastly,
the special-tokens stage collects the remains text which are
symbols (e.g., space, ‘−’, ‘;’, ‘:’, ‘!’, ‘?’, ‘.’, ‘$’, ‘ , ‘ ’) and
single character regular tokens (i.e., ‘‘ ’’, ‘‘ ’’, ‘‘ ’’).

C. ERROR DETECTION
Our error detection module features the same error detector
as [2], which is a multi-layer Bidirectional-LSTM sequence
tagger with Bi-LSTM character encoding [22], [23].

The input text is tokenized into a sequence of tokens
w⃗ = {w1,w2, . . . ,wN } by a maximum-matching tokenizer.
This specific tokenizer uses the detector vocabulary as its
dictionary. The error detector produces a label of either Error
or Correct for each input token wi.
The vocab is derived from source tokens in the training

data. Therefore, it includes both correct and erroneous
tokens. The normalized text from our annotation routine (see
Section III) is tokenized with the vocab. The word-level
tokens are labeled as Error if they overlap with any corrective
annotation. The model is trained with gradient descent. The
hyperparameters are listed in Appendix C.

D. ERROR CORRECTION
The corrector searches for a sequence of corrective opera-
tions which produce the lowest correction cost. Corrective
operations are split into character-operations (char-ops)
and token-operations (token-ops). There are three types
of char-ops (i.e., char-acceptance CA∗, char-deletion CD∗,
char-insertion CI∗) and three types of token-ops (i.e.,
sequence-begin TBEGIN , token-acceptance TA∗, sequence-
terminate TEND). Intuitively, the char-ops dictate how to input
characters are accepted or modified, while the token-ops
dictate how the resulting characters are decoded into tokens.
Fig. 3 shows a correction of an example input ‘‘I sea
u #U’’, which produces the target sequence ‘‘I see you
#U’’, alongside the corrective operations. Calculation of the
correction cost is detailed in Section IV-D1. Section IV-D2
outline the rules for generating corrective operations and
implementation details on how to keep track of the search
state. Section IV-D3 explains how the corrector optimizes for
the corrective operations with the lowest cost.

1) CORRECTION COST
The corrector uses the Edit Model and the Language Model
to compute the correction cost of possible output sequences.
Given a possible output sequence Tokens, the correction
cost is defined as the sum of fluency cost and edit cost for
each token ti (see Eq 1). Intuitively, fluency cost penalize
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FIGURE 3. XNCC correcting the input ‘‘I sea u #U’’ which is preprocessed by prior stages as shown in Fig. 2. The English example is chosen for clarity,
XNCC operates on Thai. Outputs with a highlighted border contribute to the correction cost.

improbable output sequences while the edit cost penalize
improbable edits.

The fluency costs Fluti are computed from negative
log-probabilities for each token ti in Tokens estimated by the
Language Model minus the token-reward constant α clipped
to a minimum value of zero (see Eq 2). The token-reward
constant α is used to alleviate preference for short sequences
when decoding [24], [25].

If the token ti was generated using modifying char-ops,
such as CD or CI , the edit cost Editti is determined by the
scaled sum (β) of the edit-cost constant γ and the negative
log-probabilities associated with each modifying char-op
(ej ∈ Edits) used to produce the token ti (see Eq 3). However,
if the token ti was solely produced through char-acceptance
operations (CA∗), the edit cost is influenced by the dictionary
from which the token was decoded. In the case of the token
ti, the edit cost can take either a value of zero (Editti = 0) or
the map-cost constant (Editti = δ), depending on whether
the correct dictionary or the error dictionary was utilized,
respectively.

Cor =

Tokens∑
ti

(Fluti + Editti ) (1)

Fluti = max(0, − log(p(ti | t1, . . . ti−1)) − α) (2)

Editti = β

Edits∑
ej

(γ − log(p(ej | e1, . . . ej−1))) (3)

2) SEQUENCE GENERATION
The corrector produces a target sequence by performing
corrective operations. The specific rules used for generating
operations are outlined below.

Tokens from the correct-dict, the error-dict, and special-
tokens (from Section IV-A) are populated into a trie. The

trie is used to constrain the search space by preventing the
exploration of char-ops that would not lead to a valid token.
Tokens from the error-dict and special-tokens in the trie are
unreachable if CD∗ or CI∗ was performed since the last TA∗.

For the production of every possible sequence, the
corrector keeps track of the following as the search state:
a pointer to the trie to represent the current token being
produced, a cursor on the input text, a set of characters that
have been deleted since the last CA∗; and the correction cost
of the sequence.

