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ABSTRACT In this paper, a quality diversity optimization method (QDOM) based on an adaptive
bound-searching algorithm and diversity-selecting immune algorithm is proposed for solving bilinear matrix
inequality (BMI) problems in control system design. By using the proposed adaptive bound-searching
algorithm, appropriate bound values can be obtained for the entries of controller gain matrices or the
eigenvalues of closed-loop systems represented by a state space model. Given the bound values, the proposed
diversity-selecting immune algorithm can produce the best-so-far controller gain for a given BMI problem.
To find the global optimum efficiently and avoid being trapped in a local optimum, the concept of quality
diversity is employed in the proposed method. The proposed method was validated through solving some
spectral abscissa, H, and H, optimization problems. The simulation results show that the proposed QDOM
achieved better or similar performance in many benchmark problems as compared with existing BMI solution
methods.

INDEX TERMS Bilinear matrix inequality (BMI), BMI solution methods, novelty search (NS), quality

diversity (QD), quality diversity optimization method (QDOM), spectral abscissa optimization.

I. INTRODUCTION

Linear matrix inequalities (LMIs) can be used for solving
control problems. However, certain control problems cannot
be written using LMIs. Such problems can instead be written
in a general form known as the bilinear matrix inequal-
ity (BMI). In recent years, designing BMI controllers has
become a popular research area [1], [2], [3], [4]. The use of
BMI formulations has many advantages. For instance, these
control problems can be solved using BMI formulations with
modest complexity [5]. Furthermore, BMI-based controllers
exhibit higher performance and robustness than traditional
nonlinear controllers [6]. Examples include static output
feedback controller design for spectral abscissa optimization,
H» optimization, and H, optimization [7], [8], [9].
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Unfortunately, BMI problems are NP-hard [10], and algo-
rithms for solving these problems can only be applied to
problems of modest size. Moreover, computations associated
with BMI constraints are more time-consuming and resource-
consuming than those associated with LMI constraints [5].
The limitations of existing BMI solution methods are as
follows. First, the decision variables in BMI solution methods
such as branch-and-bound-type methods [11] must be written
in vector form. However, in controller design, expressing
decision variables in matrix form is more convenient than
expressing them in vector form [12]. Second, derivations
must be performed in some BMI solution methods before
some algorithms are applied. For instance, decompositions
must be performed in the convex-concave decomposition
method (CCDM) [7] before the algorithm is applied; approx-
imations must be performed in the inner convex approxi-
mation method (ICAM) [8] before the algorithm is applied.
Unfortunately, these derivations can be heuristic or difficult.
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Third, BMI solution methods such as some alternating mini-
mization methods [13] and path-following methods [14], [15]
may be suitable only for particular problem structures. When
applying these methods to other problem structures, effort
must be made to reformulate the problem. Fourth, BMI solu-
tion methods such as HIFOO [16], [17], [18], LMIRank [19],
and PENBMI [20] only perform local optimization to solve
BMI problems with several inherent local optima.

To address the aforementioned drawbacks of existing
BMI solution methods, the method of reduction of vari-
ables (MRVs) [21] has been proposed. The MRVs adopts
stochastic mechanisms based on a hybrid multiobjective
immune algorithm (HMOIA) to search for global solutions
to BMI problems; however, when stochastic mechanisms are
employed, bounds must be set for the entries of controller
gain matrices or the eigenvalues of closed-loop systems rep-
resented by a state space model. The bounds strongly affect
the solutions to BMI problems, and different BMI problems
need different bounds that enable efficient search for global
optima.

For setting different bounds to solve BMI problems, the
concept of quality diversity (QD) is adopted in this work.
This concept is used to explore the search space of decision
variables while avoiding entrapment in local optima when
solving BMI problems. QD algorithms can be used to find
the optimal solution with high-novelty behaviors. The QD
algorithm is based on the concept of novelty search (NS) used
to promote behavioral novelty. NS rewards behaviors that are
different from pursuit of the final goal (i.e., the highest-fitness
solution). By using NS, different behaviors, that is, different
values of bounds and different values of decision variables in
our case, can be explored efficiently [22].

This paper proposes a QD optimization method (QDOM)
for efficiently setting different bounds to solve various
BMI problems and exploring the search space of the
decision variables. The QDOM involves the execution of
adaptive bound-searching algorithm and diversity-selecting
immune algorithm. The adaptive bound-searching algorithm
is used for adaptively searching for bounds of the entries
of controller gain matrices and bounds of the eigenvalues
of closed-loop systems; it involves three steps: diversity
search, quality search, and crossover. Diversity search is
used for finding high-novelty bounds. Moreover, quality
search and crossover are used to find bounds that corre-
spond to high fitness values. The diversity-selecting immune
algorithm is used to efficiently find best-so-far solutions for
BMI problems while avoiding becoming trapped in a local
optimum.

To validate the proposed methodology, the proposed
QDOM was compared with HIFOO, LMIRank, PENBMI,
CCDM, ICAM, and the MRVs in solving benchmark BMI
problems. Our numerical results show that the QDOM outper-
formed or had performance similar to most aforementioned
BMI solution methods; we conclude that the proposed
QDOM method can effectively solve BMI problems in con-
trol engineering.
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The rest of this paper is organized as follows. Section II
presents the problem formulation. Section III describes the
proposed QDOM. Section IV presents the simulation results.
Finally, Section V concludes this study.

Il. SYSTEM DESCRIPTION AND PROBLEM FORMULATION

In this section, system and controller design is investigated

as a BMI optimization problem. The decision variables of

BMIs are classified into two types: external variables (&) and

internal variables (X), where « is a vector or matrix and X is

composed of scalar and real-valued symmetric matrix [21].
The inequality

BMZ(a,X) <0 e

represents a BMI associated with a controller design problem,
where the matrix function BMZ(-) includes two matrix deci-
sion variables & and X. This BMI problem can be reduced
to an LMI problem when one decision variable is given (or
fixed).

A scalar function F can be added to (1) to achieve some
optimal controller designs. For the aim, the value of F should
be as small as possible. Thus, the control problem with BMI
constraints can be written as follows:

min F (o)
o, X
subject to BMZ(a, X) < 0. 2)

The system under investigation is represented in the fol-
lowing form:

x = Ax+ B;w+ Bu
z = Cix + Dyyw + Dyu 3)
y=0Cx

where x € R™ represents the state vector, w € R™
represents the external noise, u € R represents the control
input, z € R'= represents the measure output, and y € R
represents the controlled output.

For a static output feedback controller, the following
equation is obtained:

u = Fy = FCx 4

where F € R"™>" is the controller gain matrix.
A closed-loop system can be expressed as follows by using
the output feedback:

&)

X = (A + BFO)x + Biw = Agx + Bjw
z = (C; + D2FO)x + Dyyw = Cpx + Dyyw

where the controller gain matrix F can be transformed into
an nyny, x 1 vector for solving pole placement problems that
occur in closed-loop system design.

