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ABSTRACT Objective: Alzheimer’s disease (AD) is a progressive neurodegenerative disorder that affects
a significant percentage of the elderly. EEG has emerged as a promising tool for the timely diagnosis
and classification of AD or other dementia types. This paper proposes a novel approach to AD EEG
classification using a Dual-Input Convolution Encoder Network (DICE-net). Approach: Recordings of
36 AD, 23 Frontotemporal dementia (FTD), and 29 age-matched healthy individuals (CN) were used.
After denoising, Band power and Coherence features were extracted and fed to DICE-net, which consists
of Convolution, Transformer Encoder, and Feed-Forward layers. Main results: Our results show that
DICE-net achieved an accuracy of 83.28% in the AD-CN problem using Leave-One-Subject-Out validation,
outperforming several baseline models, and achieving good generalization performance. Significance: Our
findings suggest that a convolution transformer network can effectively capture the complex features of
EEG signals for the classification of AD patients versus control subjects and may be expanded to other types
of dementia, such as FTD. This approach could improve the accuracy of early diagnosis and lead to the
development of more effective interventions for AD.

INDEX TERMS Alzheimer’s disease, deep learning, detection, EEG, Frontotemporal dementia,
transformers.

I. INTRODUCTION only one among the top 10 causes still significantly increas-

Alzheimer’s disease (AD) is a progressive neurodegenerative
disorder and one of the most frequently diagnosed dementia
types among the elderly [1]. It is characterized by cognitive
decline and behavioral changes, and its prevalence, along
with the prevalence of other dementia types, is expected to
rise as the population ages [2]. According to research, AD is
the sixth leading cause of death in the United States and the
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ing [3]. Over 50 million cases of dementia were reported in
2020, and it is estimated that the number of AD patients will
reach 75 million by 2030 and 131 million by 2050 [4]. The
AD prevalence ratio is the same among women and men and
is at 1.4% for individuals aged 65-70 and 24 % for individuals
over 85 [5]. Regarding its symptoms, the disease’s initial sign
is hardness in recalling events of short-time memory. It pro-
gresses to problems that may include speech and orientation
difficulties, mood swings, lack of self-care, and behavioral
alterations [6]. Ultimately, the functions of the body systems
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deteriorate, and the patient is finally led to death. Currently,
there is no cure for AD, and available treatments only provide
limited symptomatic relief.

To diagnose probable AD, the patient must meet specific
clinical criteria such as postmortem confirmation of spe-
cific neuropathological changes (accumulation of neuritic
plaques and neurofibrillary tangles containing hyperphos-
phorylated tau proteins) [7]. Nonetheless, emphasis has been
given to early diagnosis and intervention as the number of
individuals with dementia is increasing. To conform with the
need for timely AD diagnosis, reliable biomarkers through
structural Magnetic Resonance Imaging (MRI), molecular
Positron Emission Tomography (PET) neuroimaging, and
cerebrospinal fluid analyses have been employed in clinical
practice for AD diagnosis [8]. However, these imaging tools’
costly and time-consuming nature often leads to patients
being diagnosed after having already shown significant neu-
rodegeneration. Thus, the need for accurate prediction of
AD (or other dementia types) future onset is great since
it may accelerate the identification of high-risk individuals
and support planning the overall treatment. Other faster and
cheaper biomarker alternatives should be explored.

Brain activity alterations and network disruptions are key
findings in neurodegenerative disorders such as AD or Fron-
totemporal dementia (FTD) [9]. Although there are various
methods for measuring brain activity, they differ in spa-
tiotemporal resolution and applicability. Techniques such as
single-unit recordings provide high spatiotemporal precision
but lack relevance due to being invasive. Methods such as
functional MRI and Electroencephalogram (EEG) permit the
assessment of brain activity in a non-invasive manner. How-
ever, EEG was not a widely employed tool since it provides
low spatial but high temporal resolution and is prone to noise.
Nonetheless, modern computational techniques such as Low-
Resolution Electromagnetic Tomography (LORETA) provide
estimation capabilities of the location of the underlying brain
generators, thus promising increased spatial resolution [10]
and techniques such as Independent Component Analysis
(ICA) [11] and Artifact Subspace Reconstruction (ASR) [12],
that perform external interference deduction (such as eye
artifacts) or signal correction, have become computationally
available during the last decade, making the EEG a promising
tool in neurodegenerative disease diagnosis.

EEG is an affordable and widely accessible diagnostic tool
that records the electrical activity alterations of the cerebral
cortex by measuring the electrical postsynaptic potentials
produced by brain neurons through scalp (or intracranial)
electrodes [13]. In recent years, quantitative EEG has been
established as a reliable clinical tool for the detection and
assessment of brain diseases such as epilepsy [14] and Parkin-
son’s disease [15] and has been tested on the evaluation of
neurodevelopmental disorders and emotional conditions such
as dyslexia [16] and stress [17]. Also, there has been growing
interest in using EEG to detect and discriminate dementia
variants, especially AD.
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Due to the complex, non-stationary, and non-linear nature
of the EEG signals, various efficient methodologies for fea-
ture extraction have been proposed for the different EEG
problems. One of the most common ways to analyze the
EEG signal is to decompose it into other frequency bands,
such as delta, theta, alpha, beta, and gamma. Each frequency
band represents a diverse range of electrical activity in the
brain and is thought to be associated with different cog-
nitive and physiological processes [18]. For example, the
delta band (0.5-4 Hz) is often associated with deep sleep
and the maintenance of bodily functions, while the alpha
band (8-13 Hz) is thought to be related to attentional pro-
cesses and relaxation [19]. Thus, the EEG signals are usually
transformed to the frequency domain using a Fourier method-
ology such as Fast Fourier Transform (FFT) [20] or the
Welch Power Spectral Density (PSD) [21] analysis or trans-
formed to the time-frequency domain using decomposition
such as the Discrete Wavelet Transform (DWT) [22] or the
Empirical Mode Decomposition (EMD) [23]. Another way
of analyzing the EEG signal that is becoming increasingly
popular is coherence analysis and graph theory methods,
as they provide powerful tools for investigating the functional
connectivity and organization of the brain [24]. Coherence
analysis is an approach that measures the degree of synchro-
nization between different brain regions at specific frequency
bands, providing information on the strength and patterns
of functional connectivity. Graph theory methods are used
to construct a network representation of the brain based on
the coherence values, where nodes represent brain regions,
and edges represent the strength of the coherence between
them. By analyzing the topology and properties of the net-
work, researchers can gain insights into the organization
and dynamics of the brain, as well as its ability to process
information [25]. Following the transformation or analysis of
EEG data with one of the abovementioned methodologies,
band power, entropy, fractal dimension, or statistical features
are usually extracted to be fed to a Machine Learning frame-
work for automatic detection, prediction, severity assessment,
or evaluation of the given EEG task.

A wide variety of machine learning algorithms is used in
the published literature of EEG classification studies regard-
ing dementia detection. Traditional, well-established method-
ologies such as Support Vector Machines (SVM) [18], [19],
k-Nearest Neighbors (kNN) [20], logistic regression [21] or
Random Forests [22] still hold relevance in AD (or other
types of dementia) classification. However, Deep Learning
methodologies have become increasingly popular in clas-
sifying EEG signals in AD or further dementia research.
Learning methodologies may extract and learn features from
the raw data without the need for hand-crafted features
or prior knowledge of the signal [23] (a concept known
as Representation Learning [24]), or they can utilize the
same feature extraction techniques as conventional machine
learning does, as described in the previous paragraph [25].
Examples of deep learning models that have been used
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for EEG classification in AD research include convolu-
tional neural networks (CNN) [26], recurrent neural networks
(RNN) [27], and autoencoders [5]. These models have shown
promising results in accurately classifying EEG signals and
identifying biomarkers for AD, providing insights into the
disease pathology and potential targets for intervention.

