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ABSTRACT Trajectory outlier detection is a crucial task in trajectory data mining and has received
significant attention. However, the distribution of trajectories is tied to social activities, resulting in extreme
unevenness among regions. While existing methods have demonstrated excellent performance in regions
with sufficient historical trajectories, they frequently struggle to detect outliers in regions with limited trajec-
tories. Unfortunately, this issue has not received much attention, leaving a gap in the current understanding
of trajectory mining. To deal with this problem, we in this paper propose a model called TTOD that can
effectively detect outliers in regions with sparse data by transferring knowledge among regions. The main
idea is to learn a feature mapping function that maps the global feature space of auxiliary regions to the target
region’s specific feature space. To achieve this, we adopt a VAE-based model called the Global VAE to learn
the global feature space in auxiliary regions by modeling the trajectory patterns with Gaussian distributions.
Then, we propose a Specific-region VAE that serves as the mapping function to learn the target feature space.
Additionally, considering the data drift of feature distributions among regions, we introduced an additional
pattern synthesis layer, named the De-drift Layer, to diversify the target feature space, thus addressing the
pattern missing issue caused by the gap of feature distributions between the auxiliary regions and the target
regions. Then the target feature space can be well studied and applied to detect outliers. Finally, we conduct
extensive experiments on two real taxi trajectory datasets and the results show that TTOD achieves state-of-
the-art performance compared with the baselines.

INDEX TERMS Trajectory outlier detection, transfer learning, VAE, spatial-temporal data, trajectory data
mining.

I. INTRODUCTION
Benefiting from the rapid development of sensing technolo-
gies such as Global Positioning System (GPS) and road sen-
sors, collecting trajectories is no longer a labor-intensive task,
whichmakes it possible to analyze themoving targets’ behav-
iors based on trajectories [1], [26], [52], [53], [54], [55], [56].
For example, in urban areas, a significant number of taxi
trajectories are generated daily, and they can be effortlessly
collected through road sensors and drivers’ mobile phones.

The associate editor coordinating the review of this manuscript and

approving it for publication was Senthil Kumar .

This vast pool of data provides ample resources to analyze
the driving behaviors of taxis.

As one of the essential research branches in trajectory
data mining, trajectory outlier detection has received sig-
nificant attention and related techniques have been widely
applied to various fields, such as surveillance, traffic plan-
ning, wildlife protection, and etc. [2]. Specifically, Trajectory
outliers [3], [4], [23] refer to the trajectories or trajectory seg-
ments that deviate significantly from the expected or typical
movement patterns, such as detour, abrupt speed changes,
and etc.. Identifying and analyzing these outliers can provide
valuable insights into the behavior and characteristics of
the moving targets, enabling researchers to detect potential
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FIGURE 1. The example of taxi driving fraud. The T1 and T2 are normal
trajectories, the T3 is outlier.

problems early and take appropriate measures to mitigate
their effects. Given the issue of taxi driver fraud, as shown
in Figure 1, the T1 and T2 follow the mainstream paths and
are considered normal trajectories. However, some drivers
may intentionally take a longer detour(e.g. T3 ) from the
mainstream paths to increase the fare which is harmful to the
interests of passengers. Detecting such detour trajectories is
of great importance for the safety of passengers’ lives and
property.

There has been a lot of research [2], [5], [6], [7], [57], [58]
on trajectory outlier detection and existing methods can
be divided into two categories, i.e., metric-based meth-
ods and learning-based methods. The metric-based methods
[8], [9], [13] identify anomalous trajectories based on their
distance from other trajectories or reference trajectories.
However, these methods rely on artificial features, which
have limited expressiveness and may not be able to capture
the deep patterns of trajectories. The learning-based methods
[17], [21] tend to detect anomalous trajectories with machine
learning models such as VAE [48], LSTM [49], Transformer
[50], and etc., which is able to model the complex spatio-
temporal features in trajectories and mine the latent patterns
of movements. As a result, they have gained widespread pop-
ularity in both academic research and industrial applications,
and have become the mainstream approaches for trajectory
outlier detection. However, both supervised and unsupervised
learning methods are large-scale data-demanding, which may
not always be met due to the skewed distribution of trajecto-
ries.

Skewed distribution of trajectories [24], [25] refers to
the situation where the trajectories are unevenly distributed
across the available time or space. This can be attributed
to several reasons, such as the natural variability of human
movement patterns, population density, and etc.. Generally
speaking, urban regions tend to have higher population den-
sities and more points of interest than rural regions, leading
to more trajectories. Moreover, people tend to repeatedly
follow the same paths when engaging in a particular activity
(e.g. going to work or returning home), which may result in a
concentration of trajectories along those paths, also creating
a skewed distribution. For example, the spatial distribution
of taxi trajectories in Rio de Janeiro, as shown in Figure 2,
reveals that the majority of the trajectories are concentrated

FIGURE 2. The spatial distribution of taxi trajectories in Rio de Janeiro.
The blue points are the normal trajectories and the red are the outliers.

in the city center while there are relatively few in the suburbs.
This case highlights a notable disparity in the trajectories
amounts between different regions.

According to the scales of available data, the space can
be further separated into data-rich and data-sparse regions.
For data-rich regions, many existing methods have been
proven to be effective with sufficient history trajectories.
However, in data-sparse regions, these models struggle to
converge effectively. To solve this problem, the intuitive
idea [36], [37], [38], [39] is to leverage models trained in
data-rich regions to detect trajectory outliers in data-sparse
regions. However, there is a significant analytical bias caused
by the data drift among regions, which may lead to poor
performance. Specifically, the spatio-temporal characteristics
differ greatly among regions, whichmeans that there is a great
data drift of the feature distributions between the trajectories
in data-rich and data-sparse regions. As a result, it is chal-
lenging to generalize a model trained with the trajectories in
data-rich regions to detect the outliers in data-sparse regions.
For example, if a model is trained on trajectories in a region
with a dense urban environment and high traffic congestion,
it may not perform well when directly applied to a rural area
with low traffic density and different road structures. The
model may fail to capture the unique features of the target
region, such as different traffic patterns and road types.