In the following text, several BMI problems expressed in
the form of (2)-spectral abscissa optimization, H, optimiza-
tion, and Hy, optimization—are described. The external and
internal variables associated with these problems are then
identified.
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The spectral abscissa of a square matrix is the largest real
parts of the matrix’s eigenvalues. The spectral abscissa of Ay
in (5) is defined as follows [23]:

ao(Ap) = max Re(d) (6)

Aeeig{Af}

where eig{Ar} is the set of eigenvalues of Ay and Re(}) is
the real part of eigenvalue A. To achieve asymptotic stability,
spectral abscissa optimization can be performed [23]. If the
optimal spectral abscissa value is strictly negative, a feedback
control law exists in (4) such that the closed-loop system
in (5) is asymptotic stable [9]. Spectral abscissa optimization
is formulated as follows:

mljn ao(AF). @)

Based on [9] and [23], the optimization of the spectral
abscissa of the square matrix A can be considered an opti-
mization problem over a positive-definite symmetric matrix
P. The spectral abscissa of A can be expressed as fol-
lows [23]:

oo(Ap) = inf
PeS".P>0

D PIARPTE L PEALTRY) (®)
where P is a positive-definite decision matrix, S” denotes
the space of real symmetric matrices, and Amax denotes the
maximum eigenvalue of a symmetric matrix.

Let F(a) = ag(Ar) where « = F and X = (P, ) denote
the external and internal variable of F in (2), respectively.
The spectral abscissa ap(Ap) optimization problem is equal
to the following BMI-constrained optimization problem:

min Ol()(AF)
F.P.B
subject to PAp +AfP +28P <0,P >0  (9)

where g is related to the decay rate of the system.
Consider a system G(s) whose Hy norm can be defined as
follows [24]:

1 o0
G2 = \/Z/ tr(G(jw) Gjw)dw  (10)

where G(jw)" represents the Hermitian of G(jw) and
tr(G(ja))H G(jw)) represents the trace of G(]'a))H G(jw).
Because the H; norm is related to the root-mean-square
impulse response of the system, this norm can be used to
measure the robustness of a closed-loop system under noise
or external disturbance [25].

The Hy, norm of G(s) can be defined as follows [24]:

IG($)lloo = max &(G(jw)) (1)

where 7 (G(jw)) represents the maximum singular value of
G(jw). Because the Hy, norm is related to the peak gain of
the frequency response of the system, this norm can be used to
guarantee the robust stability or performance of a closed-loop
system when model uncertainty exists [25].
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To solve H; and Hs, optimization problems, the
state-space realization G (F) is used to represent the
closed-loop system in (5) as follows:

Ap| B
. 12
Crl Dn (12)
Let G denote the transfer matrix of G (F). The matrix F
should be determined to minimize ||Gc||2 or ||G¢l||co under
certain BMI constraints.

For the H; optimization problem described in [9] and [26],
we consider the following optimization problem:

GCI(F) = |:

min ||Gell2
F.QY

subject to ApQ + QA +B1B] <0
Y C1Q }
>0,Q>0 13
where external variable « = F, the internal variable X =
(Q.Y), and F(&) = ||Geill2-
For the H, optimization problem described in [9] and [27],
we consider the following optimization problem:

min ||Gellloo
F,yY

YAr+A;Y YB; Cp

subject to B/Y —-yI D/, | <0
Cr Du  —vI
y>0,Y>0 (14)

where external variable « = F, internal variable X = (v, Y),
and F (&) = [|Geilloo-

In the aforementioned examples, when « is determined, the
feasible set of X can be explored internally because of the
convexity of LMIs. The variable X does not affect the fitness
values but affects the feasibility. If feasibility information
can be extracted accurately from a, X can be considered
hidden from the external search. Thus, the problem with
two variables (i.e., & and X) can be transformed into a new
problem with only one variable (i.e., e¢) [21].

To transform the problem with two variables into a new
problem with only one variable, the following eigenvalue
problem is considered [21]:

(A (@), X*(a)) = arg I}H)}l A
subject to BMZ(e, X) < AL (15)

where A*(ar) and X *(et) are considered functions of o. More-
over, (A*(ar), X*(er)) is the pair for which the minimum value
of A in (15) is achieved.

By introducing the reduction theorem in [21], the problem
expressed in (2) can be transformed into the following form:

min F(a)
o
subject to A*(a) < 0. (16)

In addition, we define the problem expressed in (2) is feasible
if and only if there exists an external variable & such that
A*(@) < 0.
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FIGURE 1. Flowchart of the proposed QDOM. The adaptive
bound-searching algorithm uses previous bounds to search for new
bounds, and the diversity-selecting immune algorithm searches for « and
computes new fitness values of « that are associated with the new
bounds.

ill. PROPOSED QDOM

In last section, we illustrate that a BMI control design prob-
lem can be transformed into an optimization problem as
shown in (16). This section illustrates how the QDOM solves
(16). The QDOM involves the use of the proposed adaptive
bound-searching algorithm and diversity-selecting immune
algorithm. The adaptive bound-searching algorithm adap-
tively changes the bounds of the entries of controller gain
matrices or the bounds of the eigenvalues of closed-loop
systems represented by a state space model. The bound
values determined by the aforementioned algorithm are
used by the diversity-selecting immune algorithm to com-
pute the fitness function associated with the BMI problem.
To find the optimal solution to the BMI problem, the bounds
determined by the adaptive bound-searching algorithm and
diversity-selecting immune algorithm are applied iteratively.

A. PROPOSED QDOM
Fig. 1 shows the flowchart of the proposed QDOM. Given the
initial bounds [g? A?]T = [ginitial Ainitid)T The parameter
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gMital represents the scalar values of the initial bounds of
the entries of controller gain matrices, and ). initial represents
the scalar values of the initial bounds of the eigenvalues
of closed-loop systems represented by a state space model.
The adaptive bound-searching algorithm searches for new
bounds. The diversity-selecting immune algorithm then uses
the new bounds to compute the fitness values f,BM! associated
with the BMI problem.

The variable £5¢4°h represents the number of trials in which
the same bounds are used. If ¢search jg equal to gsearch-end
which is the maximum number of trials in which the same
bounds are used in the diversity-selecting immune algorithm,
the average fitness value f™®" of o« associated with the
current bounds is computed as follows:

1 t

tsearch
k:t_tsearch+ 1

fmean —

where ¢ is the index indicating the current trial and kaMl is
the best fitness value of a in the kth trial. As long as r5¢@ch <
psearch-end the diversity-selecting immune algorithm is used to
search for & and compute new fitness values of « associated
with the current bounds.

If the current average fitness value f ™" is the best average
fitness value, the best average fitness value £ is updated
(i.e., foest = fgmeany and the values of bounds g"*s' and Abest
are also updated (i.e., g”' = g% and AP 1?). The
diversity-selecting immune algorithm is terminated after it
has been executed t = T™# times, where 7™ represents the
maximum number of trials. Finally, the a value with the best
fitness fBMIbest 5 output to minimize the objective function
F in (16). The controller gain matrix & = F is then obtained
as the approximate solution to the BMI problem.

