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ABSTRACT Since GreyWolf Optimizer (GWO) first introduction, it continues to be used extensively today,
owing to its simplicity, easy handling, and applicability to a wide range of problems. Although there are
many different GWO variants in the literature, the problem that the GWO produces early convergence and
inefficient results have still continued to emerge in their variants. In order to overcome the drawbacks of the
GWO, the GWO integrated together with Levy Flight (LFGWO) is proposed. In order to demonstrate the
overall performance of the LFGWO, experiments are conducted using the 23 standard benchmark functions
and 10 composition functions of CEC 2019 compared with the other eight state-of-art algorithms. The 28 out
of 33 average and 27 out of 33 standard deviation values obtained by LFGWO are all less than those obtained
by the other eight optimization algorithms, which verified and demonstrated the performance, stability, and
robustness of the LFGWO. The extensibility test with different scales of dimensions 50, 100, 300, and 500,
is undertaken by comparing LFGWOwith GWO and IGWO to assess the dimensional influence on problem
consistency and optimization quality. Moreover, the performance of the LFGWO has also been tested on
five real-world problems and infinite impulse response (IIR) challenging model identification, experimental
results and statistical tests demonstrate that the performance of LFGWO is significantly better than the other
compared algorithms, and the LFGWO is capable of solving real-world problems.

INDEX TERMS Benchmark function, global convergence, grey wolf optimizer (GWO), levy flight.

I. INTRODUCTION
A. OPTIMIZATION TECHNIQUES
Optimization is defined as the selection of the best ele-
ments or actions from a set of feasible alternatives. More
precisely, optimization consists of finding the set of vari-
ables that produce the best values of objective functions
in which the feasible domain of the variables is restricted
by constraints [1]. During the past several decades, various
domain-specific problems increase the complexity because of
the high dimensionality and various constraints that may fail
to solve using exact algorithms. To solve complex problems,
numerous metaheuristic optimization algorithms have been
designed to tackle a plurality of more complex optimization
problems.

In [2], the recent well-regarded Manta Ray Foraging
Optimization (MRFO) was developed. However, the MRFO
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suffers from the deficiencies of decreasing population diver-
sity and low accuracy of exploitation in the late iteration.
As soon as the MRFO appeared in publications, variants
of MRFO appeared quickly, in [3], Tang, et al. used the
ESP, ACP, and DES strategy to modify Manta ray foraging
optimization (m-MRFO), and achievedmore or less extensive
success. But, the crucial drawback of the m-MRFO didn’t
pay more attention to the infeasible region. Abd Elaziz et al.
in [4] proposed MRFO with the triangular mutation operator
and orthogonal learning strategy (MRTMO) focus on paying
more attention to the infeasible region, however, which leads
to MRTMO attracting the solution to a local point and the
final output’s quality is degradation. In [5], Yousri et al.
proposed a novel variant of the Manta ray foraging optimizer,
named FCMRFO,which has better addressed the flaw that the
MRFO’s exploitation ability is weaker than the exploration
ability.

In [6], Band et al. introduces a new colonial compet-
itive optimizer using three modified RAO metaphor-less
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algorithms, called CCRAO. Even though they tested CCRAO
on 30 standard functions of CEC2014 with 50 dimensions
compared with several well-known algorithms and on five
popular engineering problems, the CCRAO all achieved bet-
ter results. But, the CCRAO didn’t present a reasonable
explanation about how to coordinate their powerful group
algorithms and harmony with these three modified RAO
metaphor-less algorithms, which may need more time to
study in-depth on theory and experience. In [7], Faramarzi et
al. proposed a Marine Predators Algorithm (MPA) integrated
Levy and Brownian movements with optimal encounter rate
policy in biological interaction between predator and prey.
Even they compared the MPA with several well-regarded
optimization methods using CEC 2017 benchmark functions,
and the outcomes showed that the MPA has superior perfor-
mance and surpasses most of the other algorithms. Crucially,
moreover, it has not been tested on how to coordinate and
harmony Levy and Brownian movements to maximize the
performance of the MPA. In [8], Hua et al. proposed a unique
MCSA algorithm and validated their MCSA on more bench-
mark test functions, such as 23 benchmark test functions,
CEC2017 and CEC2019 test suites by comparing with the
other competitive optimization algorithms, and six real-world
engineering problems. It will be better; if their paper listed
more statistical results (for example, comparing the mean and
standard deviation of MCSAwith other algorithms in solving
six optimization problems).

In the past decades, more researchers are dedicated to the
improvement of the GWO by presenting various variants of
the GWO. However, there are still limited innovations in
enhancing population diversity and global search capabilities
by changing population structure and searching mechanisms.

In [9], Ma et al., an improved version of the grey wolf
optimizer based on Aquila exploration method (AGWO) was
proposed to solve the global optimization and freely adjust
its exploitation and exploration capabilities. The main idea
emphasizes the exploitation ability of the grey wolf and the
exploration ability of Aquila. Needless to say, even though
the AGWO is more accurate with a faster convergence rate
compared to GWO, however, the AGWO needs to be val-
idated by composition benchmark functions. Saxena et al.
in [10] presented E-GWO, which utilizes a sinusoidal bridg-
ing technique with novel selection, crossover and mutation
operators to enhance the exploration ability and to avoid local
optima stagnation. However, it lags in the intensification of
unimodal functions and fails to balance the search process
for hybrid functions. In addition to that, it shows a better
exploration ability for landscapes with many local optima,
but weak exploitation in unimodal problems and does not
strike a proper balance between intensification and diversi-
fication in hybrid functions ineffective global search is still
its major problem. Dhargupta et al. in [11] combine the
opposition-based learning strategy and Spearman’s correla-
tion coefficient with GWO. The Selective Opposition based
GWO algorithm (SOGWO) changes the distribution strategy

of the population. This improvement may increase the com-
putational complexity of the algorithm. At the same time,
SOGWO can diminish unnecessary exploration and obtain a
fast convergence. However, in the same context, the SOGWO
may lead to premature convergence and loss of diversity.
Rajakumar, et al. in [12] presented an evolution version
of the GWO, namely Accelerated Grey Wolf Optimization
(AGWO), which incorporates the enhanced hierarchy into
the GWO technique. Although the AGWO can right bal-
ance exploitation and exploration in hybrid functions and
has a better exploration in the landscapes with many local
optima. But it lags to balance exploration and exploitation
in solving complex problems. The I-GWO [13] proposed to
improve the GWO search strategy by a new learning-based
hunting search strategy to tackle imbalance exploration and
exploitation and premature convergence weaknesses. The
I-GWO concentrates on and obtains a good balance between
exploration and exploitation. But, the I-GWO overlooks the
accurate approximation of the global optimum for the com-
position functions. The VAGWO [14] algorithm was recently
proposed to add velocity term to the position-updating mech-
anism of the canonical GWO. The velocity has been shown to
significantly improve the GWO algorithm when attempting
to explore the search space, as the velocity can continue to
push the wolves to continue their global search and; prevent a
significant number of good positions from being missed dur-
ing the optimization process. However, bigger problem sizes
for combinatorial optimization could be a challenge for the
VAGWO. The VAGWO show no significant superiority when
outperforming several other algorithms on most of composi-
tion functions to get the accurate approximation of the global
optimum. In [15], a new variant of GWO termed Randomized
Balanced Grey Wolf Optimizer (RBGWO) is introduced,
which improves the overall efficiency of the search process
by establishing a balance between its exploitation and explo-
ration capability incorporating three successive enhancement
strategies equipped with a social hierarchy mechanism and
random walk with student’s t-distributed random numbers.
It is very challenging to choose different parameters of
RBGWO to resolve different optimization problems and the
solution requires more enhancements. In [16], a new vari-
ant of the GWO called a mutation-driven modified grey
wolf optimizer and denoted by MDM-GWO is proposed.
The MDM-GWO combines a new update search mechanism,
modified control parameter, mutation-driven scheme, and
greedy approach of selection in the search procedure of the
GWO. Therefore, it is necessary to study the influence trend
of parameters on the MDM-GWO, which will inevitably
increase calculation and operation costs. In [17], a new vari-
ant of the GWO named GWOCMALOL is proposed, which
uses covariance matrix adaptation evolution strategy, Levy
flight mechanism, and orthogonal learning strategy to bring
more effective exploratory inclinations. However, the inabil-
ity to flexibly adjust parameters defined bymanymechanisms
is challenging for GWOCMALOL, and different choices of
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control parameters have different effects on the optimization
results. In [18], a called Fast-Dynamic GWO (FDGWO) is
proposed. In the FDGWO, 8 fixed coefficients must be deter-
mined before implementation. Needless to say, even though
the FDGWO is more accurate with a faster convergence rate
compared to GWO, however, the FDGWO requires 8 param-
eters to be adjusted; the determination and coordination of
these 8 parameters are still not easy. To improve the perfor-
mance of the GWO, the Diversity Enhanced Strategy-based
Grey Wolf Optimizer (DSGWO) is proposed in [19]. The
number of leading wolves changing from three to six is
the mechanism of the Diversity Enhanced Strategy in the
DSGWO. And the exploration-exploitation balance mecha-
nism of the DSGWO divides the hunting process into two
stages: in the first stage, the position of the omega wolf is
between two leading wolves randomly selected from the six
leading wolves. In the second stage, the updating process of
the population is the same as classical GWO. However, as the
hunting mechanism of DSGWO is the same as the GWO;
needless to say, even the number of leading wolves change
from three to six thus, the premature convergence and local
optima trapping have still remained. In [20], an improved
variant of the GWO named gaze cues learning-based grey
wolf optimizer (GGWO) is proposed. By two new search
strategies of neighbour gaze cues learning (NGCL) and
random gaze cues learning (RGCL), the GGWO improves
diversification, exploration, and exploitation. Despite achiev-
ing these results, there are still chances for improving the
GGWO in terms of updating solutions and accelerating the
convergence rate.

Till date, practitioners or researchers in various fields
of science and engineering also have presented and exper-
imented with various GWO variants and hybrid variants
optimization algorithms to the main four application scenes.

1) FEATURE SELECTION
Feature selection problem is one of the main difficulties to
find the smaller number of informative features among a
huge amount of feature space which guides the maximum
classification ratio. In [21], Preeti, Kusum Deep proposed
a Random Walk Grey Wolf Optimizer based on dispersion
factor (RWGWO) used in wrapper feature selection method.
To demonstrate their methodology, they conducted a set
of classification measures experiments on eighteen differ-
ent chronic disease data. In [22], Wang et al. proposed an
Adaptively Balanced Grey Wolf Optimization (ABGWO)
algorithm to seek out the optimal feature subset for high-
dimensional classification. In [23] Hu et al. proposed Binary
Grey Wolf Optimizer (BGWO) to extends the application of
the previous GWO algorithm and conducted a comprehensive
study on utilizing five transfer functions of Binary GWO in
feature selection. Their BGWO showed promising results in
terms of the feature selection in the UCI datasets and acquired
low classification errors with few features. Geetha and Deepa
in [24] proposed a Fisher kernel based PCA dimensionality

reduction algorithm and grey wolf optimizer based weight
dropped BiLSTM classifier (FKPCA-GWO WDBiLSTM)
for intrusion detection. In [25], a hybrid GWO with CSA,
namely GWOCSA is proposed by Arora, S et al. which
combines the strengths of both the algorithms effectively with
the aim to generate promising candidate solutions in order to
solve the feature selection problem. Their results reveal that
the GWOCSA has comprehensive superiority in solving the
feature selection problem.