To tackle these challenges, we proposed a Transfer-
learning method for Trajectory Outlier Detection, namely
TTOD, to detect outliers in data-sparse regions (i.e. the
region-wide trajectory outlier detection with sparse data). For
the data sparsity problem, we aim to extract the global knowl-
edge from auxiliary regions andmodel the feature distribution
with Gaussian distribution to enhance the detection task in
target regions. Instead of transferring from one region to
another, the global feature space learned from the several aux-
iliary regions is expected to contain diverse spatio-temporal
features and potential path patterns. Then the feature space of
target regions can be considered as a subspace of it with some
drift. As shown in Figure 3, the red circle corresponds to the
global feature space of the trajectory data in auxiliary regions,
while the blue circle represents the feature space of the target
region. Furthermore, the target region’s feature space can be
partitioned into two distinct parts. The first is the specific-
subspace, which is a subspace of the global feature space.
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FIGURE 3. Illustration of the feature space, where different colored dots
represent distinct patterns. The red circle represents the global feature
space, while the blue circle represents the target feature space consisting
of specific-subspace and unseen-subspace.

The second is the unseen-subspace, an unknown feature space
that arises due to the data drift of feature distributions. Our
TTOD aims to learn the mapping function from the global
feature space to the specific-subspace for knowledge trans-
ferring. To deal with the data drift problem, we introduced
a De-drift Layer that synthesizes previously unseen feature
patterns, thereby approximating the unseen-subspace. More-
over, the proposed layer can also prevent the model from
overfitting to the feature distributions in auxiliary regions,
enabling better generalization to the target regions.

Specifically, as shown in Figure 5, our TTOD is a VAE-
based model with a nested structure, which consists of the
Global VAE, the Specific-regionVAE, and theDe-drift Layer.
The Global VAE is designed tomodel the global feature space
with Gaussian mixture distribution using trajectories in the
auxiliary regions. Then the Specific-region VAE is leveraged
to work in the global feature space and act as a mapping
function between the global feature space and the specific-
subspace of target regions. To synthesizes the unseen feature
patterns, the De-drift Layer takes the learned target feature
distributions as input and transforms with a parameterized
Gaussian distribution to approximate the unseen-subspace.
Then, the latent space of the Specific-region VAE is able to
converge to the target feature space. Finally, by combining the
Global VAE encoder, the Specific-region VAE encoder, and
the De-drift Layer, we can effectively model trajectories in
the target regions. Additionally, we added an extra classifier
to detect outliers. It is noteworthy that a feature space with
higher expressiveness is more likely to be effective in terms of
generalizing to the target regions. To enhance the expressive-
ness of the learned global feature space, we make use of deep
networks as encoders and decoders. Conversely, the Specific-
region VAE is implemented using a lightweight network so
that it can be trained effectively with limited trajectories in
the target regions.

Overall, the main contributions are summarized as follows:
• To the best of our knowledge, this is the first work that
focuses on the data drift problem of feature distributions
among regions in region-wide trajectory outlier detec-
tion with sparse data.

• We proposed a novel model, TTOD, for region-wide
trajectory outlier detection. Our TTOD has the unique

ability to transfer global knowledge among regions
and synthesize unseen feature patterns, resulting in a
strong performance in the target regions with limited
trajectories.

• Extensive experiments on two real taxi trajectory
datasets show that TTOD achieves state-of-the-art
performance.

II. RELATED WORK
Trajectory outlier detection has received significant attention
and a wide range of methods [6], [7], [15], [20], [27], [28]
have been proposed. We divide the existing methods into
two categories, includingmetric-basedmethods and learning-
basedmethods. The details about methods can be found in the
following subsections.

A. METRIC-BASED METHODS
Metric-based methods are utilized to detect outliers using
distance metrics that are designed for specific tasks. These
methods identify trajectories that exhibit significant dissim-
ilarity compared to the rest or the reference trajectories as
outliers. Lee et al. [6] proposed a framework to detect sub-
trajectory outliers. The algorithm first divides the trajectories
into t-partitions to capture the fine-grained details. And then
assigns a score to each t-partition by calculating the sum of
densities of t-partitions from all observed trajectories within
the same time window. If the score of a particular t-partition
exceeds 1, it is identified as an outlier, indicating a significant
deviation from the normal patterns observed in the data.
Liu et al. [8] introduced a novel framework called RTOD.
The approach involves dividing trajectories into segments and
computing the distance between segments using the Haus-
dorff distance metric. Outlier trajectories are then identified
based on their relative distance scores. Saleem et al. [9]
presented an algorithm named RPAT. They partitioned tra-
jectories into sub-trajectories based on road segments and
computed scores for each sub-trajectory using handcrafted
features. Then the trajectories exceeding a predefined thresh-
old are flagged as outliers. Zhu et al. [10] proposed a time-
dependent transfer graph for each group of trajectories with
the same source and destination, and identified the top-k
most popular routes as reference routes for each time period.
An incoming trajectory is flagged as an outlier if it differs
significantly from the reference routes in both spatial and
temporal dimensions.