B. OVERVIEW OF NS AND QD

NS, which is inspired by nature’s trend toward diversity,
is a method that can be implemented by neuroevolution of
augmenting topologies [22], [28], [29] or genetic program-
ming [30], [31] to search only for individuals with novel
behaviors [22]. In NS, the fitness function of evolutionary
algorithms is replaced by a measure of solution novelty [32].
NS focuses on obtaining behaviorally diverse solutions
instead of high-fitness ones (high-quality solutions). This
method is particularly efficient for solving problems that
involve deceptive or sparse rewards.

In NS, a behavior characterization vector b(:) is used to
store behavioral information. The behavioral information that
must be stored in b(-) is user-defined. In NS, new character-
ization vectors are generated through crossover or mutation.
If @ denotes a behavior, the novelty of b(a) can be measured
using a novelty function p as follows:

k
1 .
pb(@) =+ > dist(b(e), b)) (18)
=1
where b(«;) is the [th-nearest neighbor of b(e) in the archive
with respect to a similarity measure dist(-, -). Moreover, k
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best )\best} T

[gbest )\best] T
*

* y ] ghest? )\best2] T

4

(a) diversity search

(b) quality search

(c) crossover operation

FIGURE 2. Adaptive bound search. The black “+" signs represent the bP°Unds yalues that are currently being used to search for new bPounds yajyes,
the green “A” signs denote the new bP°Unds yalues, and the orange “o"” signs represent the bPoUnds yalue that has been stored in the archive.

The blue “X” marks represent local optima, and the red “x” signs represent the global optimum. (a) In diversity search, exploration is conducted in
the purple dashed rectangle to search for new bP°unds yalues. (b) In quality search, new b?°Unds yalyes are found along a certain direction. (c) In
the crossover operation, the two best bP2Unds yajyes are used to search for new bPounds yalyes.

denotes the number of neighbors. The novelty value p(b(w))
is its average distance to the k nearest neighbors in the
archive. If the novelty value of a new characterization vector
satisfies a certain threshold pmi“, the vector is stored in the
archive.

NS algorithms avoid exploring search space regions that
have already been explored by calculating the similarity
between new and previous characterization vectors. Over
generations, these algorithms encourage the population to
spread out across the space of diverse behaviors.

Because NS algorithms only attempt to find high-novelty
behaviors, the concept of QD can be employed to find an
optimal solution while searching for high-novelty behaviors.

C. PROPOSED ADAPTIVE BOUND-SEARCHING
ALGORITHM

For dynamically adjusting search bounds of QDOM,
Algorithm 1 shows the proposed adaptive bound-searching
algorithm consisting of three steps. The first step is called
diversity search (lines 11-16 of Algorithm 1), which is used to
find the direction for tuning the values of bounds. The second
step is called quality search (lines 19-23 of Algorithm 1),
which is used to search for better values of bounds for the
diversity-selecting immune algorithm to find higher fitness
values of a associated with the bounds. The third step is
crossover operation (lines 27-30). To find global optima
without becoming trapped in a local optimum, the adap-
tive bound-searching algorithm performs diversity search or
quality search. Subsequently, it continues to select the two
best pairs of bounds to perform crossover until the stopping
criterion is satisfied.

Fig. 2 illustrates the three steps involved in the adap-
tive bound-searching algorithm. During diversity search,
pbounds(gbasey  — [gbase 3baselT jg ysed to search for new
values in a specific region (i.e., the dashed rectangular
area in Fig. 2(a)). During quality search, b*ounds(gbasey —
[gbase )Lbase]T and bboundS(abest) — [gbest kbest]T are used to
search for a new bP®"s value in a certain search direction.
During the crossover operation, the previous b*U"ds values

bbounds
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best )Lbest]T and [gbestZ AbestZ]T

[g are used to generate a new

pbounds yajye.

The input parameter ¢ of Algorithm 1 indicates the num-
ber of trials performed by the diversity-selecting immune
algorithm. The term r5¢¥°h-end s the maximum number of
trials for which the same bounds b are used in the
diversity-selecting immune algorithm. Finally, the parameter
NS-end reflects the maximum number of times that diversity
search is conducted.

The inputs [g¥, A’] represent the current bounds (i.e.,
pPounds ¥y = [ A91T) where 0 represents the index of
searching bounds. The values of the bounds are related to the
values of the external variable oc. The mth value of & in (16)
can be recovered from a given vector AP of eigenvalues
or generated in a pointwise manner over prescribed bounds
[—ge, gg]. If arange [=A7, 01 x [—A?, A%] s given, the initial
AP® vector can be randomly generated over the range as
follows:

(AP, € {0 +jw: (o, ) € [-17,0] x [-A7, 271} (19)

where complex values of AP™ occur in conjugate pairs. The
parameter e can be generated in accordance with the bounds
defined as follows:
[T €[5, &"1. (20)
After applying the diversity-selecting immune algorithm
under the initial bounds (i.e., b™unds ([g¢ 11Ty =
[ginitial yinitial Ty fo psearch-end yriq) the average fitness value
of & in the r5¢ach-end tria]s js computed. Because the direction
for the new bound search must be determined, a diver-
sity search (lines 11-16) is performed to search for new
bounds bPoUnds ([gf 2017y = [gfF! APF1]T in a region
of the search space with the bounds [gP®¢ AP3€]T  The
bounds [gbase )Lbase]T are equal to [ginitial Ainitial]T when the
initial bounds are prescribed. In addition, the new bounds
[g?*1 A?+11T will be used by the diversity-selecting immune
algorithm to compute new fitness and average fitness values
of a.
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Algorithm 1 Adaptive Bound-Searching Algorithm

Input: ¢, 0, Augs, [891 )\9]’ [gbase’ kbase]’ [gstep7 ASEeP],
[gbest’ )Lbest]
Output: [g/t!, A9F1]
NS «—0
2 ift < tsearch—end then
3: [g(7‘+l’ )\,9+1] - [89’ )\9]

4 [gbase7 )\base] <« [89’ )\0]

5 0 <«—60+1

6:  break

7: else

8 while t > ssearch-end 5,4 (NS  ;NS-end g
9: NS NS 4

10: if [g5P, AS*P] = [0, 0] then

11: Perform diversity search in (21) to obtain
the candidate bound [g+!, A%F1] and calculate

p([go*!, 22+11T) by using novelty functions in
(22)-(24)

12: ifp([gg+l, )\erl]T) -~ pbds—min then

13: Set [gfF!, A9H1] « [g0F!, A6+

14: 0 «—6+1

15: break

16: end if

17: end if

18: if NS = ¢NS-end then

19: Calculate new search direction [ g;t:\g, Af’lfvpv] using
(25)

2: if [gnow Anew] # [0, 0] then

21: Perform quality search in (26) to search
for [g9+1’)h9+1] and set [gbase’)hbase] -
[gbeSt, )Lbest] and [gstep’ )"Step] <« [g;§£’ )»:1?\5]

22: 0 <—0+1

23: break

24: else

25: Enlarge the search region by adjusting NS

26: Set NS =0

27: if NS > pmax then

28: Perform crossover operation in (27) to
obtain [g?+!, A%t and set & < 6 + 1

29: break

30: end if

31: end if

32: end if

33:  end while
34: t<—t+1

35: end if

36: % tsearch—end’ tNS—end’ Iobds—min max

, and r™®* are preset param-

eters of Algorithm 1.

