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ABSTRACT AI has introduced a new reform direction for traditional education, such as automating
Grammatical Error Correction (GEC) to reduce teachers’ workload and improve efficiency. However, current
GEC models still have flaws because human language is very variable, and the available labeled datasets
are often too small to learn everything automatically. One of the key principles of GEC is to preserve
correct parts of the input text while correcting grammatical errors. However, previous sequence-to-sequence
(Seq2Seq) models may be prone to over-correction as they generate corrections from scratch. Over-correction
is a phenomenon where a grammatically correct sentence is incorrectly flagged as containing errors that
require correction, leading to incorrect corrections that can change the meaning or structure of the original
sentence. This can significantly reduce the accuracy and usefulness of GEC systems, highlighting the need
for improved approaches that can reduce over-correction and ensure more accurate and natural corrections.
Recently, sequence tagging-based models have been used to mitigate this issue by only predicting edit
operations that convert the source sentence to a corrected one. Despite their good performance on datasets
with minimal edits, they struggle to restore texts with drastic changes. This issue artificially restricts the
type of changes that can be made to a sentence and does not reflect those required for native speakers to find
sentences fluent or natural sounding. Moreover, sequence tagging-based models are usually conditioned on
human-designed language-specific tagging labels, hindering generalization and the real error distribution
generated by diverse learners from different nationalities. In this work, we introduce a novel Seq2Seq-
based approach that can handle a wide variety of grammatical errors on a low-fluency dataset. Our approach
enhances the Seq2Seq architecture with a novel copy mechanism based on a supervised attention approach.
Instead of merely predicting the next token in context, the model predicts additional correctness-related
information for each token. This auxiliary objective propagates into the weights of the model during training
without requiring extra labels at testing time. Experimental results on benchmark datasets show that our
model achieves competitive performance compared to state-of-the-art(SOTA) models.

INDEX TERMS Supervised attention, supervised copy mechanism, grammatical error correction, sequence-
to-sequence.

I. INTRODUCTION tasks, there are two objectives: first, to identify the errors

Grammatical error correction refers to the process of identify-
ing and correcting errors in written texts that violate the rules
of grammar. These errors can range from simple mistakes
in spelling, punctuation, and capitalization to more complex
errors involving the use of verb tense, subject-verb agree-
ment, sentence structure, and word choice [1]. In all GEC
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and correct them with high accuracy. Second, to keep the
already correct tokens as they are. Several approaches have
been proposed ranging from statistical to neural network-
based ones and from Seq2Seq to sequence tagging models.
Despite GEC being intensively studied for years, the best
models are still far from perfect. The Seq2Seq models have
been proven to be effective in machine translation(MT) [2].
Due to the similarity between MT and GEC, an encoder-
decoder model can be used for the latter as well. In which
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the encoder is used to encode the erroneous sentence and
the decoder generates the correct output sentence. However,
there are still some issues in GEC Seq2Seq-based models.
As studied by previous works [3], the frequent repetition and
omission of tokens occur in the Seq2Seq generation process
as a result of generating the sequence from scratch. More
importantly, there is no guarantee that the generated sentences
can keep all the original correct words while maintaining the
semantic structures [4].

Recently, sequence tagging methods [5], [6], [7] consider
GEC as a text editing task in which a set of edits would be
predicted and applied to convert a source sentence to a cor-
rected one, therefore bypassing some of the above-mentioned
problems of Seq2Seq models. This might justify the supe-
rior performance of sequence tagging-based models over the
Seq2Seq-based ones. After investigating the case, we found
that sequence tagging models work better when the errors are
at a minimum, whereas their performance drops drastically
when the original sentences are too long or contain low-
frequency tokens. Moreover, when it comes to corrections
that need longer insertions, most of these sequence tagging
methods rely on iterative corrections, which can reduce flu-
ency. In practice, especially with low-level learners, human
correctors may rewrite some parts of the sentence to make
it fluent and more natural, which may not be possible in
sequence tagging-based models.

