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ABSTRACT An automated Neurological Disorder detection system can be considered as a cost-effective
and resource efficient tool for medical and healthcare applications. In automated Neurological Disorder
detection, electroencephalograms are commonly used, but their low signal intensity and nonlinear features
are difficult to analyze visually. A promising approach for processing of electroencephalogram signals
is the concept of entropy, a nonlinear signal processing method to measure the chaos in the signal. The
aim of this study was to find out the effective entropy measures and the machine learning approaches
that produced promising output. Using Preferred Reporting Items for Systematic Reviews and Meta-
Analyses (PRISMA) guidelines as our method, we have identified 84 studies published between 2012 and
2022 that has investigated epilepsy, Parkinson’s disease, autism, Attention Deficit Hyperactive disorder,
schizophrenia, Alzheimer’s disease, depression, and alcohol use disorder with machine learning approaches
considering entropymeasures.We show that Support VectorMachineswas themost commonly usedmachine
learning model, with consistent performance in most of the studies whereas sample entropy was the most
commonly used entropy measure, followed by the approximate entropy. For epilepsy detection, the most
used entropy feature was the log energy entropy, whereas the multi-scale entropy was commonly used
for Alzheimer’s Disease, approximate and sample entropy used for Parkinson’s Disease, multi scale and
Shannon entropy applied for autism, approximate and Shannon entropy used for attention deficit hyperactive
disorder, sample entropy used for depression, approximate and spectral entropy adopted for schizophrenia,
and the approximate and sample entropy employed for alcohol use disorder. According to the majority of
the studies, there is growing concern about the increase in neuro patients and the heavy resource burden that
is associated with their prevalence and diagnosis. Based on these studies, we conclude that Computer-Aided
Design systems would be economically advantageous in detecting Neurological Disorders. To incorporate
Computer-Aided Design system into the mainstream health care system, future research could focus
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on multi-modal approaches to the disorder and its interpretation and explanation. We believe this is the first
review that has combined the electroencephalograms, entropy, and automated detection possibility of the 8 distinct
neurological disorders. The study is limited to the papers that used accuracy as their performance evaluation metric.
The findings and synthesis of previous studies provides a clear pathway that identifies the entropy approach as
a practical solution for automated detection of neurological disorder using electroencephalograms with potential
applications in other kinds of signal analysis.

INDEX TERMS Neurological disorder, entropy, automated detection, EEG, artificial intelligence, machine
learning.

I. INTRODUCTION
NEUROLOGICAL disorders (ND) are increasingly recog-
nised as a serious worldwide public health concern. These
are common problems in health around the world and often
remain undetected [1]. One person in every 8 people lives
with a mental disorder [2] and one in every five Australians,
roughly 4.2 million people, possessed a mental illness in
the past 12-months and more than 2 in every 5 Australians
between the ages of 16 and 85 years reported having a mental
illness at some point in their lives [3]. It is also estimated that
one in every five adults is suffering from mental disorder in
the USA [4].

Although lower middle-class economies like Bangladesh
have registered a comparatively lower (18.75% in adults)
percentage of people in 2019 suffering from mental disorder,
the number has significantly risen in the post-COVID period
with the prevalence of depressive (57.9%), stress (59.7%)
and anxiety (33.7%) disorders [5], [6]. In low and lower-
middle class economies mental health is often a neglected
issue in public health, and data is also often unavailable,
incomplete or inaccurate [7], [8]. A primary concern is the
timely detection of the mental disorder to benefit the indi-
vidual, their clinicians and families. The detection of ND is
resource-intensive, requiring neurologists and other facilities
to dedicate their time and resources to the process. Often,
patients have a long waiting time to access services which
may not be accessible or affordable [9], which provides a
consensus for more cost effective, timely and automated
interventions [10].

Previous studies have demonstrated that entropy can be
used with automated methods to determine the level of
complexity in an electroencephalogram (EEG) signal [11].
Derived from the thermodynamics, entropy, a nonlinear
index, is the measure of chaos in a signal [12]. Static
or dynamical features of a signal describe the complex-
ity in it. Generally, high entropy means high uncertainty
and complexity in a signal. The term ‘‘spectral entropies’’
refers to entropies determined from the magnitude compo-
nents of the signal’s power spectrum, whereas ‘‘embedding
entropies’’ refers to entropies calculated directly from the
time series [13], [14], [15]. In this review paper, we have
analysed various entropy types used in measuring and assess-
ing EEG signals for automated detection of 8 neurological
diseases. More specifically, spectral entropies are determined
by analysing the power spectrum of the signal, which is

related to the frequency of the signal. Embedding entropies
are calculated directly from the time series and disclose
details about the signal’s temporal variability. In this review
paper, these two types of entropies have been analysed and
compared in order to assess the EEG signals for automated
detection of 8 neurological diseases.

A. MOTIVATION FOR THIS RESEARCH
The purpose of this review is to explore the best performing
combination of entropy and ML algorithm for various NDs.
To the best of our knowledge, we are the first group to present
this information. In this work, we have explored eight neu-
rological disorders including epilepsy, autism, Parkinson’s
disease (PD), ADHD, schizophrenia (SZ), Alzheimer’s dis-
ease, depression, and alcohol use disorders. Globally, NDs
have become a major health concern because of their rising
prevalence and lack of cost-effective treatments. Therefore,
researchers are utilizing artificial intelligence and the entropy
features of EEG signals to detect the disorders earlier and
more effectively. In this study, we highlight possible direc-
tions for future research to demonstrate the role of machine
learning and AI approaches for detecting ND automatically
through the use of EEG signals.