However, the latest advancements in Natural Language
Processing (NLP) based Deep Learning, namely the Trans-
formers Neural Networks [28], have sparked a surge of
interest in various subject areas beyond their original domain
and have demonstrated superior performance to their coun-
terparts in a wide range of fields such as image classification,
speech recognition, biology, finance, and social media anal-
ysis. Their potential lies in their ability to process variable-
length sequences of data and their performance scalability
with big datasets. Recently, there has been growing interest
in exploring the potential of transformers in other domains,
including biomedical signal processing. In the EEG emo-
tion recognition area, Guo et al. [29] proposed a Transformer
methodology for the classification of emotion state EEG data
and achieved 83.03% accuracy (ACC) at a three-class prob-
lem and outperformed most of the published methods in the
same database. In another study related to the classification of
motor-imagery EEG, a Transformer approach on unprocessed
signal proposed by Xie et al. [30] was reported to achieve
83.31%, 74.44%, 64.22% ACC on two, three, and four class
problems, respectively, outperforming in most cases other
methodologies on the same dataset. Studies with such find-
ings prove the effectiveness of the transformer encoder in
EEG tasks and lead to the necessity of exploring their applica-
tion in neurodegenerative EEG classification of AD and other
dementia types.

The Transformer network architecture relies on the self-
attention mechanism, which enables the model to attend to
different parts of the input sequence and modify the out-
put accordingly by computing a weighted sum of the input,
where each weight depends on the similarity between each
element in each sequence. The main idea behind the self-
attention mechanism is that it allows the model to give
more attention to the most relevant parts of the sequence
(in the case of NLP, sentence). The Transformer architec-
ture consists of an encoder block and a decoder block,
each composed of multiple self-attention and Feed-Forward
layers, residual connections, and layer normalizations [28].
Later advancements to the transformer methodology made
it able to perform text or image classification tasks, with
architectures such as Bidirectional Encoder Representations
from Transformers (BERT) [31] (published in 2018) and
Vision Transformer (ViT) [32] (published in 2021). These
methodologies use the Transformer Encoder and the Class
Token embedding, an extra sequence embedded in the input
sequence that acts as a sequence-level representation of
the classification task and aims to capture a contextualized
representation of the entire sequence. The output of the
encoder, or the CLS token alone, is fed to a Neural Network
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architecture for classification. Modifications to these method-
ologies have led to the widespread use of Transformers for
classification problems in various domains beyond NLP and
Computer vision, such as speech recognition [33], protein
classification [34] and time-series analysis [35].

Various automatic methodologies that employ Machine
Learning architectures have been proposed during the latest
years to address the AD detection topic but are limited to the
generalizability of their findings due to small sample sizes or
no published dataset [27] or lack of proper validation method-
ology suitable for epoched datasets (for example reporting of
extremely high-performance results because of biased testing
due to the inclusion of same-subject data on training and test
set by using k-fold validation on epoched and overlapping
data) [5], [27], [36], [37]. Furthermore, there is a lack of
studies focusing on incorporating the latest advancements
in Deep Learning (namely the Transformer architecture) in
EEG-based dementia detection studies [38]. That being said,
there is a need for more accurate and efficient deep-learning
diagnostic tools that can leverage the wealth of information
provided by EEG recordings. Such diagnostic tools should
have performance results that are properly validated and be
reproducible (by promoting the availability of the datasets
used) to ensure their reliability and efficacy in clinical
practice.

In this study, we propose a novel methodology for classi-
fying EEG signals from AD patients, combining a Convolu-
tional Network architecture with a Transformer encoder on a
dual feature/input scheme, namely Dual-Input Convolutional
Encoder Network (DICE-net). Specifically, we extract two
of the most promising biomarkers for AD detection, namely
Relative Band Power (RBP) (literature has shown an increase
in Theta/Alpharatio in AD patients [39]) and Spectral Coher-
ence Connectivity (SCC) (literature has shown decreased
synchronization likelihood in AD patients [40]), and we
express them in image-like representations (3d matrixes)
which were fed in 2 parallel Convolution blocks. The Con-
volution blocks reduced the dimensions of these features
extracting relevant information. The outputs were fed to
2 parallel Transformer Encoder blocks, along with randomly
initialized CLS tokens used to conceptualize the sequence
content. Finally, a Feed-Forward Neural Network (FFN) was
trained to classify the instances as AD or healthy. The model
was also evaluated using a group of FTD patients to explore
its generalizability potential to other dementia types. It should
be noted that this methodology is proposed considering AD
classification performance optimization. In order to propose a
scheme that best classifies FTD cases, more experimentation
should be conducted.

Il. MATERIALS AND METHODS

The analysis of the proposed methodology for the automatic
classification of AD EEG signals versus Control EEG signals
consists of four stages: data acquisition, signal denoising,
feature extraction, and classification. These steps will be
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analyzed individually in the following sections. Moreover, the
well-established machine learning algorithms that were used
to benchmark our proposed methodology’s performance will
be briefly presented.

A. DATABASE DESCRIPTION AND DATA ACQUISITION

To evaluate the proposed methodology, recordings from
88 participants were acquired from the 2nd Department
of Neurology of AHEPA General University Hospital of
Thessaloniki. 36 (13 males) of them were diagnosed with
Alzheimer’s disease (AD group), 23 (14 males) were diag-
nosed with Frontotemporal Dementia (FTD group), and
29 (11 males) were healthy subjects (CN group). The
cognitive and neuropsychological state was evaluated by
the international Mini-Mental State Examination (MMSE).
MMSE score ranges from 0 to 30, with lower MMSE indi-
cating a more severe cognitive decline. The duration of the
disease was measured in months, and the median value was
25, with IQR range (Q1-Q3) being 24 - 28.5 months. Con-
cerning the AD groups, no dementia-related comorbidities
have been reported. The average MMSE for the AD group
was 17.75 (sd=4.5), for the FTD group was 22.17 (sd=8.22,)
and for the CN group was 30. The mean age of the AD group
was 66.4 (sd=7.9), for the FTD group was 63.6 (sd=8.2), and
for the CN group was 67.9 (sd=5.4).

The study was approved by the Scientific and Ethics
Committee of AHEPA University Hospital, Aristotle
University of Thessaloniki, under protocol number 142/12-
04-2023. The investigations were carried out following the
rules of the Declaration of Helsinki of 1975 (http://www.
wma.net/en/30publications/10policies/b3/), revised in 2008.
Informed consent was obtained from all subjects involved in
the study.

For the recording of the EEG signals, a Nihon Kohden EEG
2100 clinical device was used, with 19 scalp electrodes (Fpl,
Fp2, F7, F3, Fz, F4, F8, T3, C3, Cz, C4, T4, TS, P3, Pz, P4,
T6, O1, and O2) according to the 10-20 international system
and two reference electrodes (Al and A2) placed on the mas-
toids. Each recording was performed according to the clinical
protocol, with participants being in a sitting position having
their eyes closed. Before the initialization of each recording,
the skin impedance value was ensured to be below 5k€2. The
sampling rate was 500 Hz with 10 «V/mm resolution. Each
recording lasted approximately 13.5 minutes for AD group
(min=5.1, max=21.3), 12 minutes for FTD group (min=7.9,
max=16.9) and 13.8 for CN group (min=12.5, max=16.5).
The dataset used in this study was made redistributable and
publicly available at openneuro.org [41], [42].

B. SIGNAL PROCESSING AND DENOISING

The preprocessing pipeline of the EEG signals is as follows.
First, a Butterworth band-pass filter 0.5-45 Hz was applied,
and the signals were re-referenced to A1-A2. Then, the ASR
routine [12] which is an automatic artifact reject method that
can remove transient or large-amplitude artifacts [43], was
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TABLE 1. Demographic characteristics/Database description.

Disease Duration

Gender Age MMSE CDR in Months
664 17.75 1
AD 13/23 (7.9)  (4.5) (0.54) 25(9.88)
67.9
CN 11/18 5.4) 30
63.6 2217 0.75
FTD 14/9 82) (8.22) (0.26) 23 (9.35)

applied to the signals, removing lousy data periods which
exceeded the max acceptable 0.5-second window standard
deviation of 17 (which is considered a conservative window).
Next, the ICA method (RunlCA algorithm) was performed,
transforming the 19 EEG signals into 19 ICA components.
ICA components that were classified as “eye artifacts”
or “jaw artifacts” by the automatic classification routine
“ICLabel” in the EEGLAB platform [44] were automatically
rejected. It should be noted that, even though the recording
was performed in a resting state, eyes-closed condition, eye
artifacts of eye movement were still found in some EEG
recordings.

