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ABSTRACT Nowadays, computer vision plays an essential role in disease detection, computer-aided
diagnosis, and patient risk identification. This is especially true for skin cancer, which can be fatal if not
diagnosed in its early stages. For this purpose, several computer-aided diagnostic and detection systems
have been created in the past. They were limited in their performance because of the complicated visual
characteristics of skin lesion images, which included inhomogeneous features and hazy borders. In this paper,
we proposed two methods for detecting and classifying dermoscopic images into benign and malignant
tumors. The first method is using k-nearest neighbor (KNN) as classifier when pretrained deep neural
networks are used as feature extractors. The second one is AlexNet with grey wolf optimizer, that optimizes
AlexNet’s hyperparameters to get the best results. We also tested two approaches in classifying skin cancer
images, which are machine learning (ML) and deep learning (DL). The used methods in ML approach are
artificial neural network, KNN, support vector machine, Naive Bayes, and decision tree. The DL approach
that we used contains convolutional neural network and pretrained DL networks: AlexNet, VGG-16, VGG-
19, EfficientNet-b0, ResNet-18, ResNet-50, ResNet-101, DenseNet-201, Inception-v3, and MobileNet-v2.
Our experiments are trained and tested on 4000 images from the ISIC archive dataset. The outcomes showed
that the proposed methods outperformed the other tested approaches. Accuracy of first proposed method
exceeded 99% in some models and second proposed method achieved 99%.

INDEX TERMS Deep learning, machine learning, melanoma (malignant), nonmelanoma (benign), skin
cancer.

I. INTRODUCTION of the human body. Moreover, it commonly occurs on sun-

In the present decade, skin cancer stands out as one
of the most prevalent forms of cancer [1]. This is not
surprising considering that the skin serves as the largest
organ in the human body, making it naturally susceptible
to the highest incidence of cancer among all types [2].
Melanoma is a dangerous, uncommon, and fatal form of skin
cancer. According to the American Cancer Society, although
melanoma skin cancer comprises only 1% of total cases,
it exhibits the highest fatality rate [3].

Melanoma begins in cells known as melanocytes. It starts
when healthy melanocytes begin to proliferate uncontrol-
lably, resulting in a malignant tumor. It can affect any part
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exposed regions such as the hands, face, neck, and lips.
Melanoma cancers may only be healed if diagnosed early;
otherwise, they spread to other body organs and cause terrible
death [4]. Meanwhile, nonmelanoma tumors are much easier
to treat than melanoma malignancies.

Early detection and accurate classification of skin cancer
play a crucial role in improving patient outcomes and
reducing mortality rates [5]. In recent years, computer
vision and deep learning techniques have shown promising
results in skin lesion localization and classification, offering
automated and efficient analysis of dermatological images.
By leveraging the potential of computer vision algorithms,
researchers aim to enhance the speed and accuracy of
skin cancer diagnosis, enabling timely interventions and
personalized treatment strategies.
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However, skin cancer classification using computer vision
still faces several challenges. The research problem lies in
developing robust algorithms that can accurately differentiate
between benign and malignant skin lesions while considering
various factors, such as lesion size, shape, texture, color and
handling complex skin lesion patterns. Additionally, the vast
diversity in skin types, ethnicities, and imaging conditions
further complicates the classification process.

Computer vision-based research in skin cancer detection
tends to leverage image analysis and machine learn-
ing techniques to improve the accuracy, efficiency, and
accessibility of skin cancer diagnosis and management.
Within this field, there are several key research areas.
Firstly, there is a focus on skin lesion detection and
segmentation, accurately identifying and delineating skin
lesions within images allowing for subsequent analysis and
investigation. Additionally, researchers work on developing
efficient methods for feature extraction and representation.
Furthermore, the integration of machine learning and deep
learning techniques is utilized to create highly accurate
classification and risk assessment systems. Another aspect
of research involves merging visual analysis with clinical
data, including patient history, demographics, and genetic
information, to improve diagnostic accuracy and gain a
comprehensive understanding of the characteristics of skin
lesions [6].

In this paper, various classifiers were tested to classify skin
cancer in the images and distinguish between malignant and
benign tumors. We used machine learning (ML) methods,
such as artificial neural network (ANN), k-nearest neighbor
(KNN), support vector machine (SVM), Naive Bayes (NB),
and decision tree (DT), with gray-level co-occurrence matrix
(GLCM) feature extractor, which gave lower accuracies
compared to deep learning (DL) methods.

AlexNet, VGG-16, VGG-19, EfficientNet-b0, ResNet-18,
ResNet-50, ResNet-101, DenseNet-201, Inception-v3, and
MobileNet-v2 are ten convolutional neural network (CNN)
pretrained DL models that were tested, which provided
high performance. We proposed two methods in this paper
to get high performance in skin cancer classification. One
method is using KNN as classifier when pretrained deep
neural networks act as feature extractors (KNN-PDNN)
whose accuracies exceeded 99% in some models. The
second method is AlexNet optimized by grey wolf optimizer
(GWO) (AlexGWO) to enhance the accuracy of AlexNet
to 99% by optimizing its parameters using GWO. The
implementation of the proposed approaches will allow an
early detection and an expedited diagnosis of melanoma.
This, in turn, will enable more efficient treatment and reduce
the mortality rate associated with the disease. The remainder
of the paper is organized as follows. Section II presents the
state-of-the-art automated skin cancer binary classification.
The materials and methods are shown in Section III.
Section IV describes the experimental results. Finally,
Section V depicts the discussions followed by the conclusion
in section V1.
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Il. RELATED WORK

This section indicates multiple skin cancer binary classifica-
tion and detection approaches. It emphasizes recent studies
that have employed DL for the same goal.

Tan et al. [7] used particle swarm optimization (PSO) to
segment skin lesions. They tested many ways to optimize
PSO, including the firefly algorithm, spiral research action,
probability distributions, crossover, and mutation. K-means
was used to improve lesion segmentation, and CNN was
created using the hybrid learning PSO. The categorization
method may distinguish between melanoma and nevus
lesions.

