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ABSTRACT Keyphrase extraction is a Natural Language Processing task pertaining to the automatic
extraction of salient terms that semantically encapsulate the major theme and topics of a document. In this
article, we present LMRank, a novel approach that utilizes dependency parsing and the sentence embeddings
of pre-trained language models to improve the accuracy of the keyphrase extraction task. In addition,
we conduct a benchmark analysis of our approach, which showcases that it scales far better than similar ones
in terms of execution time. The contribution of this work is threefold: (i) we propose a novel approach that
significantly outperforms the state-of-the-art keyphrase extraction approaches in terms of time performance
and accuracy in selected datasets; (ii) we provide a comparative evaluation of our approach against previous
ones, by utilizing broadly used datasets in the literature and established evaluation metrics (e.g., the F1 and
pF1 scores); (iii) we make the datasets and code used in our experiments public, aiming to further increase
the reproducibility of this work and facilitate future research in the field.

INDEX TERMS Keyphrase extraction, natural language processing, deep learning, language models,
sentence embeddings, semantic similarity, LMRank.

I. INTRODUCTION
Keyphrase extraction (KE) is a basic Natural Language Pro-
cessing (NLP) task; it has been described as the process of
automatically extracting keyphrases from a document, i.e.,
a set of phrases containing one or multiple words that are
considered to be meaningful and representative for a docu-
ment [1]. Various Information Retrieval (IR) and NLP tasks,
such as text summarization, categorization, classification,
and generation of recommendations based on textual data,
greatly benefit from the utilization of KE approaches [2].

Research on KE gains increasing interest, as documented
by recent approaches including: (i) HyperMatch [3], which
is a deep learning approach that embeds keyphrases and
the document in the same hyperbolic space and estimates
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their relevance between them by utilizing the Poincaré dis-
tance; (ii) the approach described in [4], which suggests
the use of the intermediate layers of BERT [5] that are
often ignored by previous KE approaches; (iii) HAKE [6],
which simultaneously utilizes multiple textual features (lin-
guistic, statistical, structural and semantic) to extract the most
appropriate keyphrases; (iv) PatternRank [7], which relies on
pre-trained language models and POS (Part-of-Speech) tags
to extract the most relevant keyphrases. It is noted that, while
certainly interesting, these approaches have not made their
code publicly available.

Overall, KE approaches proposed in the literature can
be separated into two major groups, namely unsupervised
and supervised ones, both possessing certain advantages
and drawbacks. Specifically, one major disadvantage of
supervised approaches is that they require a large num-
ber of training data to be annotated by human experts,

VOLUME 11, 2023 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 71459

https://orcid.org/0000-0003-2611-3129
https://orcid.org/0000-0002-6581-6831
https://orcid.org/0000-0002-2416-2878


N. Giarelis, N. Karacapilidis: LMRank: Utilizing Pre-Trained Language Models and Dependency Parsing for KE

in contrast to unsupervised ones [1]. Another drawback of
supervised approaches is that they often exhibit bias towards
the domain of their training, thus they cannot generalize
on new domains [1]. A major advantage of the unsuper-
vised approaches is that they are applicable in various
settings, since they do not require any training or domain
specific knowledge [8]. However, in datasets where their
texts are thoroughly labelled by humans, the supervised
approaches have been shown to achieve better scores during
the evaluation (compared to their unsupervised counterparts),
as documented in [8] and [9]. The authors of [8] also highlight
the ability of unsupervised approaches to run in real time due
to their computational efficiency. For all the above reasons,
this paper focuses on unsupervised approaches.

These are often evaluated using exact or partial match
F1 metrics. For instance, in the review presented in [9],
the authors comparatively assess multiple KE approaches
by using such metrics, arguing that the partial match
evaluation framework yields F1 scores that are closer
to those assessed manually by human experts (compared
to the scores calculated by the exact match evaluation
framework).

Unsupervised KE approaches have been further classified
as classical or embeddings-based ones [9]. Compared to
the embeddings-based approaches, the classical ones miss
important semantic information from the text, thus result-
ing in lower F1 scores. However, most embeddings-based
KE approaches today do not build on recent advance-
ments in deep learning models that demonstrate increased
accuracy in many NLP tasks. In addition, while many
embeddings-based KE approaches utilize regular expres-
sion patterns that extract phrases consisting of nouns and
adjectives, these patterns often ignore common language pat-
terns (e.g., conjunctions); this results to the production of
long phrases that consist of multiple keyphrases. As pro-
posed in [10], dependency parsing, which refers to the
process of examining the dependencies between the phrases
of a sentence to determine its grammatical structure, pro-
vides a way to produce meaningful and cohesive candidate
keyphrases.

Aiming to advance the state-of-the-art of embeddings-
based keyphrase extraction, this article proposes a novel
unsupervised KE approach, called LanguageModelRank
(LMRank), which builds on the strengths of the abovemen-
tioned models and techniques. Specifically, our approach
builds on dependency parsing for the candidate keyphrase
extraction step and leverages the accuracy of sentence embed-
dings from pre-trained language models, aiming to augment
the quality of keyphrase ranking. Our approach is unsuper-
vised, in that it does not require labelled data; thus, it can be
used in texts of different themes and topics without additional
training on multiple documents requiring manually assigned
keyphrases by human experts. The accuracy and performance
of the proposed approach are thoroughly assessed against
a selected set of prominent unsupervised KE approaches
existing in the literature.