C. FEATURE EXTRACTION

Various EEG biomarkers have been extracted and employed
in Machine Learning studies for automatic dementia diagno-
sis, automatic dementia progression assessment, or differen-
tiation diagnosis between types of dementia, such as FTD
versus AD. These may be time-domain features (statistical
metrics) [45], spectral features such as relative brain band
power ratios or absolute band power [5], time-frequency
domain characteristics extracted from methodologies such as
Discrete Wavelet Transform [37], complexity features such
as permutation entropy or spectral entropy [21], coherence
analysis features such as spectral coherence [46] and more.
In this study, RBP and SCC have been extracted as features,
as analyzed in the following paragraphs.

First, each recording was divided into 30-second time win-
dows with 15 seconds overlap to create the pool of EEG
signals that will be used for the classification task. Next,
the following two features (described in sections II-C1. and
2.3.2.) have been extracted for T = 30 one-second periods,
for each channel of the EEG signal (C=19), for each of the
B=5 frequency bands, which describe the five brain rhythms
of interest of the EEG signal. So, in total, two 3-dimensional
arrays of dimensions [T,B,C] were generated for 30-second
time-window.

The five frequency bands of B were defined as:

Delta: 0.5 -4 Hz

Theta: 4 — 8 Hz

Alpha: 8 — 13 Hz

Beta: 13-25 Hz

Gamma: 25-45 Hz

1) RELATIVE BAND POWER
According to the literature, AD patients may exhibit changes
in the EEG signal, such as reduced alpha power and increased
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theta power [39]. A widely used approach for obtaining the
Power Spectral Density (PSD) of a signal, such as an EEG
signal, is the Welch method, sometimes referred to as the
periodogram method [47]. The technique entails splitting the
signal into overlapping segments and calculating each seg-
ment’s squared magnitude of the discrete Fourier transform.
A final estimate of the PSD is created by averaging the
obtained values.

The mth windowed segment from a signal x is com-
puted as:

Xm (n) £ w (n) X (n+mR),
n=0,1,....M—1,m=0,1,...,.K—1, (1)

where R is the window hop size, K the number of available
windows and w (n) the Hamming window. The periodogram
of the mth segment is calculated as:

1 2 1
Py,.m (@) = " |FFTw k ()| Vi

N—1 2

Z xm (n) e—j27‘”’lk/N

n=0

1>

@)

Thus, the estimation of the PSD is calculated as the average
of K segments:

e 1 K-1
SV £ @) 2 D Pyt (k) 3)

m=0

where FFTy i (xp,) is a Fast Fourier Transform (FFT), N the
length of the FFT and is set to 256.

V t € T, V channel € C, the relative ratio of PSD of each
band € B was calculated, resulting in a 3-dimensional matrix
of [T,B,C], which constitutes the RBP feature.

2) SPECTRAL COHERENCE CONNECTIVITY
SCC (eq. 4) is used to quantify the synchronization of
brain signals. It involves calculating the spectral coherence
between each pair of signals, which measures the similarity
of the frequency content between the two signals, and then
averaging these values for each electrode.

SCCy = ~ zyc_] Il “

C =1 /Sxx * Syy

Sxx is the PSD of x(t) and Sy, is the PSD of y(t), Sy,
is the Cross Spectral Density of signals x(t) and y(t), and
S () = Tlgréo
orem. To calculate the PSD’s of each signal, the signals were

transformed in the Time-Frequency domain using a Morlet
Wavelet Transform where:

w(w,t) = (n’(‘l‘)) % (e(i*a)*t) . e(;*w02>)

2

X e(_T), w € ?2,6,10,18, 35} 5)

% [xA; () yr (f) | exploiting Parseval’s the-
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And the wavelet transform is calculated as the convolution
of x(t) with w(w,t) as:

C(w,7)=(x, wo) = /Rx O Y. () dt (6)

V t € T, V channel € C, the SCC of each band € B was
calculated, resulting in a 3-dimensional matrix of [T,B,C].

D. CLASSIFICATION

This section describes the proposed DICE-net model, the
algorithms employed to benchmark its performance, and the
validation method used.

1) MODEL

The DICE-net model is structured as described. First,
there are two parallel blocks, each receiving input X; €
RBaxTxBxC where Ba denotes the batch size of the Neural
Network, and [T,B,C] the dimensions of the RBP and SCC
features (one for each block).Each parallel block is consisted
of a depthwise convolution layer, a positional embedding
layer a class token embedding and a transformer encoder
layer. Then a concatenation layer is applied, followed by a
Feed-Forward Network (FFN) which determines the class
of the input. Fig. 1 represents a flowchart of the proposed
methodology and Table 2 represents the detailed architecture
of the model.

Early stopping is performed to determine the best number
of epochs for the model (the number of epochs represents the
number of times each train sample will be fed to the model for
training). Train, validation, and test sets are created, and after
each epoch the performance of the validation set is evaluated.
At the nth epoch, if the performance in terms of accuracy has
not improved for 20 epochs, the training is stopped and the
best model so far, is returned. The validation set is created by
iteratively leaving out 6 subjects (randomly). The rest of the
subjects are train-test splitted using Leave-One-Subject-Out
(LOSO) validation. The best performing number for epochs
is then selected.

Every hyperparameter optimization activity or ablation
experiment has taken place regarding the AD-CN problem,
and not considering the FTD dataset. The FTD-CN perfor-
mance optimization was not the goal, but rather a comparison
tool on how this methodology performs on other types of
dementia.

2) CONVOLUTION LAYER

Given the input dimensions are [T,B,C], the total number of
values in an input matrix is prohibitive for effectively training
the neural network. In DICE-net architecture, a depthwise
convolution layer, which is a convolution layer that allows
the independence of the data at a given dimension of the
input layer is employed to reduce the dimensions of the input
array and extract spectro-temporal relationship information
from the input matrix. Moreover, the convolution layer can
capture frequency band associated relationships that extend
further than 1 time-point, since the size of the kernel in
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FIGURE 1. Flowchart of the proposed DICE-net methodology.

the first dimension is higher than 1. So, in total, utilizing
the convolution layer makes the data less computationally
expensive for the next layers and reveal hidden frequency-
band associations.

Specifically, the depthwise convolution layer consists of
C convolutional kernels (contrary to the canonical convolu-
tion layer that consists of one kernel). Each kernel performs
striding in a tensor of size [T,B] and assume [k k] the dimen-
sions of the kernel with stride = 1. No padding is added to
the convolution input (zero-padding). The spatial dimensions
of a convolution layer can be calculated as Out(x,y) =
(W_in(x,y) — k(x,y) + 2P)/stride + 1, where W_in is the
dimensions of the input and k(x,y) the kernel size. Thus,
the output of each kernel is [T-k+1,B-k+1]. The kernel size
used was [5,5], so each kernel output was [26,1], and the
output of the convolution layer was [26,1,C] = [26,1,19],
flattened to [26,19]. The kernel weights for each kernel are
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TABLE 2. The Architecture of the DICE-net Model.

Layer Type Input | Parameters Output
Al,A2 | Input [B,30,5,19]
Cl Conv2d Al kernel=[5,5], [B,26,19]
stride=[1,1],
groups=19
Gelu C1
P1 PositionalEncoding1 D Cl channels=19
CLS1 Parameter(Randn) o [1,26,1]
torch.expand CLSI | (expand to batch size) | [B,26,1]
TR1 torch.concat CLSI | dim=2 [B,26,20]
P1
TransformerEncoderLayer | TR1 num_layers=1,
dmodel=2, nhead=2
drop channels TR1 [:,:,0] (only CLS1) [B,26]
C2 Conv2d A2 kernel=[5,5], [B,26,19]
stride=[1,1],
groups=19
Gelu C2
P2 PositionalEncoding1 D CG2 channels=19
CLS2 Parameter (Randn) _ [1,26,1]
torch.expand CLS2 | (expand to batch size) | [B,26,1]
TR2 torch.concat CLS2 | dim=2 [B,26,20]
P2
TransformerEncoderLayer | TR2 num_layers=1,
dmodel=2, nhead=2
drop channels TR2 [:,:0]  (keep only | [B,26]
CLS2)
FFN torch.concat TR1 dim=1 [B,52]
TR2
LayerNorm FFN normalized_shape=52
Dropout prob=0.2
Linear in_features=52, [B,24]
out_features=24
BatchNorml1d
ReLU
Dropout prob=0.2
Linear [B.1]
Sigmoid
Loss BCEWithLogitsLoss

trained with backpropagation using a Gaussian Error Linear
Units (GELU) function. A GELU function can be thought
of as a smoother ReL.U function. In pyTorch, the GELU is
calculated as:

GELU(x) =0.5 x x

x (1 + Tanh(\/g x (x + 0.044715 x x%))
@)

By using depthwise convolution layer, the output of
each channel is processed independently, thereby eliminating
interference between channels. If, instead, a canonical convo-
lution would be employed, a 3-dimensional kernel would be
required. Assume k the 3rd dimension of the kernel, the out-
put values of a channel ¢; would be affected by the values of
channels ¢;, j € [i—k, i+k]. However, positional relationship
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of the order of the channels does not exist, thus this would be
wrong. So, a depthwise seperable convolution is preferred.