Kwasigroch et al. [8] proposed employing a CNN with
hill climbing for search space to classify skin lesions. This
approach resulted in an increase in network size, reducing the
computational cost.

Adegun et al. [9] presented an encoder and decoder net-
work with skip links connecting subnetworks. The suggested
CNN was employed to segment skin lesions and classify them
pixel by pixel.

Song et al. [10] stated that CNNs could segment, identify,
and categorize skin lesions. They used a loss function based
on the Jaccard distance and the focal loss to regulate the
unbalanced datasets.

Lequan et al. [11] presented an extremely deep CNN
for melanoma detection. To improve the performance of
their method, they employed a fully convolutional residual
network with 16 residual blocks in the segmentation process.
The suggested approach employed an average of SVM
and softmax classifiers for classification. It achieved 85.5%
accuracy in melanoma classification with segmentation and
82.8% without segmentation.

DeVries and Ramachandram [12] developed a multi-
scale CNN trained on an ImageNet dataset using an
Inception-v3 deep neural network. The pretrained Inception-
v3 was fine-tuned for skin cancer classification on two
resolution scales of input lesion images: coarse and finer
scales. The coarse scale was employed to collect mor-
phology and general contextual information about lesions.
Meanwhile, the finer scale gathered textual detail of the
lesion to distinguish between different forms of skin
lesions.

Mahbod et al. [13] suggested a method for extracting deep
features from several well-established and pretrained deep
CNN s for categorizing skin lesions. Deep-feature generators
such as AlexNet, ResNet-18, and VGG-16 were employed,
and a multi-class SVM classifier was trained on these
produced features. Finally, the results of the classifiers were
merged for classification. The suggested method achieved
97.55% and 83.83% area under the curve (AUC) on the
ISIC 2017 dataset for seborrheic keratosis and melanoma
classification, respectively.

Kalouche et al. [14] suggested a VGG-16 pretrained
deep CNN architecture with three fine-tuned layers and five
convolutional blocks. VGG-16 models have a 78% accuracy
rate in classifying lesion images as melanoma skin cancer.
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(a) (b)

FIGURE 1. Some of ISIC dataset images. (a) benign; and (b)
malignant [36].

A deep CNN-based method was proposed to detect the
boundaries of skin lesions in photos. The DL model was
developed using 1200 photos of normal skin and 400 images
of skin lesions. With 86.67% accuracy, the suggested system
divided the input photos into two basic classes: normal skin
and lesion images.

Various related works of skin cancer binary classification
that used ISIC dataset are presented in Table 1.

lIl. MATERIALS AND METHODS

This paper proposed two methods in skin cancer classification
and tested several classification techniques and compared
their results on the same dataset. This section demon-
strates the used dataset, the preprocessing steps, feature
extraction, and the system model with the two proposed
methods.

A. DATASET
The used dataset was collected from the ISIC archive.
The ISIC Archive is an open-source platform with publicly
available dermoscopic images of skin lesions. It includes
more than 150,000 total images, of which almost 70,000
have been made public. Images are combined with metadata
describing additional characteristics on an image level [36].
We selected 4000 dermoscopic images, from the ISIC
archive, divided into 2000 benign and 2000 malignant. The
images are in JPEG format. This dataset is randomly split into
80% for training and 20% for testing, which are 3200 and
800 images, respectively. Some of these images from the
dataset are shown in Fig. 1.

B. PREPROCESSING

The data were preprocessed as follows. First, because of
the different dimensions of ISIC images, it is essential to
resize all images to a specific dimension. All images were
resized to 250 x 250 pixels. Second, images were filtered
using a median filter. Third, the hair of skin that appeared
in the images was removed through some morphological
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FIGURE 2. Example of hair removal stage. (a) image before hair removal;
and (b) image after hair removal.
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FIGURE 3. Example of image cropping step. (a) image before crop; and

(b) image after crop.
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FIGURE 4. Segmentation and cropping around the lesion. (a) Input image;
(b) Image after segmentation; and (c) Images after segmentation and
surround cropping.
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operations not to affect the result of classification as it may be
considered as a part of the lesion, as shown in Fig. 2. Fourth,
Fig. 3 shows that images were cropped to a proper dimension
(150 x 150), as many images have black borders resulting
from the microscope. Fifth, we segmented the part of the
lesion in all images and discarded the remaining images
with black as in Fig. 4(b). Sixth, the black regions around
the lesion to get the region of interest, Fig. 4(c); however,
this step changed the sizes of the images. Therefore,
it must resize all images to the first size (250 x 250).
All previous preprocessing steps are presented in Fig. 5.
Practically, the segmentation step negatively affected the
classification accuracy and reduced the system performance,
so we declined this step to get better results.

C. FEATURE EXTRACTION

In this paper, we used GLCM features plus texture features.
GLCM is a matrix whose entries represent the number of
pairs of pixels with the same brightness level, separated by
distance and angle. Angle orientation is determined by four
corner directions: 0°, 45°, 90°, and 135°, and the space
between pixels is one pixel. The input value of GLCM is a
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TABLE 1. Related works of skin cancer binary classification.