We think that a generative model is in need to handle such
an issue. However, as mentioned in several related work, [3],
[4], [8], and [9] Seq2Seq models can suffer from the over-
correction problem that reduces their precision. To this end,
we propose a new model that can leverage the powerfulness
of Seq2Seq generative ability when needed and just copy
the correct tokens from the source to the target otherwise.
At a high level, the copy mechanism is a way to allow the
model to choose between copying parts of the input sequence
into the output sequence or generating from scratch. This is
particularly useful when dealing with tasks such as GEC,
where the input and output sequences share common sub-
sequences [10]. During decoding, the attention mechanism
can choose to attend to either the encoder’s hidden states or
the input sequence based on the decoder state and the output
tokens generated so far [11]. The challenge with regard to
copying in Seq2Seq is that new machinery is needed to decide
when to generate and when to copy.

Technically, the balance between copying and generat-
ing is controlled by a balancing factor learned implicitly
from the attention model during the training in an end-to-
end manner [12]. However, the attention methods adopted
in the existing copy mechanism models are non-parametric
or trained inside the model without explicit supervision, and
the attention results are poorly explained. We think that we
could supervise this balancing factor to guide the model in
deciding whether to generate or copy. Therefore, we propose
a token-level labeling task for the source sentence and assign
each token in the source sentence a label indicating whether
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this token is correct/incorrect. This can be used to calculate
the balancing factor as a learnable switch between copying
and generating that can be learned in a supervised way. The
training of the balancing factor is unified with the training
of the GEC model in a multi-task learning settings, both in a
supervised manner.

In this way, we conjecture that the proposed model will
have the following advantages: (1) Supervised copy mecha-
nism will encourage the model to copy the already correct
tokens with no change, which alleviates the over-correction
problem of Seq2Seq models. (2) The proposed model will
be able to handle more complicated errors compared to the
ones handled by sequence tagging models since the sequence
tagging models generate edits based on human-crafted rules
or vocabularies, especially when it comes to long insertions
and low-quality texts.

The main contributions of this work are two folds:

1) We enhance the current neural Seq2Seq architecture by
adding a supervised copy mechanism that enables the
model to copy the unchanged words directly from the
source sentence, just as humans do when they correct
sentences.

2) The new model is evaluated on three benchmark
datasets, CoNLL-2014 test set, BEA 2019, and JFLEG.
The first two benchmarks are minimal edits test sets,
and the third one is used to evaluate fluency. The model
constantly achieves competitive scores compared to the
recent SOTA.

Il. PRELIMINARIES

A. SEQUENCE-TO-SEQUENCE MODELS
Sequence-to-sequence (seq2seq) models are a class of deep
learning models that have gained significant traction in recent
years [13], particularly in natural language processing (NLP)
tasks, such as machine translation, text generation, Summa-
rization, and GEC tasks. The most prominent seq2seq model
is the Transformer [14]. It leverages self-attention mecha-
nisms to enable efficient parallelization and better handling
of long-range dependencies. It consists of an encoder and
a decoder, each of which is composed of multiple layers of
self-attention and feed-forward neural networks. The encoder
processes the input sequence x = (xi, ..., X,) and produces
a set of hidden representations h = (hy, ..., h,), while the
decoder generates the output sequence y = (y1, . . . , ¥,) based
on the encoder representations and the previously generated
output tokens. This powerful architecture has inspired state-
of-the-art models such as GPT-3 [15] and T5 [16]. In the
context of this work, we use the Transformer as a core com-
ponent in our proposed model due to its proven success and
adaptability across various tasks [14], including machine
translation, summarization, and dialogue generation.

B. ATTENTION MECHANISM

The attention mechanism is a key component in many
deep learning models, particularly in the Transformer
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architecture [14]. It is a mechanism that allows the model to
selectively focus on different parts of the input sequence when
making predictions. It was first introduced in the context of
neural machine translation by Bahdanau et al. in 2014 [17].
In a Transformer model, the attention mechanism is used
to compute a weighted sum of the input representations,
where the weights are determined by the similarity between
the current hidden state of the decoder and the represen-
tations in the encoder [18], [19]. This allows the model
to attend to different parts of the input sequence at each
time step rather than processing all of the inputs in a fixed
order.