3) POSITIONAL ENCODING LAYER
Contrary to CNNs, or RNNs, a Transformer Encoder is
unaware of the positional information of the input data.
To model such positional relationships, a positional encoding
layer is employed. Spatial information about the data’s abso-
lute or relative position is provided by the positional encoding
layer, as first described in “Attention Is All You Need” [28].
Usually, in most transformer related architectures for natural
language processing (NLP) or computer vision a positional
encoding layer precedes an encoder.

Suppose X € RT*C | sequentially ordered data across the
T axis. To express the positional relationships as data, the
Positional Encodings (PE) are calculated as:

. k k
Pk2i = SIn (W) » Pk,2i4+1 = COS (W) (®)

where k € {0,1,...,C — 1} and i € {0,1,..,T7/2}.
According to the study it was first proposed [28], positional
encodings allow the model to learn relative positions, since
any fixed offset Py ofr can be represented as a linear function
of Pk. Positional Encoding Layer has no trainable parameters,
meaning it does not require gradient computation during
back-propagation, thus it does not get weight-modified dur-
ing training.

4) CLASS TOKEN EMBEDDING
In vision transformers, the CLS token is a special token that
is incorporated to the input sequence to capture the overall
meaning of a sequence. It is typically used as a representation
for the entire sequence for tasks such as image classification
or object detection. During the training of the transformer
encoder, the CLS token attends to important information from
anywhere in the sequence and make use of the entire context
of the image, or in this case the EEG feature representations.
In this implementation, an extra column named CLS token
of size [T,1] was then appended to each of the two tensors,
resulting in 2 [T,C+1] tensors. The values of the CLS token
were initialized randomly from a canonical distribution.

5) TRANSFORMER ENCODER LAYER

The Transformer is a relatively new deep learning archi-
tecture that was first introduced in the Natural Language
Processing domain and has applications in text and image
classification. The encoder fy : R"™4 — R"*4 ig a block
of the transformer model which reconstructs a collection of
n objects to another collection of n objects and encodes the
relational structure of the input as data in the reconstructed
input. These objects are sequences; however the encoder is
oblivious of the sequential positioning of the values of the
objects. This is the reason a positional encoding layer is
previously employed. A Transformer Encoder Layer may be
comprised of several stacked Transformer Encoders (TE),
and each TE output serves as the input for the next TE.
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Each TE is consisted of a Multi-Head Self-Attention (MSA)
Layer with residual connection around it, followed by a FFN
with residual connection.

A MSA layer is consisted of several Self-Attention heads.
A Self-Attention head calculates the relationships between
different parts of an input sequence in sentence, or in this
case the relationships of the C input channels, representing
each individual’s importance in relation to the others. First,
the input sequence is transformed to three linear projections
namely query (Q), key (K) and value (V).

0" () = Wil pxi, K® (i) = W i, VP () = W) x;
)

A score matrix that determines the attention of each chan-
nel is calculated as:

i _ (0. kP ()
o _soﬁmaxj( N ,

k the dimension of Q and K (10)

Finally, the MSA is calculated as:

H C
MSAG) = > Wo D aPv® (x;) (1n
h=1 i=1

where C is the input channels, H the number of Self-Attention
heads and W) is trainable weights for each head. The output
of the MSA is fed to an FFN, followed by a dropout layer
with dropout probability of 0.1. The result of the FFN is of
dimensions is of equal dimensions as the input of the TE. The
activation function of the FFN is a ReLU function.

6) FEED FORWARD NETWORK
To perform the classification of the inputs, a FFN is utilized.
Assume [T,C+1] the output dimensions of the TE layers,
and 2 parallel TE layers were employed, each for one of
the inputs. All channels except the CLS token(s) channel
are discarded, and the remaining T values of each array are
concatenated in a 2*T array, normalized, and then fed into
the FFN, which is consisted of 1 input layer (52 neurons),
1 hidden layer of 24 neurons and the output layer. A Dropout
layer with a dropout probability of 0.2 is added before each
Linear layer in the architecture. After each Linear layer there
is a Batch Normalization layer. The activation function of the
hidden layer is a ReLU function.

A sigmoid cross entropy loss function was used as the loss
function. Batch size was set to 32, learning rate was 0.001 and
L2 regularization weight decay was set to 0.01.

7) ABLATION EXPERIMENTS
1) NO-TRANS: Removed TE and PE. The results of CNN
were directly fed to FFN.
2) E-DICE: Early concatenation. The concatenation of the
inputs happened before exactly after the CNN layers.
Only one CLS token was generated.
3) 2-DICE: Two stacked encoder layers.

VOLUME 11, 2023



A. Miltiadous et al.: DICE-Net: A Novel Convolution-Transformer Architecture for Alzheimer Detection

IEEE Access

T .
e
0 T
= —
0 T OO T
OO 4 2
5 OO
[ e, [ e
R EEEEEEEEEEEEEE]
g T
OO 4 5 ¢ OOy
COCCIII T 2 OO T+
T 2 OO o £
0 e
CLSCLITTITITITITITT o 2
5 1 0
& ECCEECECEEEErD—
— = 2
O T} e S -
o | ; ———————————
———————— i § C CEECEEEEEEee | &
COOTIIIrIrrrr o 2 : 3
¢ OO & COICTIIIIIIIIT}
I} £ T [ =15 21 5 i U
g I
I
EEEEPEEREEEEEE—— 0
H
i P e e e e e Y
\—
CLSCITIIITITIITITIITIT}1H—
-

T G\ T & @
i S S TR B
i R O & |

= z =
1 o O O
15} &= 5}
C DDDDDDEEEEEEEE | 5 (o % C DDDDDDEEEEEEE | 5 [
CEEEEEEEEEEE o £ [ £ T CEEEEEEEEEE o £ |
1 O S i S B
1 B OO 2 |
= = =
55 S O OO £ |
CLSCITIITITTIITTITITITIH— —>| 2 CLSCIITIITITITITIITITH— ——'Z
P = P =
i R O OO |
I, Y S COCOOTITIIIIr 4 5 [
1 = I OO I o 5|
3 “ “
CECEEE e 4 = [ 2 o o
C OO = || = C OO & —f
) @ @
CEEEEEEEEEEeem— £ | 2 T OO — £ |
O & o & i R S
1 e O O O £ |
1 S I P B
- - e
CLSCIIIIITITIITTITITITI | CLSCLIIIITIITITIITH— —
| S

FIGURE 2. Different ablation configurations.

4) M-CLS: The CLS token is not randomly initialized but
rather initialized by the mean values of each row.

5) ALL-DICE: No channels are removed prior to the FFN
layer. Instead, the values of all channels are fed.

6) ALL-E-DICE: Early concatenation, no channels
removed prior to FFN.

