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ABSTRACT In this paper, a quality diversity optimization method (QDOM) based on an adaptive
bound-searching algorithm and diversity-selecting immune algorithm is proposed for solving bilinear matrix
inequality (BMI) problems in control system design. By using the proposed adaptive bound-searching
algorithm, appropriate bound values can be obtained for the entries of controller gain matrices or the
eigenvalues of closed-loop systems represented by a state space model. Given the bound values, the proposed
diversity-selecting immune algorithm can produce the best-so-far controller gain for a given BMI problem.
To find the global optimum efficiently and avoid being trapped in a local optimum, the concept of quality
diversity is employed in the proposed method. The proposed method was validated through solving some
spectral abscissa,H2, andH∞ optimization problems. The simulation results show that the proposed QDOM
achieved better or similar performance inmany benchmark problems as comparedwith existing BMI solution
methods.

INDEX TERMS Bilinear matrix inequality (BMI), BMI solution methods, novelty search (NS), quality
diversity (QD), quality diversity optimization method (QDOM), spectral abscissa optimization.

I. INTRODUCTION
Linear matrix inequalities (LMIs) can be used for solving
control problems. However, certain control problems cannot
be written using LMIs. Such problems can instead be written
in a general form known as the bilinear matrix inequal-
ity (BMI). In recent years, designing BMI controllers has
become a popular research area [1], [2], [3], [4]. The use of
BMI formulations has many advantages. For instance, these
control problems can be solved using BMI formulations with
modest complexity [5]. Furthermore, BMI-based controllers
exhibit higher performance and robustness than traditional
nonlinear controllers [6]. Examples include static output
feedback controller design for spectral abscissa optimization,
H2 optimization, and H∞ optimization [7], [8], [9].
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Unfortunately, BMI problems are NP-hard [10], and algo-
rithms for solving these problems can only be applied to
problems of modest size. Moreover, computations associated
with BMI constraints are more time-consuming and resource-
consuming than those associated with LMI constraints [5].
The limitations of existing BMI solution methods are as
follows. First, the decision variables in BMI solution methods
such as branch-and-bound-type methods [11] must be written
in vector form. However, in controller design, expressing
decision variables in matrix form is more convenient than
expressing them in vector form [12]. Second, derivations
must be performed in some BMI solution methods before
some algorithms are applied. For instance, decompositions
must be performed in the convex-concave decomposition
method (CCDM) [7] before the algorithm is applied; approx-
imations must be performed in the inner convex approxi-
mation method (ICAM) [8] before the algorithm is applied.
Unfortunately, these derivations can be heuristic or difficult.
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Third, BMI solution methods such as some alternating mini-
mization methods [13] and path-following methods [14], [15]
may be suitable only for particular problem structures. When
applying these methods to other problem structures, effort
must be made to reformulate the problem. Fourth, BMI solu-
tion methods such as HIFOO [16], [17], [18], LMIRank [19],
and PENBMI [20] only perform local optimization to solve
BMI problems with several inherent local optima.

To address the aforementioned drawbacks of existing
BMI solution methods, the method of reduction of vari-
ables (MRVs) [21] has been proposed. The MRVs adopts
stochastic mechanisms based on a hybrid multiobjective
immune algorithm (HMOIA) to search for global solutions
to BMI problems; however, when stochastic mechanisms are
employed, bounds must be set for the entries of controller
gain matrices or the eigenvalues of closed-loop systems rep-
resented by a state space model. The bounds strongly affect
the solutions to BMI problems, and different BMI problems
need different bounds that enable efficient search for global
optima.

For setting different bounds to solve BMI problems, the
concept of quality diversity (QD) is adopted in this work.
This concept is used to explore the search space of decision
variables while avoiding entrapment in local optima when
solving BMI problems. QD algorithms can be used to find
the optimal solution with high-novelty behaviors. The QD
algorithm is based on the concept of novelty search (NS) used
to promote behavioral novelty. NS rewards behaviors that are
different from pursuit of the final goal (i.e., the highest-fitness
solution). By using NS, different behaviors, that is, different
values of bounds and different values of decision variables in
our case, can be explored efficiently [22].

This paper proposes a QD optimization method (QDOM)
for efficiently setting different bounds to solve various
BMI problems and exploring the search space of the
decision variables. The QDOM involves the execution of
adaptive bound-searching algorithm and diversity-selecting
immune algorithm. The adaptive bound-searching algorithm
is used for adaptively searching for bounds of the entries
of controller gain matrices and bounds of the eigenvalues
of closed-loop systems; it involves three steps: diversity
search, quality search, and crossover. Diversity search is
used for finding high-novelty bounds. Moreover, quality
search and crossover are used to find bounds that corre-
spond to high fitness values. The diversity-selecting immune
algorithm is used to efficiently find best-so-far solutions for
BMI problems while avoiding becoming trapped in a local
optimum.

To validate the proposed methodology, the proposed
QDOM was compared with HIFOO, LMIRank, PENBMI,
CCDM, ICAM, and the MRVs in solving benchmark BMI
problems. Our numerical results show that theQDOMoutper-
formed or had performance similar to most aforementioned
BMI solution methods; we conclude that the proposed
QDOM method can effectively solve BMI problems in con-
trol engineering.

The rest of this paper is organized as follows. Section II
presents the problem formulation. Section III describes the
proposed QDOM. Section IV presents the simulation results.
Finally, Section V concludes this study.