Classically, an attention model can be learned implicitly,
i.e., in an end-to-end manner based on the final objective
of the model. However, due to sparsity issues caused by
a large number of free parameters in large models trained
on small datasets [20], overfitting might occur. Supervised
Attention Mechanism is a type of attention mechanism used
in deep learning models, particularly in NLP tasks such as
machine translation [21], sentiment analysis [22] and text
classification [23]. In a supervised attention mechanism, the
model is trained with labeled data to learn where to focus
its attention on the input sequence. It has been shown to
improve performance on NLP tasks compared to models
that use unsupervised attention mechanisms or no attention
mechanism at all [21]. By incorporating explicit supervision,
supervised attention mechanisms can learn to attend to the
most relevant parts of the input more effectively, leading to
improved predictions [24].

C. COPY MECHANISM

The copying mechanism is important to human language
communication. It basically refers to locating a certain seg-
ment of the source sentence and copying it as it is to the target
sequence [25]. In Seq2Seq models, the copy mechanism
refers to a mechanism that allows the decoder to copy words
directly from the input sequence to the output sequence [25].
This is especially useful in cases where the output sequence
is a rephrased or translated version of the input sequence, and
there are words or phrases in the input sequence that cannot
be accurately captured by the language model’s vocabulary.
During decoding, the attention mechanism can choose to
either attend to the encoder’s hidden states or directly copy
a token from the input sequence. The copy mechanism is
implemented by adding a binary indicator for each token in
the encoder’s input sequence, indicating whether the token
should be copied directly from the input sequence or gen-
erated by the language model [26]. This results in a hybrid
generation approach that combines the strengths of both the
language model and the copy mechanism. This approach can
significantly improve the performance of Seq2Seq models in
specific use cases, such as machine translation [21], [25], text
summarization [12], GEC, and data-to-text generation [27].
In the context of GEC, the copy mechanism allows the model
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to directly copy already correct tokens from the source sen-
tence to the target one.

D. MULTI-TASK LEARNING APPROACHES (MTL)

Multi-task learning is a type of machine learning approach
that involves training a single model to perform multiple
related tasks simultaneously. Instead of training separate
models for each task, a multi-task learning model learns to
share information and leverage the correlations between the
tasks to improve overall performance [28]. In MTL, a shared
representation is jointly learned from multiple tasks [29].
Theoretical results have shown that the joint training scheme
with MTL is more sample efficient than single-task learning,
at least under certain assumptions of task relatedness, linear
features, and model classes [9]. A work proposed by [29]
tried to study the influence of auxiliary tasks on multi-task
learning for sequence tagging problems. They concluded that
applying similarity measures to choose the auxiliary dataset
for MTL has increased the main task performance. In the
context of GEC, the work of [9] is the only work that mentions
multi-task learning for GEC. They added token-level and
sentence-level multi-task learning for the GEC task. How-
ever, their model is a Seq2Seq model that inherited all the
Seq2Seq issues mentioned earlier in this section.