The root search state starts with the initial operation
TBEGIN . The pointer is pointed to the root trie node, The
cursor is set to the beginning of the input. And the cost is
set to zero.
Character-acceptance (CA∗) can be performed if the

cursor is not at the end, if there exist an edge of the same
character as the cursor on the current trie node, and the
character is not in the delete-set.When performed, the pointer
advances to the node of the same character, the cursor is
moved by one character, and the delete-set is cleared.
Character-deletion (CD∗) can be performed if the cursor is

not at the end, the previous op is either CA∗, CD∗, or TBEGIN .
When performed, the cursor is moved by one character, add
edit cost for deleting the cursor character, and the character is
added to the delete-set.
Character-insertion (CI∗) can be performed for any

character that is an edge from the trie node, and is not
a character in the delete-set. When performed, the pointer
advances to the node of the same character and adds edit cost
for inserting the character.
Token-acceptance (TA∗) can be performed if the trie node

is a token, and either the cursor is at the end or the cursor
character is not in the delete-set.When performed, the pointer
resets to the root trie node, adds fluency cost for producing the
corresponding correct token. If the token is from the error-
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FIGURE 4. The sequence-modeling architecture used in both the
language model and the edit model.

dict, the edit cost is the map-cost δ. If all character ops since
last TA∗ are CA∗, edit cost is zero. Otherwise, edit cost is the
cost of terminating the edit sequence.
Terminate (TAEND) can be performed if the cursor is at the

end, and the pointer is at the root trie node. When performed,
add fluency cost for producing an END token. This operation
marks the end of the sequence generation.

When the cursor is operating on portions of text that are
not marked for correction, only TA∗ ops are allowed. The
generation of TA∗ are based on token boundaries produced
from TokM (see Section IV-B).

3) OPTIMIZATION
Our approach for optimizing the target sequence involves
using Dijkstra’s algorithm [26] to find the lowest-cost path
from the initial state TABEGIN to the terminal state TAEND.
This method was inspired by [11] and [15] use of search
for token decoding. We have also incorporated a modified
beam search to reduce the search space. Beam search is
a greedy algorithm that restricts the number of paths to
explore at each level [27]. Our preliminary experiments have
revealed that defining the beam depth as the output length
leads to the incorrect insertion of new characters for the
sake of increasing number of tokens. Therefore, we propose
a modification to the traditional implementation of beam
search where we define the depth of the input characters
consumed (i.e., the cursor position, see Section IV-D2) to
prioritize input consumption instead.

4) LANGUAGE MODEL (LM)
The Language Model (LM) is a simple autoregressive
recurrent neural network with a two-layer Gated recurrent
unit [28] and shared weights between the embeddings and
the output layer. The architecture is shown in Fig. 4. Tokens
are embedded by the projection layer. The embeddings are
encoded by the two-layer bi-directinal GRU. The encodings
are projected back to the token space by the projection layer.
Effectively the model performs cosine similarity between the
each encoding and the token embeddings.

The vocab is derived from corrected tokens in the training
data plus three special tokens: BEGIN , END, and UNK .
LM is trained with gradient descent to model a sequence of
correct token. The hyperparameters are listed in Appendix C.

FIGURE 5. Distribution of normalized text length in characters for
channel A.

5) EDIT MODEL (EM)
The Edit Model shares the same architecture as the Language
Model, as shown in Fig. 4. However, EM models a sequence
of edit operations instead of a sequence of word-tokens.
The vocabulary consists of three variants of edits for each
character in character-set and two special tokens: BEGIN and
END. The three variants correspond to the char-ops (detailed
in Section IV-D2). Vocabulary coverage of input is ensured
by text normalization (see Appendix A) and token masking
(see Section IV-B).

EM is trained on sequences of edit operations produced
from error-correct word pairs derived from the annotations.
The distribution frequency of each error-correct pair in data
is maintained during training. The hyperparameters are listed
in Appendix C.

V. EXPERIMENT SETUP
Our experiment setup aims to evaluate three scenarios:
1) building text correctors from scratch with data annotation,
2) domain transfer text correctors to another with additional
data annotation, and 3) domain transfer text correctors to
another without data annotation. Our experiment consists of
three data channels, which corresponds to the three scenarios.
Details about the data from each channel are detailed in
Section V-A. Data entries from each channel are shuffled
and split into three sets: training-set, development-set, test-
set. Models are built or trained using the training-set and the
development-set unless explicitly stated otherwise, whereas
the test-set is used for evaluation. Of the three scenarios, the
models are evaluated in various configurations detailed in
Section V-C.