Fig. 2(a) illustrates the diversity search. The parameters
g?*" and A9t are computed using the following equations:

6+1 __ _base random
8 =8 +8

)\9+1 — )\base + )Lrandom (21)
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random

where g is a random number selected from

(_gbaserNS gbaserNS) \ {0}
and Arandom 5 4 random number selected from
(_}LbaserNS7 AbaserNS) \ {0}.

The variable ™5 determines the size of the search region.
The novelty function p(bP°"(gf*1)) is computed as
follows:

p(bbounds(a0+l)) — p([g9+1 )\’9+1]T)
14
1 ' .
— ﬁ Z dist(bbounds(a0+l)’ bbounds(“l)).
=1
(22)

The term dist(b*°Unds(gf+1) bbounds ;) is computed using
the following equation:

dist(bbounds (a0+ 1 ) bbounds (Oll))

0
- / Gl =417+ Gy = 20417
@3)

where (%)2 is used for rank-normalizing the value of (g; —
g9+l )2_

If the candidate new b*"nds ([gf+1 A0+11T) value is suffi-
ciently novel, i.e., p([g?*! A9+1]T) is higher than a threshold

pPdsmin ey hressed as:

pbds—min — kbaserNS (24)

then we set bbounds ([g9+l )\9+1]T) — [g§+1 )\'gﬂ-l]—l— and
terminate Algorithm 1.

If the new candidate bounds [g/+! A%+1]T with high nov-
elty cannot be found through diversity search in the search
region (i.e., the dashed rectangular area in Fig. 2(a)), NS
becomes equal to 514 If tNS i5 equal to £N5-1 and if an
average fitness value higher than the initial average fitness
value has been found in the previous trials (i.e., better bounds
[Pt AP ] T that correspond to a better average fitness value
have been found), the directions for quality search are deter-
mined. The term bPunds ([gbest 3 besti Ty e g 1 corresponds to
the best average fitness value f ! where g is a set storing
a few bP°nds ([¢ 21T values. Each [g A] value corresponds
to an average fitness value of &. The search directions g®P
and A%°P are determined using the following equations:

ste best base
P — —g

§ 8
AStep — )Lbest _ )Lbase' (25)

The vector [g%P AS°P]T is represented by a yellow arrow
in Fig. 2(b). Quality search is performed in line 21 of
Algorithm 1.
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On the basis of the search directions in (25), g+! and A7+!
are generated as follows:

g0+1 — gbest + gstep

k6+] — )Lbest + Astep. (26)

The dashed arrow in Fig. 2(b) represents the same vector as
the yellow arrow in Fig. 2(b). After performing quality search
by using (26), [ghase pybase]T jg updated (i.e., [ghase pbase]T —
[gPest AP T and the current bPOUnds values are updated in
line 21 of Algorithm 1. Quality search might be performed
for many trials if a larger average fitness value can be found
along a search direction.

If a larger average fitness value cannot be found along a
search direction (i.e., [gP*® AP2°]T is equal to [gPest APt T,
the diversity search is conducted in a larger search region
(line 11 of Algorithm 1) by increasing the value of NS in
(21) after performing quality search or diversity search. In this
case, the pPdS™Min in (24) is also assigned a new value.

Finally, if the region for the diversity search reaches a
prescribed size, i.e., 7S is higher than a prescribed threshold
r™@ “and better bounds corresponding to a higher average fit-
ness value cannot be found after performing a quality search
or diversity search, the crossover operation is performed to
generate new bounds [gf+! A+1]T. This operation can be
expressed by the following equations:

g6+1 — %.boundsgbest +(1— Ebounds)gbesa

)LB—H — Ebounds)tbest +(1 - Ebounds)kbestZ (27)

where £°°Uds j5 3 random number selected from the range
(0, 1) and [gP®s2 AbeS2)T ¢ g4 represents the second-best
bounds that correspond to the second-highest average fitness
value of . Fig. 2(c) illustrates the crossover operation.

In this case, b (g A%1T) can be used by the
diversity-selecting immune algorithm to compute new fitness
values of « that are associated with b*°""ds ([g? 191T), and
[g9 2017 s copied to archive Apgs.

D. PROPOSED DIVERSITY-SELECTING IMMUNE
ALGORITHM

Motivated by the HMOIA [21] for generating and updating o,
we developed a diversity-selecting immune algorithm based
on QD. This algorithm employs the concept of QD to deter-
mine the external variables, that is, it searches for behaviors
o that correspond to high fitness values. Algorithm 2 presents
the pseudocode of the developed diversity-selecting immune
algorithm. In line 2 of Algorithm 2, the population is initial-
ized with the nominal population size Npom as follows:

oy, 00, ..., 0N )-

During the evolutionary process of the artificial immune
system [33], the population size changes over iterations but
remains smaller than the maximum population size Npygx-
The values of & can be recovered from a given vector of
eigenvalues AP™. This vector can be determined using a trust-
region Levenberg—Marquardt method [21], [34], which can
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Algorithm 2 Diversity-Selecting Immune Algorithm
0 )\'Q]T

Input: [g for the bounds on the entries of behaviors
o, empty archive Ay,
Output: Best behavior a and the fitness value fBM!

1: Use [¢” 2?17 for prescribing bounds on the entries of

behaviors «

2: Initialize the population A,,p with the nominal popula-
tion size Npom and set the maximum population size be
N, max
Copy all the behaviors & € Apop 10 Apyr

Compute the fitness function in (31)
timmune «1

while timmune < timmune—max do
Perform hypermutation operation in (32) and (33)
Repeat hypermutation operation with probability e
until high-novelty o has been found by using (34).

9:  Copy the new behaviors o to Ay

10:  Compute the fitness function in (31)

11:  Update the population F,0p

12: timmune - timmune +1

13: end while

14: Select the feasible a with the highest fitness value

A

be used to solve the pole placement problem:
1
F*(AP') = arg min - leig(AF) — AP*] I3 (28)

where eig(Ar) is the vector of eigenvalues of Ap € R™ ¥
and AP is a prescribed vector of poles (or eigenvalues).

When large bounds are assigned, the search spaces in (19)
and (20) are divided into several subspaces to improve the
search efficiency:

[—isA?, 01 x [—ksr?, k2]
and
[—xsg”, ks8]

where kg € (0, 1] fors = 1,2, ..., S. The parameter S is the
number of subspaces. Values of & can be recovered using the
following expression:

AP, € {0 + jo : (0, w) € [—ksA?, 0] x [—rA?, kA1)
(29)

Alternatively, « values can be generated in a pointwise man-
ner through the following expression:

[l € [—ks8”, k58”1 (30)

After prescribing bounds for the behaviors and initializing the
population, all behaviors « in the population are copied to the
empty archive Ay, in line 3 of Algorithm 2.