II. SYSTEM DESCRIPTION AND PROBLEM FORMULATION
In this section, system and controller design is investigated
as a BMI optimization problem. The decision variables of
BMIs are classified into two types: external variables (α) and
internal variables (X), where α is a vector or matrix and X is
composed of scalar and real-valued symmetric matrix [21].

The inequality

BMI(α,X) < 0 (1)

represents a BMI associated with a controller design problem,
where the matrix function BMI(·) includes two matrix deci-
sion variables α and X . This BMI problem can be reduced
to an LMI problem when one decision variable is given (or
fixed).

A scalar function F can be added to (1) to achieve some
optimal controller designs. For the aim, the value ofF should
be as small as possible. Thus, the control problem with BMI
constraints can be written as follows:

min
α,X

F(α)

subject to BMI(α,X) < 0. (2)

The system under investigation is represented in the fol-
lowing form: 

ẋ = Ax+ B1w+ Bu
z = C1x+ D11w+ D12u
y = Cx

(3)

where x ∈ Rnx represents the state vector, w ∈ Rnw

represents the external noise, u ∈ Rnu represents the control
input, z ∈ Rnz represents the measure output, and y ∈ Rny

represents the controlled output.
For a static output feedback controller, the following

equation is obtained:

u = Fy = FCx (4)

where F ∈ Rnu×ny is the controller gain matrix.
A closed-loop system can be expressed as follows by using

the output feedback:{
ẋ = (A+ BFC)x+ B1w = AFx+ B1w
z = (C1 + D12FC)x+ D11w = CFx+ D11w

(5)

where the controller gain matrix F can be transformed into
an nuny × 1 vector for solving pole placement problems that
occur in closed-loop system design.

In the following text, several BMI problems expressed in
the form of (2)–spectral abscissa optimization, H2 optimiza-
tion, and H∞ optimization–are described. The external and
internal variables associated with these problems are then
identified.
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The spectral abscissa of a square matrix is the largest real
parts of the matrix’s eigenvalues. The spectral abscissa of AF
in (5) is defined as follows [23]:

α0(AF) = max
λ∈eig{AF}

Re(λ) (6)

where eig{AF} is the set of eigenvalues of AF and Re(λ) is
the real part of eigenvalue λ. To achieve asymptotic stability,
spectral abscissa optimization can be performed [23]. If the
optimal spectral abscissa value is strictly negative, a feedback
control law exists in (4) such that the closed-loop system
in (5) is asymptotic stable [9]. Spectral abscissa optimization
is formulated as follows:

min
F

α0(AF). (7)

Based on [9] and [23], the optimization of the spectral
abscissa of the square matrix AF can be considered an opti-
mization problem over a positive-definite symmetric matrix
P. The spectral abscissa of AF can be expressed as fol-
lows [23]:

α0(AF) = inf
P∈Sn,P>0

1
2
λmax(P

1
2AFP−

1
2 + P−

1
2AF

⊤P
1
2 ) (8)

where P is a positive-definite decision matrix, Sn denotes
the space of real symmetric matrices, and λmax denotes the
maximum eigenvalue of a symmetric matrix.

Let F(α) = α0(AF) where α = F and X = (P, β) denote
the external and internal variable of F in (2), respectively.
The spectral abscissa α0(AF) optimization problem is equal
to the following BMI-constrained optimization problem:

min
F,P,β

α0(AF)

subject to PAF + A⊤FP+ 2βP < 0,P > 0 (9)

where β is related to the decay rate of the system.
Consider a system G(s) whose H2 norm can be defined as

follows [24]:

||G(s)||2 =

√
1
2π

∫
∞

−∞

tr(G(jω)HG(jω))dω (10)

where G(jω)H represents the Hermitian of G(jω) and
tr(G(jω)HG(jω)) represents the trace of G(jω)HG(jω).
Because the H2 norm is related to the root-mean-square
impulse response of the system, this norm can be used to
measure the robustness of a closed-loop system under noise
or external disturbance [25].

The H∞ norm of G(s) can be defined as follows [24]:

||G(s)||∞ = max
ω

σ̄ (G(jω)) (11)

where σ̄ (G(jω)) represents the maximum singular value of
G(jω). Because the H∞ norm is related to the peak gain of
the frequency response of the system, this norm can be used to
guarantee the robust stability or performance of a closed-loop
system when model uncertainty exists [25].

To solve H2 and H∞ optimization problems, the
state-space realization Gcl(F) is used to represent the
closed-loop system in (5) as follows:

Gcl(F) =
[
AF| B1
CF| D11

]
. (12)

Let Gcl denote the transfer matrix of Gcl(F). The matrix F
should be determined to minimize ||Gcl||2 or ||Gcl||∞ under
certain BMI constraints.

For theH2 optimization problem described in [9] and [26],
we consider the following optimization problem:

min
F,Q,Y

||Gcl||2

subject to AFQ+QA⊤F + B1B⊤1 < 0[
Y C1Q

QC⊤1 Q

]
> 0,Q > 0 (13)

where external variable α = F, the internal variable X =
(Q,Y), and F(α) = ||Gcl||2.
For theH∞ optimization problem described in [9] and [27],

we consider the following optimization problem:

min
F,γ,Y

||Gcl||∞

subject to

YAF + A⊤FY YB1 C⊤F
B⊤1 Y −γ I D⊤11
CF D11 −γ I

 < 0

γ > 0,Y > 0 (14)

where external variable α = F, internal variable X = (γ,Y),
and F(α) = ||Gcl||∞.
In the aforementioned examples, when α is determined, the

feasible set of X can be explored internally because of the
convexity of LMIs. The variable X does not affect the fitness
values but affects the feasibility. If feasibility information
can be extracted accurately from α, X can be considered
hidden from the external search. Thus, the problem with
two variables (i.e., α and X) can be transformed into a new
problem with only one variable (i.e., α) [21].