The overall contribution of the work described in this arti-
cle is threefold: (i) we propose a novel KE approach, which
reaches or surpasses the state-of-the-art regarding the KE
task; (ii) we provide a comparative evaluation of our approach
compared to other similar ones, by utilizing widely known
datasets of the literature and established evaluation metrics
(e.g., the F1 and pF1 scores); (iii) we make the datasets1

used, the code of the proposed approach,2 as well as the
code developed for our KE experiments3 publicly available,
aiming to further increase the reproducibility of this work and
facilitate future research in the field.

The remainder of this article is organized as follows. Back-
ground concepts and related work concerning selected clas-
sical and embeddings-based unsupervised KE approaches
are analyzed in Section II. The proposed approach is pre-
sented in Section III. The evaluation of these approaches,
together with the associated technical specifications, datasets
and metrics, are presented in detail in Section IV. Finally,
concluding remarks and future work directions are outlined
in Section V.

II. RELATED WORK
As suggested in [9], the unsupervised KE approaches can
be divided into two major subcategories, namely the clas-
sical and the embeddings-based ones. These can be further
split into more subcategories according to the underlying
technique employed each time (thus distinguishing them as
statistical approaches, graph-based approaches, etc.). Adopt-
ing the above classification, this section reports on prominent
KE approaches that have been used as the baseline in our
experimentations.

A. CLASSICAL APPROACHES
TextRank [11] is a graph-based approach, which builds a word
graph. As a first step, it assigns POS tags for each term in
the text; then, candidate keyphrases that consist of nouns and
adjectives are selected. Each candidate keyphrase is added to
the graph as a node. Edges connect terms, which are included
in a sliding window ofN terms. For the case of undirected and
unweighted edges, the TextRank score S(vi) for each node vi
is calculated by the following recursive formula:

S (vi) = (1− d)+ d ×
∑

vj∈0(vi)
S

(
vj

)
/
∣∣0 (

vj
)∣∣ (1)

where d is the damping factor, set to 0.85 as proposed in [1],
and0(vj) denotes the set of neighboring nodes of vj. When (1)
converges, the keyphrases (nodes) are sorted in descending
order by their calculated scores.
KP-Miner [12] is a statistical approach that utilizes the

classic information retrieval TF-IDF metric score alongside
two statistical features, which affect the selection of candidate
keyphrases. The first feature is the cutoff constant, which

1https://drive.google.com/drive/folders/1ziElrM1Y3Wp1vLK21OPts
N7Da-bbR7Sb

2https://github.com/NC0DER/LMRank
3https://github.com/NC0DER/KeyphraseExtraction
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ensures that keyphrases which had their first occurrence after
this constant will be filtered out of the list of candidate
keyphrases. The second feature is the least allowable seen
factor (k), which filters out keyphrases that appeared less
than k times. As a final step, this approach ranks the filtered
list of candidate keyphrases and returns the top-n specified.
This ranking is determined by the combination of the TF-IDF
keyphrase scores, their positions in the text, and a boosting
factor that favors keyphrases consisting of multiple terms
instead of a single one.
MultiPartiteRank [13], abbreviated as MPRank, is a graph-

based approach that relies on topicmodelling. The first step of
this approach is the construction of multipartite graph, which
models keyphrase candidates as nodes in the graph, while the
edges connect keyphrases belonging to different topics. These
edges are weighted based on the distance between each pair
of candidate keyphrases (ci, cj). Their weights are adjusted
according to the following equation:

ew
(
ci, cj

)
= ew

(
ci, cj

)
+ a∗e

1
pi ∗

∑
ck∈T(cj)−{cj}

wki

(2)

where ew(ci, cj) is the weight between each pair of can-
didate keyphrases, α is a hyperparameter that controls the
weight adjustment, pi is the relative position in text of ci
and T (cj ) – {cj} is the set of candidate keyphrases that
belong to the same topic as cj, without including it. After
the graph is constructed, the extracted keyphrases are ranked
using the TextRank approach. As a final step, the top-N ranked
keyphrases are extracted.
YAKE! [14] is a statistical approach that utilizes various

statistical metrics. It first splits the text into individual terms
and then calculates a score S(t) for each term t . This score
relies on the following metrics: Tcase (casing aspect of t;
this metric considers that uppercase terms or terms starting
with a capital letter and are not found near the start of a sen-
tence have higher importance than other ones); Tpos (favors
terms are positioned near the beginning of the document);
TFnorm (term frequency normalization); Trel (term related-
ness to context; this metric measures the number of distinct
terms that are found on the left and right side of t); Tdifsent
(favors terms that appear more frequently across different
sentences). For each term t , the score S(t) is calculated as
follows:

S(t) =
Trel∗Tpos

Tcase +
TFnorm
Trel
+

Tdifsent
Trel

(3)

As shown in (4) below, for each candidate keyphrase ck,
a score S(ck) is calculated, which relies on the S(t) scores
of its constituent terms. It is noted that for smaller values of
S(ck), the quality of the ck is increased.