8) COMPARISON ALGORITHMS

To validate the robustness of the proposed methodology, the
following benchmarking algorithms have been employed,
and their performance metrics are reported in the Results
section: 1) k-Nearest Neighbors with Principal Component
Analysis (PCA-kNN), 2) XGBoost, 3) LightGBM, 4) Cat-
Boost, 5) Support Vector Machines with PCA (PCA-SVM),
6) Multilayer Perceptron (MLP). All gradient boosting
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algorithms have been hyperparameter optimized with Hyper-
opt [48], which is a python package for machine learning
hyperparameter optimization. MLP had 1 hidden layer of
96 neurons (layer structure: 190-96-1). For k-NN, all k val-
ues from 1 to 12 were tested and 5 was found to achieve
the best ACC. To train and test these algorithms, the same
feature extraction techniques were applied. However, these
algorithms do not support 3d matrix input, so the training and
test set is required to be in a conventional format where each
row represents a subject or an observation. So, a time-window
division of 15 seconds was applied, and 190 features were
extracted (RBP [5 bands * 19 channels] + SCC [5 bands *
19 channels]).

Furthermore, state of the art deep learning architec-
tures designed to classify raw EEG signal were employed.

71847



IEEE Access

A. Miltiadous et al.: DICE-Net: A Novel Convolution-Transformer Architecture for Alzheimer Detection

These architectures were EEGNet [49], EEGNetSSVEP [50],
DeepConvNet, ShallowConvNet [51].

9) VALIDATION METHODOLOGY

The Leave-One-Subject-Out (LOSO) validation method has
been employed for the performance evaluation of the model.
In this method, all the feature matrixes regarding one subject
are left out as test set and all the other subjects form the train-
ing set. This is repeated one time for each subject, and then the
weighted average performance results are presented. Thus,
for a given problem, the EEG recordings of all subjects except
one are used as the training set and the left out subject EEG
recordings are used for testing. This procedure is repeated
iteratively for all subjects and a total confusion matrix is
created. The performance metrics are then calculated from
this confusion matrix.

E. EXPERIMENTAL SETUP

The recording step of the experiment was described in the
Database Description and Data Acquisition section. The
preprocessing step of the experiment was implemented in
EEGLAB Matlab (2021a) environment [44]. The time-
frequency transforms and the feature extraction steps were
implemented in Python 3.10 using the MNE library. The Deep
Learning model was implemented, trained, and evaluated in
Python 3.8 using the PyTorch library [52] and the imple-
mentation and evaluation of the comparison algorithms was
implemented using the Scikit-Learn library. The models were
trained on a RTX 3060 Ti GPU with CUDA 11.7 version.
The computational complexity of the DICE-net algorithm
was 137 GFlops. The trainable parameters and computational
complexity of the DICE-net algorithm and each ablation
experiment are presented in Table 3.

TABLE 3. Computational complexity of DICE-net and ablation models.

Model N_params(M) FLOPs(G)
DICE-net 170.5 137.4
ALL-DICE 368.6 140.6
NO-TRANS  18.8 1.42
2-DICE 338.7 274
E-DICE 163.5 133.9
M-CLS 170.5 137.4
ALL-E-

DICE 357.6 130

Ill. RESULTS

The importance of the selection of the specific features should
be first evaluated by visualizing each feature across the dif-
ferent groups. The significance of RBP as a feature can be
observed in Fig 3(a), which presents the PSD of a healthy
subject (Ist), a subject with AD in the early stages with
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MMSE=16/30 (2nd), and a subject with severe AD with
MMSE=4/30 (3rd). Reduction in alpha power (8-13 Hz) can
be observed, as the severity of the AD increases.

Moreover, a scalp heatmap representation of the PSD of
the different frequency bands for each group is presented in
Fig 3(b). Each column represents a group (AD, CN, FTD) and
each row represents a frequency band. The min and max value
of each colormap may differ, but the range of all colormaps is
same and equal to 7 uV2/Hz. Considerable differences can be
observed between AD and CN heatmaps across all frequency
bands. On the other hand, FTD-CN discrimination appears
harder, based on visual inspection of the heatmaps.

Regarding the SCC feature, Fig. 4(a) represents the spectral
connectivity calculated, averaged across all subjects for each
group. Each row represents a group (AD, CN, FTD) and
each column represents a frequency band. Each graph is
a rectangle heatmap (upper and lower triangular matrixes
are symmetric) that every cell (X,Y) expresses the spec-
tral connectivity of the electrode X with the electrode Y.
Fig. 4(b) represents the spectral connectivity calculated, aver-
aged across all subjects and across each electrode for each
group, which technically is the averaged SCC feature. It can
be visually observed that AD group has lower delta con-
nectivity than CN group in multiple brain locations. This
finding is supported by the literature [53] and indicates the
importance of spectral connectivity as a feature. Reduced
delta connectivity is also observed for the FTD group.

The size of the dataset should be noted here. In total, the
AD group consisted of 953 sets of 3-dimensional matrixes
(PSD + SCC matrix), the FTD group consisted of 541 sets
and the CN group consisted of 788 sets.

Multiple ablation experiments were conducted and hyper-
parameters have been evaluated, to present the methodology
that has achieved the best results. The comparison of the
performance of the different ablation experiments was per-
formed in regards with the LOSO accuracy. Moreover, to find
the optimal number of epochs for each ablation experiment,
an evaluation-train-test split has been employed on top of
the LOSO validation method. Specifically, a P groups split
was iteratively performed, P being the integer number of
groups that round to the 1/6th of the dataset. The P groups
were left as validation set, and the rest 5/6th of the dataset
was evaluated with LOSO. Early stopping was employed,
meaning that if the accuracy of the model is not employed
for 20 consecutive epochs, the training is stopped to avoid
overfitting, and the best achieved accuracy so far is kept.
For the statistical evaluation of the performance metrics, the
training of each model is repeated 10 times, and the difference
in the performance of the proposed DICE-net is found to be
statistically important (independent samples t-test, p-value <
0.05), in comparison to all the other methods at almost all
the metrics. On the Tables 4-6, the star symbol (*) indicates
statistically important difference (independent samples t-test,
p-value < 0.05) in the particular metric in regards with the
DICE-net.
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FIGURE 3. a) (left) PSD of a severe AD case (bottom), a mild AD case (middle) and a healthy subject (top). b) (right) scalp heatmaps of PSD across

5 frequency bands, averaged across groups AD, CN, FTD.

Table 4 presents the performance metrics of the different
ablation experiments, as well as the proposed methodology
in terms of accuracy (ACC), sensitivity (SENS), specificity
(SPEC), precision (PREC) and F1 score for the AD-CN
problem. The ACC of DICE-net reached 83,28 %, followed by
E-DICE, M-CLS and 2-DICE with ACC of 80,75%, 80,7%
and 80,41% respectively and not statistically important differ-
ences between them. The NO-TRANS model, that does not
utilize a transformer layer achieved ACC of 79,12%, followed
by the transformer models that do not drop the channels prior
to FFN, ALL-E-DICE and ALL-DICE with ACC 78,84% and
78% respectively. The training epochs that need to be utilized
for each model to achieve its best performance may vary.
The DICE-net model achieves its best performance at around
80 epochs.

To evaluate the effectiveness of the proposed methodology,
other state of the art and/or well-established machine learning
algorithms have been employed, as presented in Comparison
Algorithms section. Table 5 presents the performance results
of these algorithms for AD-CN classification. Fig. 5 (left)
presents the ROC curves and the Area under ROC of each
of the comparison algorithms along with DICE-net for the
AD-CN problem. Furthermore, the classification capabilities
of DICE-net along with the comparison algorithms for the
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FTD-CN classification problem has been examined and pre-
sented in Table 6. Fig. 5 (right) presents the ROC curves and
the Area under ROC of each of the comparison algorithms

along with DICE-net for the FTD-CN problem.

TABLE 4. Performance metrics of DICE-net and ablation models in AD-CN

problem.

AD/CN ACC SENS SPEC PREC F1
NO- 79.12% 80.46% 80.17%
TRANS * 79.87% 7829% *  * *

80.75%  76.49% 81.31%
E-DICE * * 85.91% 86.78% *

80.41%  74.39% 80.61%
2-DICE * * 87.69% 87.35% *

80.70% 82.23% 82.40%
M-CLS * 82.58% 78.42% *  * *

78.00% 80.25% 79.78%
ALL-DICE | * 79.32% 76.39% *  * *
ALL-E- 78.84% 81.01% 80.22%
DICE * 80.14% 77.25%*  * *
DICE-net 83.28% 79.81%  87.94% 88.94%  84.12%

Fig. 6 is utilized to visualize the individual predictions

on each participant. Each graph represents the classification
performance of the DICE-net algorithm and the comparison
algorithms. Each dot represents the classification accuracy
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FIGURE 4. a) (left) Spectral Coherence Correlation (SCC) heatmaps for each group (AD, CN, FTD), for each frequency band. Each cell (X,Y) represents the
spectral correlation of electrode X with electrode Y, averaged across each group. b) (right) SCC averaged across electrodes, so that each cell represents the
average SCC of each electrode with all other electrodes.