To transform the problem with two variables into a new
problem with only one variable, the following eigenvalue
problem is considered [21]:

(λ∗(α),X∗(α)) = argmin
λ,X

λ

subject to BMI(α,X) < λI (15)

where λ∗(α) and X∗(α) are considered functions of α. More-
over, (λ∗(α),X∗(α)) is the pair for which the minimum value
of λ in (15) is achieved.

By introducing the reduction theorem in [21], the problem
expressed in (2) can be transformed into the following form:

min
α
F(α)

subject to λ∗(α) < 0. (16)

In addition, we define the problem expressed in (2) is feasible
if and only if there exists an external variable α̃ such that
λ∗(α̃) < 0.
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FIGURE 1. Flowchart of the proposed QDOM. The adaptive
bound-searching algorithm uses previous bounds to search for new
bounds, and the diversity-selecting immune algorithm searches for α and
computes new fitness values of α that are associated with the new
bounds.

III. PROPOSED QDOM
In last section, we illustrate that a BMI control design prob-
lem can be transformed into an optimization problem as
shown in (16). This section illustrates how the QDOM solves
(16). The QDOM involves the use of the proposed adaptive
bound-searching algorithm and diversity-selecting immune
algorithm. The adaptive bound-searching algorithm adap-
tively changes the bounds of the entries of controller gain
matrices or the bounds of the eigenvalues of closed-loop
systems represented by a state space model. The bound
values determined by the aforementioned algorithm are
used by the diversity-selecting immune algorithm to com-
pute the fitness function associated with the BMI problem.
To find the optimal solution to the BMI problem, the bounds
determined by the adaptive bound-searching algorithm and
diversity-selecting immune algorithm are applied iteratively.

A. PROPOSED QDOM
Fig. 1 shows the flowchart of the proposed QDOM. Given the
initial bounds [gθ λθ ]⊤ = [ginitial λinitial]⊤. The parameter

ginitial represents the scalar values of the initial bounds of
the entries of controller gain matrices, and λinitial represents
the scalar values of the initial bounds of the eigenvalues
of closed-loop systems represented by a state space model.
The adaptive bound-searching algorithm searches for new
bounds. The diversity-selecting immune algorithm then uses
the new bounds to compute the fitness values f BMI

t associated
with the BMI problem.

The variable tsearch represents the number of trials in which
the same bounds are used. If tsearch is equal to tsearch-end,
which is the maximum number of trials in which the same
bounds are used in the diversity-selecting immune algorithm,
the average fitness value f mean of α associated with the
current bounds is computed as follows:

f mean
=

1
tsearch

t∑
k=t−tsearch+1

f BMI
k (17)

where t is the index indicating the current trial and f BMI
k is

the best fitness value of α in the kth trial. As long as tsearch <

tsearch-end, the diversity-selecting immune algorithm is used to
search for α and compute new fitness values of α associated
with the current bounds.

If the current average fitness value f mean is the best average
fitness value, the best average fitness value f best is updated
(i.e., f best = f mean), and the values of bounds gbest and λbest

are also updated (i.e., gbest = gθ and λbest = λθ ). The
diversity-selecting immune algorithm is terminated after it
has been executed t = Tmax times, where Tmax represents the
maximum number of trials. Finally, the α value with the best
fitness f BMI-best is output to minimize the objective function
F in (16). The controller gain matrix α = F is then obtained
as the approximate solution to the BMI problem.

B. OVERVIEW OF NS AND QD
NS, which is inspired by nature’s trend toward diversity,
is a method that can be implemented by neuroevolution of
augmenting topologies [22], [28], [29] or genetic program-
ming [30], [31] to search only for individuals with novel
behaviors [22]. In NS, the fitness function of evolutionary
algorithms is replaced by a measure of solution novelty [32].
NS focuses on obtaining behaviorally diverse solutions
instead of high-fitness ones (high-quality solutions). This
method is particularly efficient for solving problems that
involve deceptive or sparse rewards.

In NS, a behavior characterization vector b(·) is used to
store behavioral information. The behavioral information that
must be stored in b(·) is user-defined. In NS, new character-
ization vectors are generated through crossover or mutation.
If α denotes a behavior, the novelty of b(α) can be measured
using a novelty function ρ as follows:

ρ(b(α)) =
1
k

k∑
l=1

dist(b(α),b(αl)) (18)

where b(αl) is the lth-nearest neighbor of b(α) in the archive
with respect to a similarity measure dist(·, ·). Moreover, k
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FIGURE 2. Adaptive bound search. The black ‘‘+’’ signs represent the bbounds values that are currently being used to search for new bbounds values,
the green ‘‘△’’ signs denote the new bbounds values, and the orange ‘‘•’’ signs represent the bbounds value that has been stored in the archive.
The blue ‘‘X’’ marks represent local optima, and the red ‘‘⋆’’ signs represent the global optimum. (a) In diversity search, exploration is conducted in
the purple dashed rectangle to search for new bbounds values. (b) In quality search, new bbounds values are found along a certain direction. (c) In
the crossover operation, the two best bbounds values are used to search for new bbounds values.

denotes the number of neighbors. The novelty value ρ(b(α))
is its average distance to the k nearest neighbors in the
archive. If the novelty value of a new characterization vector
satisfies a certain threshold ρmin, the vector is stored in the
archive.