IIl. THE SUPERVISED ATTENTION-BASED MODEL

A. BASE ARCHITECTURE

The work of [9] is the most similar to ours. However, it may
not be an appropriate baseline for our proposed approach.
This is because the previous work [9] used different pre-
training data and a different transformer version than our
proposed approach. These differences in pretraining data and
transformer version can significantly affect the performance
of the model, making it difficult to compare the performance
of the two approaches in a fair and meaningful way. There-
fore, we implemented our own baseline that uses the same
copy mechanism architecture as [9]. This baseline was trained
and tested under our experimental settings, using the same
pretraining data and transformer version as our proposed
approach. This approach ensures that any performance dif-
ferences between our proposed approach and the previous
work are due to differences in the model architecture and
training methodology rather than differences in pretraining
data or the transformer version. Therefore, our baseline uses
the most commonly used Transformer Architecture for GEC,
Transformer (big) model [14], with a 6-layer encoder (enc)
and a 6-layer decoder (dec) with 1,024 hidden units and
copy mechanism. Regarding the copy mechanism, most of
the current works, such as [9], follow the following pattern
to calculate the final probability distribution, which will be
used as a base model for this work, as shown in Fig 1.
For each output token y; at output position ¢, given source
token sequence x=(xi,...,x7), the generation probability
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distribution over token vocabulary Y is defined as:
P i | yi—15 %) = softmax(WE [, 0,]), y € T (1)

where W& is a learned parameter and:

he = dec(yy.—1: H™™) @)

H* = enc(x) 3)
(ha’eC)THenc

§; = softmax(tT) 4

0, = H" s, 3)

The copy probability can be calculated from the attention
distribution as follows:

PO | yra—1:%) = ¢ (6)
and the combined final probability is calculated using Eq.7:

pOn) = (1= a“P).p“P () + P p*""(v) (7

where o“PY is the balancing factor between p°°?Y and p8"
calculated using Eq. 8.

aP = a(W*) o) ®)

where W is a learned parameter. The balancing factor o“PY
is learned implicitly by an attention mechanism during the
training. However, the currently used attention methods are
non-parametric or trained inside the model without explicit
supervision. We think that supervising this balancing factor
could guide the model to decide whether to generate or
copy in a more efficient way. Therefore, we enhance the
copy mechanism with a token-level labeling task that can
be learned jointly with the Seq2Seq objective in multi-task
learning settings. This leads to a refined calculation of the
balancing factor that serves as a switch between copying and
generating, learned through a supervised approach. We will
delve into the details of this process in the subsequent sec-
tions.

B. THE PROPOSED MODEL
As shown in Figure 2, the following are the main components
of the proposed model:

1) TOKEN-LEVEL LABELING TASK

We extract the labels for this task from the annotated GEC
used in this work. To generate the labels, we assign a binary
label for each token, indicating whether it is correct or incor-
rect. Under the assumption that each source token x; can be
aligned with a target token yj, a token is correct if x; = yj,
and incorrect otherwise. The alignment has been done using
fast-align.!

1 https:///github.com/clab/fast_align
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2) MULTI-TASK LEARNING

For each token in the source sentence, a label is assigned
indicating whether this token is correct or incorrect. Each
token’s label is predicted by passing the final state of the
encoder through a softmax after an affine transformation,
as shown in Fig 2. Two tasks will be jointly learned in our
model, and each task has its corresponding loss function.
The cross-entropy between the ground truth labels and the
predicted labels can be considered as an auxiliary objective
to be learned jointly with the GEC objective function. The
total loss will be as follows:

Liotal = lcorr + )\ldet (9)

where A € [0, 1] and I, and l4; are the individual losses of
the correction and the detection task, respectively.

3) SUPERVISED COPY MECHANISM

In the new method, we followed the same calculations except
for the way of calculating the alpha «“°?Y. Thus, Equations
Eq.1, Eq.2, Eq.3, Eq.4, Eq.5, and Eq.6 remain the same as
described in Section III-A. To learn the balancing factor,
a token-level labeling task is used for the original sequence
in which a binary label is assigned for each token in the
source sentence indicating whether this token is correct or
incorrect, as mentioned in Section III-B1. Each token’s label
is predicted by a binary classifier with a soffmax and an affine
transformation at the top of the encoder with the final state
H?" of the encoder as input, as shown in Eq. 10.