TABLE 5. Performance metrics of DICE-net and comparison algorithms in

AD-CN problem.

TABLE 6. Performance metrics of DICE-net and comparison algorithms in
FTD-CN problem.

AD/CN ACC SENS SPEC PREC F1 FTD/CN ACC SENS SPEC PREC Fl
76.28%  76.08% 79.67% 77.83% 69.13%  51.57% 57.79%
LightGBM | * * 76.52% *  * * LightGBM | * * 81.54% 65.72% *
75.53%  76.08% 78.55% 77.29% 69.22%  52.02% 57.44%
XGBoost * * 74.87% * * * XGBoost * * 81.73% 65.71% *
75.39%  75.50% 76.68% 77.05% 68.66%  47.41% 55.19%
CatBoost * * 75.25% * * * CatBoost * * 83.25% 66.02% *
73.75%  71.51% 78.60% 74.89% 70.93%  45.85% 56.98%
SVM+PCA | * * 76.46% *  * * SVM+PCA | * * 86.21% 75.26% *
72.52%  70.30% 77.41% 73.69% 67.80%  41.50% 51.20%
PCA-KNN * * 75.19% *  * * PCA-KNN * * 85.85% 66.82% *
73.69%  72.98% 77.80% 75.31% 69.98%  53.60% 59.24%
MLP * * 74.81%*  * * MLP * * 81.22% 66.21% *
DICE-net 83.28% 79.81%  87.94% 88.94%  84.12% DICE-net 74.96%  60.62%  78.63% 64.01%  62.27%

and the misclassified subjects are far less than any of the other
classifiers compared to other indicating the superiority of our
methodology.

for a certain subject and the color of the dot represents the
class of the subject. It can be observed that the area of the
DICE-net algorithm on the upper side of the diagram is larger,
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FIGURE 5. ROC curves of DICE-net and comparison algorithms for AD-CN
and FTD-CN classification.

A variety of state-of-the-art deep learning architectures
designed for EEG signal classification were also examined,
in order to compare the effectiveness of this algorithm. These
architectures were: EEGNet, EEGNet_SSVEP, DeepCon-
vNet and ShallowConvNet. All these models have in common
that they take raw EEG signal as input and not a feature
vector. Epochs of 4 second with 2 second overlap were used
with 128Hz sampling rate (also 250 and 500 were tested),
from the same dataset. Smaller time windows, specifically
4 seconds in duration, were chosen for these algorithms due to
their input being raw signal, resulting in a considerably larger
size.For training, over 200 epochs were used, to make sure
that training set accuracy was over 95%. However, none of
these algorithms managed to classify the instances correctly,
neither in the AD-CN nor in the FTD-CN problem. Table 7
contains the performance results of these algorithms using
LOSO validation in terms of ACC, SENS, SPEC, PREC, F1.

TABLE 7. Performance results of state-of-the-art methodologies that use
raw EEG signal as input, for the AD-CN and FTD-CN classification problem
with LOSO validation.

AD/CN ACC ‘ SENS ‘ SPEC ‘ PREC | F1 ‘
EEGNet 41% 4720 3767 3789  42.04
% % % %
EEGNetSSVEP | 51.46  56.78 4539  47.65  51.82
% % % % %
DeepConvNet 54.21 45.43 57.59 48.71 47.01
% % % % %
ShallowConvNet | 42.18 46.50 41.11 49.74 48.07
% % % % %
FTD/CN ACC | SENS | SPEC | PREC | F1 ‘
EEGNet 46% 4220 5746 4521  43.65
% % % %
EEGNetSSVEP | 61.46 5351 7500 5140  52.43
% % % % %
DeepConvNet 64.21 62.41 3705 5814  60.20
% % % % %
ShallowConvNet | 4638 4258 5321 4237 4247
% % % % %

To explore which channels, and therefore which brain
areas were most significant for the discrimination of AD-CN
and for FTD-CN, the magnitude of the absolute value of
the convolution layer weights was examined. Theoretically,
larger absolute kernel weights indicate higher importance in
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FIGURE 6. Violin plots of the distribution of accuracies for each subject
prediction. The width of the violin indicates the density of scores at each
value. Individual dots represent a single subject classification accuracy.

the classification, due to back-propagation. Fig. 7 represents
2-d heatmap representations of the scalp, where hotter (red)
colors mean higher absolute magnitude of weights and higher
importance in the classification. The results have been nor-
malized in O-1, thus the bluest is the less significant area
(although this does not indicate lack of significance) and the
most red is the most significant areas. Fig. 7 represents the
average values obtained after a complete LOSO iteration.
Higher importance of the RBP feature in comparison with
the SCC feature can be observed in both classification prob-
lems. Also, for the AD discrimination, the electrodes TS5, O1,
02, T4, F8, mainly on the temporal and occipital lobe had
been given the greater attention from the DICE-net model.
Respectively, for the FTD discrimination, the frontal Fp1 and
Fp2 and the temporal T3 and T4 electrodes have been given
the greater attention from the model, as expected.

IV. DISCUSSION

This work proposed a novel convolution-transformer-based
Deep Learning architecture to discriminate clinical demen-
tia EEG. Specifically, the methodology is proposed and
optimized for AD detection. In order to examine the
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FIGURE 7. Normalized Absolute Magnitude of Convolution layer weights
for DICE-net in AD-CN (top) and FTD-CN (bottom) classification.

generalizability of this methodology to other dementias, the
methodology has also been tested with a FTD dataset. The
methodology consists of 3 parts. In the first part, the raw
EEG signals that are acquired following a strict protocol
from a neurology department were preprocessed using the
ASR routine to ensure that no corrupted data may be used
for the training of the model, and the ICA algorithm to
ensure the elimination of brain and jaw artifacts. In the
second step, the recordings were divided into 30s time-
windows. Two of the most well-established methodologies
were employed for the frequency domain transformation of
the signal and the feature extraction. Specifically, the Welch
method, which is a frequency-domain transformation of the
EEG signal that uses sliding windows to calculate the Fast
Fourier Transform and then averages them to achieve a
smoother frequency curve than FFT on all the signals, was
employed to extract the Relative Band Power of each fre-
quency band of the signals and a Wavelet Transform using the
Morlet Wavelet was employed to extract the average spectral
coherence of each channel for each frequency band. In the
third step, a Deep Neural Network consisting of two parallel
Convolution-Transformer blocks leading to a Feed-Forward
NN was trained. Its discriminative capabilities were evaluated
with LOSO cross-validation.

Multiple studies have addressed the problem of the detec-
tion of various types of dementia in EEG signals using
machine learning methodologies [54]. The most advanced
methodologies usually propose a Deep Neural Network
scheme that first processes the time-domain signal through a
time-frequency transform such as a Wavelet Transform [55]
and then utilizes the capabilities of a Convolution Layer for
information extraction and dimensionality reduction and/or
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Neural Network architectures such as autoencoders [5] or
FFNs. However, Transformers Networks perform exception-
ally well in dealing with long-range dependencies and in
recognizing patterns in sequences of data. This is a significant
advantage in the context of EEG analysis over traditional
convolutional neural networks (CNNs), because EEG signals
are often highly correlated over long time intervals, and cap-
turing these correlations is critical for accurate classification
of Alzheimer’s disease. Still, they have yet to be employed in
the AD EEG detection problem. To the best of our knowledge,
only one study has used a transformer encoder on a Raw-
EEG framework for Mild Cognitive Impairment (which is
the prodromic state of AD) detection [38]. The combination
of Convolution-Transformer layers in a classification task
has been evaluated in other EEG areas, such as emotion
recognition [29] and the results were promising. The nov-
elty of our methodology is that is the first to introduce a
Convolution-Transformer combination in EEG AD detection,
which significantly outperforms other state-of-the-art algo-
rithms performed on the same dataset.