NS algorithms avoid exploring search space regions that
have already been explored by calculating the similarity
between new and previous characterization vectors. Over
generations, these algorithms encourage the population to
spread out across the space of diverse behaviors.

Because NS algorithms only attempt to find high-novelty
behaviors, the concept of QD can be employed to find an
optimal solution while searching for high-novelty behaviors.

C. PROPOSED ADAPTIVE BOUND-SEARCHING
ALGORITHM
For dynamically adjusting search bounds of QDOM,
Algorithm 1 shows the proposed adaptive bound-searching
algorithm consisting of three steps. The first step is called
diversity search (lines 11–16 ofAlgorithm 1), which is used to
find the direction for tuning the values of bounds. The second
step is called quality search (lines 19–23 of Algorithm 1),
which is used to search for better values of bounds for the
diversity-selecting immune algorithm to find higher fitness
values of α associated with the bounds. The third step is
crossover operation (lines 27–30). To find global optima
without becoming trapped in a local optimum, the adap-
tive bound-searching algorithm performs diversity search or
quality search. Subsequently, it continues to select the two
best pairs of bounds to perform crossover until the stopping
criterion is satisfied.

Fig. 2 illustrates the three steps involved in the adap-
tive bound-searching algorithm. During diversity search,
bbounds(αbase) = [gbase λbase]⊤ is used to search for new
bbounds values in a specific region (i.e., the dashed rectangular
area in Fig. 2(a)). During quality search, bbounds(αbase) =
[gbase λbase]⊤ and bbounds(αbest) = [gbest λbest]⊤ are used to
search for a new bbounds value in a certain search direction.
During the crossover operation, the previous bbounds values

[gbest λbest]⊤ and [gbest2 λbest2]⊤ are used to generate a new
bbounds value.

The input parameter t of Algorithm 1 indicates the num-
ber of trials performed by the diversity-selecting immune
algorithm. The term tsearch-end is the maximum number of
trials for which the same bounds bbounds are used in the
diversity-selecting immune algorithm. Finally, the parameter
tNS-end reflects the maximum number of times that diversity
search is conducted.

The inputs [gθ , λθ ] represent the current bounds (i.e.,
bbounds(αθ ) = [gθ λθ ]⊤) where θ represents the index of
searching bounds. The values of the bounds are related to the
values of the external variable α. The mth value of αθ in (16)
can be recovered from a given vector λpre of eigenvalues
or generated in a pointwise manner over prescribed bounds
[−gθ , gθ ]. If a range [−λθ , 0]× [−λθ , λθ ] is given, the initial
λpre vector can be randomly generated over the range as
follows:

[λpre]m ∈ {σ + jω : (σ, ω) ∈ [−λθ , 0]× [−λθ , λθ ]} (19)

where complex values of λpre occur in conjugate pairs. The
parameter αθ can be generated in accordance with the bounds
defined as follows:

[αθ ]m ∈ [−gθ , gθ ]. (20)

After applying the diversity-selecting immune algorithm
under the initial bounds (i.e., bbounds ([gθ λθ ]⊤) =

[ginitial λinitial]⊤) for tsearch-end trials, the average fitness value
of α in the tsearch-end trials is computed. Because the direction
for the new bound search must be determined, a diver-
sity search (lines 11–16) is performed to search for new
bounds bbounds ([gθ λθ ]⊤) = [gθ+1 λθ+1]⊤ in a region
of the search space with the bounds [gbase λbase]⊤. The
bounds [gbase λbase]⊤ are equal to [ginitial λinitial]⊤ when the
initial bounds are prescribed. In addition, the new bounds
[gθ+1 λθ+1]⊤ will be used by the diversity-selecting immune
algorithm to compute new fitness and average fitness values
of α.
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Algorithm 1 Adaptive Bound-Searching Algorithm

Input: t , θ , Abds, [gθ , λθ ], [gbase, λbase], [gstep, λstep],
[gbest, λbest]

Output: [gθ+1, λθ+1]
1: tNS← 0
2: if t < tsearch-end then
3: [gθ+1, λθ+1]← [gθ , λθ ]
4: [gbase, λbase]← [gθ , λθ ]
5: θ ← θ + 1
6: break
7: else
8: while t ≥ tsearch-end and tNS < tNS-end do
9: tNS← tNS + 1

10: if [gstep, λstep] = [0, 0] then
11: Perform diversity search in (21) to obtain

the candidate bound [gθ+1
c , λθ+1

c ] and calculate
ρ([gθ+1

c , λθ+1
c ]⊤) by using novelty functions in

(22)–(24)
12: if ρ([gθ+1

c , λθ+1
c ]⊤) > ρbds-min then

13: Set [gθ+1, λθ+1]← [gθ+1
c , λθ+1

c ]
14: θ ← θ + 1
15: break
16: end if
17: end if
18: if tNS = tNS-end then
19: Calculate new search direction [gstepnew, λ

step
new] using

(25)
20: if [gstepnew, λ

step
new] ̸= [0, 0] then

21: Perform quality search in (26) to search
for [gθ+1, λθ+1] and set [gbase, λbase] ←
[gbest, λbest] and [gstep, λstep] ← [gstepnew, λ

step
new]

22: θ ← θ + 1
23: break
24: else
25: Enlarge the search region by adjusting rNS

26: Set tNS = 0
27: if rNS > rmax then
28: Perform crossover operation in (27) to

obtain [gθ+1, λθ+1] and set θ ← θ + 1
29: break
30: end if
31: end if
32: end if
33: end while
34: t ← t + 1
35: end if
36: % tsearch-end, tNS-end, ρbds-min, and rmax are preset param-

eters of Algorithm 1.