A. DATA SOURCES
Our data is collected from 3 automated text-based chatbot
channels, which is named in the paper as A, B, and C. Data
is only collected for the client side (does not include chatbot
automated response). Channel A and B are used by separate
groups of our customers whereas channel C is used by our
internal staff. Due to the short nature of chat messages (as
shown in Fig. 5, 6, and 7), many duplicate entries exist across
multiple users and channels. The text data is normalized
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FIGURE 6. Distribution of normalized text length in characters for
channel B.

FIGURE 7. Distribution of normalized text length in characters for
channel C.

FIGURE 8. Overlap of normalized unique channel data.

(detailed inAppendixA)with the duplicates removed on a per
channel basis. A data entry is a unique normalized text from
some channel. The overlap of data entry between different
channels is shown in Fig. 8 and 9.
Overall, texts from channel A and B are shorter and

contain more errors than channel C. This is apparent when
observing the length distribution (shown in Fig. 5) and base
error-rate of the data (shown in the ‘‘Do nothing’’ row of
Tables 3, 4, and 5)

B. ANNOTATION INFORMATION
Our data is annotated in the following order, A development-
set, A training-set, A test-set, B development-set, B test-set,
and C test-set. Our annotation routine is detailed in

FIGURE 9. Overlap of normalized unique channel data normalized along
the vertical axis. ‘‘26.7’’ denotes that 26.7% of data in channel B is also
present in channel A.

FIGURE 10. Annotation speed from 60 minutes of annotation. The
horizontal line shows the average speed of 31.7 tokens per minutes.

Section III. The training-set of channel A is partially
annotated until the automatic annotations cover ∼98% of the
data. The training-set of channel B is annotated purely with
automatic annotations. Details of each data split are shown
in Table 1. Fig. 10 shows the annotation speed of an hour of
continuous annotation. A single annotator is able to annotate
1,899 tokens in an hour, averaging 31.7 tokens per minute.
Annotations include both confirming tokens from automatic
annotations and annotating new tokens.

C. CONFIGURATIONS
Given one of the three scenarios, an implementor hasmultiple
options to utilize the available data.

First scenario: the implementor is developing a new
text corrector without pre-existing annotated data of their
target domain (channel A). When starting from scratch, the
implementor would start experimenting with off-the-shelf
solutions. We start off with evaluating off-the-shelf methods
on channel A, requiring only annotating the test-set. Then
the implementor might start annotating their data for model
training. We experimented with utilizing different amounts of
the annotated training-set (i.e., none, half, and all) alongside
a fully annotated development-set.
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TABLE 1. Details of each data split.

Second scenario: the implementor is developing a text
corrector for a new domain (channel B) that is similar to
an existing domain (channel A). We experimented with
directly utilizing the existing text correctors to see how they
generalize to the new domain. Then, we evaluate how each
model performs when given additional in-domain data for
training (also known as transfer learning for neural-based
methods).

Third scenario: the implementor is developing a text
corrector for a new domain (channel C) that is significantly
different from the annotated data they already have. Like
the second scenario, existing text correctors were evaluated
on the new domain. However, instead of continuing experi-
menting by annotating more data, we focus on methods that
can easily (retraining not required) have their vocabularies
extended to evaluate how each text corrector performs when
new words are added by the users.

D. EVALUATION CRITERIA
Word-error-rates (WER) and General Language Evaluation
Understanding (GLEU) were chosen for their use in prior
Thai text correction research [2], [3]. WER is the relation
of errors in some given sequence to the length reference
sequence. Errors are defined as the minimum number of
insertions, deletions, and substitutions needed to correct the
given sequence to match the reference. Whereas GLEU,
at a high level, compares the given sequence against the
reference at the grams-level instead of word-tokens. Given
two sequences of the same WER, GLEU will penalize
sequences with sparse distribution of errors, which is found
to have a higher correlation with human judgment [29].

FIGURE 11. GLEU scores on channel A with varying amount of training
data.

VI. RESULTS & DISCUSSION
This section shows and discusses the results of the exper-
iments outlined in Section V. Ablation study of XNCC is
detailed in Appendix B-A.

For the first scenario, we experiment with developing text
correction systems from scratch for channel A. Evaluation of
all models and configuration are shown in Tables 2 and 3.
Publicly available dictionary-based methods along with the
built-in dictionary were unable to reduce the overall errors.
However, the combination ofHunspell with a clean dictionary
produced with our annotation routine and an error aware
tokenizer was able to reduce the overall number of errors.
Fig. 11 and 12 shows the results at varying amount of training
data. The two-stage contextual attention (2-stage Ctx-Attn)
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FIGURE 12. Word-error-rate on channel A with varying amount of training
data.