From a medical perspective, the proposition of a novel
transformer architecture for classifying AD in EEG signals
is highly significant. Automated early detection of AD with
minimal medical attendance is essential for prompt treat-
ment and management and EEG signals have been widely
used in medical research for neurological disorder diagnosis.
Although the most used imaging tools for the detection of
AD are MRI and PET, EEG does provide a faster, cheaper,
and more portable alternative. One of the most notable EEG
changes in AD that can be adequately captured by the pro-
posed architecture is the reduction of alpha and beta waves,
the reduction in amplitude which is believed to be related
to decreased cortical activity in the brain, the increase in
theta waves and the decreased synchronization among brain
regions that may reflect the progressive loss of neuronal
connections in the brain. Thus, should these changes be
detectable in the early stages of the disease through a machine
learning architecture, the EEG would have the potential to be
used as a biomarker for the disease.

From a technical perspective, transformers have several
advantages over traditional deep learning architectures such
as Recurrent Neural Networks. The main advantage is the
attention mechanism which allows the model to dynamically
focus on the most relevant features in the input data. This is
particularly useful in EEG signals, where different frequency
bands and electrodes may contain different information rel-
evant to the classification task. Another advantage is the
ability to scale to large datasets. Transformer architectures
have been shown to outperform the, until recently state-of-
the-art, convolutional architectures in the classification of
images when a large enough dataset was provided. Hence,
in the medical domain where accurate predictions are cru-
cial, transformer architectures may be the solution since they
can take advantage of huge EEG datasets. Furthermore, the
motivation of deciding to employ a transformer architecture
for the EEG Alzheimer detection problem lies on two key
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factors: firstly, the absence of previous methodologies that
have utilized transformers for EEG detection, making it an
unexplored area with significant potential for innovation; and
secondly, the inherent ability of transformers to effectively
capture long-range dependencies, which aligns well with the
complex temporal relationships present within EEG signals.
By leveraging this synergy, we aim to enhance the accuracy
and efficacy of Alzheimer’s disease detection using EEG
data. In conclusion, the importance of this research is promi-
nent from a both medical and technical perspective.

In order to use the transformer encoder we had to find a
way to take advantage of its capabilities of detecting depen-
dencies of different sequences (words) in a sentence that
are widely used in Natural Language Processing. However,
modifications to the original transformer that deal with image
classification have been already proposed and are called
vision transformer (ViT) [32]. The main idea behind a vision
transformer is to split the image into patches, where each
patch represents a word. Then add positional information to
the patches, with a positional encoding layer and finally add
another patch or word namely the CLS token that will learn
the semantics of all the other words representing a sentence,
or in the ViT case, an image. Thus, to create image-like
input for the transformer, the feature extraction procedure
changed and instead of the conventional “1 row — 1 sam-
ple”, each sample was constructed as a 3d matrix. Finally,
the capabilities of the convolution layer were exploited to
reduce the dimensionality of the 3d matrix and acquire pattern
information.

The performance of the DICE-net methodology for the
AD-CN problem was compared to other, state-of-the-art
ensemble classifiers such as CatBoost, XGBoost, and Light-
GBM and was found to be significantly better (7% higher
accuracy, 6,29% higher F1 score, p=0.05, from the sec-
ond best, LightGBM). Moreover, the performance for the
FTD-CN problem was supplementarily evaluated, compared
with the same algorithms, and found to be statistically better
than the second-best SVM in terms of accuracy (4% higher)
and the second-best in terms of F1 score, MLP (3% higher).
Last, state-of-the-art deep learning architectures specifically
designed to get raw EEG signal as input were tested, such
as EEGNet, DeepConvNet, ShallowConvNet. However, they
did not achieve to classify correctly neither the AD-CN prob-
lem, nor the FTD-CN problem. One possible explanation for
the poor performance is that these methodologies do not per-
form feature extraction on the raw EEG signals, and therefore
may not be able to effectively capture the relevant information
in the data. This can lead to issues with overfitting, as well
as reduced classification accuracy, especially with such a
small dataset. It is possible that these methodologies could
perform better if the size of the training dataset was signif-
icantly larger. Thus, no conclusions can be made regarding
the comparison of the performance of these raw EEG input
methodologies and our proposed methodology.

The performances of various ablation experiments that
were conducted to evaluate the best model to propose were
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also reported. The ablation studies demonstrate the impor-
tance of the encoder layer for enhancing the predicting
capabilities of the model since the increase in the perfor-
mance between the NO-TRANS model and the DICE-net
model is over 4% (statistically important difference p=0.05).
Furthermore, the importance of the Class Token Embedding
is also established, since it can learn to gather and attend to the
important information of all the other channels. Comparing
the DICE-net model with its no channel dropped counterpart
ALL-DICE, over 5% increase in ACC is observed, meaning
that the ability of the CLS token to keep important informa-
tion allows us to drop 19/20 of the information that would
be fed to the FEN, thus significantly reducing the size of
the input layer and achieving better performance with less
overfitting risk.

To evaluate which features and which brain areas were
most important for the classification task we utilized the
absolute magnitude of the convolution kernels as a marker
of attention to each channel. The RBP feature was proven
to be more important than the SCC feature. This might
be the case because the decreased synchronization in the
brain is evident in the late stages of AD, and alpha-theta
wave alterations are easier to detect. According to the liter-
ature, AD primarily affects the hippocampus, amygdala, and
neocortex regions [56]. The model mainly focused on the
electrodes located onto the occipital, temporal, and frontal
regions of the brain. Nonetheless, the exact location of the
affected brain activity is difficult to be located without further
information from other EEG source localization or phase
synchronization techniques. Further analysis of the EEG sig-
nals using such techniques and statistical comparison with
healthy signals may indicate the source localization specifics.
However important this information could be, it would prob-
ably not be useful as a channel elimination indicator for this
EEG DICE-net methodology, since the convolution and trans-
former layers automatically focus on important channels.

The classification performance of the DICE-net methodol-
ogy was also evaluated on the FTD database, and the absolute
magnitude of the convolution kernels was also reported.
FTD is a group of progressive neurodegenerative disorders
that primarily affect the frontal and temporal lobes of the
brain and is characterized by progressive focal frontal and
temporal lobe atrophy [57]. DICE-net focused specifically
on the frontal and temporal regions of the brain, as can be
noticed from Fig. 7 validating the ability of the methodology
to focus on useful information. Similar to the AD-CN case,
the algorithm exhibited less interest in the spectral coherence
features.

Studying previous works, not many studies have been
published in recent years that propose an EEG machine learn-
ing architecture for the detection of AD or Mild Cognitive
Impairment (MCI) that reports its classification accuracy
using LOSO validation. In the following Table 8 recent
studies that address the same problem have been reported.
Most methodologies perform acquisition or use published
databases of resting state close eyes recordings [20], [57],
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TABLE 8. Related studies comparison.

Study Year Cohorts  Stimuli Methodology Performance

Safi et al. [20] 2021 30 AD N/A Entropy, Hjorth Parameters, SVM ACC=81%, SENS=69.8%,
35CN SPEC=83.5%

Khatun et al. [61] | 2019 8 MCI Auditory ERP, SVM ACC=87.9%, SENS=84.8%,
15CN SPEC=95%

Dogan et al. [60] 2022 12 AD Resting State Graph-Based Feature extraction, Tunable Q- ACC=92.01%, SENS=97.75%,
11 CN Wavelet Transform, KNN SPEC= 84.03%

Miltiadous et 2021 10 AD Resting State Spectral & Temporal & Nonlinear Features, ACC=78.85%, SENS=82.4%,

al.[45] 8 CN Random Forests SPEC=74%

Ruiz-Gomez et al. | 2018 74 (AD Resting State Spectral & Nonlinear features, MLP ACC=78.43%, SENS=82.35%,

[59] +MCI) SPEC=70.59%
37CN

Araujo et al. [58] 2022 11 AD Resting State Nonlinear features, SVM AD-CN ACC=81%,
8 MCI MCI-CN ACC=79%
11 CN

Lopes et al. [26] 2023 34 AD Resting State Modulation Spectrum, CNN, SVM ACC=87.3%
20 CN F1=84.6%

This work 2023 36 AD Resting State RBP, SCC, Dual-Input-Convolutional- ACC= 83.28%, SENS=78.81,
29CN Encoder SPEC=87.94%, F1=84.12%

[58], [599], [60]. However, some published methodologies
examine Event Related Potentials (ERP) on stimuli-based
setups such as the work presented by Khatun et al. [61]
that achieved ACC=87.9%. Methodologies on resting state
recordings have proposed a variety of classification algo-
rithms such as kNN [60], Random Forests [45], SVM [58] or
Neural Networks [59]. The reported ACC of other method-
ologies ranges from 70% to 85%, however various studies
have reported LOSO ACC over 98%.