Fig. 2(a) illustrates the diversity search. The parameters
gθ+1 and λθ+1 are computed using the following equations:

gθ+1
= gbase + grandom

λθ+1
= λbase + λrandom (21)

where grandom is a random number selected from

(−gbaserNS, gbaserNS) \ {0}

and λrandom is a random number selected from

(−λbaserNS, λbaserNS) \ {0}.

The variable rNS determines the size of the search region.
The novelty function ρ(bbounds(αθ+1)) is computed as

follows:

ρ(bbounds(αθ+1)) = ρ([gθ+1 λθ+1]⊤)

=
1
|A|

|A|∑
l=1

dist(bbounds(αθ+1),bbounds(αl)).

(22)

The term dist(bbounds(αθ+1),bbounds(αl)) is computed using
the following equation:

dist(bbounds(αθ+1),bbounds(αl))

=

√
(
λθ

gθ
)2(gl − gθ+1)2 + (λl − λθ+1)2

(23)

where (λθ

gθ )2 is used for rank-normalizing the value of (gl −

gθ+1)2.
If the candidate new bbounds ([gθ+1

c λθ+1
c ]⊤) value is suffi-

ciently novel, i.e., ρ([gθ+1 λθ+1]⊤) is higher than a threshold
ρbds-min expressed as:

ρbds-min
= λbaserNS (24)

then we set bbounds ([gθ+1 λθ+1]⊤) = [gθ+1
c λθ+1

c ]⊤ and
terminate Algorithm 1.
If the new candidate bounds [gθ+1

c λθ+1
c ]⊤ with high nov-

elty cannot be found through diversity search in the search
region (i.e., the dashed rectangular area in Fig. 2(a)), tNS

becomes equal to tNS-end. If tNS is equal to tNS-end and if an
average fitness value higher than the initial average fitness
value has been found in the previous trials (i.e., better bounds
[gbest λbest]⊤ that correspond to a better average fitness value
have been found), the directions for quality search are deter-
mined. The term bbounds ([gbest λbest]⊤) ∈ Abds corresponds to
the best average fitness value f best where Abds is a set storing
a few bbounds ([g λ]⊤) values. Each [g λ]⊤ value corresponds
to an average fitness value of α. The search directions gstep

and λstep are determined using the following equations:

gstep = gbest − gbase

λstep = λbest − λbase. (25)

The vector [gstep λstep]⊤ is represented by a yellow arrow
in Fig. 2(b). Quality search is performed in line 21 of
Algorithm 1.
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On the basis of the search directions in (25), gθ+1 and λθ+1

are generated as follows:

gθ+1
= gbest + gstep

λθ+1
= λbest + λstep. (26)

The dashed arrow in Fig. 2(b) represents the same vector as
the yellow arrow in Fig. 2(b). After performing quality search
by using (26), [gbase λbase]⊤ is updated (i.e., [gbase λbase]⊤ =
[gbest λbest]⊤), and the current bbounds values are updated in
line 21 of Algorithm 1. Quality search might be performed
for many trials if a larger average fitness value can be found
along a search direction.

If a larger average fitness value cannot be found along a
search direction (i.e., [gbase λbase]⊤ is equal to [gbest λbest]⊤),
the diversity search is conducted in a larger search region
(line 11 of Algorithm 1) by increasing the value of rNS in
(21) after performing quality search or diversity search. In this
case, the ρbds-min in (24) is also assigned a new value.
Finally, if the region for the diversity search reaches a

prescribed size, i.e., rNS is higher than a prescribed threshold
rmax, and better bounds corresponding to a higher average fit-
ness value cannot be found after performing a quality search
or diversity search, the crossover operation is performed to
generate new bounds [gθ+1 λθ+1]⊤. This operation can be
expressed by the following equations:

gθ+1
= ξboundsgbest + (1− ξbounds)gbest2

λθ+1
= ξboundsλbest + (1− ξbounds)λbest2 (27)

where ξbounds is a random number selected from the range
(0, 1) and [gbest2 λbest2]⊤ ∈ Abds represents the second-best
bounds that correspond to the second-highest average fitness
value of α. Fig. 2(c) illustrates the crossover operation.
In this case, bbounds ([gθ λθ ]⊤) can be used by the

diversity-selecting immune algorithm to compute new fitness
values of α that are associated with bbounds ([gθ λθ ]⊤), and
[gθ λθ ]⊤ is copied to archive Abds.

D. PROPOSED DIVERSITY-SELECTING IMMUNE
ALGORITHM
Motivated by the HMOIA [21] for generating and updating α,
we developed a diversity-selecting immune algorithm based
on QD. This algorithm employs the concept of QD to deter-
mine the external variables, that is, it searches for behaviors
α that correspond to high fitness values. Algorithm 2 presents
the pseudocode of the developed diversity-selecting immune
algorithm. In line 2 of Algorithm 2, the population is initial-
ized with the nominal population size Nnom as follows:

{α1, α2, . . . ,αNnom}.