S(ck) =

∏
t∈ck S(t)

TF (ck) ∗(1+
∑

t∈ck S(t))
(4)

B. PRE-TRAINED EMBEDDING MODELS
One major drawback of the classical approaches is that they
do not encapsulate the semantic information of both the
candidate keyphrases and the document. This information can
be incorporated through pretrained word, phrase or sentence
embeddings, which were introduced through the Word2Vec
model [15], as an attempt to improve the accuracy of exist-
ing NLP approaches. A series of similar models have been
then introduced in the literature, including Doc2Vec [16],
GloVE [17], FastText [18], SIF [19], Sent2Vec [20] and
ELMo [21]. Generally speaking, earlier models calculate
embeddings at the term level (word embeddings), while later
ones model their embeddings at the phrase or sentence level
(phrase / sentence embeddings). The advantage of the latter
is that they capture additional semantics.

After the introduction of the Transformer model [22],
several pre-trained deep learning language models have
been also proposed in the literature, including BERT [5],
MUSE [23], and DistilBERT [24]. These models demon-
strate increased accuracy in various NLP tasks over their
predecessors.

C. EMBEDDINGS-BASED APPROACHES
The approaches described in this section utilize the semantic
information provided by the embedding vector represen-
tations mentioned in the previous section. This semantic
information facilitates the computation of the semantic sim-
ilarity between the candidate keyphrase and the document
itself, where more similar keyphrases that capture the seman-
tic context of the document are ranked higher.
WordAttractionRank [25] is a graph-based approach,

which utilizes pretrained word embeddings. Initially, this
approach preprocesses the input document (e.g., performs
tokenization, applies POS tags, and extracts adjectives and
nouns), similarly to other graph-based approaches. Then,
it constructs a graph of terms, where terms are represented as
nodes connected with edges that model their co-occurrence
in a window of N terms. The edges are weighted using the
word attraction score, which is calculated as the product
of the Dice coefficient of term frequencies and the force
attraction score for each pair of terms. The force attraction
score is calculated as the product of term frequencies for a
pair of terms, divided by the Euclidean distance of their word
embeddings. After this score is calculated for each term, co-
occurring terms (in a window of N terms) are concatenated
into keyphrases. Keyphrases that do not end with nouns are
filtered out. Finally, the top-n keyphrases with the highest
word attraction score are extracted.
Reference Vector Algorithm (RVA) [26] is a statistical

approach. Initially, RVA trains GloVe embeddings from the
terms of a document. In a second step, the mean word embed-
ding of terms found in the title and abstract of a document
is calculated. In a third step, this approach extracts n-grams,
where 1≤ n≤ 3, from the title and abstract. These n-grams are
the considered candidate keyphrases. Finally, each candidate
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keyphrase is ranked based on the descending cosine simi-
larity score between the document embedding and the mean
embedding of the candidate keyphrase; finally, the top-nmost
similar keyphrases are extracted.
EmbedRank / EmbedRank++ [27] is a statistical

approach, which utilizes sentence level embeddings. The
EmbedRank++ version adds an extra processing step over
EmbedRank that keeps diverse keyphrases for the final list.
The major difference of this approach over previous ones
is that it utilizes sentence embeddings, which capture more
semantic information compared to earlier embeddingmodels.
EmbedRank utilizes a three-step process. As a first step, the
candidate phrases are extracted from the document if they
solely comprise nouns or adjectives or both. As a second step,
the document embedding is computed as the average of all
sentence embeddings; the candidate keyphrase embeddings
are similarly calculated. Thirdly, the keyphrases are ranked
based on their cosine distance of their embedding vector
from the document embedding vector. The extra diversifi-
cation step of EmbedRank++ is to measure a modified, for
the KE task, Maximal Marginal Relevance (MMR) metric.
This metric re-ranks the final keyphrase list in a way that
diverse keyphrases, which are not semantically similar, are
ranked higher before extracting the top-N ones. This metric
is computed using the following equation:

MMR(ci, cj)

= argmaxCi∈C\K
[
λ ∗ ˜cossim (Ci, doc)

− (1− λ)maxCj∈K ˜cossim
(
Ci,Cj

)]
(5)

where Ci, Cj are the embedding vectors of candidate
keyphrases i, j, C is the set of all candidate keyphrases, K
is the set of all extracted keyphrase and λ is a hyperparam-
eter that controls the amount of diversity of the final list of
candidate keyphrases. Finally, ˜cossim is the normalized cosine
similarity function applied between two vectors.
Key2Vec [10] is a graph-based approach, which utilizes

phrase embeddings. Initially, it generates phrase embed-
dings from a FastText embeddings model that is trained on
a large scientific corpus. This model is trained on candi-
date keyphrases, which are extracted n-grams, comprising
solely nouns and adjectives. Similarly, to earlier approaches,
the candidate keyphrases are scored by calculating the
cosine similarity between the candidate keyphrase embed-
dings and the document embeddings. However, the candidate
keyphrases are ranked by utilizing a weighted graph of terms
with edges connecting terms co-occurring in a fixed win-
dow size. For each pair of terms, the weights of the graph
are calculated by dividing their cosine similarity with the
pointwise mutual information metric of their term frequency
co-occurrence. Finally, after the weight for each edge of the
graph is calculated, the keyphrases are ranked based on their
descending weighted Personalized PageRank [28] score and
the top-n keyphrases are extracted.
SIFRank / SIFRank+ [29] is a statistical approach, which