2 = p(label; | x1..n) = softmax(WTh"¢),  (10)
The balancing factor, «??”, is then calculated as:
@ = o (W) 0) (1D
where:
c=H"7 (12)

The final probability distribution is calculated according to
Eq. 13:

pOn) = (1 = a“P).p P (yr) + a“P p5 (vr) (13)

In this way, we directly optimize the copy mechanism in
a supervised way. It is worth mentioning that the supervised
attention mechanism used in this work may play as a regular-
izer in the multi-task learning objective since it can mitigate
the vanishing gradient problem during the back-propagation
by adding supervision into the intermediate layers in the
network [30].

a: AN ILLUSTRATION OF SUPERVISED COPY MECHANISM
From the calculation of the final probability in Eq. 13, we can
see that the value of the «“”?” plays as a balancing factor
between the magnitude of the copy and generate probabili-
ties, so:
o If ¢PY is near one, the model leans towards generation.
o If «“PY approaches 0, the model favors copying.
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FIGURE 1. The traditional way of calculating the final probability distribution.

This balance is visualized as:

Copy a®PY =0

Generate o°P’ ~ 1

pOy) = [

Following the newly proposed method for calculating
aPY as in Eq.10, Eq.11, and Eq.12, the token label prob-
ability for each correct tokens y;, will gravitate towards zero,
favoring the copy score in the probability of y;. Conversely,
if y; is incorrect, the token label probability leans towards
one, giving the generation score a significant contribution to
the probability of y;. This dynamic nudges the model to copy
when a token is correct.

Figure 3 provides a practical example of how «“P” val-
ues are calculated following the proposed approach for each
token in the sentence, “A ten-year-old boy go to school.”
As per Eq. 13, the a®P” values aim to deter the model from
altering correct tokens by maximizing their copy probability,
while encouraging the model to rectify incorrect words by
maximizing the generation probability. As a result, the o“°PY
is close to zero for all the correct tokens so that the copy
probability will be dominant, and the model will copy those
tokens to the output.

For instance, for the correct token “‘to”’, «“°PY is near zero,
hence copy probability dominates and the model copies the
token to the output. The total probability calculation is as
follows:

PO = (1= aP).peP (y,) + P p5" (yy)
) = (1 — 0.0005).pPY (y;) + 0.0005.p5" (y;)
PO = (0.99956).p°P* (1) + 0.0005.p5" (yy)
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However, for the incorrect token “go”, «“°"” is close to one,
pushing the model to favor generation:

p(y) = (1 — 0.86754).p°P (y,) + 0.86754.p5" ()
p(yr) = (0.13246).pP (y;) + 0.86754.p%"(y;)

In this case, the p8¢" will be dominant so that the model will
generate the correction.

IV. EXPERIMENTS

A. DATASETS

1) PRETRAINING DATA

Due to GEC public data scarcity [31], we followed the work
of [5] and [32] to generate the pretraining dataset in which
they make use of a publicly available English clean non-
parallel dataset, One-Billion-Word dataset [33], as shown in
Table 1. They applied some noising scenarios to inject several
errors into clean sentences, thus generating an additional
artificial dataset of noisy and clean sentence pairs.

2) TRAINING AND FINE-TUNING DATASETS

Following recent works in English GEC, we conduct exper-
iments in the same setting with the restricted track of the
BEA-2019 GEC shared task [34]. The public version of the
Lang-8 corpus [35], NUCLE [36], the FCE corpus [37],
and the Cambridge English Write & Improve training split
described in the BEA-2019 shared task (BEA-19 train) [34]
are combined and used for the first fine-tuning stage. For the
second fine-tuning stage, we only used W&I+LOCNESS [34]
(shown in Table 1).

B. EXPERIMENTAL SETTINGS
Transformer-big model is used with six layers for each
encoder and decoder and a vocabulary size of 32k Byte Pair

VOLUME 11, 2023
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FIGURE 2. The proposed model flow chart. The token-level labeling task is added to the main task,
Seq2Seq. The final layer calculates label predictions based on the encoder output. The softmax
activation function is used to output a normalized probability distribution over all the possible
labels for each token. «°PY, the balancing factor is calculated from the supervised attention after

applying an affine transformation as in Eq. 11.