During the evolutionary process of the artificial immune
system [33], the population size changes over iterations but
remains smaller than the maximum population size Nmax.
The values of α can be recovered from a given vector of

eigenvalues λpre. This vector can be determined using a trust-
region Levenberg–Marquardt method [21], [34], which can

Algorithm 2 Diversity-Selecting Immune Algorithm

Input: [gθ λθ ]⊤ for the bounds on the entries of behaviors
α, empty archive Abvr

Output: Best behavior α and the fitness value f BMI

1: Use [gθ λθ ]⊤ for prescribing bounds on the entries of
behaviors α

2: Initialize the population Apop with the nominal popula-
tion size Nnom and set the maximum population size be
Nmax

3: Copy all the behaviors α ∈ Apop to Abvr
4: Compute the fitness function in (31)
5: t immune

← 1
6: while t immune

≤ t immune-max do
7: Perform hypermutation operation in (32) and (33)
8: Repeat hypermutation operation with probability ϵ

until high-novelty α has been found by using (34).
9: Copy the new behaviors α to Abvr

10: Compute the fitness function in (31)
11: Update the population Apop
12: t immune

← t immune
+ 1

13: end while
14: Select the feasible α with the highest fitness value

be used to solve the pole placement problem:

F∗(λpre) = argmin
F

1
2
||eig(AF)− λpre

||
2
2 (28)

where eig(AF) is the vector of eigenvalues of AF ∈ Rnx×nx

and λpre is a prescribed vector of poles (or eigenvalues).
When large bounds are assigned, the search spaces in (19)

and (20) are divided into several subspaces to improve the
search efficiency:

[−κsλ
θ , 0]× [−κsλ

θ , κsλ
θ ]

and

[−κsgθ , κsgθ ]

where κs ∈ (0, 1] for s = 1, 2, . . . , S. The parameter S is the
number of subspaces. Values of α can be recovered using the
following expression:

[λpre]m ∈ {σ + jω : (σ, ω) ∈ [−κsλ
θ , 0]× [−κsλ

θ , κsλ
θ ]}.

(29)

Alternatively, α values can be generated in a pointwise man-
ner through the following expression:

[α]m ∈ [−κsgθ , κsgθ ]. (30)

After prescribing bounds for the behaviors and initializing the
population, all behaviors α in the population are copied to the
empty archive Abvr in line 3 of Algorithm 2.
In lines 4 and 10 of Algorithm 2, the fitness function

(objective function) F of α in (16) is computed using
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TABLE 1. Spectral abscissa optimization.

deterministic algorithms. Because a minimization problem is
formulated, the fitness value f BMI is obtained as follows:

f BMI(α) = −F(α). (31)

If f BMI(α) is higher than f BMI-best, f BMI-best is set as f BMI(α).
The parameter f BMI-best is the approximate optimal fitness
value associated with the BMI problem.

In lines 7 and 8 of Algorithm 2, α ∈ Apop and α̃ are
randomly generated using (29) or (30). Thus, a new behavior
αnew can be generated by performing the hypermutation oper-
ation over α and α̃. This operation is expressed as follows:

αnew
=

{
ξ immuneα + (1− ξ immune)α̃, rand() > ϵ

αrandom, otherwise
(32)

where

[αrandom]m =

{
[α̃]m, rand() > ϵ

[α]m, otherwise.
(33)

In (32), ξ immune is a random number selected from the range
(0, 1), and rand() ∈ (0, 1) is a random number generator.
The hypermutation operation expressed in (32) is performed
⌊Nmax/|Apop|⌋ times, where ⌊·⌋ represents the floor function,
and |Apop| represents the population size.

In line 8 of Algorithm 2, if NS is performed with the
probability ϵ, the diversity-selecting immune algorithm can
avoid finding many behaviors with low novelty. The novelty
of a new behavior α can be computed using the following

equation:

ρ(bimmune(α)) =
1
k

k∑
l=1

||bimmune(α)− bimmune(αl)||2 (34)

where bimmune(α) = α ∈ Rnuny and bimmune(αl) is the lth-
nearest neighbor of bimmune(α) in the archive with respect to
the L2 norm. If a novel α value cannot be found for a few
trials, the novelty threshold ρbvr-min is decreased.
After the hypermutation operation is performed, new

behaviors are generated. If rand() < ϵ and the novelty of
the new behavior α is higher than ρbvr-min, the new behavior
α is copied to the archive Abvr, and the fitness value of
α is computed; otherwise, the hypermutation operation is
performed until the aforementioned conditions are met.

To maintain a manageable population size and ensure fea-
sibility, the population is updated (line 11 of Algorithm 2) by
removing some infeasible behaviors. Eventually, the feasible
behavior with the highest fitness value in the population is
selected (line 14 of Algorithm 2) as the solution to the BMI
problem.

E. EXAMPLE OF USING QDOM
Consider the spectral abscissa of AF in (5). The spectral
abscissa optimization problem can be defined as (6). The
controller gain matrix F ∈ Rnu×ny can be transformed into
an nuny × 1 vector (i.e., α) for solving the spectral abscissa
optimization problem.

The QDOM algorithm can be decomposed into three
components, namely the adaptive bound-searching algorithm
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TABLE 2. H2 optimization.

(Algorithm 1), diversity-selecting immune algorithm
(Algorithm 2), and average fitness value update process.

Algorithm 1 is used to generate the searching bound
[gθ λθ ]⊤ of α. Then, Algorithm 2 randomly searches for α in
the given bound [gθ λθ ]⊤. To determine which candidate α

would be better, we solve the spectral abscissa problem in (8)
for examining the fitness value f BMI in (31) and calculating
the average fitness value f mean in (17).
For a given bounds [gθ λθ ]⊤, when the maximum number

of trials tsearch-end is reached, QDOM performs the average
fitness update by comparing the mean fitness value f mean of
the current trial and the currently best average fitness value
f best. If f mean is larger than f best, we replace f best by f mean.
The bound [gθ λθ ]⊤ associated with α coupled with the max-
imum fitness value is defined as the best bound [gbest λbest]⊤.
To help the adaptive bound-searching algorithm dynamically
adjust the searching bound, the best bound [gbest λbest]⊤

and second best bound [gbest2 λbest2]⊤ are saved in archive
Abds.