2) TRAINING NEURAL NETWORKS
Artificial neural networks (ANNs) are information process-
ingmodels inspired by the biological nervous systems. ANNs
are widely applied in research and practice due to their high
capability for capturing nonlinearity and dynamicity mod-
els. However, the performance of ANNs is highly affected
by their structure and connection weights. Recently, various
GWO variants and hybrid variants optimization algorithms
applied to optimize the weight and biases of (ANNs). In [26],
Meng et al. proposed an Advanced Grey Wolf Optimiza-
tion algorithm (AGWO) with elastic, circling and attacking
mechanisms to alleviate local stagnation and premature con-
vergence problems. Mohakud et al. [27] successfully applied
Grey Wolf Optimization algorithm for optimizing the hyper
parameters of CNN, by adopting a proper encoding scheme.
Ali Asghar Heidari et al. [28] proposed boosted grey wolf
optimizer for global optimization and kernel extreme learning
machines.

3) OPTIMIZING SUPPORT VECTOR MACHINES
Support vector machine (SVM) is recognized as one of sev-
eral powerful machine learning algorithms, and it is utilized
for a wide search space of real-world problems. The effec-
tiveness of the SVM algorithm and its production chiefly
rely on the kernel model and its main adjusting parameters.
To maximize the performance of SVM, two hyper parame-
ters should be tuned; the error penalty parameter C and the
kernel parameters, however, which needed long running time
for evaluating all possible combinations by using a simple
or exhaustive grid search. Recently, various GWO variants
and hybrid variants optimization algorithms were applied for
tuning the hyper parameters of SVM in different publications.
In [29], Kumar and Singh. attempted to extract the valuable
information by selecting the relevant features using their
proposed EGWO-SVM (enhanced grey wolf optimization in
combination with support vector machine) approach. In [30],
Badr et al. proposed hybrid GWO-SVM model and tested
and compared their model on two different datasets, Wiscon-
sin diagnosis breast cancer (WDBC) dataset and Electronic
Health Records (EHR). In [31], Kamel et al. used data mining
as a combination of feature selection method by Grey Wolf
Optimization (GWO) and support vector machine (SVM),
which increased the accuracy of diagnosis by 27.68%, tested
and compared with numerous existing former works in the
field.
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4) CLUSTERING APPLICATIONS
Clustering is a common machine learning and deep learning
where the goal is to divide data instances into a number
of groups that have similar characteristics in some sense.
Various GWO variants and hybrid variants optimization algo-
rithms have been widely used and applied for clustering
tasks and as an alternative to the classical k-means algorithm
which is one of the most famous clustering approaches.
In [32], Ahmadi et al. proposed a Modified Grey Wolf Opti-
mizer to tackle data clustering. Ghorbanvirdi et al. in [33]
proposed a centralized multiple clustering based on GWO
that uses both energy and distance in cluster head selec-
tion. Zhang et al. [34] proposed a novel hybrid algorithm
based on PSO and GWO (HGWOP). Experimental results
on K-means clustering optimization reveal that HGWOP has
obvious advantages over the comparison algorithms and can
productively find minimum feature subset on the selected
feature conundrum. In [35], Purushothaman et al. proposed
a novel hybrid algorithm based on GWO and GOA for text
feature selection and clustering.

B. GREY WOLF OPTIMIZER (GWO)
Initially, GWO was introduced by Mirjalili et al. [36]. The
GWO is nature-inspired by the leadership hierarchy and hunt-
ing mechanism of grey wolves. The GWO is a meta-heuristic
algorithm different from others in terms of model structure
and is based on the social hierarchy of grey wolves as well
as their hunting and cooperation strategies. The GWO has
been successfully widely applied in engineering applications
realms [13], [37], [38], [39], as the control parameters of the
GWO need to be turned is less.

C. THE DEFECTIVE OF THE GWO ALGORITHM
Although the GWO has better theoretical architecture, the
GWO has the disadvantage of premature convergence and
low quality of the optimal solution. In recent years, Niu et al.
gave an in-depth study of the GWO. As described in [40]: one
of the main drawbacks of the GWO for optimizing real-world
problems is ‘‘When GWO solves the same optimization func-
tion, the farther the function’s optimal solution is from 0,
the worse its performance’’. They showed that GWO’s per-
formance degrades as the optimal solution of the problem
diverges from 0. As a matter of fact, the GWO has good
performance for the optimization problem whose optimal
solution is 0, however, for other problems, its advantage is
not as obvious as before or even worse [41].

D. REMARK
The GWO was cited by 8741 papers (2023-01-06) and
employed by a large number of researchers and designers,
such that the number of citations to the GWO paper far
exceeded many other meta-heuristic and swarm intelligence
algorithms. On the one hand, which reveals that GWO is
one of the top mainstream algorithms and is popularly com-
pared to many state-of-the-art algorithms. On the other hand,

a large number of practitioners or researchers in various
fields of science and engineering cited the GWO to integrate
the GWO with their developed algorithm and focus on a
variety of practical application problems and have achieved
more or less extensive success. Originates and benefits from
the GWO, according to the literature, in recent years, there
emerged rapidly a variety of GWO variants, each covering
different applications and aspects. To the best of our knowl-
edge, as soon as the GWO as an open-source optimization
tool was developed by Seyedali Mirjalili in 2014, hundreds
and thousands of GWO variants, such as hybridizing and
compositing other algorithms with GWO or integrating a
variety of evolutionary operators into the GWO, not only
the simple mathematical formulation and structure, easily
understandable, and high performance in terms of conver-
gence and acceptable quality of solutions about the GWO,
and the underlying comprehensive reasons are indeed the
GWO scheme being open to various improvements simplicity
in implementation and being very flexible and scalable to be
extended.

Near decades have cited new GWO variants across various
disciplines are being developed by researchers or designers
and have successfully achieved a large variety of unique opti-
mizations in both scientific and industrial problems, without
any doubt, the GWO variants certainly inherit the foremost
features and advantages of the GWO. From the theoretical
perspective, the model structure of the GWO forms the basis
of proposing many GWO variants now and then. Based on
this conclusion, all GWO variants are looks similar to each
other or, at least, nearly equivalently in terms of the model
structure and the effective mechanisms maintain a good bal-
ance between exploration and exploitation, in most cases,
all the GWO variants preserve the searching advantages
of the GWO. The reasons appear to be two-fold. On one
hand, the majority of the GWO variants gained immense
popularity and have been extensively successfully applied
in a variety of application domains including complex opti-
mization problems largely depending on the GWO. On the
other hand, the GWO variants achieved a lot of competitive
performances and significantly outperforms the majority of
the other variants based on the meta-heuristic and swarm
intelligence algorithms in the literature, however, contributed
and correspond to the effective mechanisms of the GWO.

As we know, the overall efficiency of a meta-heuristic
optimization algorithm largely depends on a sound bal-
ance between exploration and exploitation (intensification
and diversification). Recent years have seen a burgeoning
stronger interest by researchers and practitioners from dif-
ferent fields in fusing meta-heuristic search methods with
Levy flight for the majority of the complex non-line con-
strained optimization problems. The probability of obtaining
the global optimization value is much higher by adopting
the meta-heuristic algorithm of Levy flight mode than by
adopting other methods (uniform or Gaussian). As soon as a
meta-heuristic or swarm intelligence algorithm incorporates
the concept of Levy Flight proving to be more efficient
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FIGURE 1. The social hierarchy of Grey wolves.

than the same optimization algorithms without Levy Flight.
The comprehensive reason behind the effectiveness of the
meta-heuristic or swarm intelligence algorithms embedded
with Levy Flight is that the Levy Flight-based jumps can
effectively redistribute the search agents to enhance their
diversity and to emphasize more explorative steps in case
of immature convergence to low optimization. As reported
in numerous publications and many successful experiments
suggest that it is the mainstream trend to incorporate Levy
Flight with meta-heuristic and swarm intelligence algorithms
to boost the efficacy of the meta-heuristic and swarm intelli-
gence algorithms.

Based on the theorem of ‘‘no free lunch’’ (NFL) [42], many
nature-inspired optimization algorithms now and then will
be appeared, and a universal best optimizer for the specific
problems in various fields of science and engineering does
not exist.

The main contribution of this paper can be summarized as
follows:

• The levy flight strategy is properly embedded with
GWO.

• The LFGWO was validated by 23 mathematical bench-
mark functions and 10 composition functions of CEC
2019 in comparison with the eight well-known meta-
heuristic algorithms.

• Comparing LFGWO with GWO and IGWO using
4 dimensions (D = 50, 100, 300, and 500) to assess the
dimensional influence on consistency and optimization
quality.

• The LFGWO was employed to resolve five real-world
problems and achieved promising results.

II. THE CONCEPT OF THE GWO
A. THE SOCIAL HIERARCHY OF GREY WOLVES
GWO is a population-based meta-heuristics algorithm that
simulates grey wolves as considered apex predators, which
are at the top of the food chain.

• Grey wolves prefer to live in groups (packs), each group
containing 5-12 individuals on average.

• All the individuals in the group have a very strict social
dominance hierarchy as demonstrated in the accompa-
nying figure 1.

1) Alpha wolf is considered the dominant wolf in the
pack and his/her orders should be followed by the pack
members.

FIGURE 2. Evolution of position in GWO.

2) Beta wolves are subordinate wolves, which help the
alpha wolf in decision-making and are considered the
best candidate to be the alpha wolf.

3) Delta wolves have to submit to the alpha and beta, but
they dominate the omega.

4) Omega wolves are considered the scapegoat in the
pack, are the least important individuals in the pack,
and are only allowed to eat at last.

B. GREY WOLF HUNTING AND GREY WOLF OPTIMIZER
1) ENCIRCLING THE PREY
When the prey location is captured by the grey wolves, encir-
cling of prey is performed. In the process of encircling, grey
wolf individuals should first determine the distances between
themselves and the prey according to Eq. (1) and then update
their positions through Eq. (2):

D⃗ = |C⃗ · X⃗p(t) − X⃗ (t)| (1)

X⃗ (t + 1) = X⃗p(t) − A⃗ · D⃗ (2)

where t indicates the current iteration, A⃗ and C⃗ are defined as
coefficient vectors, X⃗p is the best solution position vector that
the prey has been observed so far, and X⃗ indicates the position
vector of a grey wolf. In Figure. 2, the D⃗ is the difference
vector which decides the movement of wolf either towards
the neighborhood regions of prey or opposite of it.