B. STRUCTURE OF THE PAPER
The present study is therefore the first review on entropy and
the applications of AI methods for analysing Neurological
Disorders (NDs) using the EEG signals. What follows next is
a brief account of the various NDs covered in this systematic
review followed by the application of popular AI techniques
in this growing areas of research interest.

1) EPILEPSY
Epilepsy affects about 50 million people worldwide, with
80 percent of these people living in low- and middle-income
countries that are also plagued by endemic diseases like
malaria or neurocysticercosis [16]. This disease can affect
people of all ages. The greatest prevalence of epilepsy occurs
during the first year of life, and it is expected to increase
in elderly people over the age of 65 [17]. There is no
cure for epilepsy, which is a chronic noncommunicable dis-
ease [18]. In epilepsy, abnormal electrical discharges in the
brain cause recurrent, and transient, disturbances of per-
ception, which are triggered by excessive cortical neuronal
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network synchronisation [19]. Although epilepsy is mostly
unknown, prenatal or perinatal brain abnormalities or brain
injury due to accidents or genetic factors are believed to be
related to its cause [16], [17].

2) AUTISM
As a developmental disability, autism is characterized by
restricted, repetitive behavior patterns and activities during
the infant and toddler years [20]. In low- and middle-income
countries, autism affects one child out of every 100 owing
to a lack of information regarding the disease and a lack
of detection systems. Children with autism often experience
symptoms in childhood, but their needs change as they grow
older, which impacts their psychosocial lives [21]. Therefore,
awareness and detection systems are essential in order to
accurately diagnose and provide appropriate care to individ-
uals with autism.

3) PARKINSON’S DISEASE
Parkinson’s disease (PD) affects the motor systems of the
brain, which results in slow movement, imbalance walking,
tremors, and other symptoms [22]. Additionally, it can cause
mental health disorders, sleep disorders, cognitive impair-
ments, and other problems [23]. As Parkinson’s disease
progresses, some patients develop dementia [24], [25]. There
has been an 81% increase in PD diagnosis since 2000 and
in 2019 the total number of PD patients is estimated to
be over 8.5 million; PD caused 329 000 deaths and is
the most fatal ND [26]. This illustrates the severity of the
situation and emphasizes the importance of a timely diag-
nosis and treatment for those who suffer from Parkinson’s
disease.

4) ADHD
The attention deficit hyperactivity disorder (ADHD) is a ND
that influences the academic, social, and everyday lives of the
patients [27], [28]. A person with ADHDmay have difficulty
sustaining focus and attention, controlling impulsivity and
hyperactivity, and organizing and completing tasks. These
individuals often have difficulty managing everyday tasks,
maintaining relationships, and performing well at school.
There is a persistent pattern of inattention and hyperactivity-
impulsivity in ADHD patients [29], [30]. In most cases, early
detection and treatment can greatly benefit patients [31],
[32]. To further improve the quality of life of people with
ADHD, it is important to raise awareness of the disorder,
recognize symptoms early, and provide necessary support and
interventions

5) SCHIZOPHRENIA
Patients with schizophrenia experience persistent delusions,
hallucinations, disorganized thinking, and highly disorga-
nized behavior [2]. Approximately 1% of the population is
affected by this [33] and patients have a life expectancy of
10 to 20 years less than the average [34].

6) ALZHEIMER’S DISEASE
In Alzheimer’s disease, memory loss, decreased thinking
skills, and difficulty performing simple tasks are common
symptoms [35]. As a result, older patients suffer from demen-
tia [36], [37]. Alzheimer’s disease is a degenerative disorder,
which means it slowly worsens over time (refs). In the course
of the disease, memory, thinking, and behavioral functions of
the brain are affected. Cognitive abilities, including memory,
decision-making, and problem-solving, can also decline as a
result of this damage.

7) DEPRESSION
There are several symptoms associated with Major Depres-
sive Disorder or depression, including feeling sad, lacking
pleasure and being uninterested in or indifferent to anything
for at least two weeks [38]. People who are depressed have
poor concentration, low self-esteem, sleep disorders, poor
health, and suicidal thoughts. It is estimated that 280 mil-
lion people worldwide will suffer from depression by 2022,
including 23million children and adolescents. In fact, ref [39]
suggests that depression could be a primary disease in high
income countries and secondary disease in the world by 2030.
In 2020-21, depressive episodes affected 4.6% of Australians,
and females (5.3%) were affected more than men (3.8%).

8) ALCOHOL USE DISORDER
The consumption of alcohol habitually causes alcohol use
disorder [40]. Alcohol use disorder changes brain functions,
which in turn cause problems with mental and behavioral
function. Men were twice as likely to abuse alcohol (2.2%)
in 2020-21 than women (0.9%) [3]. A EEG signal, however,
can help detect an alcoholic state [13], [19]. As a result of
brain signals’ nonlinearity, it can be difficult for conventional
methods to infer useful information about such a state. The
use of nonlinear features in EEG signals like entropy may be
a viable option for automating the detection of alcohol use
disorder. In fact, some studies have used different entropy
measures to classify normal versus alcohol use disorder using
ML approaches with accuracies ranging from 82.33% to
96.60% [13], [41], [42], [43], [44].