Some researchers also leverage clustering algorithms
[11], [12], [29], [30] to group similar trajectories and then
identify the trajectories that belong to the clusters with few
members as outliers. Ying et al. [12] introduced a novel
similaritymeasure that incorporates both spatial and temporal
dimensions of trajectories using minimal bounding boxes
(MBBs). They proposed to cluster the trajectories with the
DBSCAN algorithm and identify the trajectories in clusters
with a lower density as outliers. Wang et al. [11] focused
on detecting anomalous taxi trajectories and developing a
method based on edit distance and hierarchical clustering.
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They took the taxi trajectories with the same source and des-
tination pairs as a group and used an edit distance algorithm
to measure the similarity between them. Then an adaptive
hierarchical clustering algorithm is proposed to differentiate
anomalous trajectories from normal ones. Zhang et al. [14]
proposed to use the feature-based DBSCAN algorithm to
label the trajectory partitions. And then trained the classical
classification models such as SVMs with the labeled trajecto-
ries to detect outliers in a stream way. Huang et al. [15] pro-
posed a KNN-based method to detect ship anomaly behavior.
The approach involves filtering the ship anomaly data can-
didate set using the KNN algorithm and calculating the local
deviation index using the LOF algorithm. Then, they detected
the ship anomaly behaviors with a predefined threshold.

However, these methods are limited in the weak expression
of artificial features and can not capture the deep patterns in
trajectories. Additionally, they are sensitive to the proposed
metrics which vary across application domains, leading to
potential inconsistency in performance.

B. LEARNING-BASED METHODS
Some researchers proposed leveraging machine learning
models in trajectory outlier detection. These methods can be
broadly classified into two categories: supervised learning
and unsupervised learning methods.

Supervised learning methods [17], [31], [32] have gained
significant popularity in trajectory outlier detection. These
approaches involve training models using datasets with
labeled trajectories, which enables them to learn patterns and
characteristics associated with normal or outlier behaviors.
Once trained, the models can be deployed to effectively
identify outliers. Song et al. [16] presented a model called
ATD-RNN, which employs a stacked RNN neural network
to capture sequential information and internal characteris-
tics that differentiate anomalous from normal trajectories.
Then they detected outliers using a Multi-Layer perceptron.
Sillito et al. [17] proposed a novel model for analyzing
pedestrian behavior by representing their trajectories using
approximating cubic spline curves. The method utilizes an
incremental semi-supervised learning procedure and provides
a more interactive learning experience between the system
and human operators. Cheng et al. [18] introduced a model
called ST-RNN. This approach employs the RNN to capture
the underlying structure features of the trajectories and uti-
lized an attention mechanism to focus on the most relevant
spatial-temporal information.

Given the labor-intensive process of labeling trajecto-
ries, a growing number of researchers have turned their
attention towards exploring unsupervised learning meth-
ods [33], [34], [35]. These methods aim to learn patterns
and detect outlier trajectories without the demands for pre-
labeled data. Gray et al. [19] proposed a GAN-based model to
detect trajectory outliers. They employed an infinite Gaussian
mixture model in combination with bi-directional generative
adversarial networks to detect outliers in the latent space

TABLE 1. Notations used in this paper.

by using a multi-modal Mahalanobis metric. Wu et al. [20]
introduced a model called DB-TOD to detect outliers of
vehicle trajectories. They utilized a probabilistic model to
capture driving behavior and preferences in unlabeled his-
torical trajectories. Then the model employs explicit feature
counts and latent feature biases to calculate the latent cost of
routing decisions, which facilitates the detection of outliers.
Liu et al. [21] proposed a VAE-based model for online tra-
jectory outlier detection, called GM-VSAE. They proposed
to model the probability distribution of the route patterns in
the latent space with a Gaussian mixture distribution, which
enables the discovery of different types of normal routes and
facilitates effective trajectory outlier detection. Han et al. [22]
presented a time-dependent anomaly detection model called
DeepTEA, which aims to identify anomalous movements of
vehicles on the roads network. They introduced a CNN to
learn the traffic conditions and utilized a Gaussian Mixture
Variational Autoencoder to learn latent patterns of trajec-
tories. Then the learned patterns are leveraged to identify
time-dependent outliers.

Whether it is a supervised learning method or an unsuper-
vised learning method, both require a large amount of labeled
or unlabeled data, making them unsuitable for trajectory
anomaly detection with limited data.

III. PRELIMINARY
A. NOTATIONS AND CONCEPTS
In this section, we introduce the key concepts used throughout
this paper below and provide main notations in Table 1 for
reference.
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FIGURE 4. The process of road network modeling.

1) RAW TRAJECTORY
A raw trajectory is a sequence of GPS points that are ordered
by time, denoted as T =< p1, · · · , pi, · · · , pn >. Each point
pi is a three tuple (xi, yi, ti), representing the latitude xi and
longitude yi of the moving object at timestamp ti. The length
of the trajectory T is n, which indicates the number of points
in the sequence.

2) ROAD NETWORK
A road network is typically depicted as a directed node graph
G(V ,E), where the set of vertices V corresponds to cross-
roads or intersections, and the set of edges E represents the
road segments connecting these vertices.

3) MAPPED TRAJECTORY
A mapped trajectory is a time-ordered sequence of road
segments, represented by T =< e1, · · · , ei, · · · , em >. And
each ei corresponds to a specific road segment number on the
road network.

4) TRAJECTORY OUTLIER
For a given source-destination (S−D) pair, there are typically
popular routes that the majority of trajectories follow. Tra-
jectories that conform to these routes are considered normal,
whereas those that deviate from these popular routes are
outliers.

B. PROBLEM DEFINITION
1) REGION-WIDE TRAJECTORY OUTLIER DETECTION
Given a set of auxiliary regions R = {R1,R2, · · · ,RP},
along with their historical trajectories TR1:P . TRi represents
the unlabeled history trajectories in Ri. Our objective is to
identify the outliers in a target region Rtar /∈ R which
characterized by sparse labeled trajectories TRtar .