utilizes the SIF sentence embedding model and the ELMo

pre-trained language model to produce embeddings. Both
versions of this approach share the same underlying method-
ology; nonetheless, SIFRank+ performs better on longer
documents, while SIFRank performs better in shorter ones.
The approach comprises four steps. In the first step, the can-
didate keyphrases are selected similarly to other approaches.
At the second step, the word embedding vector, for each term
of all candidate keyphrases, is generated from ELMo. At the
third step, the previously calculated word embeddings are
aggregated by SIF(see Section II-B) to produce a sentence
embedding for each candidate keyphrase; in this step, the
mean embedding is also calculated for the document itself.
At the final step, keyphrases are ranked by the cosine similar-
ity between their embeddings and the document embedding.

For each candidate keyphrase, SIFRank+ performs an
additional step by multiplying the former similarity score by
a position-based SoftMax function (see Eq. 6 and Eq. 7).
The pck i1 is the first positional occurrence of a selected
candidate keyphrase, whileµ is a hyperparameter to optimize
position-biased weight of the candidate keyphrases at the
beginning, especially the first phrase.

SIFRank(vck i , vd ) = Cossim(vck i , vd ) =
vck i · vd∥∥vck i∥∥ · ∥vd∥

(6)

SIFRank + (vck i , vd ) =
e1/(pck i1+µ))∑N
j=1 e

1/(pck j1+µ)

·SIFRank(vck i , vd ) (7)

KeyBERT [30] is a statistical approach, which relies on
the pre-trained sentence transformer approach [31]. As a first
step, the model extracts the candidate keyphrases as a list of
n-grams, based on their occurrence frequency. Then, it gener-
ates a sentence embedding for each candidate keyphrase and
a document embedding, similarly to earlier approaches using
a user-selected pre-trained model. It is noted here that many
pre-trained sentence transformer models are already avail-
able.4 In this work, we utilize the all-mpnet-base-v2 model,
which is based on the MPNet approach [32]. Afterwards,
the keyphrases are ranked based on the descending cosine
similarity score between their embeddings and the document
embedding.

Similarly to EmbedRank, KeyBERT includes an extra
diversification step for the ranked list of keyphrases. This
step either computes the MMR metric, (as shown in Eq. 5),
or the Max Sum Similarity metric proposed by the KeyBERT
authors.
KPRank [33] is a graph-based approach, which embeds

positional and contextual information into a biased PageRank
algorithm. KPRank calculates a document embedding vector,
similarly to other approaches, by utilizing a pre-trained lan-
guagemodel named SciBERT [34]. Afterwards, this approach
builds a term graph where for each node vi, a theme score is
calculated as the cosine similarity between the embedding of

4https://www.sbert.net/docs/pretrained_models.html
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FIGURE 1. Visualization example of the dependency tree.

vi and the document embedding. This score is used to assign
a higher probability score to a termwith a higher theme score.
Furthermore, KPRank calculates a position score for each
term in the graph, which is the sum of its inverse positional
occurrences in the document. For each node vi, a weight vwi
is calculated as the product of the aforementioned theme and
position scores. All node weights are normalized and stored
into a vector p̃ as described in (8). This vector is used as a
positional bias for the biased PageRank formulated in (9).

p̃ =

[
vw1∑N
i=1 vwi

,
vw2∑N
i=1 vwi

, . . . ,
vwn∑N
i=1 vwi

]
(8)

S(vi) = (1− d) ∗p̃+ d×
∑

vj∈0(vi)

wij∣∣out(vj)∣∣S(vj) (9)

In Eq. (9), vi, vj are the nodes of the term graph,wij is the edge
weight set to the co-occurrence frequency between a pair of
terms within a fixed sized window (k = 10), and | out(vj)| is
the out-degree of node vj. Finally, the candidate keyphrases
are ranked by their descending S(vj) scores and the top-n of
them are extracted.

III. LMRank: THE PROPOSED APPROACH
As shown in Fig. 2, the approach proposed in this article
follows a multi-step methodology, which is similar to the
earlier works presented in Section II.

A. LMRank
The first step of our approach (see pseudo-code in Alg. 1) is
to extract a list of candidate keyphrases from the text. This
is done by extracting noun phrases (NPs), i.e., phrases that
contain terms with multiple POS tags, where the final term
of the NP is a noun. NPs are built using syntax dependency
parsing, which connects terms in a syntactic dependency tree.
When traversed, this tree yields the NPs. This is visualized
through a sample sentence in Fig. 1. As shown, the NPs are
‘float switch’, ‘relief valve’ and ‘pressure relief valve’.

It is noted that earlier approaches would have found the
position of the final noun of a sentence and traced the sen-
tence backwards until they find the first noun or adjective
in the sequence. This would erroneously result in a sin-
gle candidate keyphrase, e.g., ‘carbonator float switch and
pressure relief valve’. The reason we follow this technique
is that regular expressions ignore common speech patterns
(e.g., conjunctions), which leads to the production of long
phrases consisting of multiple keyphrases. The removal of
conjunctions from keyphrases is also discussed in [35].