II. REVIEW BACKGROUND
A. DETECTION OF NEUROLOGICAL DISORDERS
Detecting Neurological Disorders (ND) can be accomplished
in a variety of ways. Traditional methods include screening
questionnaires and surveys [45], [46] which depend mostly
on the screening questionnaire, administration procedure,
laypersons, response of the patients, which create the prob-
ability of inaccuracy [47]. Often, this standard procedure
performed by physicians does not have 100% sensitivity,
requiring a revised diagnosis [47], [48]. Moreover, this
method would be resource heavy and time consuming. While
chatbots have found popularity in recent years, the system is
not yet standard, since there are differences between experts’
decisions and those provided by the app [49]. Neuroimaging
techniques can screen brain activities that help to detect neu-
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rological diseases with precision [50] as they can assess the
brain function in a greater depth [51].

The popular techniques include magnetic resonance
imaging (MRI), electroencephalography (EEG), magnetoen-
cephalography (MEG), positron emission tomography (PET),
single-photon emission computed tomography (SPECT), and
computed tomography (CT) [52]. In addition to creating high
resolution images of the brain, MRI is also superior to CT
in identifying blood circulation as well as cryptic vasculature
anomalies [53]. MEG detects magnetic field created in the
brain and able to observe electric flow in the brain [54]. PET
or PET-CT is high- imaging tech that was previously used for
research due to its high cost and complexity [55]. In addition
to MRI or CT, SPECT is another imaging technology that
can show blood flow and a superior technology for brain
analysis [53].

In spite of the fact that neuroimaging techniques described
above perform better for disease detection and clinicians
heavily rely on their data, none of them are cost-effective
and the infrastructure required is not readily available in
many places [56]. As such, EEG, a neuroimaging technology,
may be a feasible and economical alternative because of its
superior temporal resolution [57]. During an EEG, electri-
cal activity is detected in brain neurons [58]. The tool is
widely used by neurologists in various ND detection such as
epilepsy, autism, depression, and sleep disorders.

These diseases affect different parts of the brain and use
of electroencephalogram (EEG) signals is a way to detect
the diseases. The EEG signals are nonlinear, stochastic and
appears noise like and hard to detect brain abnormalities
through visual analysis of signals [59]. As state-of-the-art
detection and consistent procedures are necessarywhile keep-
ing the affordability in mind and resources requirement to a
minimum, computer- aided diagnostic (CAD) can be useful
in these cases for clinical decision support systems [60].

The use of various CAD systems that use artificial intel-
ligence (AI) models to detect neuro diseases like epilepsy,
autism and depression has shown promising results in recent
studies. However, there seems to be a hesitancy to use AI
and machine learning in health and medical sectors due
to their reliability, accuracy, and variation in results [61].
We examined 84 papers that used CAD and EEG signals to
differentiate between abnormal and healthy signals over the
last 10 years, in order to determine which AI and machine
learning models researchers have used and their accuracy and
consistency. The focus of this paper is also primarily on the
effect of EEG signals on entropy features. The choice of this
method arises from the characteristics of the entropy method
which can the capability to analyse EEG as an effective
tool for disease detection and the outcomes can be easily
translated for physicians’ understanding [62].

B. COMPUTER-AIDED DESIGN (CAD) SYSTEM
In general, CAD models based on AI work in six steps as
shown in Figure 1. First, the analytics tool can be tasked

FIGURE 1. Flowchart of Computer Aided Design (CAD) system.

FIGURE 2. Illustration of change in entropy values from high to low
entropy for the EEG signals.

to read the file and prepare information for further prepro-
cessing by reading the input dataset. Among the file types
considered could be the time series, images, categorical,
speech, and texts formats.

The preprocessing step transforms raw data into a format
that computers can understand. As a result, redundant, incon-
sistent or those with significant missing data are removed and
the removal of noise also takes place. Following this, the data
are then ready for feature extraction which is the third step.

As part of this study, we have collected a large number of
techniques for themeasures of entropy from raw datasets used
in previous research papers. In the subsequent steps, these
features could be ranked based on their importance. Once the
selected features have been selected, the ML model can then
be used to classify them and detect anyNDpresent in patients.

C. ENTROPY
First, we shall briefly describe the concept of entropy that can
be applied to the EEG signal analysis for automated detection
of neurological disorders before presenting the methodology.
Figure 2 demonstrates the high to low entropy features that
can be detected in an EEG signal. By examining various types
of entropy, which can differ by the amount of instability or
irregularity in the signal, we can quantify in a statistical sense
the amount of uncertainty and/or randomness present in the
EEG patterns, which is expected to reflect the amount of
information contained therein. For clinicians and healthcare
providers, entropy, as schematized in Figure 2, can provide
valuable information regarding the complexity and the irreg-
ularities in an EEG signal.