Both A⃗ and C⃗ are changed over iterations as following:

C⃗ = 2r⃗2 (3)

A⃗ = 2a⃗ · r⃗1 − a⃗ (4)

where r⃗1 and r⃗2 are randomly generated stochastic vectors
from the interval [0, 1]. C⃗ and A⃗ are coefficients that are
determined by Eq. (3) and (4). The components of vector a⃗
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are linearly decreased from 2 to 0 over the course of iterations
and can be formulated as Eq. (5):

a = 2 − 2 ∗
t
T

(5)

where t indicates the current iteration and T denotes the
maximum number of iterations.

2) HUNTING THE PREY
In GWO, for the global optimums of an optimization problem
are unknown, the first three grey wolves of Alpha, Beta,
and Delta are always assumed as the closest solutions to the
optimal value. In the hunting strategy, the positions of each
search agent (wolf) are adjusted based on the three best posi-
tions of Alpha, Beta, and Delta. The following equations are
used to mimic the hunting process and to identify the better
optimum in the boundary space. Therefore, the remaining
wolves are supposed to update their positions following the
leading wolves which can be calculated by Eq. (6)-(8).

−→
Dα =

∣∣∣−→C1 ·
−→
Xα(t) − X⃗ (t)

∣∣∣
−→
Dβ =

∣∣∣−→C1 ·
−→
Xβ (t) − X⃗ (t)

∣∣∣
−→
Dδ =

∣∣∣−→C1 ·
−→
Xδ (t) − X⃗ (t)

∣∣∣ (6)
→

X1 =
→

Xα −
→

A1 · (
→

Dα)
−→
X2 =

−→
Xβ −

−→
A2 · (

−→
Dβ )

−→
X3 =

−→
Xδ −

−→
A3 · (

−→
Dδ). (7)

→

X (t + 1) =

→

X1 +
→

X2 +
→

X3
3

(8)

where
→

Xα ,
→

Xβ ,
→

Xδ are the three best positions of Alpha, Beta
and Delta, D⃗α , D⃗β ,D⃗δ are distances of search agents away
from the three best solutions, A⃗1, A⃗2, A⃗3 show randomvectors.

3) ATTACKING PREY (EXPLOITATION PHASE)
Grey wolves diverge from each other to search for prey and
converge to attack prey. Grey wolves will only attack the prey
when they are no longer moving. This phase is responsible
for exploitation and is handled by a linear decrement in a⃗.
The linear decrement in this parameter enables grey wolves
to attack the prey while it stops moving.

4) SEARCHING FOR PREY (EXPLORATION PHASE)
It is obvious that when the prey stops moving, the wolf will
kill the prey and, in this way, they complete their hunting
process. Grey wolves mostly search according to the position
of the α,β and δ. The process of GWO can be exhibited in
detail as follows Pseudo code of the GWO algorithm 1.

III. GWO RANDOM WALKS WITH LEVY FLIGHTS
From a mathematical point of view, the distribution function
of probability density on the variation of Levy’s flight length
normally approximated can be defined as:

L (s) ∼ |s|−1−θ , 0 < θ ≤ 2 (9)

Algorithm 1 Pseudo Code of the GWO
Randomly initialize the population of grey wolves Xi(i =

1, 2, . . . , n)
Initialize the value of a=2, A and C (using eq. 3, 4)
Calculate the fitness of each member of the population
Xα: member with the best fitness value
Xβ : second best member (in terms of fitness value)
Xδ: third best member (in terms of fitness value)

while (t < T (Max number of iterations))) do
for each search agent do

Update the position of all wolves by eq. 6, 7 and 8
Update a, A, C (using eq. 3, 4 and 5)

end for
Calculate the fitness of all search individual
Update Xα , Xβ , Xδ

t = t + 1
end while
return The best solutionXα .

The random step length of Levy’s flight is S, the θ is
normally set to be 1.5, which harmonies the peak sharpness of
the levy distribution graph and can harmony both exploitation
and exploration trends over the course of iterations. However,
the true Levy distribution cannot be realised directly with
computer code, but a modified version of Levy distribution
or the approximate form is the Mantegna algorithm which
may be the best alternative for a symmetric Levy stable
distribution, where ‘‘symmetric’’ means that the steps can be
positive and negative. Mantegna’s algorithm always consists
of three steps and the step length S can be calculated by the
quotation.

S =
U

|V |
1
θ

(10)

The random length variable is S, the σU and σV depicted
as below.

U ∼ N
(
0, σ 2

U

)
, V ∼

(
0, σ 2

V

)
(11)

For simplicity we usually set

σV = 1. (12)

V denotes a random number sampled from the Gaussian
distribution V (0, 1), and U is a random number sampled
from the Gaussian distribution N (0, σU 2), the σU can be set
presented as below.

σU =

{
0(1 + θ) × sin(0.5πθ)

0[0.5(1 + θ )] × θ × 20.5(θ−1)

} 1
θ

(13)

where Γ represents the conventional gamma function, com-
puted using the built-in’gamma(X)’ MATLAB function. The
step of the Levy flight achieved by Equation (10)-(13), which
simulates many small and occasionally long-distance jumps.
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Then the step size is calculated by

step size = f × S = f ×
U

|V |
1
θ

= 0.01
U

|V |
1
θ

. (14)

Here, the factor value (f= 0.01) dependent on the dimen-
sion of the desired problem. The L/100 should be the typical
step size of walks where L is the typical length scale; other-
wise, Levy flight may become too aggressive, which makes
new solutions (even) jump outside of the design domain (and
thus wasting evaluations). To sum up, the procedure of the
Levy flight can be presented in Algorithm 2.

Algorithm 2 Pseudo Code of the Levy Flight Function
1: initial: d=4;(dimensions),θ= 1.5;
2: Calculate σU by Eq.(13)
3: u= randn(1,d)*σU ;
4: v=randn(1,d);
5: S=u./abs(v).ˆ (1/θ) by Eq.(10)
6: step size = 0.01*S;
7.end

It is particularly noteworthy that the random walk provides
approximately the ‘‘same size’’ for every step [43], [44], [45],
while Levy flight offers ‘‘varied sizes’’, which means in most
cases the ‘‘varied sizes’’ is a number of small steps and
occasionally a big step. On the other hand, the ‘‘step size’’ is
the step size of the search space and be added to the updating
equations of the LFGWO for finding the position of the prey.
In other words, the Levy flight distribution is an effective
mathematical operator for producing varied solutions in the
hunting space and increasing the exploration capability of
the LFGWO, which presents a natural harmony between
exploration and exploitation. The flow chart of the LFGWO
is given in Figure 3.

As a matter of fact, even Levy flight is a very special
random walk that offers and with occasional big jumps can
allow the exploration to escape from a local optimum and
restart in a different region of the search space. But how to
embedding the Levy Flight in a proper place will directly
produce totally different results, some cases will be better
and some cases will be worse. Based on the above facts,
through an in-depth comprehensive study and trial-and-error
experiments, the search process starts by assigning the new
position with the Levy flight step, which directly influences
each wolf’s individual fitness and the position of each wolf
individual, and influences the position of the wolf alpha. The
pseudo-code of the LFGWO is submitted below.

From Figure 3 and Algorithm 3, it is worth noting the
formula:

NewPosition = currentPosition ∗ LFGWO_Levy(dim)′.

Firstly, LFGWO_Levy(dim) represents the Levy flight
function, and dim is the dimension. The Levy flight can
consecutively generate a set of random small steps and occa-
sionally big jumps during the process of iteration, which

FIGURE 3. The flowchart of the LFGWO algorithm.

Algorithm 3 Pseudo Code of the LFGWO Algorithm
Randomly initialize the LFGWO population Xi(i =

1, 2, . . . , n)
Initialize a, A, and C
Calculate the fitness value of each search individual
Xα: the best search individual
Xβ : the second best search individual
Xδ: the third best search individual
a = 2 − 2 ∗ (t/Max_iter)

while (t < Max number of iterations) do
NewPosition = CurrentPosition∗LFGWO_Levy(dim)′

for each search agent do
Update the position of the current search individual
by Eq. (2)

end for
Update a, A, and C
a = 2 − 2 ∗ (t/Max_iter)
Calculate the fitness of all search individual
Update Xα,XβandXδ

t = t + 1
end while
return The best solution Xα .

harmony both exploitation and exploration trends over the
course of iterations.

Secondly, the above formula says that the LFGWO inte-
grates with Levy flight not only for the top three wolves
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but also for all wolves over the course of iterations. By this
mechanism, the LFGWO can overcome the deficiencies of
little diversity of the GWO, which is also the highlight and
unique feature of the LFGWO which is totally diffrent from
the other GWO variants. Consequently, all wolves’ positions
updating will influence the position of the wolf alpha, and
which greatly increases the probability of getting the best
position (solution) for the wolf alpha. In the contrary: the
other GWO variants in literature always get the best position
(solution) from the wolf alpha and assign new step only for
the top three wolves, which mean the diversity is underdevel-
oped for the other GWO.

Thirdly, the LFGWO has the ability to jump out of some
local optimum area in the case of stagnation by the above
formula.

Additionally, initializes the position of all wolves as for-
mulated as below:

X (:, i) = LFGWO_Levy(N )′. ∗ (high− low) + low

As shown in previous literature [40], [41], in some cases
the GWO may be unable to find the global optimum, due to
the presence of local optima that can get the search trapped.
To overcome this problem, we propose modifying the GWO
with the above formula that provides a large-scale deploy-
ment schema for all wolves with Levy flight values not
random values at the initialization phase, which may generate
diversity for LFGWO. Despite being a simple change and
mixing a few parameter settings in the LFGWO, this new
random distribution generates drastic changes in the opti-
mization procedure, which increases the overall performance
in terms of convergence speed and solution quality. Accord-
ing to obove dipicts, it is possible to say that the LFGWO
can be a potential alternative in the solution of meta-heuristic
optimization problems as it has high exploration and exploita-
tion capabilities.

IV. NUMERICAL EXPERIMENTS AND DISCUSSION
In below experiments, each technique is performed using
the Windows 10 OSx64 with MATLAB R2019a and the
hardware platform is the Intel(R) Core (TM) i7-8700
CPU @ 3.20GHz and 8 GB main memory. The LFGWO
comparing with eight well-known optimization algorithms
AHA [46], AO [47], DA [48], DMOA [49], GBO [50],
HGS [51], HHO [52], and MVO [53] on the 23 benchmark
functions and 10 composition functions of CEC 2019 to
strictly tests the performances of the LFGWO. Then non-
parametricWilcoxon, Friedman, andNemenyi statistical tests
are employed to assess the LFGWO respectively. The scala-
bility performance of the LFGWOwith the GWO and IGWO
is comprehensive and thoroughly assess (in this case, for
D=10, 50, 100, 300, and 500). The mathematical description
of 23 benchmark functions is presented in the appendix (see
Table 23), where N, T, dim, and fbest are respectively referred
to the number of agents, the maximum iteration value, the
number of dimensions, and the desired optimal value. Range
denotes the interval of search space. The main details of the

10 composition functions of CEC 2019 are summarized in
the appendix (see Table 24), while the complete mathematical
description of each function can be found in ‘‘The 100-Digit
Challenge’’ [54]. In the experiments, the core parameters
of these nine algorithms are set up in the appendix (see
Table 25).