IV. METHODOLOGY
In this section, we specify the data pre-processing and the
details of our proposed TTOD, respectively.

A. DATA PRE-PROCESSING
Since the trajectory outliers are related to spatio-temporal
environments, we introduce road information to model

environmental factors and enhance the detection perfor-
mance. Specifically, for a given city, we extract the road
information, including both the map structure and road prop-
erties (e.g. road category, road length, speed limits, and etc.),
fromOpenStreetMap1. The structure information can be used
to build the road network, while the road properties can
provide valuable insights to the traffic environment. Tomodel
such road properties, we further convert the node graph of
road networks G(V ,E) to an edge graph G′(V ′,E ′). The
V ′

= {e1, · · · , ei, · · · , eN } is a set of roads consisting of
N road segments and E ′ is a set of crossroads and intersec-
tions. To represent the connection between roads, we use an
adjacency matrix A ∈ RN×N , which is an N × N matrix.
A value of 1 in Aij indicates that road i and j are connected,
while a value of 0 indicates that they are not connected.
Furthermore, to model the traffic patterns, we incorporate the
average speed derived from history trajectories, along with
the road properties, as attributes of the nodes. We denote the
attributes asX ∈ RN×P, which is an N×Pmatrix, where P is
the number of features. The process is illustrated in Figure 4.
As common sense, the spatio-temporal states of road seg-

ments in a local area are similar. Firstly, road segments in
a local area typically share similar environments, which can
impact the speed and density of vehicles, and consequently,
the traffic conditions of the road segments. Secondly, traffic
flow is a continuous process, and the speed and density of
vehicles on one road segment can influence the flow on
adjacent road segments. For instance, When a road segment
is heavily congested, causing delays and potentially leads to
further congestion on neighboring road segments, resulting in
similar spatio-temporal states in the local area. So we intro-
duce GCN [51] to learn the roads embedding on graphG′ and
enhance the embedding by message-passing among neigh-
bors. Following the methods described in [46], we trained
the GCN with a self-supervised pre-training task that aims
to enhance the mutual information between a node’s hidden
representation and those of its neighbors. By taking this
approach, we encourage each node representation to capture
and incorporate contextual information from its surrounding
neighbors representations. Further details about the method
can be found in [46]. As a result, we can learn an embedding
matrix E ∈ Rde×N of road segments, denoted as:

E = GCN(G′,X,A) (1)

where de is the dimension of road segment embedding and
N is the total number of road segments.
Given a mapped trajectory T =< e1, · · · , ei, · · · , eL >,

we can obtain the embedding of each road segment by ei =

Embedding(ei,E). Then the resulting processed sequence Tr
can be denoted as Tr = < e1 · · · eL >.

B. MODEL ARCHITECTURE
In this subsection, we describe the details of our proposed
TTOD. As shown in Figure 5, TTOD is a VAE-based

1https://www.openstreetmap.org/
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FIGURE 5. The model architecture of TTOD.

FIGURE 6. The model architecture of the Global VAE.

model and consists of three components: the Global VAE,
the Specific-region VAE, and the De-drift Layer. We will
describe each component in detail below.

1) THE GLOBAL VAE
To better identify the outlier trajectories in regionswith sparse
data, we seek to extract the global knowledge from trajecto-
ries in auxiliary regions to enhance the detection in the target
region. To accomplish this, we introduce the Global VAE.
As shown in Figure 6, it is designed to model the global
feature space with a Transformer-based VAE and trained
on trajectories in auxiliary regions. We define the global
feature space as a collection of spatio-temporal features and
potential path patterns, which is expected to be diverse and
semantically rich. As a result, we have opted to use aGaussian
mixture distribution to model the space.

Specifically, we first leverage a Transformer-based
encoder to capture the spatio-temporal features among the
road segments in trajectories and learn the trajectory embed-
ding. Formally, let L denote the length of the sequence, then
the Transformer-based encoder takes Tr =< e1 · · · eL >

as input and generates the latent representation hT with the
following formulas:

hT = EncTRFM (ei...L , φe) (2)

where EncTRFM (·) is the Transformer-based encoder and the
φe are its parameters.

Following the Transformer-based encoder above, we intro-
duce a Gaussian mixture distribution to model the diverse
global feature space. Specifically, we leverage multinomial
distribution to model the different types of spatio-temporal
features and path patterns, the prior probability distribution
can be denoted as:

pθ (c) = Mult(π ) (3)

where π ∈ RC , C is the number of types and 6C
i=1π i = 1.

To elaborate further, we employ the Gaussian function to
describe the feature distribution of each type. The c-th type’s
Gaussian distribution can be mathematically represented as:

pθ (z|c) = N (µc, σ
2
cI) (4)

whereµc ∈ Rd , σ c ∈ Rd are themean and standard deviation
vectors, d is the dimension of the feature space. Finally, the
latent feature space can be modeled as:

pθ (z) = pθ (z|c)pθ (c) (5)

Supposed that the latent feature distribution can be fitted
by C Gaussian distributions, then for a given trajectory T ,
the latent variable drawn from the posterior distribution can
be denoted as:

zT ∼ qφ(z, c|T ) = qφ(z|T )qφ(c|T )

qφ(z|T ) = N (µT , σ 2
T I)

µT = g1(hT , φµ)

σ T = g2(hT , φσ )

qφ(c|T ) := pθ (c|zT ) =
pθ (c)pθ (zT |c)∑C
i=1 pθ (ci)pθ (zT |ci)

(6)

where µT ∈ Rd , σ T ∈ Rd are the mean and standard
deviation vectors of the Gaussian distribution. g1(·) and g2(·)
are the fully connected layers.