1) APPROXIMATE ENTROPY (ApEn)
The ApEn, as a formulated statistical parameter commonly
used to quantify the regularity of an EEG time series, is useful
for its ability to handle stochastic components present in
these data [63]. Typically, the ApEn measures correlation,
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persistence and regularity in data, meaning a low ApEn
value indicates a series is repetitive and predictable, thereby
showing less uncertainty than a high ApEn value. In a
binary system, ApEn can reach a maximum of log2. ApEn
is suitable for classifying systems, understanding brain func-
tionality [64], thus is often used in many ND detection
systems [13], [14], [42], [65], [66], [67]. ApEn is determined
by the below Equation 1 [68].

ApEn = ln
Cm(r)

C(m+1)(r)
(1)

where m = pattern length and r = similarity coefficient,
Cm(r) = the pattern mean of length m and C(m + 1)(r) =

pattern mean of lengthm+1 and ApEn depends on the signal
length which works as a drawback whenworking with shorter
signals.

2) SAMPLE ENTROPY (SampEn)
The SampEn, as a modified form of ApEn, is used to assess
the complexity of any physiological signals, including the
EEG. More generally it shows stability reducing the bias of
ApEn [68] and is independent of the signal length. Mathemat-
ically, SampEn is measured as follows 2:

SampEn = −log
A
B

(2)

where A contains the total number of vector pairs of length
m+1 as described in Equation 2 and B contains total number
of vector pairs of length m.

3) SHANNON ENTROPY (Hsh)
The Shannon entropy, Hsh aims to measure the uncertainty
of occurrence of certain event in the EEG signal as defined
by Shannon [69]. This refers to the foundational entropy of
information to measure the probability distribution of EEG
data given by:

Hsh = −

x∑
n=1

Pn log2Pn (3)

whereHsh = probability of occurrence of the feature value,Pn
is the n element of the feature, x = total number of features.

4) TSALLIS ENTROPY, Hts
The Tsallis entropy, Hts, presented as a different measure of
the uncertainty for the Shannon entropy [70], can deduce the
significance of features in the EEG signal and calculates the
information gains as follows [71]:

Hte =
1

β − 1
(1 −

x∑
n=1

Eβ
n ) : β ̸= 1 (4)

where n = number of features, E = probability distribution,
β is a real parameter denoted as entropic index [72].

5) RENYI ENTROPY, Hr

As a generalization to Shannon entropy, the Renyi entropy,
Hr [73] indicates the spectral complexity of an EEG sig-
nal [74].

Hre =
1

1 − β
ln (

x∑
n=1

Eβ
n ) : β ̸= 1 (5)

where En = probability of the system, β = order and x =

number of phase lattices [75].

6) HIGHER ORDER SPECTRA (HOS) ENTROPY
This higher-order spectral entropy, HOS, represents higher-
order spectral moments in a random process that capture
information due to deviations from normality and subtle vari-
ations in the EEG signal.

7) BI SPECTRUM ENTROPY, HBi
The bi-spectrum represents the third-order moment Fourier
transform with two frequencies: f 1 and f 2 given by
H (f 1, f 2) = E[X (f 1)X (f 2)X ∗ (f 1 + f 2)] where X (f )
is the Fourier transform of a given EEG signal X (nT ) and
the ∗ represents the complex conjugation operator. The Bi
spectrum entropy, HBi [76] is defined as follows:

HBi = −

∑
n

an log an (6)

where an =
|HBi(f1,f2)|∑
ϵ |HBi(f1,f2)|

.
Therefore the Bi-spectrum squared entropy (HBi−sq) of an

EEG signal is written as follows [76]:

HBi−sq = −

∑
n

bn log bn (7)

HBi−cub = −

∑
n

cn log cn (8)

Here,

bn =
|HBi(f1, f2)|2∑
ϵ |HBi(f1, f2)|2

(9)

cn =
|HBi(f1, f2)|3∑
ϵ |HBi(f1, f2)|3

(10)

where ϵ = the region of computation of bi-spectrum.

8) PHASE ENTROPY, Hph
The Phase entropy, Hph [76] was developed from the transfer
entropy. This aims to learn about the information transfer
between instantaneous phase of any two EEG signals [77].

Hph =

∑
n

a(Hn) log a(Hn) (11)

where a(Hn) =
1
N

∑
τ 1[φ[Bi(f1f2)] ∈ Hn] and Hn =(

∅

∣∣∣−π +
2πn
A ≤ ∅ < −π +

2π (n+1)
A

)
where n = 0, 1, . . . ,

A−1, A defines an integer,N indicates the number of samples
within τ and ∅ is the phase angle of the bi-spectrum.
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9) WAVELET ENTROPY, Hw

The wavelet entropy, Hw [76], as a compound of wavelet
decomposition and entropy, aims to evaluate the intensity of
chaos in the EEG signal were Hw is determined as follows:

Hw =

∑
p < 0

Hp ln (Hp) (12)

whereHp indicates probability distribution of EEG signal and
p signifies the different resolution levels.

10) STEIN’S UNBIASED RISK ESTIMATE, SURE ENTROPY
HSURE
The Stein’s unbiased risk estimate (SURE) entropy [78], [79]
signifies the information present in an EEG signal as follows:

HSURE = Z − p such that
∣∣ip∣∣ ≤ θ +

∑
p

min(i2p, θ
2)

(13)

where Z = length of signal [80], ip = pth signal sample and
θ is always a positive threshold value, typically as 3.