Algorithm 1 Pseudo-Code of LMRank
Input: Text, Parameters, nlp_model,

sent_transform_model
Output: List of top-n keyphrases and their scores

// Extract candidate keyphrases and their first positional occur-
rence.
candidate_keyphrases← []
nlp_pipeline← nlp_model(Text)

for noun_chunk in nlp_pipeline do
if keyphrase not in nlp_model.stopwords
and keyphrase.pos_tag not in [‘pronoun’, ‘particle’]
and keyphrase.length > 2
and not keyphrase.starts_with_digit do
if parameters.keep_noun_adjs do
if noun_chunk.consists_only_of_nouns_adjs do
candidate_keyphrases.append
((noun_chunk, first_pos))

else do
candidate_keyphrases.append
(((noun_chunk, first_pos)))

// Optional step: Remove near duplicate candidate keyphrases.
if parameters.deduplicate do

candidate_keyphrases← lexigographic
_sort(candidate_keyphrases)

for keyphrase in candidate_keyphrases do
matches← get_close_matches(keyphrase,
candidate_keyphrases)
candidate_keyphrases.remove(matches)

// Calculate the embeddings for the keyphrases and the document,
// by utilizing the sentence transformers model.
embeddings← sent_transform_model.encode
(candidate_keyphrases)
document_embedding← sent_transform_model.
encode(chunk(Text))
// Normalize the embeddings
embeddings← normalize(embeddings)
document_embedding←
normalize(document_embedding)
// Create the query-able vector index and rank the embedding
vectors of // the keyphrases according to the semantic (cosine)
similarity with the // document embedding vector in question.
top_k← candidate_keyphrases.length
index← vector_index.inner_product_flat_index
(embeddings)
keyphrases, similarities ← index.query(document embedding,
top_k)

// Optional: Rerank the list based on the position metric.
if parameters.position_metric do
position_scores← softmax(keyphrases.positions)
for keyphrase, pos_score in (keyphrases,
position_scores) do

keyphrase.score← keyphrase.similarity ∗ pos_score
keyphrases← lexicographic_sort(keyphrases, key
← score)

else do

for keyphrase, pos_score in (keyphrases,
position_scores) do

keyphrase.score← keyphrase.similarity
top_n_keyphrases_scores_list
← keyphrases.get(parameters.top_n)

return top_n_keyphrases_scores_list
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FIGURE 2. The LMRank approach.

Apart from the dependency parsing, we also filter
out candidate keyphrases that have certain patterns. The
removal of these patterns leads to certain accuracy bene-
fits [35], [36], [37]. Specifically, the removed keyphrases
have one of the following patterns: (i) the keyphrase is a stop
word [36], [37]; (ii) the keyphrase starts with a pronoun (‘he’,
‘she’, ‘they’) or a particle (e.g., ‘not’) [35]; (iii) the keyphrase
has a character length less than three (e.g., ‘a’, ‘an’, ‘to’) [36];
(iv) the keyphrase starts with a digit (e.g., ‘90% percent of
participants’) [36]. In our approach, we also define a boolean
flag, called keep_nouns_adj, which - when set to True - filters
out noun phrases that their individual terms are not (proper)
nouns and adjectives; this pattern is referred to as the NP
chunking technique [37]. For keyphrases that appear often
in the text, we maintain their first positional occurrence and
remove their exact duplicates from the list to minimize the
number of computations.

This step also has an optional feature, called dedupli-
cation, which can be toggled by setting the deduplicate
flag of our extract_keyphrases() method to True. As men-
tioned in Section II, due to the similarity score, a lot of
embeddings-based approaches extract keyphrases that are
redundant (e.g., in a document that discusses machine learn-
ing, the extracted keyphrases could be ‘machine learning’,
‘machine learning programs’, ‘machine learning algorithms’
etc.). To eliminate these duplicates, we sort the list lexico-
graphically by using Python’s stable sort algorithm; this has
the benefit of placing the shortest keyphrases earlier in the
list. We consider these keyphrases to be more generic, since
they constitute the largest common substrings. To identify and
remove the redundant keyphrases, we use a native Python
function called get_close_matches() that can be imported
from the difflib module;5 in this function, we set a cutoff

5https://docs.python.org/3/library/difflib.html

of 0.65 and the number of nearest matches to 10, meaning
that the top-10 most similar keyphrases that share more than
65% of their characters with the largest common substring are
deleted from the list of candidate keyphrases.

The second step of our approach is to calculate the embed-
dings for the candidate keyphrases and the document into
a common embedding space. Firstly, we use the sentence
transformer model discussed in Section III-B, which has a
max sequence length of 384. The candidate keyphrases that
consist of a few words, typically between two to five, are
much shorter in length, therefore we directly embed these in
a single pass. For the document embedding, we retrieve its
token length from the English NLP model of spaCy. If the
text has a token length shorter than the max sequence length,
we embed the entire document at once; if the text is longer,
we split the document in chunks of 384 and we pass these
chunks to the sentence transformers model. The document
embedding is the mean embedding of all chunk embeddings.