Reference Year Classification Methods Dataset Results (%)
7] 2020 VGG-16 400 images from ISIC 2017 dataset Accuracy (73.76)
[8] 2020 VGG-8, VGG-11, VGG-16 ISIC dataset Accuracy (77)
. Accuracy (95),
9] 2020 CNN 2600 dermoscopy images from ISIC 2017 sensitivity (97),
challenge dataset e
specificity (96)
Accuracy (95.9),
. 13750 images from ISBI 2016 challenge sensitivity (83.1),
[10] 2020 Multitask DCNN dataset and ISIC 2017 challenge specificity (98.6),
dice (95)
Accuracy (94.9),
sensitivity (91.1),
[11] 2017 A very deep residual CNN and FCRN ISIC 2016 database specificity (95.7),
Jaccard index (82.9),
dice coefficient (89.7)
. Accuracy (90.3),
[12] 2017  Deep multi-scale CNN ISIC dataset AUC (94.3)
[13] 2019  SVM, AlexNet, ResNet-18, VGG-16 ISIC dataset Average AUC (90.69)
[14] 2016  VGG-16 and CNN ISIC dataset Accuracy (78)
. Accuracy (75),
[15] 2020  Deep-class CNN 1796 dermoscopy images from ISIC sensitivity (73),
Archive dataset e
specificity (78)
L. Accuracy (90.4),
[16] 2021 Region-based CNN with ResNet-152 2742 ermoscopic images from IS1C sensitivity (82),
ataset [P
specificity (92.5)
Accuracy (93.5),
[17] 2020  ResNet-50 with deep transfer learning 3600 lesion images from the ISIC dataset ?er:e(:llls 1((;2)(94)’
F1_score (85)
Accuracy (80.3),
[18] 2018  Deep CNN ISIC dataset precision (81),
AUC (69)
Accuracy (97.49),
. . AUC (98),
[19] 2019  2-layer CNN with a novel regularizer ISIC dataset sensitivity (94.3),
specificity (93.6)
Accuracy (98),
Hybrid of fully CNN with autoencoder and Jaccard index (93),
201 2017 decoder and RNN ISIC dataset sensitivity (95),
specificity (94)
[21] 2018  6-layers deep CNN ISIC datasets Accuracy (77.50)
[22] 2019 CNN ISIC database Accuracy (89.5)
Accuracy (81.6),
[23] 2017  LightNet (DL framework) ISIC 2016 dataset sensitivity (14.9),
specificity (98)
Accuracy (NASNetMobile:
82.00),
24 2021 3 different mobile DL models (MobileNet, dataset 2750 skin cancer images from ISIC ~ Precision (NASNetMobile:
(241 MobileNet-v2, NASNetMobile) 2017 81.77),
F1 Score (MobileNetV2: 81.14),
AUC Score (MobileNet: 90.5)
25] 2021 AttResNet (Attention-based mechanisms and ISIC 2016 and ISIC 2017 Accuracy (93.3)

Resnets)

grayscale image representation matrix. Its output value is a
co-occurrence matrix from which features can be extracted

VOLUME 11, 2023

based on second-order statistical feature parameters, such as
contrast, correlation, homogeneity, and energy.
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TABLE 1. (Continued.) Related works of skin cancer binary classification.

LR, LDA, KNN, DT, Gaussian NB, VGG-16,

F-score (88),

[26] 2022 Xception, and ResNet-50 ISIC (3297 dermoscopic images) accuracy (88)
[27] 2021  LeNet, ResNet, EfficientNet, Inception-v3 2019 and 2020 ISIC datasets Accuracy (91.1)
28] 2021 VGG, GoogleNet, and ResNet-50 ISIC Archive and SIIM-ISIC 2020 Accuracy (93.7)
[29] 2020 SVM, KNN and NB 1000 dermoscopic images from ISIC 2017 2ecuracy (97.8),

AUC (94)
[30] 2021  MobileNet-v2, SNN ISIC Accuracy (95.27)

Accuracy (97.5),
[31] 2020  ResNet, AlexNet ISIC 2019 F1 score (97.47)

1200 dermoscopic images from ISIC 2016,
[32] 2022 CNN 2017, and 2020 Accuracy (97.5)
CNN, Xception, ResNet-50, ResNet-101, Accuracy (ISIC 2018: 98.62%,

1331 2023 VGG16, and MC-SVM ISIC 2018 and ISIC 2019 ISIC 2019: 93.47%)

Accuracy (ISIC 2017: 99.21%,
[34] 2022  DenseNet77 ISIC 2017 and ISIC 2018 ISIC 2018: 99.51%)
[35] 2022 VGG ISIC 2016 We can’t get them

CNN = Convolutional Neural Network, ISIC = International Skin Imaging Collaboration, SVM = Support Vector Machine, FCRN = Fully Convolutional
Residual Network, RNN = Recurrent Neural Network, HAM10000 = Human Against Machine with 10000 training images, PH> = Hospital Pedro Hispano,
SIIM-ISIC = Society for Imaging Informatics in Medicine, SNN = Spiking Neural Network, NB = Naive Bayes, LR = Logistic Regression, LDA = Linear
Discriminant Analysis, KNN = K-Nearest Neighbor, DT = Decision Tree, DCNN = Deep Convolutional Neural Network, ISBI = IEEE International
Symposium on Biomedical Imaging, ResNet = Residual Network, VGG = Visual Geometry Group, MC-SVM = Multi-Class SVM.

Using statistical moments of an image’s or region’s
intensity histogram is one of the easiest methods for defining
texture. Using solely histograms in the computation results
in texture measurements that contain only information about
the distribution of intensities, but not about the relative
location of pixels in that texture regarding each other. Using a
statistical method, such as a co-occurrence matrix, can offer
useful information about the relative location of nearby pixels
in a picture.

Given an image I of size NN, the co-occurrence matrix P
is defined as follows:

N N
PGip=2.>"

x=1y=1 0,

1, ifI(x,y)=iand
[+ Any+ay)=j ()
otherwise

The offset (Ay, Ay) specifies the distance between the
pixel-of-interest and its neighbor in this case. The offset
(Ax, Ay) parameterization makes the co-occurrence matrix
rotation sensitive. Choosing an offset vector that causes the
image’s rotation to be less than 180 degrees results in a
different co-occurrence matrix for the same (rotated) image.
To ensure rotational invariance, create the co-occurrence
matrix with a series of offsets sweeping across 180 degrees at
the same distance parameter A (i.e., [0 A] for 0°: P horizontal,
[—A A] for 45°: P right diagonal, [— A 0] for 90°: P vertical,
and [—A —A] for 135°: P left diagonal).