To optimize the global feature space, we introduce a
trajectory reconstruction task, which is accomplished by
a Transformer-based decoder. Specifically, considering an
ongoing trip, the selection of the next road segments depends
not only on the observed trajectory but also on the destination
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information. According to this observation, we introduce
a sequential generation schema that predicts the next road
segments while taking the destination into consideration, the
process can be denoted as:

hi = DecTRMF (edes,hi-1, φd )

where i = 1, 2, · · · ,L h0 = zT ∼ qφ(z, c|T )

ei = f1(hi, φout )

ei ∼ pθ (e|ei−1) = Mult(softmax(ei−1)) (7)

where the ei is the reconstructed road segments number, edes
is the road embedding of destination, and the hi-1 is the hidden
vector of the previous sequence Step<i. f1(·) maps hi to a
vector with N dimension, which is the same as the number
of road segments.

Similar to the general VAE, we define the loss function
for the Global VAE as the sum of a reconstruction loss
and a Kullback-Leibler (KL) loss. The reconstruction loss is
calculated with the cross-entropy function(CE) between the
reconstructed ei and the original road segment ei, denoted
as: Lgrec(ei, ei) = CE(ei, ei). Then the total loss can be
represented as:

LGlob = 6L
i=1L

g
rec(ei, ei) + KL[qφ(c|T )∥pθ (c)]

+ KL[qφ(z|T )∥pθ (z|c)]

(8)

where KL[., .] is the Kullback-Leibler function.

2) THE SPECIFIC-REGION VAE
After obtaining the global feature space with the Global
VAE, we expect to establish a link between it and the target
feature space to enable knowledge transfer. To accomplish
this, we introduce an embedded VAE called the Specific-
region VAE, which is designed to learn a mapping function
from the global feature space to the specific-subspace of the
target regions’ feature space.

As shown in Figure 5, the Specific-region VAE is an MLP-
based model with a lightweight architecture, which works
in the latent space of the Global VAE. We utilize a single
Gaussian distribution to model the target feature space while
considering training stability. Specifically, given a processed
trajectory Tr =< e1 · · · eL > from the target region, we first
obtain the corresponding latent variable zT with the learned
encoder EncTRFM of the Global VAE, and take it as the input
of the Specific-region VAE. Then a MLP-based encoder is
leveraged to process the zT into the latent embedding h′

T in
the target feature space. The operation can be denoted as:

zT ∼ qφ(z, c|T ) = qφ(z|T )qφ(c|T )

h′
T = EncMLP(zT, φ′

e) (9)

where EncMLP(·) is the MLP-based encoder of the Specific-
region VAE. Then the posterior distribution of the target
feature space can be denoted as:

z′
T ∼ qφ′ (z′

|zT ) = N (µ′
T , σ ′

T
2I)

µ′
T = g′

1(h
′
T , φ′

µ)

σ ′
T = g′

2(h
′
T , φ′

σ ) (10)

where z′
T is the latent variant in the target feature space.

µ′
T ∈ Rdtar , σ ′

T ∈ Rdtar are the mean and standard deviation
vectors of Gaussian distribution in the target feature space
with dtar -dimension. g′

1(·) and g′
2(·) are the fully connected

layers.
Then aMLP-based decoder is introduced to reconstruct the

zT , the operation can be denoted as:

zT = DecMLP(z′
T, φ

′
d ) (11)

where zT is the reconstruction of zT . Then we leverage Mean
Squared Error(MSE) to calculate the reconstruction loss, i.e.,
Lsrec(zT , zT ) = MSE(zT , zT ). Similar to the Global VAE, the
total loss can be defined as:

LSpec(zT) = Lsrec(zT , zT ) + KL(q(z′
T|zT )||pθ ′ (z′

T)) (12)

where pθ ′ (z′
T) is the prior normal distribution of the target

feature space. Notation that our Specific-region VAE is opti-
mized with the sparse trajectories in the target region, and
we have fixed the parameters of the Global VAE to prevent
overfitting to the dataset during this stage.

3) DE-DRIFT LAYER
With the Specific-region VAE, we can obtain the specific-
subspace of the target feature space. However, as discussed in
section I, there is a gap between the feature space of the aux-
iliary regions and the target region, i.e., the unseen-subspace,
which is caused by the data drift. We aim to eliminate the
gap by further expanding the specific-subspace of the target
feature space with a De-bias Layer, so as to approximate the
unseen-subspace. As shown in Figure 6, our De-drift layer
can be viewed as a transformation that follows the encoder
of the Specific-region VAE. This layer utilizes a pair of
parameters, namely scaling and bias, to expand the diversity
of the feature distributions in the target region.

Specifically, in our approach, we draw the scaling(s) and
the bias(b) from Gaussian distributions, respectively. The
operation can be denoted as:

s ∼ N (1, softplus(θσ
s )), b ∼ N (0, softplus(θσ

b )) (13)

where θσ
s and θσ

b are the standard deviations, softplus(·) are
the softplus function. Regarding the trajectory representation
z′
T, which is produced by the encoder of the Specific-region
VAE, the transformation operation can be formulated as
follows:

z′
T
transf

= z′
T × s+ b (14)

Following the above operation, the target feature space can
be expanded. However, there is still one problem left, i.e., how
to obtain the parameters θσ

s and θσ
b . To solve this problem,

we redesign the optimization of the Specific-region VAE and
proposed to optimize both the Specific-region VAE and the
De-drift Layer alternatively using trajectories in the target
region.
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Specifically, we denote the parameters in the Specific-
region VAE as 2 = {φ′

e, φ
′
µ, φ′

σ , φ′
d , θ

′
} and the parameters

in the De-drift Layer as θσ
= {θσ

s , θσ
b }. In the Specific-region

VAE optimization, we sample the trajectories to update the
parameters in the Specific-region VAE while fastening the
scaling and bias term. The operation can be denoted as:

2 = 2 − α▽2LSpec (15)

where α is the learning rate. In the De-drift Layer optimiza-
tion, we update the scaling and bias term while keeping
the Specific-region VAE fixed. Particularly, we focus on the
variables of the reconstruction loss Lsrec between cases with
and without the De-biasing Layer to evaluate its effectiveness
and update the scaling and bias terms. The operation can be
represented as:

θσ
= θσ

− β▽θσ |LVAESpec+Ded
rec − LVAESpec

rec | (16)

where LVAESpec+Ded
rec is the reconstruction loss calculated with

the De-drift Layer and LVAESpec
rec is without it. β is the learning

rate.

C. OUTLIER DETECTION
With the process mentioned above, we have learned an
encoder(denoted as Encdet ) to model the trajectories in the
target region. Specifically, the Enctar consists of the Global
VAE’s encoder, the Specific-VAE’s encoder and the De-drift
Layer, which is able to map the trajectories to the target
feature space and obtain an expressive representation houtT .
To detect outlier trajectories, we further add a classifier that
follows the De-drift Layer to identify the outliers and opti-
mized with cross entropy function. The operation can be
denoted as:

houtT = Enctar (ei...L)

oT = softmax(MLP(houtT ))

Ltar = CE(oT , lT ) (17)

where houtT is the trajectory representation in the target feature
space, oT is the output of the classifier, and lT is the label.

D. OPTIMIZATION
To optimize our model, we adopt a two-stage training manner
that involves pre-training and fine-tuning. In the pre-training,
we update the parameters of the Global VAE based on the
loss function in Equation 8, which is computed using the
unlabeled trajectories in the auxiliary regions. In the fine-
tuning, we leverage the trajectories in the target region for
optimization. Specifically, we first freeze the parameters of
the Global VAE and then iteratively optimize the parame-
ters of the Specific-region VAE and De-drift Layer using
Equations 15 and 16 respectively. After this optimization,
we proceed to train the classifier using Equation 17 to identify
outliers. Specifically, to enhance the adaptation of the encoder
Encdet to the outlier detection task, we tie the parameter of
the Specific-VAE’s encoder and the classifier together for
adjustment, while keeping the other components fixed.

V. EXPERIMENT
To assess the effectiveness of our proposed TTOD, we con-
ducted experiments on two real trajectory datasets with the
aim of addressing the following research questions (Qs):
Q1: How effective is TTOD in detecting trajectory outliers

in regions with sparse data?
Q2: How do the main components contribute to the perfor-

mance of TTOD?
Q3: How does the selection of Gaussian distribution num-

bers in the latent space impact the performance of the
model?

Q4: How does the model’s performance vary when fine-
tuning with different number of trajectories in the target
region?

A. EXPERIMENTAL SETTINGS
In this section, we introduce the datasets, evaluation metrics,
compared baselines, and implementation details in our exper-
iment. Subsequently, we present the results and compare them
with the baseline methods.

1) DATASETS
To evaluate our approach, we utilize two taxi trajectory
datasets collected in Xi’an and Chengdu by DiDi Inc.
We additionally divide each city into 8 sub-regions for city-
wide trajectory outlier detection and choose trajectories with
a length greater than 20 in each region to construct training
tasks. Then for each city, we select 5 regions as auxiliary
regions and the other 3 as target regions. Since there were
no outlier trajectories in the dataset, we generate outlier tra-
jectories with a Dijkstra-based method and the details can
be found in the following. After the above processing, The
details about the processed datasets are shown in Table 2.

a: OUTLIER TRAJECTORY GENERATION
We first select a set of start and destination locations, and
determine their normal routes on the Road Network. Then
randomly remove one or more road segments from the
Road Network to construct a new route topological structure.
Finally, we use the Dijkstra algorithm to generate outlier tra-
jectories between the selected start and destination locations
on the new Road Network.

2) EVALUATION METRICS
We utilize Precision, Recall, and F1-score as evaluation met-
rics [40] to assess the performance of TTOD.

a: PRECISION
This is a metric calculated as the ratio of True Positive Sam-
ples to the total number of positively detected samples. True
Positive refers to the samples that are correctly identified as
positive by the model and are actually positive. False Positive
samples are the ones that are wrongly identified as positive
by the model but are actually negative.

b: RECALL
This is a metric that measures the proportion of True Pos-
itive samples relative to the total number of actual positive
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TABLE 2. Statistics of the processed datasets.

TABLE 3. Performance comparison w.r.t. Recall, Precision and F1-score.

instances which contains both True Positive and False Nega-
tive samples. False Negative samples are those that the model
identified as negative, but are actually positive in reality.

c: F1-SCORE
This is a metric that aggregates Precision and Recall mea-
sures using the harmonic mean, which allows for finding the
optimal balance between the two metrics.

3) COMPARED METHODS
We compare our approach with 6 existing methods for trajec-
tory outlier detection and 3 for outlier detection with sparse
data. The specific details are represented in follows:

a: BASELINE METHODS FOR TRAJECTORY
OUTLIER DETECTION

• ATD-RNN [16]: This is a supervised method. It mod-
els trajectories using RNN and employs a classifier to
identify anomalous trajectories.

• Traj2vec [42]: This is a semi-supervised approach to
learning trajectory representations. The method utilizes
sliding windows to extract statistical features from tra-
jectories and then leverages seq2seq models to learn
their representations. We further utilize cluster algo-
rithms for outlier detection.