Let trial index t = 1, tsearch = 0, tserarch-end = 15,
searching bound index θ = 1 and initial searching bound
[g1 λ1]⊤ = [ginitial λinitial]⊤. At the beginning, we preset

[gbase, λbase] = [0, 0], [gstep, λstep] = [0, 0], [gbest, λbest] =
[0, 0]. Since t < 15, QDOM directly performs Algorithm 2
in the searching bound [ginitial λinitial]⊤ until t ≥ 15 where
[ginitial λinitial]⊤ = [gθ λθ ]⊤ for θ = 1, 2, . . . , 15.
Owing to tserarch-end = 15, Algorithm 2 generates 15 feasi-

ble solutions. Thus, we can calculate f mean and f best and save
[gbest, λbest] and [gbest2, λbest2] in archive Abds. The search-
ing bound for t > 15 can then be updated on the basis
of Abds. Once the average fitness value update process is
accomplished, we set t = t + 1 and tserarch = 0.
When t ≥ 15, Algorithm 1 dynamically adjusts the search-

ing region by using one of the following methods: diversity
search, quality search, and crossover operation. Recall that
tNS and tNS-end represent the iteration index and the end value
of Algorithm 1 in searching for the high novelty bounds,
respectively. Suppose that tNS-end = 60.
For t ≥ 15, tNS < 60 and [gstep, λstep] = [0, 0],

Algorithm 1 performs the diversity search in lines 11–16 of
Algorithm 1 and updates the search bound as [gθ+1 λθ+1]⊤.
If t ≥ 15, and tNS = 60, Algorithm 1 calculates new
search direction [gstepnew, λ

step
new]. When [gstepnew, λ

step
new] ̸= [0, 0],

perform the quality search in lines 19–23 of Algorithm 1 and
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TABLE 3. H∞ optimization.

TABLE 4. Additional problems in spectral abscissa, H2 and H∞

optimization.

update [gstep, λstep], [gbest, λbest] and the new search bound
[gθ+1 λθ+1]⊤. However, if [gstepnew, λ

step
new] = [0, 0], we enlarge

the search region [gθ+1 λθ+1]⊤ by adjusting rNS in (21)
and do diversity search again. Once rNS is larger than rmax,
we perform the crossover operation in (27) to obtain new
search bound [gθ+1 λθ+1]⊤.
QDOM continuously runs Algorithms 1 and 2, and updates

the average fitness value until t = Tmax.

IV. NUMERICAL EXAMPLES
This section presents the results obtained from applying
various BMI solution methods to solve optimal control
problems, namely spectral abscissa, H2, and H∞ optimiza-
tion problems. The BMI solution methods employed were
HIFOO [16], [17], [18], LMIRank [19], PENBMI [20],
CCDM [7], ICAM [8], MRVs [21], and the proposed QDOM.
Except for the QDOM andMRVs, the remaining methods are
local optimizationmethods.We used various models from the
constraint matrix-optimization problem library [9]–including
aircraft (AC) models, helicopter (HE) models, reactor (REA)
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FIGURE 3. Normalized spectral abscissa (the smaller the better). (a) QDOM and the existing methods. (b) QDOM and the benchmark values.

FIGURE 4. Normalized H2 norm (the smaller the better). (a) QDOM and the existing methods. (b) QDOM and the benchmark values.

models, decentralized interconnected system (DIS) models,
wind energy conversion (WEC) models, terrain-following
(TF) models, and academic test problems (NNs)–to assess the
performance of the proposed QDOM.

For spectral abscissa optimization, H2 optimization, and
H∞ optimization, (7), (13), and (14) were solved, respec-
tively. TheMATLAB routine norm (sys, p) with the discussed
system sys = Gcl and p = 2 were used for computing the

H2 norm. The term B1B⊤1 in (13) was replaced with B1B⊤1 +
10−5I if B1B⊤1 was not positive definite. The MATLAB
routine norm (sys, p) with the discussed system sys = Gcl
and p = ∞ were used for computing the H∞ norm.

A. PARAMETER SETTING OF QDOM
In the spectral abscissa optimization, H2 optimization,
and H∞ optimization problems, we used the following

VOLUME 11, 2023 77381



S.-Y. Chen et al.: QDOM for BMI Problems in Control System Design

FIGURE 5. Normalized H∞ norm (the smaller the better). (a) QDOM and the existing methods. (b) QDOM and the benchmark values.

parameters: tsearch-end = 10 and Tmax
= 150 (Fig. 1).

In [21], the bounds of the entries of controller gain matrices
were set as follows: [F]ij ∈ [−50, 50], where i is the row
index, j is the column index, and the eigenvalues of matrix
AF were randomly generated so that eig{AF} ∈ {σ + jω :
(σ, ω) ∈ [−20, 0] × [−20, 20]}. We set ginitial = 50 and
λinitial = 20. When each α value in the population was
generated, 3 subspaces were used, and κs in (29) and (30) was
set as κ1 = 1, κ2 = 0.5, and κ3 = 0.1. The parameters used
for Algorithm 1 were as follows: tNS-end = 50, rNS = 0.5,
and rmax

= 1, and ρbvr-min
= 0.1gθ . Moreover, the param-

eters for Algorithm 2 were as follows: k = 10, ϵ = 0.5,
t immune-max

= 20, Nnom = 40, and Nmax = 160 [21].
The value of tNS-end represents the number of times that