Haralick et al. [37] proposed 14 statistical characteristics
in 1973. These characteristics are produced by computing
the features for each of the co-occurrence matrices created
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by utilizing the directions 0°, 45°, 90°, and 135°, and
then averaging these four values. The distance parameter is
represented by the symbol A, which might be one or higher.
In typically, the distance parameter A is set to 1 [38].

In this paper, we extracted 22 features from each image,
that were mentioned in [37], [39], and [40]. These 22 features
are contrast, correlation, homogeneity, energy, entropy, dis-
similarity, inverse difference, autocorrelation, cluster shade,
cluster prominence, Maximum probability, Sum of Squares,
Sum Average, Sum Variance, Sum Entropy, Difference
variance, Difference entropy, Information measures of cor-
relation 1, Information measures of correlation 2, Maximal
correlation coefficient, Inverse difference normalized, and
Inverse difference moment normalized. We appended four
additional features called texture features, which are mean,
variance, skewness, and kurtosis to the 22 features to obtain
26 feature parameters for each image.

The following are explanations and calculations for
commonly selected GLCM features [38], [41]:

Correlation: The correlation measures the linear rela-
tionship of grey levels in neighboring pixels. Correlation is
widely utilized in various engineering domains, although it
is most employed to quantify displacement, optical flow, and
deformation.

Ny Ne . - ..
fi = ZZ (i — py) X (/ Hy) x p(i, ) @)

Ox X Oy

i=1 j=1
Contrast: The difference in color or hue of any object is
known as contrast, and it distinguishes it from other objects.
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It may be determined in the actual world by a difference in
brightness or hue. It may be calculated mathematically using
the following equation.

Ng—1 Ng N

Z 1D pGi)) 3)

i=1 j=1
Entropy: The amount of information in any image that
is required to compress that image exemplifies entropy. It is
a numerical measure of uncertainty used to represent the
image’s texture.

Ny Ng

=D (i) x log{p(i, j)) “)

i=1 j=1

Homogeneity: It uses the value to compute the stiffness of
the element distribution. It may be written as follows:

PG, Jj)
f4_zzl+(l—])2 ®)

i=1 j=1

Energy: The energy in GLCM is calculated as the sum of
square components. Its value spans from [0,1], however for
the constant image, it will always be 1. It can be expressed as:

Ne Ng

=2 pa.j% (6)

i=1 j=I

where p (i, j) is the (i, j)-th entry in normalized co-occurrence
matrix, Ng denotes the dimension of co-occurrence matrix
(number of gray levels), w, and u, are the mean of px and
py. respectively, oy and oy are the standard deviations of
px and py, respectively, and py (i) and py(j) are the marginal
probabilities.

D. SYSTEM MODEL

In this paper, we proposed two methods: KNN-PDNN and
AlexGWO. We also tested different methods to classify
dermoscopic images as benign or malignant and compared
their results with the proposed ones. These different methods
are parts of two approaches, which are, ML and DL,
as illustrated in Fig. 6.

1) ML APPROACH

The supervised ML classification algorithms use labeled
data to train the classifier. The benefit of supervised
over unsupervised is that it may be used for images
containing a lot of spectral information. We tested five
supervised classification methods: ANN, SVM, KNN, DT,
and NB.

a: ANN

ANN is a nonlinear and statistical prediction approach. Its
structure is based on the biological structure of the human
brain. An ANN consists of three layers of neurons. The first
layer is known as the input layer, and its neurons convey data
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FIGURE 5. Preprocessing steps of the dataset images.
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FIGURE 6. System model that was used and tested in this paper.

to the second/intermediate layer of neurons. The intermediate
layers are known as hidden layers. A conventional ANN
may include many hidden levels. Intermediate neurons
transmit information to the third layer of output neurons.
Backpropagation (BP) is used to learn the complicated
associations/relationships between input and output layers at
each layer. It is comparable to a neural network. In computer
science, the terms neural network and ANN are now used
interchangeably.

ANN is used in skin cancer detection systems to classify
retrieved characteristics. After successful training/ classifi-
cation of the training set, input images are identified as
melanoma or nonmelanoma. The number of input images
determines the number of hidden layers in an ANN. The
input dataset connects the input/first layer of the ANN
process with the hidden layer. The dataset can be labeled or
unlabeled and processed using a supervised or unsupervised
learning technique. A neural network learns weights at each
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network connection/link using BP or feed-forward design.
Both systems employ a distinct pattern for the underlying
dataset. Feed-forward neural networks only transport data
in one way. Only data travels from the input to the
output [6].

b: svm

SVMs are supervised learning algorithms that can be used
for classification, regression, and outlier identification [42],
[43]. A support vector, a hyperplane, separates them as far as
feasible based on their class. In this approach, the vector sets
the boundary that helps to categorize a new element, such that
it is assigned one of two classes based on which portion of
the space it belongs to. This algorithm has a set of parameters
that allow one to tweak its internal setup and optimize the
classification results [44].

c: KNN

The nearest neighbor algorithms work on finding a preset
number of training samples that are closest in the distance
to the new location and predicting the label of these. The
number of samples might be fixed (KNN learning) or variable
depending on the local density of the points (based on the
neighbor learning radius). Generally, the distance can be any
metric measurement, with the standard Euclidean distance
being the most frequent [45]. In this paper, we used KNN
with ten nearest neighbors.

d: DT

The DT methods are a nonparametric supervised clas-
sification technique that can be used for classification
and regression learning. The goal is to learn fundamental
decision rules generated from data properties and use them
to develop a model that predicts the value of a target
variable [46].

e: NB

The NB approach is a supervised ML classification method
based on a probabilistic technique that employs Bayes’
probability theorem. The NB method implies that the
occurrences of characteristics are independent. Because
of the independence of the occurrence of the extracted
characteristics, probability concerns become considerably
useful in most domains that deal with occurrences under
unpredictability. The extracted feature matrix is trained in the
NB classifier so that it can predict whether the test image is
normal or malignant [47].