Source: ‘z‘ ‘ ten-year-old ‘ ‘ boy ‘ ‘ g0 ‘ ‘E‘ ‘ school ‘
Target: @ ‘ ten-year-old ‘ ‘ boyJ ‘ goes} ‘ o ‘ ‘ school ‘

Labels: @ \ 0

J o) ) ] e )

acopy ; {6.10E-4] { 1.20E-4 } {7.00E—6} {8.68E-1} [5.0015-4} {9.00E—6}

FIGURE 3. Example for «“°PY Calculation.

Encoding [38]. A beam size of (beam=5) is used at inference
time in all experiments. For a fair comparison with state-
of-the-art models, we follow the works of [5], [39], and
[32], which used CoNLL-2014 [40] and BEA 2019 [34] test
sets for evaluation. BEA dev set [34] is used for validation.
Moreover, the JFLEG test set [41] with GLEU metric is
used to provide another aspect of evaluation with respect
to fluency. Unlike CoNLL-2014 [40], and BEA 2019 [34],
this dataset represents a wide range of language proficiency
levels by providing more native-sounding corrections for the
original text. To compare with the state-of-the-art approaches
in English GEC that pre-train with synthetic data, we used the
same pretraining dataset used by [5] and [32], as described
in Section I'V-A. Moreover, F0.5 and M2 scores are reported
for BEA 2019 [34] and CoNLL-2014 [40], respectively, and
GLEU is reported for the JFLEG test set.

C. EXPERIMENTAL RESULTS
In our work, we evaluate the performance of our proposed
GEC model by comparing its predicted corrections with
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gold standard edits, focusing on a comparative evaluation
against recently proposed GEC models. Table 2 demon-
strates that our model achieved superior results on the JFLEG
dataset, reflecting its ability to handle a broad range of
fluency levels. However, it did not surpass sequence tagging-
based models on minimal edit datasets like BEA 2019 and
CoNLL-2014. We attribute this to the inherent strengths of
sequence tagging models in correcting errors with small
spans, whereas Seq2Seq models tend to generate output
sequences from scratch. Despite this, sequence tagging mod-
els struggle to maintain comparable GLEU scores on the
JFLEG dataset, which comprises holistic sentence rewrites
without limiting corrections to minimal error spans or pro-
viding error coding. Our model’s GLEU scores on the JFLEG
dataset were 64.9 and 65.5 for single and ensemble models,
respectively, highlighting its better performance compared to
sequence tagging-based models in this context. Regarding
the over-correction issue, it is clear from the result shown in
Table 2 that our model’s precision is higher than the previous
models.
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TABLE 1. Descriptions and statistics of the datasets.

Dataset Description Data size(#sentences) | Quality
PIE-Synthetic | Perturbed version of One-billion-word | 9,000,000 -
Lang8 Online English learning site 947,344 Poor
NUCLE College student essays 56,958 Good
FCE ESL exam questions 34,490 Good
WI+Locness English essays 34,304 Good

D. ABLATION STUDY ON THE MODEL ARCHITECTURE

1) THE EFFECT OF SUPERVISED ATTENTION

Table 3 highlights the superior performance of our model
across all test datasets, including JFLEG, thereby emphasiz-
ing its ability to manage varying fluency levels effectively.
This superior performance can be attributed to the imple-
mentation of supervised attention mechanisms, which have
been proven to enhance performance in NLP tasks compared
to unsupervised or no attention mechanisms. With explicit
supervision, these mechanisms effectively focus on the most
relevant input sections, leading to improved predictions, par-
ticularly in identifying incorrect tokens.

The left side of Table 3 shows that our model with the
supervised copy mechanism exhibits a substantial reduction
in over-correction, demonstrated by the decreased number of
False Positives (FP=1654), compared to the two baselines.
This is in line with our objective to minimize over-correction
by preserving grammatically correct sentence portions. Fur-
thermore, our model yields a higher precision score (63.40),
outpacing both baselines. This improved precision signifies
that our model is more adept at avoiding unnecessary or
incorrect corrections, further reinforcing its ability to limit
over-correction. With an F0.5 score surpassing both base-
lines, our model effectively balances precision and recall, thus
consolidating its overall superior performance.