A. NUMERICAL PERFORMANCE EVALUATION
The experimental setup includes all independent runs
30 times on each of the 23 benchmark functions and 10 com-
position functions of CEC 2019, the number of search agents
andmaximum iteration are all equal to 100 respectively under
the fair condition.

Composition functions CEC04 to CEC10 of CEC 2019 are
shifted and rotated, whereas composition functions CEC01 to
CEC03 are not. The parameter set where defined by the CEC
benchmark developer. The dimensionalities of the composi-
tion functions are different, and all of them are scalable.

The mean (‘Mean’ or ‘Average’) and standard deviations
(‘Std’) of the best-so-far solutions are used to compare all
the considered algorithms as two evaluation criteria in this
experiment, which are represented follow:

Mean =
1
N

∑N
i=1g

∗
i (15)

Std =

√√√√ 1
N

N∑
i=1

(g∗
i −Mean)2 (16)

Here gi∗ is the solution received in the independently run and
N is the number of the independent iteration. Mean is the
average value of all the solutions in the final sets obtained
by an optimizer in some individual runs. The Std is used as
an indicator for optimizer stability and robustness. If Std is
small it depicts the optimizer converges always towards the
same solution. Conversely, if Std is large it means that the
results obtained are much more random and the optimizer is
less reliable.

Here, the Non-parametric Friedman test is applicable to
rank nine algorithms and to specify whether there exist signif-
icant differences between the results gained by the LFGWO
and the other eight algorithms. Each algorithm is ranked
separately the best algorithm is the one that receives the
lowest rank while the worst algorithm receives the highest
rank. The average and Std rankings of LFGWO in conjunc-
tion with the other eight algorithms are reported in Table 1
and Table 2, respectively.Compared with 10 composition
functions of CEC 2017, the 10 composition functions of
CEC 2019 case is more complicated, the complexity of the
functions of CEC2019 is significantly increased.

Table 1 says the Friedman test results in which the LFGWO
has the first rank compared with the other eight algorithms,
and it is superior to the other eight competitors, and 28 out
of 33 average values obtained by LFGWO are all less than
those obtained by the other eight optimization algorithms,
which further proved that the utilization of Levy Flight can
effectively enhance the performance of the GWO algorithm.
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TABLE 1. The values of the average and average Rank of the Friedman
test (The bold font in the table indicates the optimal value).

It can be observed from the last row of Table 2 that LFGWO
achieves the Std ranking value of 4.02 of overall rank by the
Friedman test, which is less than the other eight optimiza-
tion algorithms. The 27 out of 33 standard deviation values
obtained by LFGWO are all less than those obtained by the
other eight optimization algorithms, which further explain
that the LFGWO can obtain very competitive solutions com-
pared to other algorithms.

Considering the two metrics of mean and standard devi-
ation of CEC 2019 in Tables 1 and 2, among the 10 com-
position test functions 9 out of 10 average values and 6 out
of 10 standard deviation values obtained by LFGWO are
all less than those obtained by the other eight optimization
algorithms. It is clear that the high performance, stability, and
robustness of the LFGWO, especially when the LFGWO face
composition test functions with high dimensions.

Composite benchmark functions are very challenging
benchmarks for optimization algorithms. Therefore, the
LFGWO’s exploitation and exploration capability may be
simultaneously evaluated by these composite benchmarks of
the CEC 2019. Moreover, the composite benchmarks’ capa-
bility of local optima avoidance can be investigated by the
massive number of local optima in these composite bench-
marks of the CEC 2019.

From the data of Tables 1 and 2, the LFGWO exhibits
outperform on the majority of composite benchmarks. These

TABLE 2. The standard deviations and average Rank on nine algorithms
(The bold font in the table indicates the optimal value.)

results also uncover that the inclusive exploration propensity
of the LFGWO has been significantly improved owing to the
addition of the Levy flight-based components to the original
GWO. The perfect results say that the balance between the
exploratory and exploitative inclinations has been enhanced
compared to the other eight peers. In dealing with these
composite benchmark problems of the CEC 2019, the
LFGWO has advantages such as various dynamic approaches
for updating the positions of wolves, which permit the
attribute space’s exploration with diverse competencies and
homogeneity between exploration and exploitation phases.
Therefore, the LFGWO has reached an appropriate stead-
ier balance amongst the intensification and diversification
leanings.

Considering the two metrics of mean and standard devia-
tion of CEC 2019 in Tables 1 and 2, among the 10 compo-
sition test functions 9 out of 10 average values obtained by
LFGWO are all less than those obtained by the other eight
optimization algorithms, it is clear that the solution accuracy
of LFGWO is superior to other competing algorithms. The
main reason why the LFGWO is superior to the other compet-
itive algorithms on these composition functions is hidden in
the unique structure of this algorithm. The LFGWO inherits
some advantages from the GWO, such as having three guide
leaders’ wolves of Alpha, Beta, and Delta, which, in turn,

VOLUME 11, 2023 74873



W. Lei et al.: Enhancing Grey Wolf Optimizer With Levy Flight for Engineering Applications

TABLE 3. The best values of nine optimization algorithms (The bold font
in the table indicates the optimal value.)

helps the diversity of the solutions in the search space to be
considerably preserved. The other characteristic of the GWO
which the LFGWO benefits from are the high exploitation
capability of the GWO. These characteristics are strength-
ened in LFGWO by adding the Levy flight into the structure
of the LFGWO to enable the LFGWO to further preserve
diversity and avoid missing the good candidate solutions in
the search space. In addition, the aforementioned modifica-
tions imposed on the Levy flight not only for the top three
wolves but also for all wolves over the course of iterations can
boost the ability of the LFGWO to both explore and exploit
the promising regions in the search space. Finally, the Levy
flightmechanism can intensify the convergence to the optimal
point of the problems and enhance the exploitation capability
of the LFGWO.

As can be seen from the 6 out of 10 standard deviation
values obtained by LFGWO are all less than those obtained
by the other eight optimization algorithms, but the difference
is slight. This issue highlights the high complexity of the
composition test functions, the solving of which is a great
challenge for state-of-art algorithms. As the composition
functions included in the CEC2019 are very challenging for
state-of-art algorithms, the state-of-art algorithms all find
these test problems hard to solve, and thus the LFGWO show
no significant superiority when outperforming state-of-art
algorithms on most of the composition test functions. The
composition test functions can be a very good examiner of the
overall eligibility of the state-of-art algorithms, as it contains
the toughest problems to solve.

It can be perceived from Table 3 that LFGWO received
very competitive solutions compared to other eight algo-
rithms from 16 out of 23 benchmark functions, which reveal
that the LFGWO with a better ability to harmonize both
exploration and exploitation.

Empirical results expose that the success rate of the
LFGWO in finding the best solutions is 70% (16/23)
(Table 3). Therefore, these results verify the LFGWO’s ability
to maintain the balance between exploration and exploitation
that causes sufficient local optima avoidance. The reason is
that LFGWO using more leaders wolf of Alpha, Beta, and
Delta will emphasize exploitation rather than exploration.

TABLE 4. Critical values for the two-tailed Nemenyi test.

Therefore, the results of Table 3 show the superiority in per-
formance of LFGWO in terms of exploiting the optimum and
more proficient in regarding global optima. This is due to the
proposed exploitation operators previously introduced in Eqs.
6, 7, and 8, and is that the LFGWOembeddedwith Levy flight
mechanisms can stimulate both exploration and exploitation
tendencies effectively. This mechanism is advantageous for
exploiting new areas nearby the newly explored solutions.
In addition to that, it was observed that the LFGWO embed-
ded with Levy flight mechanisms can enrich the explorative
behaviours by generating more lengthy jumps. In regard to
the obtained results, the lower values of Std. obtained by
LFGWO in Table 2, which indicates that the distribution
of solutions obtained by LFGWO is more centralized and
further shows that the LFGWO has better stability, which
directly answers the LFGWO with high robustness and can
assist wolves in generating more explorative jumps. There-
fore, the results prove the appropriate ability of LFGWO in
terms of maintaining the balance between exploration and
exploitation.

The post-hoc Nemenyi statistical analysis consists of two
parts [55]. The performance of the two algorithms is sig-
nificantly different if the corresponding average ranks differ
by at least the critical difference (CD). Firstly, a difference
between the two algorithms is significant on the level of and
corresponding critical value is pickup from Table 4, which
involved calculating critical difference (CD) by quotation 17.

CD = qα

√
k(k + 1)

6N
(17)

Here N is 33 benchmark functions and k (9) is the num-
ber of pairwise algorithms. The critical value(Table 4) is

3.102 and the corresponding CD is 3.102
√

9×10
6×33 ≈2.0914.

Secondly, it is possible to gain valuable messages from
the Average Rank Difference between ‘‘Average’’ and ‘‘Std’’
come from the last row of Table 1 and Table 2 about the rank-
ing value of both Average and Std respectively for calculating
the differences between LFGWO and other eight algorithms
on average rank about ‘‘Average’’ and ‘‘Std’’. If the differ-
ences between LFGWO and other algorithm are less than
CD, that means the LFGWO and the pairwise algorithm have
similar performance in terms of average rank, which is listed
in Table 5.
Next, with the aid of visuals, it’s a lot easier to put the

results of the data from Table 5 into intuitive visualizations
in Figure 4. Any algorithm with a rank not overlapped (inter-
secting) with LFGWO is significantly different (on the right
side of the vertical dotted line), contrary; there is similar
performance in terms of average rank (on the left side of
the vertical dotted line). The results of Figure 4 indicate that
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TABLE 5. The differences between LFGWO and the other eight algorithms
on average rank.

FIGURE 4. The differences between LFGWO and the other algorithms on
average rank.

LFGWO versus GBO (intersecting with GBO located at the
left part of the vertical dotted line, right gragh) have similar
performance in terms of the average rank of Std.

B. COMPARING LFGWO WITH THE OTHER EIGHT
ALGORITHMS
In order to more intuitively observe the performance and
further demonstrate the superiority of the LFGWO, we per-
formed a series of analyses of LFGWO on the 23 standard
benchmark functions and 10 composition functions of CEC
2019. The multiple runs are to ensure the reliability and
stability of the LFGWO. The first column of the graph in
Figure 5 shows the independent convergence progress of the
nine representative meta-heuristic algorithms respectively.
Since there are many lines the legend attached to the figure
will be particularly crowded. The convergence is a crucial
indicator for understanding the exploration and exploitation
performance. The second column of Figure 5 only focuses
on the single convergence progress of the LFGWO. The third
column of Figure 5 plots the single fitness history of the
LFGWO.