In this study, after data preprocessing, we used k-fold
cross-validation and chose k = 5. Then, after converting
the images to grayscale, we extracted 26 features from each
image using GLCM. Then, we trained 80% of the dataset
(3200 images). After that, we tested 20% of the dataset (800
images) and calculated the classification accuracy. The steps
of ML methods are shown in Fig. 7.
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FIGURE 7. Process steps of classification of ML approach.

2) DL APPROACH

DL is a subset of machine learning that is essentially a three-
or more-layered neural network. These neural networks try
to mimic the human brain function by allowing it to “learn”
from vast volumes of data. While a single-layer neural
network may still produce approximate predictions, more
hidden layers can assist optimize and tune for accuracy.
We tested CNN and some CNN pretrained models.

a: CNN

CNN is a form of deep neural network that is widely used in
computer vision. It is used to classify images, assemble a set
of input images, and recognize images. CNN is an excellent
technique for collecting and learning global and local data by
combining simple characteristics, such as curves and edges,
to construct complex features (e.g., forms and corners) [48].
The hidden layers of CNN consist of convolutional, nonlinear
pooling, and fully connected layers [49]. CNN can have many
convolutional layers followed by several fully connected
layers. Convolutional, pooling, and full-connected layers are
the three basic types of layers used in CNN [50].

CNN is widely used in image classification because
of convolution techniques’ efficacy in shape extraction.
The following steps are performed when we use CNN
architecture. We loaded the dataset after preprocessing and
split them into 80% for training and 20% for testing. Then,
we used image data augmentation to resize the original
images as the size of the input layer of the CNN (224 x 224).
Then, we defined the layers: five convolution layers with
32, 32, 64, 128, and 128 filters in each, one fully connected
layer, a dropout layer before the fully connected layer to avoid
overfitting, five maximum pooling layers, five ReLU layers,
one softmax layer, and five batch normalization layers each
before each ReLU layer to improve the speed and stability
of the neural network. Next, we created a set of options for
training a network. After that, the network was trained and
classified, and its accuracy was computed.

b: CNN PRETRAINED MODELS

A stored network previously trained on a big dataset,
generally on a large-scale image-classification job, is referred
to as a pretrained model. In this paper, we used ten differ-
ent DL models: AlexNet, ResNet-18, ResNet-50, ResNet-
101, DenseNet-201, VGG-16, VGG-19, EfficientNet-b0,
MobileNet-v2, and Inception-v3, which discussed as follows.
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i) ALEXNET

AlexNet is a CNN model that primarily influences DL
applications to computer vision. It won the 2012 ImageNet
LSVRC-2012 competition with a significant margin (15.3%
botch rates versus 26.2% blunder rates in the runner-up,
which is VGG-16). The organization’s configuration was like
the LeNet of Yann LeCun et al. but more profound, with more
channels per layer and stacked convolutional layers. Convolu-
tions, maximum pooling, dropout, information growth, ReLU
initiations, and stochastic gradient descent with force were
crucial. It adds ReLU initiations after each convolutional and
totally related layer. Furthermore, instead of regularization,
dropout is used to cope with overfitting [51].

i) RESNET-18, 50, AND 101

The ResNet-50 model won the ILSRVC-2015 competition,
with a 3.57% error rate and an input image size of 224 by
224 pixels. ResNet is a well-known DL model published by
Shaoging Ren, Kaiming He, Jian Sun, and Xiangyu Zhang.
The ResNet-18 model has 18 layers, whereas the ResNet-50
model has 50 layers, each with two or three convolutional
layers. ResNet-101 is a DL model with 101 layers [52].

iii) DENSENET-201

Huang et al. [53] presented the DenseNet-201 design, one
of the most current dense network variations. Each layer
in DenseNet receives more data from previous layers and
delivers its characteristic to each subsequent layer. The term
“link” is used. Each layer receives aggregate data from the
previous layers. The DenseNet-201 model also includes a
pooling layer and bottleneck development. Here, the mistake
may be passed on more directly to previous tiers. Because
previous layers can get tight supervision from the last order
layer, this is more thorough management, which is the
advantage of the model [51]. In this paper, we used DenseNet-
201 with 201 layers.

iv) VGG-16 AND 19

VGG is distinguished by its simplicity. It consists of five
blocks of 3 x 3 convolutional layers stacked on each other.
Maximum pooling of 2 x 2 kernels and a stride of two reduce
the volume size. It is followed by two completely connected
layers with ReLU activation functions, each with 4096 nodes.
The last layer has 1000 nodes activated by softmax [54].
VGG-19 has around 143 million parameters. The Vgg-16
model has 16 layers, whereas the Vgg-19 model has 19 layers.

v) EFFICIENTNET

EfficientNet is a CNN design that scales up by combining
coefficients on width, height, and resolution, often known
as compound scaling [55]. Several studies concluded that
EfficientNet might surpass other state-of-the-art methods
in terms of accuracy and efficiency [56]. A feature map
is applied to each layer for width scaling. Depth scaling
increased the number of layers in the network design.
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Additionally, resolution scaling raised the resolution of the
supplied image [57]. The EfficientNet architecture is divided
into eight variations: EfficientNet-BO to EfficientNet-B7.
This architecture is built on EfficientNet-B0, which adapts the
inverted bottleneck residual block MobileNetV2, commonly
known as MBConv. This residual block is employed to
improve network efficiency [58].

vi) MOBILENET-V2

The MobileNet-v2 model inherits MobileNet’s aims and
improves on them. It has fewer layers than MobileNet and
requires fewer processing resources. The number of layers
in MobileNet-v2 is the same as in MobileNet; however, the
number of parameters is reduced to 3.5 million and the size
is reduced to 14 MB. MobileNet-v2 improves MobileNet by
including shortcut connections, inverted residual blocks, and
bottleneck blocks. The use of inverted residual bottleneck
layers provides for a more memory-efficient design. This
model also performs well in item identification and semantic
segmentation [58].

vii) INCEPTION-V3

The Inception-v3 [59] model enhanced the GoogleNet
architecture [60]. The primary concept behind this network
is to make the procedure easier and more efficient. The
inception module performs the function of a multilevel
feature extractor. It computes 1 x 1, 3 x 3, and 5 x 5
convolutions inside the same network module. The outputs
of these filters are then layered on top of one another and
supplied into the next layer of the network [61].