2) PRETRAINED ENCODER TYPE

Three main works [5], [32], [42], used as baselines in this
work, are pre-trained based on powerful BERT-like language
models, namely, BERT [43], RoBERTa [44], and XLNet [45].
Following the same, we use BART to initialize a 12+2 model.
As shown in Table 3, after the fine-tuning stage, the pro-
posed model with BART achieved a better result on all three
datasets.

V. RELATED WORK

A. MACHINE TRANSLATION-BASED MODELS

Although GEC MT-based systems have become state-of-the-
art approaches, GEC differs from translation since it only
changes several words of the source sentence. Several GEC
Seq2Seqg-based models have been proposed, such as [6], [9],
[42],[46], [47], and [48]. The main architecture of these mod-
els is the encoder-decoder with attention. Some of these use
the copy mechanism to enhance the performance of the basic
Seq2Seq models. In a work proposed by [9], they used a form
of copy mechanism to encourage the GEC model to copy
the correct tokens from the source to the target unchanged.
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Despite that, these models have the ability to mitigate the
issue of over-correction as well as hold better generality and
diversity in the generation results compared to the sequence
tagging models [3]; the encoder-decoder attention serves as
the copy distribution. In contrast, guaranteeing that important
words in the source are copied remains a challenge [12].

B. SEQUENCE TAGGING-BASED MODELS

Sequence tagging models are a common approach for gram-
matical error correction (GEC) tasks [3], [5], [6], [7], [32];
in which each sentence is annotated with edits as labels.
The target sentence can be recovered by applying those edits
to the source sentence. Awasthi et al. [5] proposed a GEC
model based on the idea of iteratively applying edits to the
original text to produce a sequence of intermediate texts that
approach the corrected text. A similar approach was proposed
by Omelianchuk et al. [32]. It is based on a sequence tagger
that uses a pre-trained BERT-like transformer as an encoder
and two linear layers in place of the decoder. One main
issue in these models is that their performance drops on
data with more edit span. Moreover, the edits, such as the
verb form transformations (e.g., VBD/VBZ) and prepositions
(e.g., on/in), are usually constrained by human-designed or
automatically generated lexical rules [5], [32] and vocabular-
ies [5], [49], which limits the generality and transferability of
these methods.

C. COPY MECHANISM-BASED MODELS

Copy mechanism is not a new topic; it has been there for a
while. One of the early issues in the copy mechanism is how
the model can decide when to copy and when to generate.
It has been deployed to improve Seq2Seq models on several
tasks, such as summarization [12], [50] and GEC [9], [34].
In most of the previous work, the balance between copying
and generating is controlled by a balancing factor learned
implicitly during the training [9]. Classically, the copy bal-
ancing factor can be calculated from the attention weights,
which are learned implicitly, i.e., in an end-to-end manner
based on the final objective of the model. Unfortunately,
this might lead to extremely high weights for some parts of
the sentence, leaving essentially negligible weights for the
other important context in the sentences. Moreover, due to
sparsity issues caused by a large number of free parameters,
the attention model learned by implicit training generates
low-quality attention maps. Furthermore, in practice, the
variability in natural language is very large. The available
annotated datasets are often too small to learn everything

VOLUME 11, 2023



K. Al-Sabahi, K. Yang: Supervised Copy Mechanism for GEC

IEEE Access

TABLE 2. Performance in English GEC benchmarks (i.e., CONLL-14 (M2 Score), BEA-19 test (ERRANT), and JFLEG). The single model scores are at the upper

part, while the lower part shows the scores for the ensemble models.