In the first column of Figure 5, the LFGWO gained better
results that nearly reach zero in 6 out of 7 respectively in
unimodal functions, but for F5, the result was unsatisfactory
for the LFGWO.

In the first column of Figure 5, except for F8, the
GBO algorithm present a wrong value of positive (reference
Table 3) against the value of negative that is gotten by the
other eight algorithms respectively and the figure only plots
them without GBO, because great difference values on two
directions can’t be appropriately plotted in the same figure.
In the first column of Figure 5, for F14, the convergence
progress of the LFGWO is not desired comparing to the

other optimization algorithms. For F8-F13 and F15-F23, with
the iterations increasing, the LFGWO reached satisfactory
convergence progress. In the first column of Figure 5 about
CEC01-CEC10, the curves show that the LFGWO has high
fluctuations in the initial iterations and low variations in the
last iterations. The descending trend of curves shows the
wolves of the population are collaborating to improve results
by updating their position to a better one as the iteration
number increases. The Levy flight helps the LFGWO exhibits
outperform on the majority of composite benchmarks. The
first column of Figure 5 clearly intuitively observes in initial
iterations that the agents have sudden changes in convergence
curves until the quarter of iterations. In other means, the
LFGWO covers a variety of spaces, and the LFGWO has
good performance in broad search in the exploration phase.
Likewise, step by step tries to achieve to optimum solution
in the exploitation phase within a short time. It is the result
of the LFGWO with the structure of the Levy flight. On the
other hand, the leader wolf Alpha, Beta, andDelta always find
the prey earlier than the other wolves in the pack. Then, in all
curves of the first column of Figure 5, the LFGWO shows
better convergence behavior, which can be concluded that
the LFGWO strikes a balance between the exploration and
exploitation in the course of iteration more than the opponent
algorithms.

The curves of the second column of Figure 5 show the
convergence progress of that the LFGWO has three distinct
convergence behaviors for benchmark functions with dif-
ferent characteristics during the optimization process. First,
there is a declining convergence in the initial iterations,
where an approximate optimum solution is achieved, such
as F1-F14, F16, F18-F19, and CEC01-CEC03. The second
behavior until the half of iterations is the accelerated con-
vergence, and the estimate of the global optimum becomes
more accurate as iteration is increased, such as F15, F17,
CEC05, and CEC07-CEC10. Finally, the last behavior is the
gradual improvement of the solution until the final iterations,
such as F20-F23, CEC04, and CEC06. By respecting the
curves of the second column of Figure 5, it can be concluded
that the FLGWO has the ability to strike a balance between
exploration and exploitation over the course of iterations. All
curves of the second column of Figure 5 show that the Levy
flight has more effect on the convergence process. The main
reason for this sufficient exploration and convergence of the
LFGWO is introduced the Levy flight, which leads to local
optima avoidance and explore the search space extensively.

The fitness history of the third column of Figure 5 demon-
strated that the LFGWO can reach the approximate optimal
values from the different initial directions of negative value
or positive value in the non-optimal areas during the iterative
process. The third column of Figure 5 shows the fitness
history of all wolves during each iteration, which shows the
impact of using the Levy flight in the intensification and
diversification phases. The LFGWO search strategy also can
find better solutions for CEC01-CEC10 of the composition
function. The results verify that the LFGWO properly strikes
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TABLE 6. p-Values of the Wilcoxon rank-sum tests (The bold font in the
table indicates the data difference between the two groups is small.)

a proper balance between exploration and exploitation in the
complex composition test functions of CEC-2019, leading
to high local optima avoidance. In addition, it preserves the
diversity which can handle difficulties in complex functions.
This good ability of the LFGWO is because of the unique con-
vergence behaviour of the Levy flight’s jumping behaviour.
The Levy flight’s jumping behaviour help the LFGWO to
exhibit acceptable exploitation, exploration, and local optima
avoidance capability, simultaneously.

All in all, for the comprehensive result of the iteration
progress in the Figure 5, the LFGWO is superior to the
other eight optimization algorithms, which suggest that the
LFGWO can explore the search space extensively and find
promising regions of the search space.

C. LFGWO VS PAIRWISE ALGORITHMS ON THE P-VALUES
OF THE WILCOXON
For further substantiation of the beneficial attributes of
LFGWO, independent sets of data are checked at the
confidence level of 0.05 using pairwise comparison tests.
Statistical-based Wilcoxon signed-rank test is a non-
parametric test, which can verify whether there is a significant
difference between the two sets of data [56]. Because of the
randomness of the metaheuristic algorithm, a similar statisti-
cal experiment comparison is necessary to ensure the validity
of the data. When the p-values less than 0.05, which indicates
that there is a significant difference between the data of the
two pairwise algorithms. On the contrary, the p-values greater
than 0.05, which means that there is no significant difference
between the data of the two pairwise algorithms. The p values
comparison results of LFGWO and pairwise algorithms are
tabulated in Table 6.
The P-values more than 0.05 are ascertained in Table 6:

LFGWO/AHA in F15, F16, and F18; LFGWO/DA in F4,

TABLE 7. The average values of dimensions are equal to 50 and 100 (The
bold font in the table indicates the optimal value.)

F14, F19, and F20; LFGWO/GBO in F5; LFGWO/HGS
in F9; LFGWO/MVO in F17. In most of the comparisons
in Table 6, the p-values are smaller than 0.05. From the
p-values in Table 6, we can understand the superiority of
the LFGWO compared to the other algorithms. The superior
results do not mean that the LFGWO can tackle all the
optimization problems efficiently. As per the NFL theorem,
all optimization algorithms demonstrate identical perfor-
mance when employed to solve all classes of optimization
problems [42].

D. THE SCALABILITY OF LFGWO
Furthermore, the GWO, IGWO, and LFGWO conducted the
scalability test with functions F1-F23 as a complementary
study of comparing the property. The purpose of this study
is to evaluate the impact of dimension on the capability of
the solution and the efficacy of the LFGWO. In the experi-
ments on 50, 100, 300, and 500 dimensions, the performances
of each algorithm are inspected by independent execution.
The whole circumstances have remained consistent, and each
algorithm uses 100 search agents and runs 30 times respec-
tively. The metrics of the mean, standard deviation and best
values of the considered benchmarks’ functions were com-
monly employed by the GWO, IGWO, and LFGWO.

From Table 7 (D=50) (D=100), it is observed that the
performance of LFGWO compared to the other algorithms,
there are 20 out of 23 (D=50) and 19 out of 23 (D=100)
average values obtained by LFGWO, which far less than by
the other algorithms.

According to the results from Table 8 (D=50) (D=100),
LFGWO can be considered one of the best algorithms com-
pared to the other two contending optimizers in terms of
stability and robustness. The results of 21 out of 23 (D=50)
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FIGURE 5. The performance of LFGOA on F1-F23 and CEC01-CEC10.
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FIGURE 5. (Continued.) The performance of LFGOA on F1-F23 and CEC01-CEC10.
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FIGURE 5. (Continued.) The performance of LFGOA on F1-F23 and CEC01-CEC10.
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FIGURE 5. (Continued.) The performance of LFGOA on F1-F23 and CEC01-CEC10.
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FIGURE 5. (Continued.) The performance of LFGOA on F1-F23 and CEC01-CEC10.
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FIGURE 5. (Continued.) The performance of LFGOA on F1-F23 and CEC01-CEC10.
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FIGURE 5. (Continued.) The performance of LFGOA on F1-F23 and CEC01-CEC10.

FIGURE 6. Sketch map of I-beam design.

and 20 out of 23 (D=100) Std values obtained by LFGWO
are all less than other algorithms.

Based on the overall statistical results of Table 9 (D=50
and 100), there are 22 out of 23 best values obtained by
LFGWO, which can be significantly better than the other two
optimization algorithms.

The overall statistical results evaluated by the GWO,
IGWO, and LFGWO for F1-F23 are reported in Table 10

TABLE 8. The Std values of dimensions are equal to 50 and 100 (The bold
font in the table indicates the optimal value.)

(D=300) and (D=500). There are 21 out of 23 (D=300) and
19 out of 23 (D=500) average values received by LFGWO
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TABLE 9. The best values of dimensions are equal to 50 and 100 (The
bold font in the table indicates the optimal value.)

TABLE 10. The average values of dimensions are equal to 300 and 500
(The bold font in the table indicates the optimal value.)

that are all less than the other algorithms, which confirms the
facts that LFGWO still provides the best-obtained results in
F1-F23 when the dimension is big.

From Table 11 (D=300) (D=500), it can be perceived
that LFGWO can be more fruitful than GWO and IGWO
in dealing with the F1-F23 benchmark functions, 18 out of
23 (D=300) and 16 out of 23 (D=500) Std values obtained
by LFGWO, which are all less than those obtained by GWO
and IGWO, which implicates that the LFGWO have better
stability and robustness.

In comparison with GWO and IGWO, the LFGWO still
performs meaningfully better on F1-F23 in terms of the
results of 18 out of 23 (D=300) and 20 out of 23 (D=500)

TABLE 11. The Std values of dimensions are equal to 300 and 500 (The
bold font in the table indicates the optimal value.)

TABLE 12. The best values of dimensions are equal to 300 and 500 (The
bold font in the table indicates the optimal value.)

in Table 12 best values obtained by LFGWO, and such that
the number is far exceeded GWO and IGWO.

As shown in the above tables, it can be observed that
LFGWO has obtained obvious advantages on most func-
tions relative to the GWO and IGWO respectively in all
dimensions. While these three algorithms are meta-heuristic
algorithms, a tendency can be found to enhance the minimum
mean value as the dimension increases. In short, loosely
speaking, a conclusion can be drawn through the scalability
test that LFGWO has better scalability to control optimiza-
tion tasks. Based on comparative experiments in scalability
in Section IV-D, according to the strict numerical statistic,
some consequences can be inferred. Firstly, the tests and
comparison with other competitors on F1–F23 show that the
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proposed LFGWO based on the Levy flight methodology
can solve these complex optimization problems on average,
standard deviation, and best values, respectively. The
LFGWO can, therefore, be used to solve certain real-life and
complex optimisation problems.

E. THE TIME COMPLEXITY OF THE LFGWO
In general, metaheuristic schemes are complex systems that
include random processes. Under such conditions, perform-
ing a complexity study from a deterministic perspective
is impractical. For this reason, this paper uses the Big-O
notation to express the complexity of the algorithm. The eval-
uation of an algorithm is mainly inspected by computational
complexity. The execution time of the GWO is faster than
the LFGWO. However, the LFGWO’s success in catching the
hunt is much more successful than the GWO and eliminates
some of the weaknesses of the GWO method (as mentioned
earlier, not being able to quickly circle around the prey, and
allow the prey to escape in some cases).