Algorithm 1 searches for the high novelty bounds. If we set
the value of tNS-end too large, then much time is required to
perform the while loop. On the other hand, if we set the value
of tNS-end too small, one may not obtain a high novelty bound
but a bound that simply satisfies the novelty constraints.
tsearch-end represents the number of times for using the same
bound [gθ λθ ]⊤ to solve the BMI problem. Setting tsearch-end

too large may spend more time in calculating fitness values.
If a small number is set, it can be difficult to accurately
evaluate whether the given bound yields good solutions when
solving the BMI problems. rNS is used to determine the
search region of the diversity search operation. Since the
number of candidates bound is proportional to the search
region, setting the value of rNS too large can cause Algorithm
1 to spend a lot of time in the novelty test. However, a small
value of rNS may prohibit Algorithm 1 from obtaining a
high novelty bound. rmax is a threshold that controls the

size of searching region. ρbvr-min is used to measure the
novelty of the candidate behavior α. Setting a higher value
ρbvr-min makes the novelty candidate behavior α difficult to
obtain. t immune-max is the iteration number of hypermutation
operation. Since computing the fitness value of given bound
[gθ λθ ]⊤ usually couples with a higher computational burden,
setting a higher t immune-max value can significantly prolong
the computation time. Finally, larger Nnom and Nmax yield
higher computational complexity of hypermutation opera-
tion.

B. NUMERICAL RESULTS
Tables 1–3 present the performance of the QDOM and other
BMI solution methods in spectral abscissa optimization,
H2 optimization, and H∞ optimization, respectively. The
mean values in Tables 1–3 indicate the average values of
solutions obtained using the existing BMI solution meth-
ods. Because the method exhibiting the highest performance
may be different in different problems, we compared the
results obtained using the QDOM with the mean values
to verify the effectiveness of the QDOM. The QDOM is
considered to outperform most of the existing BMI solution
methods if its results are lower than themean values displayed
in Tables 1–3.
For the performance levels achieved by existing meth-

ods when BMI problems were solved, the normalized mean
values (denoted by µ) of the spectral abscissa, H2, and
H∞ benchmark optimization problems were within the inter-
vals [0, 0.9], [0.2174, 0.9], and [0.2, 0.9], respectively and
the normalized standard deviation values (denoted by σ )
were within the intervals [0, 0.7319], [0.3775, 0.6501], and
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[0.3649, 0.6325], respectively. We used the value µ − 0.5σ
as our benchmark value to determine whether the obtained
solution is a relatively better solution. A solution whose per-
formance is lower than the benchmark value can be regarded
as a relatively better solution.

According to the results presented in Tables 1–3 and
Figs. 3–5, the solutions obtained by QDOM in spectral
abscissa, H2, and H∞ optimization problems were 96.6%,
27.5%, and 52.17% lower than the benchmark value, respec-
tively. In the order of spectral abscissa, H2, and H∞
optimization problems, for HIFOO, it was approximately
26.67%, 42.5%, and 73.91%, respectively; for PENBMI,
it was 36.67%, 80%, and 1%, respectively; for CCDM, it was
20%, 15%, and 47.83%, respectively; for MRVs, it was 70%,
10%, and 45.65%, respectively.

Clearly, QDOM outperformed CCDM and MRVs in all
BMI optimization problems. In spectral abscissa optimization
problems, QDOM had an absolute advantage over the other
methods. Although the PENBMI had 80% lower than the
benchmark value in H2 optimization problems, it performed
worst when solving H∞ optimization problems. In addition,
out of all H2 benchmark systems, five of them (12.5%)
were not solvable by PENLMI. We conclude that PENBMI
was less stable than the other methods. By using QDOM
in solving H2 optimization problems, it yielded 42.5% solu-
tions near the benchmark value with a distance of less than
0.2σ . QDOM performed similarly to HIFOO in solving H2
optimization problems.

HIFOO had 80% lower than the benchmark value in H∞
optimization problems, but it found difficulty solving spectral
abscissa problems. By using QDOM to solve H∞ optimiza-
tion problems, 62.5% solutions near the benchmark value
with a distance of less than 0.2σ were attained. QDOM
presented an acceptable level of performance in solving H∞
optimization problems.

The aforementioned results imply that most existing BMI
solution methods may find only local optima and cannot
obtain a globally optimal solution. Since the QDOM merges
the adaptive bound-searching algorithm and diversity-
selecting immune algorithm, it can avoid being trapped in
a local optimum while searching for better solutions by
dynamically adjusting the searching region and searching
for feasible solutions. Thus, excellent levels of performance
can be achieved by the proposed QDOM as compared with
existing methods.

V. CONCLUSION
This paper proposes a BMI solution method, namely a
QDOM, that can design controller gain matrices for solv-
ing spectral abscissa optimization, H2 optimization, and H∞
optimization problems. To find the global optimum and
avoid entrapment in a local optimum when solving BMI
problems, the QDOM implements the proposed adaptive
bound-searching algorithm and diversity-selecting immune
algorithm. By using the adaptive bound-searching algorithm,
appropriate bound values can be found for the decision

variables in different problems. The diversity-selecting
immune algorithm uses the concept of QD to find the best
decision variables within a large search space while avoiding
becoming trapped in a local optimum. We conducted simu-
lations to compare the performance of the proposed QDOM
and existing BMI solution methods. The proposed QDOM
outperformed the existing BMI solution methods in solving
several benchmark BMI problems. Our simulation results
show that the proposed QDOM was more likely to find the
global optimum than the compared BMI solution methods.
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