We refer to the above technique as ‘‘text chunking’’, with
an alternative being to split the text into sentences and then
encode their embeddings and take their mean embedding
for the document representation. During our experiments,
we noticed that this alternative technique was slower in
terms of execution time of the embedding encoding process.
However, the text chunking technique relies heavily on the
fact that the writing system of a language uses whitespace
characters as word separators, which for certain languages
(e.g., Chinese, Japanese, Korean, Thai, Khmer) is not true.
In the case of such languages, we would need to use the
sentence splitting technique before calculating the embed-
dings. If we do not use one of these techniques, then any
employed transformer model would ignore all text beyond its
input size limitation due to the attention mechanism [38], and
our approach would miss valuable context in its document
embedding representation.
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The third and final step of our approach is the candidate
keyphrase ranking. This is done by calculating the cosine
similarity score between the document representation and the
candidate keyphrases. We start by normalizing the embed-
ding vector of the candidate keyphrase; then, we store these
normalized vectors in an inner product index. This is equiv-
alent to calculating the cosine similarity score between the
queried vector and the vectors stored in the index. Afterwards,
we normalize the document vector and query the index to
find the top-kmost similar vectors and their similarity scores,
where top-k is equal to the length k of the list of the candidate
keyphrases, since we rank the entire list by the descending
similarity score. The reason we do not instantly extract the
top-n keyphrases is that we may optionally employ an addi-
tional post-processing step, which multiplies the similarity
score by the SoftMax value of the inverse first position score,
as shown in Eq. (7). For the position metric adopted in our
approach, we set the hyperparameter µ to 1. The reason that
we incorporated this metric is the increase in accuracy scores,
as argued by the authors of SIFRank and KPRank. This
post-processing step can be set using the positional_feature
flag of the extract_keyphrases() method. In any case (inde-
pendently of whether we employ the post-processing step or
not), the top-n keyphrases are extracted from the final list of
keyphrases.

B. SOFTWARE SPECIFICATIONS
For the candidate keyphrase extraction step, we utilize
the spaCy [39] library;6 especially, its pretrained natu-
ral language model named en_core_web_sm.7 Specifically,
we extract candidates using spaCy’s noun chunks, which
are essentially NPs. Generally speaking, spaCy is considered
as a very prominent NLP framework in terms of execution
speed [40]. However, this performance is compensated by
the cost of not achieving the state-of-the-art accuracy in most
NLP tasks. In any case, we make clear that our approach does
not depend on spaCy; other NLP libraries can be used instead
of it (e.g., Stanza [40]).
For the embeddings of the candidate keyphrase and

the document, we are utilizing the sentence transformers
approach and the all-mpnet-base-v2 model,8 which is cur-
rently the most accurate English language model regarding
the semantic similarity task [32]. This model embeds each
inputted text sequence into a 768-dimensional embedding
vector. Currently, our approach supports only the English
language; however, through the use of multilingual models,
we can expand our approach intomore natural languages. The
reason we selected the aforementioned approach for sentence
embeddings is because this library supports multithreading
and multiprocessing across multiple devices (CPU threads,
multiple GPUs etc.), which - compared to earlier transformer

6https://spacy.io/
7https://spacy.io/models/en#en_core_web_sm-accuracy
8https://www.sbert.net/docs/pretrained_models.html

approaches - reduces the execution time dramatically without
sacrificing the accuracy of the semantic similarity task.

For the candidate keyphrase ranking process, we use
the FAISS9 vector search library [41] of the Facebook AI
Research (FAIR) lab, which enables a fast and efficient
comparison of multiple vectors using a low-level C API.
As reported in [41], FAISS achieves state-of-the-art speedup
in terms of execution time thanks to CPU/GPU parallelisms.
FAISS has been benchmarked in terms of performance and
accuracy vs. other similar libraries, and it is reported to
achieve good accuracy and performance [42]. Compared
to earlier embedding-based approaches, the use of FAISS
in our approach saves computational time in the candidate
keyphrase ranking step. In this step, the cosine similar-
ity is calculated between the embeddings of the candidate
keyphrases and the document embedding, while the list of
candidate keyphrases is ranked by the descending similarity
score.

IV. EVALUATION
This section reports on the evaluation of our approach against
similar works described in Section II.

A. TECHNICAL SPECIFICATIONS
As far as hardware specifications are concerned, we utilized
a PC workstation with an Intel Core i9 CPU with 20 log-
ical cores and maximum clock speed of 5 GHz, and two
dual inline memory modules, each having 32 GB RAM.
With respect to software specifications, we used a Windows
10 native OS 64-bit. It is noted that, since some of the eval-
uated approaches require Python versions that are older than
3.8, as well as older packages that are no longer supported,
we run the evaluation with an Ubuntu Mate 64-bit Linux
Virtual Machine, which accesses 32 GB of system memory,
as well as 16 out of 20 logical cores. For the selected unsu-
pervised classical and embeddings-based approaches (see
Table 1), we utilized software implementations provided by
their original authors, whenever possible. For the approaches
that no official software implementation is mentioned in their
original papers, we used third-party libraries such as pke [43],
which implements many approaches found in the literature.