• EncDec-AD [41]: This is a semi-supervised method that
introduces an LSTM-based encoder-decoder to recon-
struct sequence data. It is optimized by minimizing

the reconstruction error of normal sequences, and the
sequences that cannot be reconstructed well are identi-
fied as outliers.

• GM-VSAE [21]: This is a semi-supervised method
based on VAE. The method uses Gaussian mixture dis-
tribution to describe the latent trajectory patterns and
identifies outliers based on the probability of the trajec-
tory being generated from normal patterns.

• VSAE [21]: This is a simplified version of GM-VSAE,
where the distribution of latent routes follows aGaussian
distribution.

• DeepTEA [22]: This is a semi-supervised method that
aims to detect time-dependent trajectory outliers. The
approach uses a CNN to model road traffic conditions
and utilizes a Gaussianmixture VAE to capture the latent
patterns of trajectories. Similarly to theGM-VSAE, the
outliers are identified based on the generated probabili-
ties of the trajectories.

b: BASELINE METHODS FOR OUTLIER DETECTION WITH
SPARSE DATA

• TSAD [43]: This is a supervised method based on trans-
fer learning for outlier detection in time series data,
which involves pretraining a model on a large-scale syn-
thetic univariate time series dataset, and then fine-tuning
its output layers’ parameters on a smaller target dataset
while keeping the other layers fixed. To adapt to the
trajectory outlier detection, we utilize an LSTM-based

VOLUME 11, 2023 97009



Y. Su et al.: Transfer Learning for Region-Wide Trajectory Outlier Detection

encoder to learn the trajectory embeddings, and sub-
sequently use a classifier to detect outliers. Our opti-
mization process follows the reference [43], whereby
we pre-train the model with trajectories in the auxil-
iary regions and then fine-tune the parameters of the
classifier on the dataset in the target region. Since the
trajectories in auxiliary regions are all unlabeled, we use
the embeddings learned by Traj2vec to obtain pseudo-
labels with cluster algorithms, and use the trajectories
with pseudo-labels to create the pre-training dataset.

• ForenTrans [44]: This is a semi-supervised method
based on autoencoder for image manipulation detec-
tion. The method aims to learn a encoder to extract the
information needed for decision-making in the source
domain, and then applies the learnedmodel to new target
domains. To implement this approach, we leverage a
model with the same architecture as EncDec-AD and
pre-trained in the auxiliary regions. And then add a
classifier after the encoder for outlier detection and fine-
tune in the target region.

• Siamese [45]: This is a supervised method based on
metric learning that uses a Siamese Network to iden-
tify outliers, classifying samples with higher similarity
scores with the outliers than with the normal data as
anomalous samples.

4) IMPLEMENTATION DETAILS
Unless stated otherwise, TTOD employs a transformer con-
sisting of 4 layers and 4 attention heads in the Global VAE.
For the Specific-region VAE, we leverage 2 layer MLP as the
backbone of its encoder and decoder. Moreover, We tune the
hyperparameters with grid search. Specifically, the learning
rate α = 0.001 and β = 0.01. And the number of Gaussian
components is 6. For the road network, we directly used the
downtown areas of the two cities from OpenStreetMap [47].

B. EXPERIMENTAL RESULTS
We conducted an experiment for the performance comparison
of our TTOD with the 8 baselines mentioned above, and the
results are presented in Table 3. The results reveal various
insights that can be interpreted in multiple ways and answer
Q1. Our model shows significant advantages compared to
both trajectory outlier detection methods and outlier detec-
tion methods with sparse data. Specifically, compared to the
best baseline DeepTEA, on the Chengdu dataset, our model
improved recall by 7%, precision by 6% and F1-score by
nearly 6%. On the Xi’an dataset, the advantages are even
more significant, with a 8% improvement in recall, a 11%
improvement in precision and a 9% increase in F1-score.

In the baselines of trajectory outlier detection, DeepTEA
performs the best while ATD-RNN performs the worst.
The superior performance of DeepTEA can be attributed
to its consideration of traffic conditions, which is achieved
by the CNN. Additionally, using Gaussian mixture VAE to
model the latent feature space of trajectories can also cap-
ture complex feature patterns. Moreover, the superiority of

GM-VSAE overVSAE provides further evidence of the cru-
cial role played by modeling the latent space with Gaussian
mixture distributions. TheATD-RNN is a supervised method
and requires a large amount of labeled trajectory data with
balanced label distribution for model training. Therefore it
performs poorly when there are limited labeled trajectories
in the training stage.

ForenTrans outperforms all other baselines for outlier
detection with sparse data, delivering superior and more
consistent results. This method employs an autoencoder to
model the feature space for knowledge transfer and is trained
in a weakly-supervised learning manner. While it does not
depend on large quantities of labeled data, it assumes that the
feature space of the auxiliary regions and target region can
be shared, which falls short in scenarios where feature dis-
tribution drift occurs. Furthermore, sharing the feature space
for knowledge transfer in a straightforward manner creates
an overly large search space for the target region, which can
lead to unstable detection performance. As a popular method
in few-shot learning studies, the Siamese is highly sensitive
to the selection of typical normal and typical outlier samples.
It can achieve good performance under some anchor samples.
However, this method is extremely unstable and performs
poorly when typical samples cannot be guaranteed to be
existing or accurately selected.

C. ABLATION STUDY
To answer question Q2, we performed an ablation study to
access the effectiveness of the main components in TTOD.
The ablated variants are represented as follows:

• TTOD w/o EmbVAE : This is a variant of TTODwith a sin-
gle global VAE for feature space learning and optimized
as ForenTrans.

• TTOD w/oDedrift : This is the degenerate model of TTOD
with no De-drift Layer.