In this work, pretrained deep networks are tested as
classifiers with transfer learning (TL).

TL is an ML strategy that reuses a model produced
for one task in another. It is typically used when there is
insufficient training data. However, data augmentation can
help to overcome the data problem. We require transfer
learning because melanoma and benign lesions are very
similar, and it takes a long time to recognize and classify
them. Furthermore, transfer learning is more efficient in
categorizing related lesions, making it the preferred method.
Transfer learning networks are trained on huge datasets, and
their model weights are frozen before changing the last few
layers for a different dataset [61].

DL applications frequently employ TL. A pretrained
network can be used as a starting point for learning a new task.
TL is considerably faster and easier than training a network
from scratch with randomly initialized weights.

We began with loading preprocessing and splitting data.
Then, we loaded a pretrained network. The network’s
convolutional layers retrieved image features that the final
learnable and final classification layers used to classify the
input image. The classification layer specifies the networ’s
output classes. We replaced the classification layer with a new
one that did not include class labels. We set the learning rates
in earlier layers of the network to zero to freeze their weights.
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FIGURE 8. Process steps of classification of pretrained models with TL.

The network did not change the parameters of the frozen
layers during training. Freezing the weights of several early
layers can considerably accelerate network training since the
gradients of the frozen layers do not need to be computed.

The network requires 224 x 224 input images; however,
the images in the image data store have different sizes.
To automatically resize the training images, we used
an augmented image data store. We specified additional
augmentation operations on the training images, including
randomly flipping them along the vertical axis, randomly
translating them up to 30 pixels, and scaling them up to
10% horizontally and vertically. Data augmentation prevents
the network from overfitting and remembering the exact
characteristics of the training images. The training options
were then specified and set as the number of epochs to be
trained for. It does not need to train for as many epochs when
using transfer learning. We used the fine-tuned network to
classify the testing images and determine the classification
accuracy. Fig. 8 shows the steps of pretrained models as
classifiers with TL.

3) PROPOSED METHODS
In this paper, we proposed two methods to detect and classify
skin cancer disease: KNN-PDNN and AlexGWO.

a: KNN-PDNN

In this method, the classifier KNN was used with the ten
used pretrained models, that were mentioned previously,
as feature extractors. We tested some of ML methods, e.g.,
SVM, KNN, DT, and NB, to find the best performance.
KNN (with the number of nearest neighbors equals ten) gave
high accuracies compared to other methods. Thus, we used
KNN as classifier when these models were used as feature
extractors. After loading preprocessing data, splitting it, and
loading a pretrained network, the network requires input
images with a size of 227 x 227, although the images in
the image data stores have different sizes. We developed
augmented image data stores and provided the required image
size to automatically resize the training and test images before
they were submitted to the network.
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FIGURE 9. Process steps of classification of proposed KNN-PDNN.

We loaded the data by splitting it into 80% training and
20% test data, then loaded one of the pretrained network.
Deeper layers of a pretrained model have higher-level
features that are built on the lower-level elements of prior
levels. We employed the activation function on the global
pooling layer, which changes from model to model, to acquire
the feature representations of the training and testing images
at the end of the network. The input features are pooled
over all spatial locations in the global pooling layer. The
models were then used to extract train and test features.
We employed features retrieved from the training images as
predictor variables, fitted KNN, classified the test images
using the trained KNN model and the features collected from
the test images, and calculated the classification accuracy of
the test set, as illustrated in Fig. 9.

b: ALEXGWO

In this study, we selected the nature inspired GWO
method [62] for various reasons, including its few tuning
parameters, quick convergence, and capacity to handle
optimization difficulties. The GWO algorithm is based on
the hunting concept. Wolves are part of a group that includes
several grey wolves that help in hunting. Wolves in a pack
are classified based on their ability to lead. A pack of wolves
is divided into four types: alpha («), beta (8), delta (§), and
omega (w). The leader of the hunting process is the group’s
decision-maker.

The dominance of the remaining wolves decreases grad-
ually in the following order: B, §,and w. Such wolves
participate in hunting and pass on their improved positions to
their superiors. The earliest grey wolves look for and contain
prey in this phase, which is the course of the chase. «, 8,and
8 have more knowledge about prospective prey areas for
mathematical simulations of hunting behavior [63].

Seyedali Mirjalili introduced GWO in 2014 by emulating
the social behavior, leadership structure, and hunting in
the collective property of grey wolves [62]. Grey wolves
usually live in packs in the wild, with group sizes ranging
from 5 to 12. They maintain a rigid social dominance
hierarchy. In the highest level of the hierarchy, the most
dominant male or female wolves are portrayed as «, and they
are primarily decision-makers for the wolf pack’s feeding,
sleeping, hunting, and habitat. The « wolf is followed by all
the other wolves. The B8 wolves are the next level wolves in the
hierarchy; they obey the o and govern the lower-level wolves.
The § wolves assist the & and B wolves in hunting and seeking
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FIGURE 10. Process steps of proposed AlexGWO.

prey in the following category. They patrol the region, alert
the other wolves to any danger, and care for the injured and
weak wolves.