11) RECURRENCE ENTROPY, HRe
The recurrence entropy, HRe calculates the average informa-
tion present in the EEG signal [81]:

HRe = −

N∑
n=nmin

F(n) ln [F(n)] (14)

where N = total sample number, nmin = minimal diagonal
line length and F(n) = frequency distribution of length n of
the diagonal lines.

12) PERMUTATION ENTROPY, Hp

The permutation entropy,Hp aims to estimate the complexity
of the EEG signals. It does so by evaluating the coupling
between two groups of signals as follows [82]:

Hp(x) = −

m!∑
n=1

Hn log (Hn) (15)

Note thatHp of orderm ≥ 2 indicates that all p! permutations
of the selected p denotes the sequence length.

13) LOG ENERGY ENTROPY, Hlog
The log energy entropy, Hlog aims to estimate the severity of
the complexities within the EEG signal following [78]:

Hlog =

p∑
n=1

log (H2
n ) (16)

where p and Hn = length of EEG signal and nth EEG signal,
respectively.

14) KOLMOGROV-SINAI (K-S) ENTROPY, HK−S
The Kolmogrov-Sinai (K-S) entropy, HK−S computes the
variability in the EEG signal as follows [83]:

HK−S = lim
n→0

lim
x→∞

1
ϱ

Fx(n,Nx)
Fx+1(n,Nx+1)

(17)

where Fx(n,Nx) =
2

Nx (Nx−1)

∑Nx
i=1

∑Nx
j=1,j̸=1H (n − pi − pj)

where Fx(n,Nx) signifies the correlation function, pi and pj
are points on the trajectory of phase space defined by n around
a reference point, H represents the Heaviside function and
Nx(Nx − 1)ϱ indicates the number of points in the multi-
dimensional state space.

15) MODIFIED MULTI-SCALE ENTROPY, Hmms

The modified multi-scale entropy (Hmms, in accordance
with [84] and [85], aims to combine two methods based on
different time scales using a moving-averaging approach and
sample entropy with a time delay t to the moving-average
time series. The Hmms identifies a pattern in the EEG signal
based on the regularity as follows:

alp =
1
l

p+l−1∑
n=x

Hn 1 ≤ p ≤ 1 − l + 1 (18)

and

Hmms = Hs(l, h) (19)

where al = moving-average time series with a scale factor of
l and h = pre-defined threshold.

16) FUZZY ENTROPY, Hf
The fuzzy entropy, Hf detects the similarities in EEG sig-
nal [86]. This is based fuzzy set theory [87] whereby the term
Hf is expressed as:

φl(K ,w) =
1

Q− m

Q−m∑
x=1

1
Q− m− 1

 Q−m∑
y=1,y̸=x

(Qmxy)

 (20)

and

Hf = ln
[
φm(K ,w)

]
− ln

[
φm+1(K ,w)

]
(21)

where m = length of the EEG signal.
It should be noted that a degree of similarity (Qmxy) exists

between the two sequences (x th and yth) obtained by (Qlxy =

µ(Qmxy,K ,w) where µ, K and w are the fuzzy function,
gradient, and the width of the fuzzy similarity threshold,
respectively and Q is the total number of EEG samples [88].

III. MATERIALS AND METHOD
Based on the Preferred Reporting Items for Systematic
Reviews and Meta-Analyses (PRISMA), a systematic search
of all relevant resources was conducted retrospectively
through four primary databases (i.e., Google Scholar, Scopus,
PubMed, and Mendeley). These databases were specifically
chosen as they contained a wealth of quality research papers
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FIGURE 3. Flow diagram of PRISMA approach used for this systematic
review.

FIGURE 4. Whisker plot representation showing the highest accuracy for
various NDs.

on this subject. The topic-related specific Boolean strings,
as shown in Table 1, were used to generate the queries for
the databases.

These searches yielded 779 key studies; two came from
Google Scholar, four from Scopus, 214 from PubMed, and
559 from Mendeley database, and the timeline of research
was set from 2012 to June 2022. Our first search found
353 duplicate studies, which were removed. Further assess-
ment resulted in the exclusion of 6 non-human studies,
47 conference papers to minimize the number of papers,
53 non-CAD papers, 42 not related to detection, 14 DL
papers, 20 books, and 17 non-English papers. Furthermore,
twenty papers without any reference to accuracy in their
assessment criteria were removed and we selected only
papers in the top 25% (or quartile 1) of the disciplines relevant
to this research. In the end, 84 research studies that did not
provide model accuracy results were eliminated.

Figure 3 shows the detailed article selection procedure
according to PRISMA guidelines.

FIGURE 5. Pie chart showing (%) of ML models used for automated
detection of NDs.

A. RESULTS, ANALYSIS, SYNTHESIS AND INTERPRETATION
In this study, we reviewed 84 papers and their use of various
ML models to detect ND. Overall, the accuracy of the mod-
els used in all these papers showed promising performance,
as shown in the box and whiskers plot in Figure 4. Consider-
ing these results, it can be concluded that the average accu-
racy for all papers was 93.66 %. Out of 84 papers, about 36%
(30) used a support vector machine (SVM) as their classifier
to detect ND diseases (Figure 5). Although the results var-
ied between 72.25% to 100% accuracy, the discussed 8 ND
(see Table 4 to Table 11 in Appendix II) achieved superior
performance with SVM: epilepsy (100%) [89], Alzheimer’s
(100%) [90], autism (100%) [91], ADHD (99.58%) [92],
PD(99%) [93], SZ(93%) [94], depression (90.26%) [95] and
alcoholism (95.80%) [96].