In lines 4 and 10 of Algorithm 2, the fitness function
(objective function) F of « in (16) is computed using
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TABLE 1. Spectral abscissa optimization.

Problem F € Ruxny Results of existing methods, @o(Ar) Results of QDOM,
Name | n, | n, HIFOO | LMIRank | PENBMI | CCDM | ICAM MRVs Mean ao(AF)
ACI | 3 3 -0.2061 84766 770758 | -0.8535 | -0.7814 | -18.0761 59116 ~52.2801
ACE | 1 2 ~0.0500 -0.0500 0.0500 | -0.0500 | -0.0500 20.05 20.05 -0.05
AC5 | 2 2 0.7746 ~1.8001 2.0438 | -0.7380 | -0.7389 | -2.4051 “T4169 24159
ACT | 1 2 0.0322 -0.0204 0.0806 | -0.0673 | -0.0502 | -0.0747 | -0.0259 0.0872
ACS | 1 5 ~0.1968 04447 04447 | -0.0755 | -0.0640 | -0.4447 | -0.1302 04447
ACO | 4 5 0.3389 0.5230 204450 | -03256 | -0.3926 | -2.0823 | -0.6846 23951
ACIL | 2 q ~0.0003 5.0577 X | -3.0244 | -3.1573 | -169018 | -5.6283 138.8328
ACI2 | 3 q -10.8645 9.9658 18757 | 03414 | -0.2948 | -18.3236 | -6.9443 525179
HEI | 2 I 0.2457 20.2071 02468 | 02202 | -0.2134 | -02446 | -0.2296 0.2462
HE3 | 4 6 0.4621 23009 204063 | -0.8702 | -0.8380 | -1.7847 | -1.1104 32928
HE4 | 4 6 ~0.7446 1.9221 20.0909 | -0.8647 | -0.8375 | -3.0567 | -1.2528 -3.0968
HE5 | 4 2 0.1823 X 10.2932 | -0.0587 | -0.0609 | -1.1953 | -0.3581 10151
HE6 | 4 6 ~0.0050 -0.0050 -0.0050 | -0.0050 | -0.0050 -0.005 -0.005 -0.005
REAI | 2 3 16.3918 5.9736 1.7984 | -3.8599 | -2.8932 | -19.3041 83702 -199.4919
REA2 | 2 2 70152 | -10.0292 35928 | 2.1778 | -1.0514 | -19.4238 | -7.3650 29.6645
REA3 | 1 3 -0.0207 -0.0207 20.0207 | -0.0207 | -0.0207 | -0.0207 | -0.0207 -0.0207
DIS2 | 2 2 68510 | -10.1207 83289 | 84540 | -8.3419 | -19.4340 | -10.2551 68.9765
DISZ | 4 6 36,7203 105420 | -92.2842 | -8.0980 | -5.4467 | -16.0222 | -26.5191 185.1219
WECI | 3 1 8.9927 ~8.7350 20.9657 | -0.8779 | -0.8568 | -11.9629 | -5.3985 21.6390
H | 11 10 ~0.5000 -0.5000 -0.5000 | -0.5000 | -0.5000 | -0.1576 | -0.4429 203516
CSEI | 2 10 ~0.4500 04344 204490 | -02360 | -0.2949 | -0.3489 | -0.3774 04372
TFI | 2 q X X 20.0618 | -0.1544 | -0.0704 | -0.2688 | -0.1380 0.2573
T2 | 2 3 X X 1065 | -1.0e5 | -1.0e5 1.0e-5 1.0e5 1.0e-5
TE3 | 2 3 X X 20.0032 | -0.0031 | -0.0032 | -0.0032 | -0.0032 -0.0032
NNT | 1 2 3.0458 44021 43358 | -0.8746 | 0.1769 589 | -3.0619 5.8928
NN5 | 1 2 ~0.0942 -0.0057 20.0942 | -0.0913 | -0.0490 20.094 | 00714 -0.0939
NNO | 3 2 2.0789 -0.7048 X | -0.0279 | 0.0991 | -17.8516 | -4.1128 25.8536
NNI3 | 2 2 32513 45310 9.0741 | 34318 | -0.2783 | -13.6061 5.6954 13.6067
NNI5 | 2 2 6.9983 | -11.0743 10.0278 | -0.8353 | -1.0409 | -10.9821 5.1598 -10.9741
NN17 | 2 T 0.6110 20.5130 X | -0.6008 | -0.5991 06107 | -0.5860 20.6107
The letter ““x” means that no solution was found.
deterministic algorithms. Because a minimization problem is equation:
formulated, the fitness value f BMI s obtained as follows: { k
immune immune immune
BMI p(b (@) = % E [Ib () —b ()2 (34)
M @) = —F@). (31) —

If fBMI(q) is higher than fBMI-best gBMIbest jg qot a5 FBMI (g,
The parameter fBMI-best ig the approximate optimal fitness
value associated with the BMI problem.

In lines 7 and 8 of Algorithm 2, « € A,0p and & are
randomly generated using (29) or (30). Thus, a new behavior
"% can be generated by performing the hypermutation oper-
ation over & and . This operation is expressed as follows:

immuneg 4 (1 — gimmuneyg - rand() > €
“ = irandom E otherwise (32)
where
[arandom]m — [&]m» rand() .> € (33)
[ot],n, otherwise.

In (32), £iMmune j5 3 random number selected from the range
(0, 1), and rand() € (0, 1) is a random number generator.
The hypermutation operation expressed in (32) is performed
[Nmax/|Apop|] times, where |- | represents the floor function,
and | 40p| represents the population size.

In line 8 of Algorithm 2, if NS is performed with the
probability €, the diversity-selecting immune algorithm can
avoid finding many behaviors with low novelty. The novelty
of a new behavior a can be computed using the following
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where biMMUe(¢) — ¢ € R™" and biMM"€(g;) is the /th-
nearest neighbor of b'™™"(¢) in the archive with respect to
the L, norm. If a novel « value cannot be found for a few
trials, the novelty threshold p®¥*™" is decreased.

After the hypermutation operation is performed, new
behaviors are generated. If rand() < € and the novelty of
the new behavior « is higher than pb"r'min, the new behavior
a is copied to the archive Ay, and the fitness value of
o is computed; otherwise, the hypermutation operation is
performed until the aforementioned conditions are met.

To maintain a manageable population size and ensure fea-
sibility, the population is updated (line 11 of Algorithm 2) by
removing some infeasible behaviors. Eventually, the feasible
behavior with the highest fitness value in the population is
selected (line 14 of Algorithm 2) as the solution to the BMI
problem.