FIGURE 13. XNCC GLEU scores on channel C with varying amount of
test-set tokens added to the dictionary. The 0% and 100% results are the
same as the ones reported in Table 5.

FIGURE 14. XNCC WER on channel C with varying amount of test-set
tokens added to the dictionary. The 0% and 100% results are the same as
the ones reported in Table 5.

performed the best in reducing the overall number of errors
at all amounts of annotated data. While XNCC, although

TABLE 2. Evaluation of dictionary-based correction methods on
channel A.

TABLE 3. Evaluation of correction methods on channel A.

significantly better than Hunspell, is not as accurate as the
2-stage Ctx-Attn.

For the second scenario, we experiment with developing
text correction system for another domain (i.e., channel B).
Results show that XNCC and 2-stage Ctx-Attn perform
similarly with around 60% error rate reduction (Table 4).
Transferring the annotated data from channel B back to
channel A results in higher correction performance for all
models across the board (Table 3, Fig. 11 and 12).

For the third scenario, we experiment with repurposing
existing text correction systems in a significantly different
and challenging domain (i.e., channel C and significantly
lower base error rate). Without modifications, all methods
were unable to produce corrections that further reduce the
error rate. However, XNCC was able to further reduce the
error rate by 38% and 45% when its dictionary was extended
with correct tokens and error-correct token pairs respectively
(Table 5). Fig. 13 and 14 show the GLEU scores and WER
of XNCC at varing amounts of extensions to the dictionary.
The correct tokens and the corresponding error-correct token
pairs are added in descending order of their frequency.

VII. CONCLUSION
This paper evaluated how a multitude of text correction
approaches perform at various stages of development.

When starting from scratch in some domain (channel A),
off-the-shelf systems alone are unsuitable for performing
automatic text correction since they introduce more errors
than they correct. While prior work has not found success
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TABLE 4. Evaluation of correction methods with various configurations
on channel B.

TABLE 5. Evaluation of correction methods with various configurations
on channel C.

in utilizing dictionary-based methods [2], we have found
that given a clean dictionary and a tokenizer that is aware
of erroneous tokens, dictionary-based systems can produce
correction that reduce the overall error rate. Since Hunspell
and maximal matching tokenization implementations are
publicly available, they serve as a good starting point for
implementors. Given access to computational resources and
engineering effort, the two-stage contextual attention (2-stage
Ctx-Attn) [2] performed the best on all amount of annotated
data for correcting in-domain text. Our proposed correction
method significantly out performed Hunspell but is not as
accurate as 2-stage Ctx-Attn.

When adapting existing resources to produce text correc-
tion systems to a new domain of similar nature (channel
B), directly utilizing effective systems developed for the
existing domain (Hunspell, XNCC, 2-stage Ctx-Attn trained
on channel A) proved robust at reducing the total amount of
errors. However, more accurate corrections can be achieved
with little annotation (only annotating the development-
set). When jointly using annotated data from both domains
XNCC and 2-stage Ctx-Attn performed comparably on the
new domain. Given the additional annotations from the
new domain, adapting the data back to the original domain
also provides uplift in correction performance for all three
effective methods.

When utilizing existing correctors on a significantly
different and more challenging (having a lower base error
rate) domain, XNCC is recommended. XNCC can have its
dictionary easily extended with tokens for the new domain
and produce corrections that further reduce the error rate.
Since XNCC was specifically developed for Thai correction,
it can be adapted to other languages without explicit token
boundaries (e.g., Chinese, Japanese) or provide correction on
inputs with incorrect boundary markers.

APPENDIX A
TEXT NORMALIZATION
Our text normalization routine has three primary objectives:
produce stable normalization (i.e., consistent output across
multiple passes), conform to industry-standard NKFC-based
normalization,3 and provide obvious non-destructive correc-
tions.

The Thai character-set consists of consonants (C), vowel
characters, and tone marks (T i.e., , , , ). One or more
vowel characters are use to write actual vowels in the Thai
Language. There are four types of vowel characters used in
modern text: leading vowel (L i.e., , , , , ), hanging vowel
(H i.e., , , , , , , , ), following vowel (F i.e., , , ).
This normalization attempts to produce text with the follow-
ing pattern: ‘‘LCHTF’’. Thus, specific patterns of characters
can be reordered non-destructively.