Furthermore, w wolves are the lowest category and must
obey all other wolves’ orders. Wolves’ hunting success is
primarily based on their social hierarchy. Grey wolf social
behavior may be mathematically described by selecting the
prey location as the ideal solution and describing the wolf
position as the solution in the search space. Moreover, «
wolves are the greatest solution because of their proximity
to the prey. According to their social structure, the f
and § wolves are the next best solutions. Meanwhile, w
wolves in search space adjust their position based on the
positions of «, B, and § wolves. GWO’s main phases
are prey encirclement, hunting, fighting, and searching.
Prey encircling refers to how wolves encircle their prey
when hunting. The prey hunting procedure is led by the
o wolves. The 8 and § are also involved in this process.
It is anticipated that these three wolves will be informed
about the likely prey zone. This aids in selecting the three
finest search agents, who then assist in updating the locations
of other wolves. The seeking or exploring for an optimal
solution is modeled after wolf searching behavior. Wolves
divide when looking for prey and converge when they
locate it [64].

AlexNet was chosen with GWO because AlexNet has the
least depth of any pretrained deep models; thus, it takes less
time to execute. The same steps of pretrained models as
classifiers were performed except that we put variables at the
mini-batch size and the initial learning rate hyperparameters
in the training options to be optimized by GWO, as shown in
Fig. 10. We also specified the number of search agents and
the maximum number of iterations of GWO. Then, we set
the lower and upper bounds for the required parameters.
In details, we initialized alpha, beta, and delta positions,
initialized the positions of search agents, returned the search
agents that go beyond the boundaries of the search space,
calculated objective function for each search agent, updated
alpha, beta, and delta, and updated the position of search
agents including omegas. A diagram of the abbreviated steps
is presented in Fig. 10.

IV. EXPERIMENTAL RESULTS
Several tests were performed in this section to evaluate
the performance of the proposed approach and several
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state-of-the-art classification algorithms on the ISIC archive
dataset.

A. SYSTEM IMPLEMENTATION
The implemented frameworks have been tested and evaluated
using the following software and hardware configurations:
o Operating system: Windows 10 Pro.
o Compiler: MATLAB R2020b.
o Processor: Intel (R) Core (TM) i7-9750H CPU @
2.60GHz 2.59 GHz.
o Installed RAM: 16.0 GB (15.9 GB usable).
o System type: 64-bit operating system, x64-based
processor.

B. EVALUATION METRICS

We employ five popular measures to objectively evaluate
the effectiveness of the proposed melanoma detection
method: precision, sensitivity/recall, specificity, F1 score,
and accuracy:

.. TP
Precision = —— @)
TP + FP
Sensitivity /Recall P (8)
ensitivi ecall = ——
y TP + FN
Specificit N ©)]
ificity = ————
Py = TN+ FP
2 x TP
Flscore = (10)
2 x TP+ FP + FN
TP 4+ TN
Accuracy = , )
TP + TN + FP + FN

where TP (True Positive) is the number of Malignant cases
correctly classified, TN (True Negative) is the number of
Benign cases correctly classified, FP (False Positive) is the
number of Benign cases detected as Malignant, and FN
(False Negative) is the number of Malignant cases detected
as Benign.

C. RESULTS AND DISCUSSION

This section presents the results and the used parameters of
the tested classification approaches and the two proposed
methods:

In ML approach, we tested ANN, KNN (with the number
of nearest neighbors equals ten), NB, SVM, and DT with
GLCM feature extraction before classification and extracted
26 features of images. ANN has 26 inputs (features), one
hidden layer with 52 neurons, and one output (benign or
malignant) with 1000 epochs. We split data into 80% train
and 20% test by k-fold cross-validation (k = 5). Classification
accuracies of ANN, KNN, NB, SVM, and DT models are
81.25%,72.35%, 70.45%, 64.92%, and 77.25%, respectively.
The results are presented in Fig. 11.

In DL approach, we employed CNN with five convolu-
tional layers, and one fully connected layer. The number of
filters in each convolutional layer is 32, 32, 64, 128, and
128. Its training options were set as the mini-batch size
is 32, and maximum epochs to 5. We also tested 10 and
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TABLE 2. Performance of pretrained deep models. the best values are shown in bold and underline.

Pretrained models Precision (%) Sensitivity/Recall (%) Specificity (%) F1 Score (%) Accuracy (%)
Densenet-201 98.0344 99.75 98 98.8848 98.875
ResNet-101 96.6184 100 96.5 98.2801 98.25
AlexNet 96.6019 99.5 96.5 98.0296 98
ResNet-18 95.6731 99.5 95.5 97.549 97.5
ResNet-50 93.662 99.75 93.25 96.6102 96.5
MobileNet-v2 97.1503 93.75 97.25 95.4198 95.5
Inception-v3 90.4762 99.75 89.5 94.887 94.625
TABLE 3. Performance of the proposed KNN-PDNN. the best values are shown in bold and underline.
Pretrained models Precision (%) Sensitivity/Recall (%) Specificity (%) F1 Score (%) Accuracy (%)
VGG-16 99.7481 99 99.75 99.3726 99.375
EfficientNet-BO 99.0025 99.25 99 99.1261 99.125
VGG-19 98.9975 98.75 99 98.8736 98.875
ResNet-50 99.2424 98.25 99.25 98.7437 98.75
ResNet-101 98.7469 98.5 98.75 98.6233 98.625
ResNet-18 98.9924 98.25 99 98.6198 98.625
Densenet-201 98.7245 96.75 98.75 97.7273 97.75
Inception-v3 96.5261 97.25 96.5 96.8867 96.875
AlexNet 99.2 93 99.25 96 96.125
MobileNet-v2 98.3651 90.25 98.5 94.133 94.375
9775 We tested pretrained models: VGG-16, VGG-19,
100 8125 . EfficientNet-B0, AlexNet, ResNet-18, ResNet-50, ResNet-
%0 = 72.35 7045 64.92 77.25 101, DenseNet-201, Inception-v3, and MobileNet-v2. These
§ models were tested as classifiers with transfer learning.
5 60 Their training options were chosen as follows: maximum
Q .« . . . o e .
é 40 epochs are 5, mini-batch size is 32, and initial learning
20 rate is 1 x 107*. The confusion matrix of the highest
0 accuracy, Densenet-201, is shown in Fig. 12. The results of
& %% Qﬁeﬁ‘ S <& § the pretrained models are shown in Table 2.
v < 4@% < & In the first proposed method, KNN-PDNN, pretrained
. &
- 0@0 models were deployed as feature extractors when we used

Classification Methods

FIGURE 11. Accuracy comparison chart among ML methods and CNN.