B. DATASETS AND METRICS
With respect to datasets, we run experiments using eight
English datasets. We categorize these datasets based on their
textual length (i.e., short, medium and long length). For
datasets with short texts (i.e., paper abstracts with approxi-
mately 50-200 terms), we opted for Inspec [44], WWW and
KDD [45]; we also opted for Semeval-2017 [46], which
contains paragraphs from scientific journals and is similar to
the former ones in terms of their length. For datasets with
medium length texts (i.e., news articles with approximately
300-850 tokens), we selected DUC-2001 [2] and 500N-KP-
Crowd [47]. Finally, for datasets with long texts (i.e., full

9https://faiss.ai/
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TABLE 1. List of selected unsupervised approaches.

text academic papers with approximately 1000-9000 tokens),
we employed Semeval-2010 [48] and NUS [49]. As described
in [50], the rationale behind evaluating approaches on multi-
ple datasets of different textual lengths and thematic domains
is that the different characteristics of the datasets influence
the accuracy of KE approaches.

In our evaluation, we used theF1 and partial F1 (pF1)met-
rics, which are explained below. The reason we also use pF1
is the main limitation of the exact matching technique used
by the F1 score, where highly similar strings (e.g., ‘machine
learning approaches’ and ‘machine learning methods’) are
not considered as a match, despite their high similarity.
Recent publications that use the pF1 metric include [9], [51]
and [52]. In our work, F1 is computed as the harmonic mean
of the exact match Precision and Recall metrics:

F1 =
2 ∗ Precision ∗ Recall
Precision+ Recall

(10)

where:

Precision =
number of exactly matched keyphrases
total number of extracted keyphrases

(11)

Recall =
number of exactly matched keyphrases
total number of assigned keyphrases

(12)

Additionally, pF1 is computed as the harmonic mean between
the partial match Precision and Recall metrics:

pF1 =
2 ∗ pPrecision ∗ pRecall
pPrecision+ pRecall

(13)

pPrecision =
number of partially matched keyphrases
total number of extracted keyphrases

(14)

pRecall =
number of partially matched keyphrases
total number of assigned keyphrases

(15)

The number of exactly matched keyphrases is measured as
the number of exactly matched strings between the human
assigned keyphrases and the ones extracted by the automated
approaches. The number of partially matched keyphrases
is measured as the number of extracted keyphrases that
share a number of common terms with the human assigned
keyphrases. To avoid matching keyphrases that are not highly
similar, we match keyphrase pairs from both sets, when
they share the maximum number of common terms. Another
important implementation detail, which avoids recounting,
is that if an extracted keyphrase rematches to a human
assigned keyphrase, then the match count is not increased.

C. EXPERIMENTAL SETUP AND EVALUATION RESULTS
Regarding the selected approaches, we set them with the
parameters recommended by their original authors to pro-
duce the top-10 keyphrases. The only exception is KeyBERT,
where we used the ‘all-mpnet-base-v2’ model, we selected
the MMR metric for deduplication with the diversity param-
eter set to 0.5, and we set the n-gram range to (1, 4).
In our approach, we used multiple configurations to deter-
mine the best setup. Firstly, we run the approach with
deduplication enabled, while disabling the boolean flag
keep_nouns_adj(see Section III-A) and the position metric
(LMRankdeduplicate). Secondly, we run the approach with
deduplication enabled, and by keeping keyphrases con-
sisting only of nouns and adjectives, while the position
metric was disabled (LMRankdeduplicate_nouns_adjs). Thirdly,
we run the approach with deduplication and the position
metric disabled, while keeping keyphrases consisting only
of nouns and adjectives (LMRanknouns_adjs). Finally, we run
the previous combination with the position metric enabled
(LMRanknouns_adjs_pos).

All approaches were evaluated for the datasets mentioned
in Section IV-B with the macro F1@n (exact match F1
score at top-n keyphrases) and macro pF1@n (partial match
F1 score at top-n keyphrases), where n was set at 5 and
10 keyphrases. The values of these scores are in the range
[0, 1], with higher values denoting more top-n keyphrases
extracted correctly. Tables 2-5 summarize our evaluation
results. For each dataset we mark with bold the best perform-
ing classical approach, as well as the best performing setup
of LMRank. For the embeddings-based approaches, we mark
the best performing approach with bold and we underline
the second-best performing approach in terms of F1 and pF1
scores.

As shown in Tables 2 and 3, MPRank and KP-Miner
achieve the best performance among the classical approaches,
with an exception concerning theWWW dataset where YAKE!
performs best. Both MPRank and KP-Miner achieve com-
petitive performance when compared to newer embeddings-
based approaches. The best setup for the proposed approach
is LMRanknouns_adjs. When comparing the results with the
position metric enabled, we see no clear benefit in terms of
performance. This contradicts with the results presented in
SIFRank and KPRank, which suggest that the incorporation
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TABLE 2. Evaluation results; F1@5 is the macro F1 score at top-5 keyphrases.

TABLE 3. Evaluation results; F1@10 is the macro F1 score at top-10 keyphrases.

of this metric yields better performance in datasets with
longer texts. Regarding the embedding-based approaches,
SIFRank+ achieves the best performance in half of the
datasets; in the other half, the best performance is achieved
by Key2Vec for 500N-KP-Crowd, and by LMRanknouns_adjs
for the KDD, NUS andWWW datasets.