It is noticeable that 14 papers have used a hybrid approach
where multiple ML classifiers are used to devise the model,
followed by an ANN model in 5, a KNN model in 4, an MLP
model and a DT model in 3 and ANFIS in 2 studies, respec-
tively (Figure 5 and Figure 6) with an average accuracy of
hybrid approaches to be 97.67%. Interestingly, in 8 of the
14 studies that involved hybrid models, the SVM model was
a common approach where results varied from 92.68 to 100%
(Figure 6).
The pie chart representation (Figure 7) shows that 9 of

33 studies (see Table 4 in Appendix II) on epilepsy were
tested for accuracy, with a range of 89.80% to 100% and a
mean of 96.33% (Figure 8). It is noteworthy that the SVM
model appears to be one of the most popular ML algorithms
used for classification problems. One of the versions of
SVM, the least-square support vector machine (LS-SVM),
has been used in four of epilepsy studies [89], [97], [98],
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TABLE 1. Details of Boolean strings and number of selected papers from various databases.

FIGURE 6. Graphical representation of average accuracies obtained for
various combination of entropy and ML models for automated detection
of NDs.

[99]. In general, the LS-SVMmodel is suitable for processing
large amounts of data while reducing computational time as
it changes the quadratic computing problem approach arising
from the limitation of traditional SVM into solving a linear
equation problem [100], [101].

In the case of Alzheimer’s studies (see Table 7), one-
third of the researchers used SVM and received a 100%
classification accuracy as shown in Figure 9 [90]. Another

FIGURE 7. Pie chart showing the contribution(%) of various classifiers in
automated epilepsy detection.

FIGURE 8. Highest accuracy values obtained by various authors for
automated epilepsy detection using SVM classifier.

study [102] exhibits 100% specificity, 87.8% sensitivity and
91.6% accuracy through SVM and epoch-based entropy
analysis. Two-thirds of ADHD-based studies (see Table 8
in Appendix II) have used an SVM model whereas three
of them used an SVM model with a kernel radial basis
function (SVM-RBF) (Figure 10). Notanlyt, the RBF is a
kernel function that maps data into higher dimensional space
which otherwise will be difficult to classify with any linear
model [103], [104].
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FIGURE 9. Bar- chart showing the highest accuracy obtained by various
authors for automated detection of Alzheimer’s disease.

FIGURE 10. Bar- chart showing the highest accuracy obtained by various
authors for automated detection of ADHD.

TABLE 2. Predominant entropy measures and their occurrence in various
NDs.

We wish to clarify that this review study has focused
mainly on the entropy features extracted from EEG signals
used to detect ND. We have therefore observed at least
33 types of entropy used in these previous studies. Among
these studies, the sample entropy appeared 24 times, followed
by he approximate entropy (15), Shannon entropy (14), log
energy entropy (12), spectral entropy (11), and the fuzzy
entropy (8).

Figure 11 illustrates a doughnut diagram of the entropy
features used in the study. Table 2 and Figure 12 shows the
most commonly used entropy measures by the disease type.

IV. DISCUSSION
This review is the first attempt to identify entropy features and
ML approaches that can accurately detect ND. According to
Figure 13, the use of machine learning approaches for year-
wise detection of the ND diseases has gradually increased
from 2013 to 2017, albeit with a drop in 2018. This is likely

FIGURE 11. Doughnut diagram showing the number of entropy features
used in various NDs.

due to the increasing popularity of deep learning (DL) algo-
rithms in disease detection [105].

In 2020, the number of papers peaked once again, which
may explain the increase in mental illness concern among
COVID patients. As we looked forward to 2021, we saw a
decrease in the number. It is noteworthy that the research
papers for this studywere chosen in June 2022which includes
the 2019 to 2022 period when the world has experienced the
COVID-19 effect. As a result of this, there weremental illness
and depression type repercussions during the COVID period
providing us an opportunity to conduct research to identify
the impacts of COVID-19 on mental illnesses [106] as well
as depression [107].

Figure 14 illustrates the annual totals of the NDs. Regard-
less of the year-wise study numbers, the total number epilepsy
papers were relatively high, covering 39% of the total stud-
ied papers, as also shown in Figure 15. It is not surprising
considering around 50 million people worldwide suffer from
this disease [108]. Around 14% of studies were on depression
detection using ML approaches.

Papers specifically on depression detection (see Table 9 in
Appendix II) with entropy features and ML approach was
common in all the years from 2012 onwards but hit a peak
in 2020 with 3 papers. Alcohol use disorder (see Table 11 in
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FIGURE 12. A sunburst diagram representing most used entropy
measures and their occurrence for various NDs.

Appendix II) and Alzheimer’s disease each covered 10% of
the study. Interesting, the number of papers on alcohol use
disorder was consistent until 2018 and dropped afterwards.
In contrast, the number of studies on Alzheimer’s disease
became consistent after 2018.