15 epochs but, in these cases, we suffered from complexity
in processing time besides it provided only small differences
in performance. The initial learning rate is 1 x 10™* and its
accuracy is 97.75%. Fig. 11 shows the comparison between
ML methods and CNN based on their accuracies. As shown
in Fig. 11, there is a considerable difference in accuracies
between CNN and ML methods.
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KNN as a classifier. When the number of nearest neighbors
equals ten, KNN outperformed other approaches, whose
accuracy exceeds 99% in some models. The mini-batch size
was 32. Table 3 shows that VGG-16 has the best accuracy.
The confusion matrix of VGG-16 is shown in Fig. 13.

In the second proposed method, AlexGWO, the number
of search agents in GWO was set to 10, and the maximum
number of iterations was 50. We set the lower and upper
bounds for the mini-batch size to be 2 and 128, respectively.
The lower and upper bounds of the initial learning rate are
0.0001 and 0.000001, respectively. The best parameters that
give the best accuracy are a mini-batch size of 40 and initial
learning rate of 9 x 10~#, which provide the best accuracy for
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TABLE 4. Performance of the proposed ALEXGWO.

Method Precision (%)

Sensitivity/Recall (%)

Specificity (%) F1 Score (%) Accuracy (%)

AlexGWO 99.47 100

99.5 98.63 99

Benign

True Class

Malignant

Benign Malignant
Predicted Class

FIGURE 12. Confusion matrix of Densenet-201.

Benign

True Class

Malignant

Benign Malignant
Predicted Class

FIGURE 13. Confusion matrix of VGG-16.

AlexNet (99%) compared to Alexnet as feature extractor with
KNN classifier (96.125%) and Alexnet as classifier (98%).
Performance of proposed AlexGWO is shown in Table 4.

Table 5 compares the accuracy of the proposed methods
with those of the existing DL methods on the same dataset.
It shows that the two proposed methods achieve the best
accuracy.

V. DISCUSSIONS
We proposed two classification approaches based on deep
learning networks to automatically detect skin cancer in
dermoscopy images, while also conducting a wide range of
tests to assess the performance of the proposed methods.
The performances of the two proposed models, KNN-
PDNN and AlexGWO, are compared to most of ML and DL
approaches. By comparing the accuracy values acquired from
other evaluated approaches, we can see that our proposed
methods outperform other tested methods.
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TABLE 5. Comparison of accuracies between existing dl works and the
proposed methods on isic dataset. the highest accuracy is shown
in bold and underline.

Classification Method Accuracy (%)
VGG-16 [7] 73.76
VGG-8, VGG-11, VGG-16 [8] 77
CNN [9] 95
Multitask DCNN [10] 95.9
A very deep residual CNN and FCRN [11] 94.9
Deep multi-scale CNN [12] 90.3
VGG-16 and CNN [14] 78
Deep-class CNN [15] 75
Region-based CNN with ResNet-152 [16] 90.4
ResNet-50 with deep transfer learning [17] 93.5
Deep CNN [18] 80.3
CNN [22] 89.5
LightNet (DL framework) [23] 81.6
MobileNet, MobileNet-v2, NASNetMobile [24] 82
VGG-16, Xception, and ResNet-50 [26] 88
LeNet, ResNet, EfficientNet, Inception-v3 [27] 91.1
VGG, GoogleNet, and ResNet-50 [28] 93.7
MobileNet-v2 [30] 95.27
ResNet, AlexNet [31] 97.5
CNN [32] 97.5
Proposed KNN-PDNN 99.375
Proposed AlexGWO 9

The proposed models can be easily accessible via a Web-
based platform or even as an API to aid dermatologists in
detecting possible lesion risk in a timely manner; this is surely
another subject that we will investigate.

The next goal is to analyze the dynamic evolution of
the skin lesion over a short period of time to improve
classification and prediction. As a result, we aim to expand
the taxonomy to include different forms of skin lesions that
may be associated with a cancer diagnosis.

More dermoscopy images can be added to the training
dataset in the future to improve and increase efficiency.
To make the model more diversified in nature, datasets from
various age groups and categories may be incorporated.
To improve prediction efficiency, picture metadata can be
supplied. Based on the patient’s medical history and other
personal information, a personalized system can be created.

The objective of this research field has always been to
provide medical-grade apps to aid in diagnosis. With the
increase of skin cancer as a worldwide health concern, and
melanoma being the deadliest variety, it is anticipated that the
information presented in this study will help to advance these
technologies.

VI. CONCLUSION

The goal of medical disease classification research is to help
patients and clinicians. Doctors can make better judgments
when using computer-based solutions. An accurate approach
promotes faith in an illness diagnosis. When identifying skin
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cancer, it is challenging to distinguish between benign and
malignant lesions. Therefore, in this study, we examined
the effectiveness of ML and DL models in interpreting
dermoscopic images of skin lesions. Although, current ML
and DL experiments have piqued the public’s curiosity and
shown great potential, such image processing has long been
challenging and error prone. Based on only dermoscopic
images, we developed ML and DL models to examine
whether a tumor is malignant or benign. We observed that
the basic ML algorithms were less accurate on the tested
4000 dermoscopic images from the ISIC dataset. When
images were examined using CNN and pretrained deep
networks, there were apparent and discernible differences in
accuracy compared to previous methodologies. We achieved
accuracy that exceeded 99% in the first proposed method,
KNN-PDNN, and 99% in the second proposed method,
AlexGWO. Furthermore, to improve the model’s perfor-
mance, it is better to employ DL techniques to construct a
model for categorizing benign and malignant skin tumors.
DL reduces error while improving accuracy.
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