1) CONTRIBUTION OF THE NESTED STRUCTURE OF VAE
We compare the performance of our model and the ablated
version without the Specific-region VAE and the De-drift
Layer, i.e. TTOD w/o,EmbVAE , to verify the effectiveness of
the nested structure for knowledge transfer between the fea-
ture spaces of the auxiliary and target regions. As shown in
Table 4, TTOD improved about 8% in F1-score, which can
be interpreted in two ways. Firstly, there is a gap between the
feature space in the auxiliary regions and the target regions.
To facilitate knowledge transfer, a nonlinear transformation
function is required. Secondly, the nested VAE architec-
ture can effectively learn the mapping function between the
feature spaces in the auxiliary and target regions, further
enhancing the model’s knowledge in the target region and
improving its performance.

2) CONTRIBUTION OF DE-DRIFT LAYER
To validate the effectiveness of the De-drift layer, We com-
pare the performance of TTOD and TTOD w/oDedrift .
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TABLE 4. Performance comparison w.r.t. Recall, Precision and F1-score in ablation study.

FIGURE 7. Varying the number of Gaussian components of TTOD.

The results in Table 4 demonstrate the significant role of the
De-drift layer in the outlier detection task in the target region.
Specifically, the F1-score improved about 6% on the Xi’an
dataset and about 3% on the Chengdu dataset. We attribute
this to the transformation achieved by the De-drift Layer,
which increases the diversity of the feature space by adding
scale and bias that sampled from Gaussian distributions and
further reduces or even eliminates the unseen-subspace of the
target feature space mentioned in Section I.

D. SENSITIVITY ANALYSIS
Since our model employs Gaussian mixture distributions to
construct the feature space, the number of Gaussian compo-
nents directly affects the model’s ability to model trajectories.
In this section, we evaluate the model’s performance under
various numbers of Gaussian components to answer ques-
tion Q3. As shown in Figure 7, the performance of the
model fluctuates significantly as the value of C changes and
exhibits similar trends in all the target regions. Specifically,
when the C changes from 1 to 10, the performance shows
an upward trend, followed by a downward trend, and then
gradually stabilizes. It is easy to understand that whenC = 1,
the model degenerates into a traditional VAE model with
limited expressive ability in the feature space, resulting in
poor performance. As C increases, multiple Gaussian dis-
tributions can describe more complex trajectory features,
thereby enhancing its ability to model trajectories and sig-
nificantly improving performance. As C increases beyond
the optimal value, redundant Gaussian components introduce
additional noise into the feature space, leading to a decline
in performance. For example, in the region T7 of Xi’an,
when the number of Gaussian components is 6, the model’s
performance reaches its optimum, indicating that a mixture
of 6 Gaussian distributions is sufficient to model the feature

space of the trajectories in the region. After exceeding 6, the
performance shows a downward trend.

E. PERFORMANCE ANALYSIS OF THE MODEL WITH
DIFFERENT NUMBER OF FINE-TUNING TRAJECTORIES
IN THE TARGET REGION
To answer questionQ4, we compare TTODwith three typical
baseline methods (i.e. ATD-RNN, DeepTEA and Foren-
Trans) on the Xi’an dataset to analyze the performance of the
model with the different number of fine-tuning trajectories.
Specifically, we vary the size of the dataset for fine-tuning
from 20% to 100% proportions of the target regions’ training
dataset, and then evaluated the model’s performance on the
test dataset. As shown in Figure 8, TTOD achieves better per-
formance in all experiment settings and demonstrated excel-
lent stability. Taking the results on Region T7 as an example,
when the proportion of fine-tuning samples is above 60%,
the model’s performance remains relatively stable despite the
decrease in data size, highlighting its robustness in handling
changes in sample quantity. As the proportion falls below
60%, there is a noticeable decline in performance initially,
but it quickly stabilizes. This can be easily understood as the
performance decline is primarily attributed to the reduction
in the inherent information content of the smaller dataset.
Furthermore, even in the extreme case where only 20% of
the dataset is available, the model consistently maintains an
F1-measure of over 70%, showcasing its superiority in han-
dling sparse data scenarios. Among all the baseline methods,
ForenTrans demonstrates better stability, primarily due to
the knowledge acquired during the pre-training phase, which
effectively enhances detection in target regions. However,
its performance is significantly inferior to that of TTOD.
DeepTEA and ATD-RNN exhibit notable declines in per-
formance as the sample quantity decreased. This can be
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FIGURE 8. The performance comparison of TTOD and the selected baselines w.r.t. different sizes of the fine-tuning samples on Xi’an
dataset.

attributed to the fact that DeepTEA requires a substantial
amount of training samples to learn latent patterns of normal
trajectories. Similarly, ATD-RNN also relies on a significant
labeled dataset to acquire effective features for detection.

VI. CONCLUSION
In this paper, we focus on the region-wide trajectory out-
lier detection with sparse data. Considering the challenges
in data scarcity and the data drift problem among regions.
We proposed a VAE-based model that is designed to transfer
the knowledge in feature space from the auxiliary regions
to the target region. Specifically, to learn the Global feature
space with the trajectories in auxiliary regions, we introduced
the Global VAE which is a Transformer-based model and
describes the feature space with Gaussian mixture distribu-
tions. To transfer the learned knowledge to the target region,
we then leverage anMLP-based VAE, i.e. the Specific-region
VAE, to map the learned global feature space to the target
feature space. As for the data drift problem among regions,
we introduced the De-drift Layer to generate novel feature
patterns and approximate the unseen feature space. Extensive
experiments on two trajectory datasets demonstrate that the
proposed method significantly outperforms all the compared
baselines.
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