It is notable that there are numerous ways disease detection
may take place. Some diseases are detected via brain anal-
ysis using neuroimaging technologies (discussed previously
such as SPECT, PET, CT, MRI, EEG, etc), motor symptoms
(speech analysis, handwriting, handmovement), demograph-
ics like age, pathological changes, etc, which are not part of
these studies.

Based on the synthesis of our results, we now outline the
key challenges and future research direction in respect to
automated detection of NDs using ML and AI approaches.

V. PRACTICAL CHALLENGES OF AI TECHNIQUES AND
FUTURE DIRECTIONS
In accordance with our findings, the DL approaches have
become popular after 2018 [105]. The main difference
between a ML and a DL approach is that DL allows a
researcher to use large amounts of data easily, which often
requires less processing on their part. This makes it a popu-
lar choice for modelling, which is also providing promising
results in terms of accuracy, sensitivity, specificity, area under
curve, etc. On the contrary, ML techniques cannot handle big
amount of data and also requires heavy preprocessing of the
data. This makes DL approaches more favourable.

New DL models such as convolutional Neural network
(CNN), long short-term memory (LSTM), Attention mod-
els, generative adversarial network (GAN), etc. have already
shown good performance in multiple disciplines but demand
bigger dataset.

FIGURE 13. Bar-chart showing the number of ML approaches with
entropies yearly from 2012 to 2022 for various NDs.

FIGURE 14. Bar-chart showing the highest accuracy obtained yearly
from 2012 to 20222 for various NDs.

FIGURE 15. Doughnut diagram showing the (%) of studies conducted on
various NDs.

Despite this, the healthcare professionals are still not
embracing this technological advancement for many justifi-
able reasons [109], [110]. One major reason is the lack of
interpretability and explainability of any AI model [111].

In general, AI is thought to be a black-box approach [112]
without providing a clear explanation to why a model clas-
sifies a given data as a certain type [113]. While healthcare
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systems require precise explanation and evidence-based
diagnosis, this contradicts how AI approaches work [109],
[114]. To avail this arena to healthcare experts, AI inter-
pretability and explainability should ideally be part of further
studies.

In order to bridge the gap betweenAI and their practical use
and opinion among healthcare experts, further studies should
focus on increasing the interpretability and the explainabil-
ity of AI models [111], [115], enabling a more transparent
approach that provides evidence-based diagnoses. For future
research initiatives in this area of health and medical infor-
matics, developing interpretable, explainable, and ethical AI
methods for diagnostic screening is paramount [116]. Thus,
AI-based diagnosis/screening may be more widely adopted
in the healthcare system as a result of greater trust and accep-
tance by the healthcare community and those diagnosed with
the disorder. Additionally, AI approaches are not recognized
as standard procedures for diagnosing diseases by the current
diagnostic processes.

According to policy-making organizations and medi-
cal boards such as the American Psychological Associa-
tion (APA) and the UK Parkinson’s Disease Brain Bank
(UKPDSBB), physicians must follow the assessment crite-
ria. Since these organizations, and the others, have not yet
validated any such models, AI models are not included in the
diagnostic tools. Proper education, preparation and under-
standing of AI can help the policy-makers and physicians
to be more familiar with the innovation [117], [118]. Most
diseases discussed in this study, however, have multiple types
and criteria for each type to qualify and classify a person as a
patient.

Current studies, however, whether ML or DL, have not
incorporated such types of variations. Past studies have often
aimed on single modality rather than a multi-modal approach
that are common for these diseases [119], which would sensi-
ble and effective ways to use themodels for clinical use [120].
In order to obtain regulatory approval from the governing
bodies, it is necessary to use multimodal approaches that are
standard in diagnosing these disorders. To obtain regulatory
approval from governing bodies and ensure effective clinical
use, future research should take a multi-modal disease detec-
tion approach.

Both ML and DL are data-driven approaches, so data
availability [121] could also an issue when making multi-
modal CAD tools. The process of obtaining patient data for
further research and trials could be relatively complex and
time-consuming, due to growing concerns about data safety
and risk, which often requires multiple ethics approvals. This
could hinder the development of an effective CAD tool.
Public datasets, although, being currently available, could be
insufficient and have a limited amount of data. Currently,
patient data needs to be manually labelled by the experts
before being used by AI techniques to train the models, which
could also present challenges in terms of reliability of those
manually labelled datasets.

Another issue is the availability of systematic long-term
storage systems of data, which are relatively scarce due to
the time constraints of creating such records as well as finan-
cial constraints, and a lack of funds to maintain the storage
system. Ideally, a bigger, reliable data set would make a
better model when using a data-driven approach, since the
model needs to be trained on more data to analyse large
amounts of patterns. Another matter of consideration is that it
is currently not possible to provide detailed information, such
as physical or behavioral diagnoses, based on the available
dataset. Having a dataset with patient age and other vitals and
periodically updating those data along with the EEG signal
information will help understand the trend of disorder since
many of the neurological disorders are linked to one another,
such as many Parkinson’s disease and Alzheimer’s disease
patients develop dementia as they age [122], [123].

According to our findings, there is no dataset available
on infants and young children. The development of such a
dataset with information about demographics such as age,
size, variation, and the availability of the dataset will con-
tribute to CAD tools that are accurate and efficient. The
datasets could be used to create more accurate computer-
aided design (CAD) tools for pediatric prosthetics and other
medical devices. Consequently, young individuals will be
able to receive better diagnosis and treatment, and devices
can be produced more efficiently.