E. EXAMPLE OF USING QDOM
Consider the spectral abscissa of Ag in (5). The spectral
abscissa optimization problem can be defined as (6). The
controller gain matrix F € R™>* can be transformed into
an nuny x 1 vector (i.e., ) for solving the spectral abscissa
optimization problem.

The QDOM algorithm can be decomposed into three
components, namely the adaptive bound-searching algorithm
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TABLE 2. H, optimization.

The letter “x” means that no solution was found.

(Algorithm 1), diversity-selecting immune algorithm
(Algorithm 2), and average fitness value update process.

Algorithm 1 is used to generate the searching bound
[¢? AP1T of . Then, Algorithm 2 randomly searches for o in
the given bound [g? 1%]T. To determine which candidate «
would be better, we solve the spectral abscissa problem in (8)
for examining the fitness value fBM! in (31) and calculating
the average fitness value f™" in (17).

For a given bounds [g? 4?17, when the maximum number
of trials ¢5¥°h-end g reached, QDOM performs the average
fitness update by comparing the mean fitness value f™" of
the current trial and the currently best average fitness value
fPest If Fmean jg Jarger than £, we replace fP°5 by fmean,
The bound [g? A?1T associated with & coupled with the max-
imum fitness value is defined as the best bound [gP®t APest] T,
To help the adaptive bound-searching algorithm dynamically
adjust the searching bound, the best bound [gPest Abest)T
and second best bound [gP®? AP*S2]T are saved in archive
Apds-

Let trial index t =
searching bound index & = 1 and initial searching bound
[g' AT = [ginitial pinitid]T At the beginning, we preset

1, tsearch 0, tserarch—end — 15’

VOLUME 11, 2023

Problem | F e RmuXny Results of existing methods, [|G |l Results of QDOM,
Name n, ny HIFOO PENBMI CCDM MRVs Mean 1Gall2
AC1 3 3 0.025 0.0061 0.054 0.015 0.0250 0.0141
AC2 3 3 0.0257 0.0075 0.054 0.01566 0.0257 0.0114
AC3 2 4 2.0964 2.0823 2.1117 2.1206 2.1028 2.0996
AC4 1 2 11.0269 X 11.0269 11.0269 11.0269 11.0269
AC6 2 4 2.8648 2.8648 2.8664 3.026 2.9055 3.0285
AC7 1 2 0.0172 0.0162 0.0176 0.0162 0.0168 0.0162
AC8 1 5 0.633 0.7403 0.6395 0.6321 0.6612 0.6339
ACI2 3 4 0.0022 0.0106 0.0992 0.0627 0.0437 0.0672
AC15 2 3 1.5458 1.4811 1.5181 1.6564 1.5504 1.5730
AC16 2 4 1.4769 1.4016 1.4427 1.4641 1.4463 1.4568
AC17 1 2 1.5364 1.5347 1.5507 1.5392 1.5403 1.5348
HE2 2 2 3.4362 3.4362 4.7406 3.7494 3.8406 3.8179
HE3 4 6 0.0197 0.0071 0.1596 0.0333 0.0549 0.0272
HE4 4 6 6.6436 6.5785 7.1242 15.7738 9.0300 14.3825
REA1 2 3 0.9442 0.9422 1.0622 0.9593 0.9770 0.9600
REA2 2 2 1.0339 1.0229 1.1989 1.0261 1.0705 1.0240
DIS1 4 4 0.6705 0.1174 0.7427 0.51 0.5102 0.4553
DIS2 2 2 0.4013 0.37 0.3819 0.372 0.3813 0.3703
DIS3 4 4 0.9527 0.9434 1.0322 0.997 0.9813 1.0076
DIS4 4 6 1.0117 0.9696 1.0276 1.0644 1.0183 1.0512
WECI 3 4 7.394 8.1032 12.9093 12.1017 10.1271 11.1693
WEC2 3 4 6.7908 7.6502 12.2102 13.2889 9.9850 11.6239
AGS 2 2 6.9737 6.9737 6.9838 7.1807 7.0280 7.0669
BDT1 3 3 0.0024 X 0.0017 3.52e-05 0.0014 3.1192e-05
MFP 3 2 6.9724 6.9724 7.0354 7.0556 7.0090 7.0297
PSM 2 3 0.033 0.0007 0.1753 0.0217 0.0577 0.0137
EB2 1 1 0.064 0.0084 0.1604 0.0832 0.0790 0.0271
EB3 1 1 0.0732 0.0072 0.0079 0.0846 0.0432 0.0397
TF1 2 4 0.0945 X 0.1599 0.1949 0.1498 0.2005
TF2 2 3 11.1803 X 11.1803 11.1803 11.1803 11.1803
TF3 2 3 0.1943 0.1424 0.2565 0.2568 0.2125 0.2766
NN2 1 1 1.1892 1.1892 1.1892 1.1892 1.1892 1.1892
NN4 2 3 1.8341 1.8335 1.859 1.8945 1.8553 1.9049
NN8 2 2 1.5152 1.5117 1.5725 1.5241 1.5309 1.5182
NNI11 3 5 0.1178 0.079 0.1263 0.0972 0.1051 0.0904
NNI13 2 2 26.1012 26.1314 62.3995 30.1629 36.1988 30.0894
NN14 2 2 26.1448 26.1314 62.3995 29.6438 36.0799 29.5450
NNI15 2 2 0.0245 X 0.021 0.0034 0.0163 0.0014
NN16 4 4 0.1195 0.1195 0.1195 0.1208 0.1198 0.1220
NN17 2 1 3.253 3.2404 3.3329 3.2554 3.2704 3.2511

[gbase’ )Lbase] = [0, 0], [gstep’ )\step] = [0, 0], [gbest7 Abest] —
[0, 0]. Since t < 15, QDOM directly performs Algorithm 2
in the searching bound [gi"tal Ainital]T ynti] 1 > 15 where
[ginitial )\'initial]—l— — [gH )\'O]T for6 =1,2,...,15.

Owing to rserarch-end — 15 Aloorithm 2 generates 15 feasi-
ble solutions. Thus, we can calculate £ ™2 and £ and save
[ghest, Abesty and [gPes2 Abest2] in archive Angs. The search-
ing bound for # > 15 can then be updated on the basis
of 4,4s. Once the average fitness value update process is
accomplished, we set r = ¢ + 1 and £5¢"2°h = 0,

When ¢ > 15, Algorithm 1 dynamically adjusts the search-
ing region by using one of the following methods: diversity
search, quality search, and crossover operation. Recall that
NS and (NS-end represent the iteration index and the end value
of Algorithm 1 in searching for the high novelty bounds,
respectively. Suppose that NS<nd — 60,

For t > 15, NS < 60 and [geP, AStP] [0, 0],
Algorithm 1 performs the diversity search in lines 11-16 of
Algorithm 1 and updates the search bound as [g/T! A¢+1]T.
If + > 15, and ™ = 60, Algorithm 1 calculates new
search direction [ghew, Amon]. When [ghon, Aee] # [0, 0],
perform the quality search in lines 19-23 of Algorithm 1 and
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TABLE 3. H,, optimization.