As shown in Tables 4 and 5 (for the pF1 metric),
the best performing classical approach is MPRank in
half of the datasets. In the other half, the best per-
forming methods are YAKE! and KP-Miner. The best
setup for the proposed approach is LMRankdeduplicate. For
the embedding-based approaches, SIFRank achieves the
best performance in the DUC-201 and NUS datasets,
while maintaining the second-best performance in the

other ones. EmbedRank achieves the best performance in
the 500N-KP-Crowd and SemEval2010 datasets. KeyBERT
achieves its best performance in the KDD and WWW
datasets. Finally, LMRankdeduplicate achieves its best per-
formance in the Inspec and SemEval2017 datasets, while
demonstrating near state-of-the-art accuracy for all other
datasets.

Overall, LMRank achieves the top F1@5 and top F1@10
score over the state-of-the-art embeddings-based approach
(SIFRank) in theKDD,NUS andWWW datasets. As far as the
Inspec dataset is concerned, LMRank achieves a pF1@5 score
of 74.8%, which is an absolute gain of 4.2% over SIFRank.
Similarly, it outperforms SIFRank in terms of pF1@5 score in
the SemEval2017 andWWW datasets. Regarding the pF1@10
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TABLE 4. Evaluation results; pF1@5 is the macro pF1 score at top-5 keyphrases.

TABLE 5. Evaluation results; pF1@10 is the macro pF1 score at top-10 keyphrases.

score, LMRank exhibits similar relative performance gains
over SIFRank, as is the case with the pF1@5 score.

To further highlight the strengths of LMRank over the
state-of-the-art approach, we have also selected a representa-
tive document from the Inspec dataset for qualitative analysis,
as appearing in Table 6.

As shown in Table 6, SIFRank finds fewer human-assigned
keyphrases (highlighted in blue) and extracts longer
keyphrases that do not strictly consist of nouns and adjec-
tives (e.g., ‘‘paper concerns biorthogonal nonuniform filter
banks’’), and repeats other thematically similar keyphrases,
thus reducing its coverage. We argue that the novelty aspects
of our approach lie in the usage of dependency parsing
and deduplication, which are described in Section III-A.

These techniques enable the extraction of (i) better candidate
keyphrases (by avoiding extremely long phrase patterns), and
(ii) thematically distinct keyphrases.

D. PERFORMANCE BENCHMARK ANALYSIS
In this section, we benchmark the performance of LMRank
over approaches with similar F1 / pF1 scores. These
approaches include SIFRank+, EmbedRank+ and KeyBERT.
For the performance analysis, we consider the metric of
mean elapsed system time (in seconds). We start the time
measurement at the point where the KE method of each
approach is executed (we do not measure the ‘‘warmup’’ time
of each method, during which the underlying ML models
are loaded into memory). For the execution environment,
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TABLE 6. Qualitative analysis on a sample of Inspec (Sifrank vs LmRank).

FIGURE 3. Overview of the benchmark of the selected KE approaches.

we use the Linux VM described in Section III-B. For the
sample text, we used the Wikipedia entry for the topic of
‘Machine Learning’,10 which consists of 8020 terms. For
each run, we chunked the text in segments according to the
set {250, 500, 1000, 2500, 5000, 6500, 8020}. We mea-
sure the execution time of each run (in seconds) using the
mean elapsed system time metric, and we repeat this process
across 20 iterations. We then calculate the average of these
measurements to produce the mean system time of each KE
approach.

A comparative overview of the performance bench-
mark appears in Fig. 3. As shown, LMRank significantly

10https://en.wikipedia.org/wiki/Machine_learning

outperforms all other approaches by orders of magni-
tude, except that of EmbedRank+. This is expected, since
EmbedRank+ does not utilize a transformer model, which
has quadratic computational complexity when increasing the
input size (contrary to earlier introduced embedding models
that used static vector representations). This design choice
for EmbedRank+, while offering performance, sacrifices
accuracy significantly. Instead, LMRank utilizes the sentence
transformers package for the embeddings calculation step,
similarly toKeyBERT; however,KeyBERT has an exponential
runtime according to the results. SIFRank+ is slower than
both LMRank and EmbedRank+, while suffering from run-
time slowdowns at 5000 and 6500 tokens.

V. CONCLUSION
This article has proposed a novel approach, namely
LMRank, which uses syntactic dependency parsing to extract
keyphrases and leverages a highly accurate state-of-the-art
sentence embeddings model to capture the semantic simi-
larity between the candidate keyphrases and the document,
the ultimate aim being to improve the keyphrase ranking
process. Our approach also incorporates a SoftMax-based
position metric, which re-ranks (at a higher level) keyphrases
that appear near the beginning of the document. We have
conducted an extensive evaluation on eight heterogeneous
datasets and showcased the robustness of LMRankwhen doc-
uments of different lengths and topics are considered; it has
been shown that LMRank not only reaches the state-of-the-art
approaches in terms of accuracy, but also outperforms them
significantly in selected datasets. We have also showcased
the scalability of LMRank for medium and large documents,
where it significantly outperforms all other approaches,
except that of EmbedRank+.
With respect to future work directions, we plan to add mul-

tilingual support to LMRank through the use of a multilingual
transformer model and the associated spaCy NLP models.
We also consider the use of embeddings of large language
models, such as GPT-3 [53], aiming to capture even more
context and thus further improve the accuracy of the proposed
approach.
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