The computational complexity mainly includes the follow-
ing parts in terms of the LFGWO. The initialization of the
agent is O (d) (d=dimension size). The fitness value evalua-
tion of the initial population is O (s×d) (s=population size).
The position of updating agent is O (s×d + s). Producing a
new solution by levy flight strege is O (s). The fitness value
evaluated for all agents after updating their position is O (s).
Therefore, the total computational complexity of LFGWO
is simplified as O (d + s×d + s×d + s + s + s) = O
(d+3×s + 2×s×d).
Besides, Ref [57] mathematically proved that using Levy

flight does not increase the time complexity of optimization
algorithms. Therefore, both the GWO and the LFGWO have
the same time complexity so their differences can be ignored
computationally.

F. DISCUSSION
Even the frameworks of the Levy Flight and the GWO are
excellent, but how to infuse Levy Flight with the GWO will
directly produce a different result, sometimes even presenting
a not disired result. In [37], Levy flight and greedy selection
strategies are integrated into GWO to boost its performance
of LGWO. In [37], new positions are determined by:

−→
X new(t)

=


0.5 × (

−→
X a −

−→
A 1

−→
D α +

−→
X β −

−→
A 2

−→
D β )

+ α ⊕ Levy(β) |A| > 0.5

0.5 × (
−→
X a −

−→
A 1

−→
D α +

−→
X β −

−→
A 2

−→
D β ) |A| < 0.5

(18)

Based on the value of |A| in every iteration, the random
value of A inside the [0, 1], if |A|>0.5, then the new position
is to be set by Levy Flight step length, other with to be set
with random values. Next, in [37] the author ‘‘referring to
the greedy selection (GS) strategy from DE algorithm,’’ new

operator is formulated as::

−→
X (t+1) =

{−→
X (t) f (

−→
X new(t))> f (

−→
X (t) and rnew<P)

−→
X new(t) otherwise

(19)

The new position whether to be held or updated depends
on the combination conditions: the next new position to be
held with the last position under the condition of the fitness
value of f (Xnew(t)) great than f (X (t)) and the value of P also
great than rnew(rnew and P are random values inside [0, 1]),
other with to be set with the new position.
However, different real-world problems often have differ-

ent constraints, so a suitable approach is demanded to deal
with such problems. We designed the LFGWO with the aim
of being as simple as possible with few parameters to be
tuned and employed the LFGWO to solve as many as possible
in both non-constrained and contained real-world optimiza-
tion problems in engineering and other fields. Through an
in-depth comprehensive study and more extensive compar-
ison trial-and-error experiments, we embedded Levy flight
into the GWO to execution position-updated by the follow-
ing simple but effetely mechanisms. Initializes the position
of agents in the search space by Levy flight as the below
formula:
X (:, i) = LFGWO− Levy(N )′ ∗ (high− Low) + Low
At the initialization stage, all wolves (not only for the top

three wolves) are assigned Levy flight values not random
numbers between [0, 1] from theGaussian distribution, which
provides a large-scale deployment schema for the LFGWO
and directly increases the wide diversity of the LFGWO.
Secondly, randomization is more efficient as the step length is
heavy-tailed, and any large step is possible, which effectively
increases the probability of LFGWO’s global search ability
and precision.
NewPosition = curretPosition ∗ LFGWO− Levy(dim)′.
By the above formula, without any doubt, on the one

hand, the scheme of LFGWO has considerable differences
LGWO of [37]. On the other hand, with such mechanisms,
the LFGWO presents a harmony and proper balance between
exploration and exploitation, an increment in the accuracy
and the ability to avoid the convergence in local minima.
The LFGWO gets a highlight performance compared with

LGWO of [37], LF-IGWO of [39] in terms of key values of
Mean on 23 well-known benchmark functions, the following
Tables 13 messages come from [37] and [39], and Table 1.
The Table 14 messages come from LGWO of [37] and Tables
2. The comparing results of Tables 13 and 14 answers whether
there is a significant difference between the LFGWO with
LGWO in [37] and LF-IGWO in [39].

G. CONCLUSION
Summarizing the experimental results of three different
numerical tests in this section: the LFGWO significantly
outperforms other competing algorithms. There are two rea-
sons why the LFGWO performs so well. Firstly, the Levy
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TABLE 13. Mean cached by LFGWO, LGWO, and LF-IGWO on
23 benchmark functions.

TABLE 14. Std cached by LFGWO and LGWO on 23 well-known
benchmark functions.

flight is utilized to generate the initial candidate solution to
increase the diversity of the population and lay the founda-
tion for the LFGWO’s global search. Meanwhile, the initial
position of the candidate solutions is random of Levy flight,
ergodic, avoid stagnant local optima and find the global opti-
mal, thereby avoiding premature convergence effectively to
a certain extent. Secondly, the LFGWO integrates with Levy
flight not only for the top three wolves but also for all wolves
over the course of iterations, so as to improve the diversity of
the population and seek the optimal solution.

V. APPLICABILITY OF LFGWO FOR SOLVING
NON-LINE-CONSTRAINED OPTIMIZATION PROBLEMS
Most real-life constrained optimization problems are com-
plex and non-line, sometimes even havingmany local optimal
due to the constraints of the problem. Solving these problems
has always been a challenge for researchers and practi-
tioners. To see how the effectiveness and the performance
of LFGWO, we investigated the infinite impulse response
(IIR) challenging model identification and five challenging
non-line constrained optimization problems, and selected
well-known standards and modified optimizers proposed by
other researchers in prior work for comparison.

A. I-BEAM DESIGN
The I-shape beam is a famous problem that many researchers
and practitioners use to test the capabilities of metaheuris-
tic algorithms. The purpose of this problem is to minimize
the vertical deflection of the I-beam by optimizing the
dimensions of four unknown variables including the flange’s
width b (=x1), the height of section h (=x2), the thick-
nesses of the beam web tw(x3), and the flange’s thickness
tf (x4) of the beam. The I-beam design is subject to the
load’s cross-sectional area and stress constraints under the
applied loads. As shown in Figure. 6, minimize the vertical
deflection f (x)(= PL3

48EI )when the length of the beam (L)
and modulus of elasticity (E) are respectively 5,200cm and

TABLE 15. Statistical and Comparative results for I-beam design.

523,104 kN/cm2. This problem with the variable vector x=
(b, h, tw, tf )=(x1, x2, x3, x4), then the problem can be written
as following.

Minimize:

f (x) =
500

( x3(x2−2x4)3
12 +

x1x34
6 + 2x1x4(x2 − x4)2)

Subject to cross-section area less than 300 cm2

g1(x) = 2x1x3 + x3(x2 − 2x4) ≤ 300

If the allowable bending stress of the beam is
56 kN /cm2, the stress constraint is as follows:

g2(x) = (18x2 × 104)/(x3(x2 − 2x4)3

+ 2x1x3(4x24 + 3x2(x2 − 2x4)))

+ (15x1 × 103)/((x2 − 2x4)x23 + 2x3x31 ) ≤ 6

where the initial design spaces are:
10≤ x1 ≤50,
10≤ x2 ≤80,
0.9≤ x3 ≤5,
0.9≤ x4 ≤5.
This nonlinearly constrained problem has been solved

with other optimization methods such as Special Relativ-
ity Search (SRS) [58], Ranked-based mechanism-assisted
Biogeography optimization (RBBO) [59], Atomic Orbital
Search Algorithm (AOS) [60], Dwarf Mongoose Optimiza-
tion Algorithm (DMO) [49], efficient hybridized CS-PSO
algorithm (ECS-AGQPSO) [61], Cuckoo search algorithm
(CS) [62], and Cooperation search algorithm (CSA) [63].

The corresponding statistical results of these methods and
LFGWO are listed in Table 15. From the data in Table 15,
it can be concluded that LFGWO can touch the optimal func-
tion value (with 6.6260E-03). And LFGWO has the lower
standard deviations for this problem. This symbolizes that
LFGWO has highly competitive performance in terms of
stability and solution accuracy on the engineering problem.
It can be found that the LFGWO is superior to the other
methods, demonstrating its engineering practicability.

Figure.7 shows the convergence performance of LFGWO
to an ideal spot, which demonstrates that the convergence rate
of LFGWO is better. The results of the experiments reveal
that LFGWO has a more effective searching ability and can
locate and develop the target solution space in a small number
of iterations.
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FIGURE 7. The convergence graph of the LFGWO.

B. HEAT EXCHANGER DESIGN
The primary aim of this design is to obtain a high heat transfer
rate without exceeding the allowable pressure drop. Heat
Exchanger Design is a benchmark minimization problem that
is regarded as a difficult problem since all the constraints are
binding.

The heat exchanger design deals with the optimal config-
uration by minimizing a linear objective function subjected
to eight design variables and six inequality constraints (three
linear and three non-linear). All six constraints are active at
this solution. Mathematical model is defining the problem
objectively can be formalized by the following expression.

Minimize:

f (x) = x1 + x2 + x3
Subject to:

g1(x) = 0.0025(x4 + x6) − 1 ≤ 0,

g2(x) = 0.0025(x5 + x7 − x4) − 1 ≤ 0,

g3(x) = 0.01(x8 − x5) − 1 ≤ 0,

g4(x) = 100x1 + 833.33252x4 − x1x6 − 83333.333 ≤ 0,

g5(x) = 1250(x5 − x4) + x2x4 − x2x7 ≤ 0,

g6(x) = 1250000 + x3x5 − 2500x5 − x3x8 ≤ 0,

where:
100 ≤ x1 ≤ 10000,
1000 ≤ x2 ≤ 10000,
1000 ≤ x3 ≤ 10000,
10 ≤ x4 ≤ 1000,
10 ≤ x5 ≤ 1000,
10 ≤ x6 ≤ 1000,
10 ≤ x7 ≤ 1000,
10 ≤ x8 ≤ 1000.
Many algorithms have been designed to solve the

heat exchanger design, including non-equidistant grey
prediction evolution algorithm (NeGPE-s) [64], Local
search enhanced Aquila optimization algorithm ameliorated
(DAQUILA) [65], and Bat algorithm (BA) [66] reported
in the literatures. Statistical results of LFGWO and other
three algorithms for heat exchanger design are portrayed in

TABLE 16. Statistical results of the heat exchanger example by different
models.

FIGURE 8. Convergence history for heat exchanger design.

Table 16, and the solutions found by the four algorithms
were somewhat close to each other on the optimal solution.
As shown in the Figure 8, the convergence curve of the
LFGWO is quick and the solutions were obtained instantly
under satisfy all constraints.

C. ROLLING ELEMENT BEARINGS DESIGN
Rolling element bearings is a crucial component of any
rotating machinery and has a wide variety of applications.
Rolling bearings functions appear to be simple, however, their
internal geometry is quite complex. Rolling element bearings
design issue is considered one of the most sophisticated
multidisciplinary engineering optimizations and is widely
employed to prove the capability of the meta-heuristics
algorithm. The primary goal of the rolling element bearings
design is to increase and optimize the dynamic nature of
the load-carrying capacity of rolling element bearings. The
schematic diagram of structural optimization design is shown
in Figure. 9.