Problem F € RuXny Results of existing methods, [|Gi e Results of QDOM,
Name ny ny HIFOO PENBMI CCDM MRVs Mean [|Gaillso
AC1 3 3 0.0000 X 0.0177 0.0405 0.0194 0.0407
AC2 3 3 0.1115 X 0.1140 0.1262 0.1172 0.1296
AC3 2 4 4.7021 X 3.4859 3.9206 4.0362 3.8218
AC4 1 2 0.9355 x | 69.9900 69.99 46.9718 69.99
AC6 2 4 4.1140 X 4.1954 4.8138 4.3744 4.6791
AC7 1 2 0.0651 0.3810 0.0548 0.0315 0.1331 0.0316
AC8 1 5 2.0050 X 3.0520 1.4305 2.1625 1.4146
AC9 4 5 1.0048 X 0.9237 3.2926 1.7404 2.9749
ACl11 2 4 3.5603 X 3.0104 3.1158 3.2288 2.9495
AC12 3 4 0.3160 X 2.3025 1.3532 1.3239 1.2386
ACl15 2 3 15.2074 427.4106 15.1995 17.1925 118.7525 16.5535
AC16 2 4 15.4969 X 14.9881 15.8600 15.44383 15.5125
AC17 1 2 6.6124 X 6.6373 6.6124 6.6207 6.6124
HE1 2 1 0.1540 1.5258 0.1807 0.1538 0.5036 0.1533
HE2 2 2 4.4931 X 6.7846 4.3681 5.2153 4411
HE3 4 6 0.8545 1.6843 0.9243 0.8570 1.0800 0.8586
HE4 4 6 23.3448 X 228713 | 46.5677 30.9279 42.3192
HES 4 2 8.8952 X 37.3906 | 20.8784 22.3881 19.4099
REAIL 2 3 0.8975 X 0.8815 0.8836 0.8875 0.882
REA2 2 2 1.1881 X 1.4188 1.1471 1.2513 1.1518
REA3 1 3 742513 74.446 | 74.5478 742513 74.3741 742513
DIS1 4 4 4.1716 X 4.1943 4.3197 4.2285 4.2662
DIS2 2 2 1.0548 1.7423 1.1546 1.0604 1.2530 1.0619
DIS3 4 4 1.0816 X 1.1382 1.2727 1.1642 1.2057
DIS4 4 6 0.7465 X 0.7498 0.9486 0.8150 0.8968
TGl 2 2 12.8462 X 12.9336 14.2157 13.3318 14.1969
AGS 2 2 8.1732 188.0315 8.1732 10.0239 53.6005 10.4129
WEC2 3 4 4.2726 32.9935 6.6082 7.8382 12.9281 6.8686
WEC3 3 4 4.4497 200.1467 6.8402 7.2021 54.6597 7.3313
BDTI1 3 3 0.2664 X 0.8562 0.2662 0.4629 0.2662
MFP 3 2 31.5899 X 31.6079 33.9193 32.3724 33.2116
H 11 10 1.9797 X 1.1858 30.1004 11.0886 7.5915
CSEl 2 10 0.0201 X 0.0220 0.0198 0.0206 0.0199
PSM 2 3 0.9202 X 0.9227 0.9202 0.9210 0.9202
EBI 1 1 3.1225 39.9526 2.0276 1.888 11.7477 1.8917
EB2 1 1 2.0201 39.9547 0.8148 0.8142 10.9010 0.8142
EB3 1 1 2.0575 3995311.074 0.8153 0.8143 998828.7 0.8143
NNI1 1 2 13.9782 14.6882 18.4813 15.5294 15.6693 14.1901
NN2 1 1 2.2216 X 2.2216 2.2038 2.2157 2.2216
NN4 2 3 1.3627 X 1.3802 1.4327 1.3919 1.3985
NN8 2 2 2.8871 78281181.15 2.9345 2.9193 19570297.5 2.9254
NN9 3 2 28.9083 X 32.1222 | 30.7173 30.5826 30.7665
NNI11 3 5 0.1037 X 0.1566 0.1075 0.1226 0.1023
NN15 2 2 0.1039 X 0.1194 0.098 0.1071 0.098
NN16 4 4 0.9557 X 0.9656 2.3044 1.4086 2.1322
NN17 2 1 11.2182 X 11.2381 11.2042 11.2202 11.2031
The letter ““x” means that no solution was found.

TABLE 4. Additional problems in spectral abscissa, H, and H

optimization.

Problem F € Ruxny Results of MRVs, Results of QDOM,
Name ny, ny ao(Af) ao(Af)
AC18 2 2 -1.9248 -1.8694

DIS5 2 2 -2.7044 -2.7022
PAS 1 3 -2.05e-05 -1.4845e-04
NNI12 2 2 -2.4761 -2.4637

Problem F € Ruxny Results of MRV, Results of QDOM,
Name | n, ny |G ll2 ||Gatll2
AC18 2 2 20.0248 20.1650

DIS5 2 2 0.0013 6.6857e-04
NNI12 2 2 8.6989 8.3609

Problem F € RuXny Results of MRVs, Results of QDOM,
Name | ny, ny 1Gei llso 1Getlloo
AC18 2 2 10.8088 10.6846

DIS5 2 2 28.7928 28.8127
NN12 2 2 22.4556 17.7232

update [g51°P, ASteP], [ghest pbest) and the new search bound
[g("H A9T1T . However, if [gfff}j, AZfﬁ] = [0, 0], we enlarge
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the search region [g/T! A9t!1]T by adjusting ™S in (21)
and do diversity search again. Once rNS is larger than r™,
we perform the crossover operation in (27) to obtain new
search bound [gf/+1 A¢+1]T.

QDOM continuously runs Algorithms 1 and 2, and updates
the average fitness value until r = 7™,

IV. NUMERICAL EXAMPLES

This section presents the results obtained from applying
various BMI solution methods to solve optimal control
problems, namely spectral abscissa, Hp, and Hy, optimiza-
tion problems. The BMI solution methods employed were
HIFOO [16], [17], [18], LMIRank [19], PENBMI [20],
CCDM [7], ICAM [8], MRVs [21], and the proposed QDOM.
Except for the QDOM and MRV, the remaining methods are
local optimization methods. We used various models from the
constraint matrix-optimization problem library [9]-including
aircraft (AC) models, helicopter (HE) models, reactor (REA)
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FIGURE 3. Normalized spectral abscissa (the smaller the better). (a) QDOM and the existing methods. (b) QDOM and the benchmark values.
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FIGURE 4. Normalized H, norm (the smaller the better). (a) QDOM and the existing methods. (b) QDOM and the benchmark values.

models, decentralized interconnected system (DIS) models,
wind energy conversion (WEC) models, terrain-following
(TF) models, and academic test problems (NNs)—to assess the
performance of the proposed QDOM.