Regarding FTD, even fewer studies have been published
that propose a machine-learning framework for the classi-
fication of EEG signals. By performing a search in Scopus
(date of search: 23 February 2023) with keywords “EEG
and Frontotemporal AND (detection or classification)” for
the years 2019-2023, 23 studies were found and only one
of them [45], which was performed by our research team
as this study was about FTD classification relying only on
EEG signals (and not a biomarker combination such as
EEG+MRI). Thus, no comparison can be made regarding
the results of the FTD-CN problem obtained in this study.
While there have been many studies on the use of EEG in the
diagnosis and classification of other forms of dementia, there
is a noticeable lack of research in this area for FTD. This
is concerning, as EEG has the potential to provide valuable
information about the underlying neural mechanisms of the
disease. More research should be done to explore the use
of EEG in FTD classification and diagnosis, and to identify
potential biomarkers that could aid in early detection and
treatment.

Regarding the limitations of this research the following
issues should be addressed. First, the size of the dataset,
although decent, is not enough to take advantage of the
full potential of the transformer encoder’s abilities. It is
known that using multiple stacked transformer encoder can
enable the deep learning model to learn more complex rep-
resentations of the input signals by building a hierarchy of
representations. Each encoder can learn to capture different
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levels of abstraction, with higher-level encoders processing
the output of lower-level encoders to build a more abstract
representation of the input signals. However, increasing the
parameter number would require having a larger and more
diverse training set to improve generalization and robustness
of the model and avoid overfitting. Moreover, issues regard-
ing the importance of the SCC feature should be addressed.
Although the selection of the feature is supported by the
literature that states that in more advanced stages of AD,
EEG recordings may also show decreased synchronization
among different brain regions [40], the convolution layer
kernel weight magnitude evaluation showed that is far less
considered than the relative band feature. Although this is
not inherently negative, further investigation regarding other
types of connectivity measures that better capture AD char-
acteristics should be performed. Moreover, a limitation to
be discussed is the fact that all recordings were obtained
from a single medical center. While our study focuses on
algorithmic development, we acknowledge that for our model
to be truly applicable and useful in medical practice, it should
undergo broader and more rigorous validation. In accordance
with the reviewer’s suggestion, we recognize the importance
of adhering to the CLAIM criteria (Credibility, Legality,
Affordability, Interpretability, Maintainability) outlined in
Radiology: Artificial Intelligence [62]. These criteria empha-
size the need for external validation using larger datasets from
multiple medical centers. Future research endeavors should
aim to include a diverse range of patients from various health-
care settings to ensure the generalizability and robustness of
our model for real-world clinical applications.

Further elaborating the limitations, it is important to dis-
cuss the potential for transfer learning and the limitations
of the current methodology (on using transfer learning).
Both convolutional neural networks (CNNs) and transformers
offer advantages for transfer learning tasks. While our cur-
rent methodology may not directly support transfer learning,
we believe that future propositions could incorporate this
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feature effectively. Additionally, a noteworthy limitation of
our approach lies in its dependency on a fixed number of
electrodes, which restricts its applicability to different EEG
setups. However, by developing a more elaborate scheme that
is not bound to a specific number of electrodes, we could
potentially alleviate this issue and enable the utilization of
transfer learning techniques. The combination of transfer
learning with a flexible electrode scheme has the potential
to enhance the performance and generalization capabilities
of our proposed convolution-transformer architecture for
Alzheimer’s disease (or other dementia) classification.

Regarding the selection of 30 second as the duration of
the time-windows and how this differs from the usual time-
window size that is most commonly used in such EEG classi-
fication methodologies [63], [64] (that being less than 5 sec-
onds), the following should be noted. Usually, small durations
of time windows are considered because of the classifiers
inability to capture long-range temporal dependencies in the
data and due to the limited size of the dataset that is used,
which necessitates the generation of a lot of training samples
from a small duration of EEG recordings. Nonetheless, the
present study effectively addresses these challenges in two
distinct ways. Firstly, by harnessing the inherent capabil-
ity of Transformers to capture long-range dependencies and
incorporating them into a convolution scheme that reduces
input dimensionality, this methodology enables the exploita-
tion of larger time-windows. Secondly, the dataset employed
in this study proves to be substantial, with 485.5 minutes
of AD recordings, 276.5 minutes of FTD recordings, and
402 minutes of CN recordings. As a result, there are no limita-
tions arising from a scarcity of training samples, particularly
when utilizing a larger window size. Additionally, regarding
the 15-second overlap (50%) that is utilized, it serves the
purpose of augmenting the training sample count. Although
this approach could pose a challenge when employing k-fold
validation due to potential overlap between the training and
test sets, such concern is effectively mitigated in our case,
as we utilize Leave-One-Subject-Out validation.

Regarding the EEG dataset that was utilized in this study,
it was structured and made publicly available by our team.
As such, this methodology is the first to explore this dataset
for AD detection using a convolutional transformer deep
neural network. Given the promising results obtained by this
methodology, we encourage other researchers to utilize the
same dataset and employ this research as a benchmark for
further studies in the field. By adopting this approach, future
research can directly compare their methodology to ours,
and allow for a more objective assessment of their model’s
performance. Furthermore, this approach can facilitate the
development of standardized evaluation metrics for EEG-
based AD detection, ultimately leading to the development of
more robust and reliable diagnostic tools. Overall, we believe
that the publication of this dataset and the development of
this methodology have the potential to make a significant
contribution to the field of EEG-based dementia detection,
and we look forward to future studies building upon this work.
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The convolutional transformer deep neural network pro-
posed for EEG-based AD detection has shown great potential
for the accurate classification of EEG signals. However,
future work could focus on several areas to improve the
model’s performance and generalizability. Firstly, expand-
ing the dataset used to train and test the model is crucial
to enhance its robustness and applicability. Secondly, the
methodology should be refined to take advantage of transfer
learning to better leverage the power of transformers for
EEG signal analysis. Thirdly, the model’s generalizability
to other EEG electrode setups should be explored, as this
could facilitate the adoption of the methodology in clinical
settings. Fourthly, graph theory options could be investigated
to take advantage of the spatial information of the channels
and enhance the model’s ability to capture complex inter-
channel relationships. Finally, expanding the methodology to
other dementia types, such as FTD (that has already been
examined in this study) or Lewy body dementia, could help to
assess its effectiveness as a diagnostic tool for a broader range
of neurodegenerative diseases. Overall, this research presents
exciting opportunities for the development of advanced deep-
learning techniques for EEG-based dementia detection, with
a potential impact on clinical practice and patient outcomes.

V. CONCLUSION

In this study, we investigated the potential of using a novel
convolution transformer deep neural network fed with spec-
tral and coherence characteristics extracted from EEG signals
for the automatic detection of AD, that being one of the
first studies to introduce the transformers’ capabilities of
capturing relational and semantic information between words
(or channels in our instance) for AD EEG detection. We eval-
uated the performance of the proposed model on a clinical
dataset recorded at AHEPA General Hospital of Thessaloniki,
Greece. We demonstrated that it achieved state-of-the-art
classification accuracy, outperforming several baseline mod-
els in the same dataset. We made the dataset publicly
available, allowing other researchers to evaluate different
models and use this research as a benchmark. The perfor-
mance results of ACC=83.28% and F1=84.12% suggest that
the DICE-net model can effectively capture EEG-derived
feature vectors’ spectral and spatial patterns and extract
meaningful dependencies for classification. Furthermore, our
findings contribute to the growing body of literature on using
machine learning techniques for EEG-based diagnosis of
AD, which has the potential to assist clinicians in the early
detection and monitoring of the disease.
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