This problem is formulated by five variables and five
parameters. Nine non-linear constraints are imposed based
on kinematic and manufacturing considerations. These vari-
ables are four continuous variables: ball diameter (Db), pitch
diameter (Dm), inner and outer raceway curvature coefficients
(fo and fi), and one discrete variable: the total number of balls
(Z ). The parameters are ε, e, ζ,KDmax , and KDmin appeared
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FIGURE 9. Schematic view of rolling element bearings design.

only in the constraints and indirectly affect the internal geom-
etry and the optimum range. The mathematical model of
rolling element bearings design problem is as following.

Suppose:

x = [x1x2x3x4x5x6x7x8x9x10]

= [ε e ζ Db Dm fo fi KDmax KDmin Z ].

Maximize:

f (x) =

 fcx
2
3
10x

1.8
4 if D ≤ 25.4

3.647fcx
2
3
10x

1.4
4 if D > 25.4

Subject to:

g1(x) = x10 −
∅0

2sin−1( x4x5 )
− 1 ≤ 0

g2(x) = x9(D− d) − 2x4 ≤ 0
g3(x) = 2x4 − x8(D− d) ≤ 0
g4(x) = x3Bw − x4 ≤ 0
g5(x) = 0.5(D+ d) − x5 ≤ 0
g6(x) = (0.5 + x2)(D+ d) − x5 < 0
g7(x) = x1x4 − 0.5(D− x4 − x5) ≤ 0
g8(x) = 0.515 − x7 ≤ 0
g9(x) = 0.515 − x6 ≤ 0

Where:
fc = 37.91{1 + {1.04( 1−γ

1+γ
)1.72( x7(2x6−1)

x6(2x7−1) )
0.41

}
10/3

}
−0.3

×[ γ 0.3(1−γ )1.39

(1+γ )1/3
][ 2fi

2fi−1 ]
0.41

∅ = 2π − 2 × cos−1(
[
{
D−d
2 −3( T4 )

}2
+

{
D
2 −

T
4 −x4

}2
−

{
d
2 +

T
4

}2
]

2
{
D−d
2 −3( T4 )

}{
D
2 −

T
4 −x4

} )

γ =
x4
x5

, fi =
ri
Db

, fo =
ro
Db

,T = D− d − 2Db
D = 160, d = 90,Bw = 30, ri = ro = 11.033
0.5(D+ d) ≤ Dm ≤ 0.6(D+ d),
0.15(D− d) ≤ Db ≤ 0.45(D− d),
4 ≤ Z ≤ 50,
0.515 ≤ fi,
fo ≤ 0.6,
0.4 ≤ KDmin ≤ 0.5,
0.6 ≤ KDmax ≤ 0.7,
0.3 ≤ ε ≤ 0.4,
0.02 ≤ e ≤ 0.1,
0.6 ≤ ζ ≤ 0.85.

TABLE 17. Comparison results for the Rolling element bearings design.

FIGURE 10. Convergence plot on the Rolling Element Bearings Design.

with bounds:
x1 ∈ [0.3, 0.4],
x2 ∈ [0.02, 0.1],
x3 ∈ [0.6, 0.85],
x4 ∈ [0.15(D− d), 0.45(D− d)],
x5 ∈ [0.5(D+ d), 0.6(D+ d)],
x6 ∈ [0.515, 0.6],
x7 ∈ [0.515, 0.6],
x8 ∈ [0.6, 0.7],
x9 ∈ [0.4, 0.5],and
x10 ∈ [4, 50]
Many algorithms have been designed to solve the

rolling element bearings design problem, including Water
cycle algorithm (WCA) [67], Information-decision search-
ing algorithm (IDSE) [68], Teaching-learning-based opti-
mization (TLBO) [69], Manta ray foraging optimization
(MRFO) [2], Atomic Orbital Search Algorithm (AOS) [60],
An efficient hybrid starling murmuration optimizer (DTC-
SMO) [70], and Spring Search Algorithm (SSA) [71]
appeared in the literatures. In terms of statistical results in
Table 17, the LFGWO offered better results (the maximum
dynamic load carrying capacity of rolling element bearings)
compared with the other algorithms, which suggests the sig-
nificant advantages of LFGWO in optimizing the bearing
capacity. It could be clearly seen from Figure 10 that the fast
convergence rate of the LFGWOwith increasing iterations to
gain the optional solution.

In summary, these results show that the LFGWO is
an effective optimizer for solving large-scale constrained
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FIGURE 11. The schematic illustration of the cone clutch coupling.

engineering design problems with low computational cost
and fast convergence speed.

D. CONE CLUTCH DESIGN
Cone clutch is the type of friction clutch in which the two
conical shape components are used for engagement and dis-
engagement for revolving at different speeds. It consists of
Inner Cone, Outer Cone, Spring. The outer cone has friction
lining on its inner conical surface and inner cone has fric-
tion lining on its outer conical surface. The outer cone is
connected to the engine shaft and inner cone is connected
to clutch shaft. The Inner cone is connected to clutch pedal
through a linkage. Cone clutch works on the principle of
friction. Friction between these two cones is cause for the
power transmission from the flywheel to the gearbox. In
the normal position of clutch, when a vehicle is running, the
inner cone is pressed inside the outer cone. Therefore, due
to the friction occurs between them, power is transmitted
from the engine shaft to the clutch shaft, hence the clutch is
in engaging position. The schematic illustration of the cone
clutch coupling is shown in Figure 11.
In order to enable the transfer of momentum, the cone

clutch must be designed to minimize the volume coupling
and be subjected to two constraints. Problem variables are:
inner radius of the coupling R1(= x1), and outer radius of the
coupling R2(= x2). Goal function to be minimized is defined
as:

f (x) = x31 − x32

Whilst the conditions to be met are:

g1(x) = 2 −
x1
x2

≤ 0

g2(x) = 5 −
x21 + x1x2 + x22

x1 + x2
≤ 0

While problem variables’ lower and upper bounds are:

1 ≤ x1, x2 ≤ 10.

A set of the comparison results listed in the literature [72]
presented in Table 18. Analysing the results, a conclusion has

TABLE 18. Comparison of results for the design of cone clutch.

FIGURE 12. The convergence graph of cone clutch.

been drawn that the LFGWO gives better results in compari-
son to the other algorithms, while in comparison to LFGWO,
PSO, and CSSA, the results are nearly the same. Table 18
says that the LFGWO has obtained optimal or near-optimal
solutions in the case of given engineering problems. The
optimal solution given by LFGWO is very close to the actual
optimal solution, particularly for the variables x1 and x2. This
indicates that the LFGWO has the potential for solving this
class of optimization problems.

Moreover, the LFGWO fast converges towards the
near-optimal solution from initial iterations can be visualized
from the convergence graph of Figure.12.

E. CORRUGATED BULK DESIGN
The corrugated bulk design is used in tankers, bulkhead carri-
ers, and product oil carriers. This optimization problem aims
to minimize the weight of the tanker’s corrugated bulkhead
and the schematic illustration is shown in Figure 13. The
design variables of this problem are the width b(= x1), depth
h(= x2), length l(= x3)and plate thickness t(= x4).

The mathematical model of this optimization problem is
given as follows:

Minimize:

(x) =
5.885x4(x1 + x3)

x1 +

√
(x23 − x22 )

Subject to:
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FIGURE 13. The schematic illustration of the corrugated bulk.

TABLE 19. Comparative results for corrugated bulk design.

g1(x) = 8.94(x1 +

√
(x23 − x22 )) − x2x4(0.4x1 +

x3
6
) ≤ 0

g2(x) = 2.2(8.94(x1+
√
(x23−x22 )))

4
3 −x22x4(0.2x1+

x3
12

)≤0

g3(x) = 0.15 + 0.0156x1 − x4 ≤ 0

g4(x) = 0.15 + 0.0156x3 − x4 ≤ 0

g5(x) = 0.15 − x4 ≤ 0

g6(x) = x2 − x3 ≤ 0

Variable range:

0 ≤ x1, x2, x3 ≤ 100,

0 ≤ x4 ≤ 5.

This case was solved by a number of works in the lit-
erature such as Dwarf Mongoose Optimization Algorithm
(DMO) [49], Cuckoo search algorithm (CS) [62], and Arti-
ficial electric field algorithm (AEFA-C) [73] selected from
literature. This engineering case is more difficult because
of so many variables and constraints, as well as a low rate
of the feasible solution space to the entire search space.
The statistical results of Table 19 reveal that the LFGWO
and the other algorithms have nearly similar performance
for this optimization problem and the LFGWO achieve the
near-optimal solution. The best value of the LFGWO is only
slightly inferior to the best optimal value of 4.6972 for this
problem. From the figure 14, it is clearly evident that the
fast convergence ability of the LFGWO towards the global
minima in the later iterations.

F. IIR MODEL IDENTIFICATION BY THE LFGWO
Adaptive IIR filtering is an active area of research for many
years and has been used for applications in signal process-
ing, control systems, image processing, and communica-
tion. Since physical systems usually have infinite-impulse

FIGURE 14. Convergence history for corrugated bulk design.

TABLE 20. Best estimated values.

TABLE 21. Best estimated values.

FIGURE 15. Adaptive IIR model using LFGWO for system identification.

response (IIR) dynamics, IIR models are widely used for
system identification. The infinite impulse response (IIR)
models which are preferred over their equivalent finite
impulse response (FIR) models since they represent more
accurate real-world applications. Nevertheless, system iden-
tification is a difficult optimization problem, especially, the
IIR models tend to generate multimodal error surfaces which
are significantly difficult to optimize [74]. On the other hand,
the adaptive LFGWO with the ability to explore complex
search spaces for suitable solutions. In this section the IIR
system identification task is formulated as an optimization
problem and the adaptive LFGWO is introduced for IIR
system identification.
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TABLE 22. Best estimated values.

In the real world, many optimization problems can be
considered as black box challenges. Basic block diagram
for system identification configuration using IIR model is
shown in Fig. 15, the unknown plant of transfer function is
to be identified with the IIR model in such a way so that the
outputs from both the systems match closely for the same
given input x(t). The main task of the system identification in
this work is iteratively using the adaptive LFGWO to search
for the adaptive parameters of IIR model until its input/output
relationship matches closely to that of the unknown plant.