For spectral abscissa optimization, H> optimization, and
Hso optimization, (7), (13), and (14) were solved, respec-
tively. The MATLAB routine norm (sys, p) with the discussed
system sys = G and p = 2 were used for computing the
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H> norm. The term ByB] in (13) was replaced with B{B] +
1071 if BlBi'— was not positive definite. The MATLAB
routine norm (sys, p) with the discussed system sys = G
and p = oo were used for computing the Hy, norm.

A. PARAMETER SETTING OF QDOM
In the spectral abscissa optimization, H, optimization,
and Hy optimization problems, we used the following
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FIGURE 5. Normalized Ho, norm (the smaller the better). (a) QDOM and the existing methods. (b) QDOM and the benchmark values.

parameters: rseach-end  — 10 and 7™ = 150 (Fig. 1).
In [21], the bounds of the entries of controller gain matrices
were set as follows: [F]; € [—50, 50], where i is the row
index, j is the column index, and the eigenvalues of matrix
Ar were randomly generated so that eig{Ar} € {0 + jo :
(0,w) € [—20,0] x [—20, 20]}. We set g"tidl = 50 and
adnitial — 20 When each « value in the population was
generated, 3 subspaces were used, and «; in (29) and (30) was
setas k1 = 1, ko = 0.5, and k3 = 0.1. The parameters used
for Algorithm 1 were as follows: NS-end — 50 NS — (5,
and r™>* = [, and p®"Min = (.1 g”. Moreover, the param-
eters for Algorithm 2 were as follows: k = 10, ¢ = 0.5,
mmunemax — 20, Nyom = 40, and Nmax = 160 [21].

The value of N5°"d represents the number of times that
Algorithm 1 searches for the high novelty bounds. If we set
the value of NS¢ {00 large, then much time is required to
perform the while loop. On the other hand, if we set the value
of tNS-¢nd {60 small, one may not obtain a high novelty bound
but a bound that simply satisfies the novelty constraints.
psearch-end rerresents the number of times for using the same
bound [g? A?]T to solve the BMI problem. Setting rscrch-end
too large may spend more time in calculating fitness values.
If a small number is set, it can be difficult to accurately
evaluate whether the given bound yields good solutions when
solving the BMI problems. ™ is used to determine the
search region of the diversity search operation. Since the
number of candidates bound is proportional to the search
region, setting the value of V5 too large can cause Algorithm
1 to spend a lot of time in the novelty test. However, a small
value of NS may prohibit Algorithm 1 from obtaining a
high novelty bound. »™# is a threshold that controls the
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size of searching region. pPY™™" js used to measure the

novelty of the candidate behavior «. Setting a higher value
PPV min makes the novelty candidate behavior a difficult to
obtain. Fimmune-max jq the jteration number of hypermutation
operation. Since computing the fitness value of given bound
[ A91T usually couples with a higher computational burden,
setting a higher {™MMUNe-MaX yalye can significantly prolong
the computation time. Finally, larger Npom and Npax yield
higher computational complexity of hypermutation opera-
tion.

B. NUMERICAL RESULTS

Tables 1-3 present the performance of the QDOM and other
BMI solution methods in spectral abscissa optimization,
H> optimization, and Hy, optimization, respectively. The
mean values in Tables 1-3 indicate the average values of
solutions obtained using the existing BMI solution meth-
ods. Because the method exhibiting the highest performance
may be different in different problems, we compared the
results obtained using the QDOM with the mean values
to verify the effectiveness of the QDOM. The QDOM is
considered to outperform most of the existing BMI solution
methods if its results are lower than the mean values displayed
in Tables 1-3.

For the performance levels achieved by existing meth-
ods when BMI problems were solved, the normalized mean
values (denoted by w) of the spectral abscissa, H», and
H benchmark optimization problems were within the inter-
vals [0, 0.9], [0.2174, 0.9], and [0.2, 0.9], respectively and
the normalized standard deviation values (denoted by o)
were within the intervals [0, 0.7319], [0.3775, 0.6501], and
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[0.3649, 0.6325], respectively. We used the value u — 0.50
as our benchmark value to determine whether the obtained
solution is a relatively better solution. A solution whose per-
formance is lower than the benchmark value can be regarded
as a relatively better solution.

According to the results presented in Tables 1-3 and
Figs. 3-5, the solutions obtained by QDOM in spectral
abscissa, H», and Hy, optimization problems were 96.6%,
27.5%, and 52.17% lower than the benchmark value, respec-
tively. In the order of spectral abscissa, H>, and Hs
optimization problems, for HIFOO, it was approximately
26.67%, 42.5%, and 73.91%, respectively; for PENBMI,
it was 36.67 %, 80%, and 1%, respectively; for CCDM, it was
20%, 15%, and 47.83%, respectively; for MRVs, it was 70%,
10%, and 45.65%, respectively.

Clearly, QDOM outperformed CCDM and MRVs in all
BMI optimization problems. In spectral abscissa optimization
problems, QDOM had an absolute advantage over the other
methods. Although the PENBMI had 80% lower than the
benchmark value in A optimization problems, it performed
worst when solving Hy, optimization problems. In addition,
out of all Hy benchmark systems, five of them (12.5%)
were not solvable by PENLMI. We conclude that PENBMI
was less stable than the other methods. By using QDOM
in solving H, optimization problems, it yielded 42.5% solu-
tions near the benchmark value with a distance of less than
0.20. QDOM performed similarly to HIFOO in solving H>
optimization problems.

HIFOO had 80% lower than the benchmark value in Hy
optimization problems, but it found difficulty solving spectral
abscissa problems. By using QDOM to solve Hy, optimiza-
tion problems, 62.5% solutions near the benchmark value
with a distance of less than 0.20 were attained. QDOM
presented an acceptable level of performance in solving Ho
optimization problems.

The aforementioned results imply that most existing BMI
solution methods may find only local optima and cannot
obtain a globally optimal solution. Since the QDOM merges
the adaptive bound-searching algorithm and diversity-
selecting immune algorithm, it can avoid being trapped in
a local optimum while searching for better solutions by
dynamically adjusting the searching region and searching
for feasible solutions. Thus, excellent levels of performance
can be achieved by the proposed QDOM as compared with
existing methods.

V. CONCLUSION

This paper proposes a BMI solution method, namely a
QDOM, that can design controller gain matrices for solv-
ing spectral abscissa optimization, Hp optimization, and H,
optimization problems. To find the global optimum and
avoid entrapment in a local optimum when solving BMI
problems, the QDOM implements the proposed adaptive
bound-searching algorithm and diversity-selecting immune
algorithm. By using the adaptive bound-searching algorithm,
appropriate bound values can be found for the decision
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variables in different problems. The diversity-selecting
immune algorithm uses the concept of QD to find the best
decision variables within a large search space while avoiding
becoming trapped in a local optimum. We conducted simu-
lations to compare the performance of the proposed QDOM
and existing BMI solution methods. The proposed QDOM
outperformed the existing BMI solution methods in solving
several benchmark BMI problems. Our simulation results
show that the proposed QDOM was more likely to find the
global optimum than the compared BMI solution methods.
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