The text normalization routine is as follows:
1) Performing standard NKFC Unicode normalization
2) Replacing two consecutive ‘‘ ’’ with an ‘‘ ’’
3) Undoing decomposition of ‘‘ ’’ from NKFC normal-

ization
4) Merging consecutive instances of the same vowel

character or tone mark
5) Reordering ‘‘LTC’’ as ‘‘LCT’’
6) Reordering ‘‘CTH’’ as ‘‘CHT’’
7) Reordering ‘‘CFT’’ as ‘‘CTF’’
8) Merging consecutive instances of the same vowel or

tone mark, again
9) Redoing decomposition of ‘‘ ’’

APPENDIX B
PRELIMINARY EXPERIMENTATION
Prior to the experiments in Section V, we carried out a
preliminary experimentation on an older version of channel A
data. There are three differences between the preliminary data
and the final data. First, development-set is not considered
a separate data split that is fully annotated like the test-set.
Instead, the development-set is part of the larger training-set
and as a result mostly comprised of automatic annotations.
Second, the annotators are not instructed to confirm every
automatic annotation. As a result, the annotators effectively
perform partial annotations to fill in the gaps between the
automatic annotations. Third, the data from other channels

3Unicode Normalization Forms.
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TABLE 6. Annotation information of our preliminary data.

TABLE 7. Type of tokens in source text of our preliminary test-split
(channel A), which is comprised of fully annotated lines.

TABLE 8. Results comparing various text correctors from our preliminary
experiments.

TABLE 9. Comparison of XNCC with various components in the corrector
removed on our preliminary data (older version of channel A).

TABLE 10. XNCC inference time on 300 lines of text (2,483 tokens).

were combined into an out-of-domain set. Information about
our preliminary data is shown in Tables 6 and 7.

TABLE 11. Hyperparameters of XNCC.

Results for the preliminary experiments are shown in
Table 8 and are in-line with results in Table 3 from SectionVI.

A. ABLATION STUDY
During our preliminary experimentation with XNCC,
we conducted an ablation study to analyze the effect of each
XNCC Corrector sub-module on end-to-end performance.
We start with a bare corrector with only the correct-dict. In the
absence of the LM and EM, the fluency cost Fluti is zero, and
the edit-cost of character-edits is γ . The results of various
configurations are shown in Table 9.
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TABLE 12. Error analysis of XNCC and 2-stage Ctx-Att on 30 lines sampled from the test-split.

Themapping from error-dict to correct-dict was first added
since it has the most significant impact on performance. This
order aims to underscore that the mapping does not supersede
other modules.

Overall, the results show that all three sub-modules in
the XNCC Corrector module and the fine-tuning routine
play a part in improving the final correction performance.
In addition, the strong correction performance of entry #2 also
suggests that a dictionary of misspelled tokens might be the
missing trick to improve dictionary-based text correctors.

Lastly, we also experiment with extending the dictionary
post-training. Entries #7 and #8 demonstrate the ideal case of
extending the dictionary with relevant tokens.

APPENDIX C
HYPERPARAMETERS
Hyperparameters for all modules in XNCC are shown
in Table 11. Reference to hyperparameters of the Error
Detectionmodule follows the same naming convention as [2].
The rest of the hyperparameters are named as per Section IV.

APPENDIX D
ERROR ANALYSIS
We sampled and analyzed 30 corrected lines on the test-split
of channel Amade byXNCC and 2-stage Ctx-Att. The results
are shown in Table 12. Of the 30 lines sampled, 6 lines
do not require any correction. Of the 24 lines that required
correction, 33 errors required correction. Of the 33 errors,
23 were non-word errors and 10were real-words errors. Of all
6 lines that do not require correction, both methods operate
correctly and left the lines alone. Both XNCC and 2-stage
Ctx-Att share the same set of corrected and uncorrected real-
word errors. For the non-word errors, errors that 2-stage
Ctx-Att is able to correctly corrected is a superset of the ones
by XNCC.

Overall, both correctors are very conservative with their
corrections. Of the 30 lines analyzed, both methods only
made one mis-correction, and no errors introduced to any
existing correct tokens.

APPENDIX E
INFERENCE TIME
This section discuss about XNCC inference time and
optimization opportunities. The contextless nature of XNCC
error modeling enables caching of token-level edit-cost.
Table 10 shows inference time of XNCC on a separate dataset
consisting of 300 lines (2,483 tokens) with a base word-error-
rate of 16.96% executed on a single CPU core. XNCC is
experimented on three configurations: without caching, with
cold cache, and with hot cache. Special thanks to Atthakorn
Petchsod for optimizing XNCC and running the experiments.
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