CoNLL-14 BEA-19 test JFLEG
Method P R FO0.5 P R FO0.5 GLEU+
gT5 xxI [6] N - 65.7 N N 69.8
gT5 base [6] - - 54.1 - - 60.2
PIE [5] 66.1 43.0 59.7 - - - 60.3
Stahlberg 2021 [7] 72.8 49.5 66.6 72.1 64.4 70.4 64.7
GECTor [34] 77.5 40.1 65.3 79.2 53.9 72.4 -
Ours with BART init 4.7 44.3 65.7 80.4 55.4 73.7 64.9
PIE [5] 68.3 | 43.2 61.2 n n B 61.0
Stahlberg 2021 [7] 75.6 49.3 68.3 TT.7 65.4 74.9 64.7
GECTor [34] 78.2 41.5 66.5 79.4 57.2 73.7 -
Copy-augmented(4 ens) [9] 71.6 38.7 61.1 - - - 61.0
Ours with BART init(3 ens) 77.8 41.4 66.1 84.6 51.7 75.1 65.5
TABLE 3. Performance of the model variants related to BART initialization and supervised attention.
BEA-19 dev CoNLL-13 JFLEG-dev

Method TP FP FN Precision Recall FO0.5 F0.5 GLEU
Transformer _big & copy mechanism 3002 2213 5120 57.63 36.92 51.81 48.7 57.1
(Base Model)
Transformer big & copy mechanism & BART 2989 2124 4796 58.57 38.2 52.93 50.9 57.6
Transformer _big & copy mechanism & BART & 2865 1654 5110 63.39 35.86 54.95 52.2 59.6
supervised attention

automatically. The patterns discovered in the data might not
always correspond to the behavior that we expect or desire
our models to exhibit.

D. SUPERVISED ATTENTION-BASED MODELS

Supervised Attention with References refers to a type of
machine learning model architecture that combines both
supervised learning and attention mechanisms with refer-
ences or additional inputs. In these models, the attention
mechanism helps the model to focus on the most relevant
information from the input. In contrast, the references or
other inputs provide additional context that guides the atten-
tion mechanism toward a specific task [21]. For example,
in natural language processing tasks, a supervised attention
model might be trained to predict the next word in a sen-
tence given the previous words while using reference inputs
such as a pre-defined summary of the topic being discussed.
This reference information helps the attention mechanism
focus on the most relevant information in the input and
make a more informed prediction. Supervised attention with
references has been applied to a wide range of tasks, includ-
ing machine translation [21], sentiment analysis [51], text
classification [23], text summarization [12], and question
answering [52]. These models often outperform traditional
attention models or supervised learning models alone, as they
are able to leverage both the strengths of attention mecha-
nisms and additional contextual information. To the best of
our knowledge, our work is the first to utilize supervised
attention in the context of GEC.

VOLUME 11, 2023

VI. CONCLUSION

The copying mechanism basically refers to locating a certain
segment of the source sentence and copying it as it is to
the target sequence. Technically, the attention mechanism is
used to determine when the model should copy rather than
generate. In this work, the model is provided with explicit
supervision in the form of attention labels, which indicate the
important parts of the input that should be corrected. This
supervision can be in the form of attention maps or binary
attention masks. During training, the model optimizes its
attention mechanism to match the provided labels, allowing
it to learn to attend to the incorrect parts of the input and
increase its generation probability while copying over the
rest to the output unchanged. To the best of our knowledge,
we are the first to use supervised attention to improve the
copy mechanism in the context of GEC. It is arguably more
similar to how humans write or edits text. The supervised
copy mechanism can be used mainly in the GEC problem,
but it can also be used on any problem that we have, or we
can have alignment data between the source and the target.
As a future work, we would like to expand this approach
to new languages other than English. However, one possible
limitation of this work is that it was evaluated on a specific
set of datasets and may not generalize well to other datasets
or contexts. While we demonstrated the effectiveness of
our approach in handling low-fluency datasets and reducing
over-correction, the model’s performance may vary in other
settings or with different types of errors. Further evaluation of
a broader range of datasets and error types may be necessary
to assess the generalizability of our approach fully.
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