A recursive IIR system is described by the z transform of
the impulse response of the system, the input-output relation-
ship is governed by the following transfer function:

G(z) =
Y (z)
X (z)

=
b0 + b1z−1

+ b2z−2
+ . . . bmz−m

1 + a1z−1 + a2z−2 + . . . + anz−n
(20)

In (20), Y(z) and X(z) are the system output and system input
in the z domain, respectively. Also m and n are the number
of numerator and denominator coefficients of the transfer
function, respectively, and n ≥ m represents the order of
the filter. and are the pole and zero parameters of the IIR
model (i=1, . . ., n, j=1, . . ., m), respectively. The differential
equation of the above relation can be described as an output
error adaptive IIR filter structure and the recursive difference
equation given in (21).

y(t) =
∑n

i=1 a
iy(t − 1) +

∑m
j=0b

jx(t − j) (21)

Therefore, the set of unknown parameters that models
the IIR system is represented by θ = a1, ..., an, b0, ..., bm.
θ is the unknown constant vector that should be adjusted by
LFGWO adaptive algorithm. Considering that the number of
unknown parameters of θ is (n+m+1), the search space S of
feasible values for θ is ℜ

(n+m+1).
The output difference between the actual system and its

model yields the error as shown in (22)

e(t) = d(t) − y(t) (22)

According to the block diagram of Figure 15, the output of
the plant is d(t): whereas the output of the IIR filter is y(t).
In the system identification mean square error (MSE) of time
samples is considered as the objective function, also known
as error fitness function and expressed in (23) [75].

MSE = f (θ ) =
1
W

∑W
t=1(d(t) − y(t))2 (23)

In IIR model identification based on output error method,
the W is the number of samples used in the simulation.

The main objective of IIR model identification is to
minimize the value of the error fitness MSE with proper
adjustment of coefficient vector θ of the transfer function (20)
of the adaptive filter iteratively, so that output responses of
the filter and the unknown plant match closely and hence the
error is minimized as follows.

θ∗
= argmin

θ∈S
(f (θ )) (24)

In the comparison study, a comprehensive set of experiments
has been used to test the performance of the LFGWO. In our
experimental work, three widely used challenge IIR identi-
fication cases are carefully selected with same and reduced
order to assure compatibility between similar works reported
in the literature.

1) A PLANT WITH A SECOND-ORDER SYSTEM AND A
FIRST-ORDER IIR MODEL
In this experiment, the test case is taken from [76]. The
adaptive LFGWO is applied to identify a second-order plant
through a first Order IIR model. Under such context, the
unknown plant of transfer function is to be identified with
the following transfer function.

HP(z−1) =
0.05 − 0.4z−1

1 − 1.1314z−1 + 0.25z−2 (25)

And themodel to be generated is a reduced order IIRmodel
HM that hold the transfer functions (26). Since a reduced
order model is employed to identify a plant of a superior
order, the f (θ ) is not unimodal but multimodal. In the sim-
ulations, it has been considered a uniform white sequence of
100 samples (W = 100) for the input x(t).

HM (z−1) =
b

1 − az−1 (26)

Owing to the random nature of the LFGWO, in order to
eliminate the influence of randomness in the experiment,
30 independent trials/runs with randomly chosen initial posi-
tions in [-1.2, 1.2] (a bounded search space for better stability)
are performed for each case. The results of the LFGWO
to solve IIR system identification and compare to other
algorithms are reported in Table 20, which reports the best
parameter values (a, b), and both the average minimum
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TABLE 23. Twenty-three mathematical benchmark functions.
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value of f (θ ), and the standard deviation (Std) of MSE.
According to Table 20, the LFGWOmaintains a considerable
precision (the lowest Avg value) than the other five algo-
rithms, and provides similar robustness (Std value) with CS
and FPA.

2) A PLANT WITH SECOND-ORDER SYSTEM AND
SECOND-ORDER IIR MODEL
In this example, the test case is taken from [77], the perfor-
mance for each algorithm is evaluated at the identification of
a second-order plant through a second-order IIR model under
the system identification configuration. Since the order of the
model HM is equal to the order of the to be identified sys-
tem HP, local minima problem does not occur and only one
global minimum exists in f (θ ). The unknown plant transfer
function HP is shown in (27).

HP(z−1) =
1

1 − 1.4z−1 + 0.49z−2 (27)

The transfer function of the IIRmodelHM is assumed by (28).
It is repeatedly adjusted by modeling process using the adap-
tive LFGWO and finally gets the most optimal and stable
filter (with optimal coefficients, the closest functional sim-
ilarity to the main IIR plant).

HM (z−1) =
b

1 + a1z−1 + a2z−2 (28)

The results of the LFGWO solve IIR system identification
and comparison to other algorithms is reported in Table 21.
The results in Table 21 show that CS, FPA, and LFGWO

have similar values in their performance. The evidence shows
that the adaptive LFGWO maintain a similar average perfor-
mance when they face unimodal low-dimensional functions.
In particular, the test remarks that the small difference in
performance is directly related to a better exploitation mech-
anism included in CS, FPA, and LFGWO.

3) A SUPERIOR-ORDER PLANT AND A HIGH-ORDER MODEL
Finally, the experiment case is taken from [75], the perfor-
mance for each algorithm is evaluated at the identification
of a superior-order plant through a high-order IIR model.
Since the plant is a sixth-order system and the IIR model
a fourth-order system, in this regard, the error surface is
multimodal just as it is in the first experiment. And also
the control parameter values employed in this example were
the same as in the first examples. Therefore, the unknown
plant with a sixth-order system and hold the following
functions.

HP(z−1) =
1 − 0.4z−2

− 0.65z−4
+ 0.26z−6

1 − 0.77z−2 − 0.8498z−4 + 0.6486z−6 (29)

The IIR model HM with a fourth-order system and hold the
following functions.

HM (z−1) =
b0 + b1z−1

+ b2z−2
+ b3z−3

+ b4z−4

1 + a1z−1 + a2z−2 + a3z−3 + a4z−4 (30)

TABLE 24. 10 composition functions of CEC 2019.

Only the effective amount of iterations was selected to per-
form the initial and complete maneuver of the algorithm to
extract the global minimum. Therefore, relying on heavy
iterations to obtain a delayed possible optimal solution has
been avoided. The results of the LFGWO to solve IIR system
identification and compare to other algorithms are reported
in Table 22.

It should be noted that the performance of an algorithm
is often determined by its ability to model a known order
plant using a reduced order model (especially for the structure
without additive noise).

In a dynamic search space or IIR system identification is
very challenging and requires special consideration, because
of the global optimum changes over time, to verify the per-
formance of our proposed LFGWO for designing optimal IIR
systems, an extensive comparison of results selected from
the relevant literature [74] is presented in Table 22. After
a comprehensive analysing and consideration of the results
which involved with several uncertainties involved in inputs,
outputs, objective functions and constraints, a conclusion has
been drawn that the LFGWO gives the best precision (Avg
value) and outperforms the other competitive algorithms.
Table 22 says in terms of IIR system identification that the
robustness (Std valve) of the LFGWO also surpasses all
competitor algorithms.

To summarize, the LFGWO shows desirable performance
for IIR system identification. By combining suitable IIR
model, it will play an important role in IIR system identifi-
cation. Thus, in general, the LFGWO is a potential candidate
for identification of IIR plant compared to the other optimal
algorithms.

VI. CONCLUSION
In this paper, the overall performances of the LFGWO
algorithm were tested and verified using the standard
23 benchmark functions and 10 composition functions of
CEC 2019 compared with the other eight state-of-art algo-
rithms. There are 17 out of 23 best values obtained by
LFGWO, which are more than those obtained by the other
eight optimization algorithms. The 28 out of 33 average
and 27 out of 33 standard deviation values obtained by
LFGWO are all less than those obtained by the other eight
optimization algorithms, which verified and demonstrated
the performance, stability, and robustness of the LFGWO.
The extensibility test with different scales of dimensions 50,

VOLUME 11, 2023 74893



W. Lei et al.: Enhancing Grey Wolf Optimizer With Levy Flight for Engineering Applications

TABLE 25. The setup of the parameters (t : current iteration, T: the maximal iteration).

100, 300, and 500, is conducted by comparing LFGWO with
the GWO and IGWO to assess the dimensional influence on
consistency and optimization quality. The statistical results
of three tests, Wilcoxon rank-sum, Friedman and post-hoc
Nemenyi test prove that the LFGWO is superior to other
compared algorithms for most test functions, showing that
the LFGWO are successful. In addition, the results of five
engineering design problems, one infinite impulse response
(IIR) system identification problem, which demonstrated the
applicability of the LFGWO.

THE ADVANTAGES OF THE LFGWO
Firstly, the position of all wolves initialized with Levy flight,
so that the position of the candidate solutions is random,
ergodic, avoid stagnant local optima and find the global
optimal, thereby avoiding premature convergence effectively,
which increase the diversity of the population to a certain
extent and lays the foundation for the LFGWO’s global
search. The main reason the LFGWO is superior to the other
competitive algorithms on these composition functions is
hidden in the unique structure of this algorithm. The LFGWO
inherits some advantages from theGWO, such as having three
guide wolves of Alpha, Beta, and Delta, which, in turn, helps
the diversity of the solutions in the search space to be consid-
erably preserved. The other characteristic of the GWO which
the LFGWO benefits from is the high exploitation capability
of this algorithm. These characteristics are strengthened in
LFGWOby adding the Levy flightmechanisms into the struc-
ture of the GWO to enable the LFGWO to further preserve
diversity and avoid missing the good candidate solutions in
the search space. In addition, the Levy flight mechanisms

can boost the ability of the LFGWO to both explore and
exploit the promising regions in the search space and to get
rid of the local optimal solution. Finally, the Levy flight
mechanisms can intensify the convergence to the optimal
point of the problems and enhance the exploitation capability
of the LFGWO.

THE LIMITATIONS OF THE LFGWO
Needless to say, even the performance of the LFGWO with
greatly improved by the GWO embedded the Levy flight
mechanism, however, the lack of adaptivity and dynamic
behavior in Levy flight are still inevitably exist. Therefore,
the LFGWO with adaptivity and dynamic behavior of Levy
flight is worth pondering. Meanwhile, it will be difficult to
guarantee for the LFGWO getting an accurate approximation
of the global optimum when the LFGWO face composition
test functions with high dimensions. However, experiments
indicate in Table 1 that LFGWO rank 9 in cec05 in average
values, in Table 2 that LFGWO rank 9 in cec03, cec05, and
cec10 in Std. are all more than those obtained by the other
eight optimization algorithms, caused by the problems’ high
dimension. As the old saying goes, every coin has twofold.
The main resean is using levy flight also makes more inter-
ruption in the search space due to the implementation of big
steps. It must be noted that the LFGWO also provides very
competitive results on the remaining benchmarks.

For future work, the LFGWO employed to tackle con-
strained non-line optimization problems of specific fields is
an alternative way. The LFGWO hybrid other meta-heuristic
algorithms, such as brain storm optimization algorithm [78]
is worthy of further study to maximize the tremendous
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potential of LFGWO. Additionally, the LFGWO to apply to
multi-objective tasks, and dynamic optimization problems of
science and engineering fields in the upcoming years are also
attractive and interesting topics.

APPENDIX
See Tables 23–25.
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