CAD tools can be used to bring many diseases under one
umbrella and develop a universal diagnostic and detection
tool for healthcare systems. In comparison to other neu-
roimaging techniques, EEG provides more accurate results
and in developing countries as well as developed ones, there is
already an infrastructure for EEG analysis. In addition to stan-
dardizing the healthcare system, this will enable economies
of scale since data scarcity will be addressed.

Figure 16 shows a simple flowchart of the prescribed cloud
system designed for automated detection of neurological dis-
eases. It is noticeable that by using portable devices, the EEG
data can be transferred to a cloud database for cloud com-
puting purposes using AI techniques, which can be accessed
easily by neurologists and healthcare professionals [105].
This approach allows the development of a large database of
diverse information using a multimodal approach. In addition
to improving the quality of patient care, thismultidimensional
approach can allow for more accurate diagnoses and better
treatments. While an automated detection systemmay lead to
changing roles or responsibilities of healthcare experts [124],
the proposed task-oriented training of AI models and a future
change management system can help ease its transition into
healthcare practice and subsequent adoption by clinicians.

VI. LIMITATION OF THE REVIEW STUDY
1) This review study has focused on several key research

works that have used entropy features of EEG signals
for neurological disease detection. This study, however,
has identified some of the other methods such as the
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TABLE 3. List of acronyms used in this review paper.

neuro-imaging approach that can be used for disease
detection. We also note that ECG signals, for exam-
ple, could be an affordable and efficient way toward
the ND detection system, especially when it comes
to epilepsy and ADHD [56], [125], [126] and ADHD

detection [127]. In general, the use of an ECG signal
could be a viable option for ND detection due to the
brain-heart autonomic interactions that exist whereby
the noise can be filtered out in a greater detail and
the ECG signals can be down-sampled to reduce the
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TABLE 4. List of papers reviewed in epilepsy studies.

TABLE 5. List of papers reviewed in Parkinson’s disease studies.

TABLE 6. List of papers reviewed in Autism studies.

TABLE 7. List of papers reviewed in Alzheimer’s studies.

computational costs. These improvements can make
ECG an excellent competitor to the conventional EEG
signal analysis for automated ND detection [127].

2) A key criterion for choosing the studies for this review
was their model accuracy. As a result of this screen-
ing process, numerous studies were removed from our
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TABLE 8. List of papers reviewed in ADHD studies.

TABLE 9. List of papers reviewed in Depression studies.

TABLE 10. List of papers reviewed in Schizophrenia studies.

TABLE 11. List of papers reviewed in alcohol use disorder studies.

FIGURE 16. Snapshot of the proposed cloud-based automated ND
diagnosis and monitoring.

analysis. It would have been worthwhile to use other
metrics such as specificity, sensitivity, and area under

the curve (AUC) to measure AI and ML model accu-
racy in these studies. As a result, the research was
limited by using only accuracy as a key criterion to
choose a paper for analysis. In order to rectify this
problem, future research could include several other
measures.

3) Both public and private datasets from a variety of
sources have been used in studies. Because the models
are trained using different datasets, it is difficult to
determine which model is the best performing model.
Therefore, a future research could utilise a single big
dataset that is sufficiently large enough to provide a
variety of features, although developing such datasets
could also be a challenging endeavour.
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VII. CONCLUSION
A total of 84 studies were reviewed from 2012 to 2022 that
used machine learning techniques and entropy features from
EEG signals to detect 8 neurological disorders. In cases of
epilepsy, Alzheimer’s, and autism, most studies achieved
100% accuracy, while the highest accuracy for other disorders
reached over 95%. Approximately 36% of studies have used
SVMs, and 17% used hybrid approaches with 57% of those
studies utilizing SVM models.

Our review found that a possible lack of consistency in
the model’s performance, interpretability, and explainabil-
ity issues have prevented CAD tools from being accepted
and incorporated into clinical screening systems. In addition,
most studies used single modalities instead of multi-modal
approaches based on diagnosis criteria, which could interfere
with the use of CAD tools to support end users.

There was a clear concern about the growing number of
ND individuals, the scarcity of resources like neurologists,
the infrastructure, and the time-sensitivity of detecting the
disorder in all studies. It is therefore imperative to incorporate
CAD tools into ND screening in order to reduce the burden
on health care professionals, as well as improve AI models
with more data over time.

Finally, this research recommends that the use of machine
learning AI technology could help detect early signs of NDs
much more quickly and accurately than the traditional meth-
ods. In addition to improving the patient outcomes, reducing
the time and the resources needed to diagnose can also
ease the burden on health care professionals. Furthermore,
AI models can successively improve over time with more
datasets added to retrain the models, making them even more
accurate and reliable for real-life applications.

APPENDIX I. LIST OF ACRONYMS
Table 3 shows the list of various acronyms used in this review
study.

APPENDIX II. SUMMARY OF PREVIOUS RESEARCH
Tables 4-11 show the full set of supplementary results of the
systematic review. The year of publication, authors, entropy
type investigated in the study, as well as the machine learn-
ing classifier type and accuracy are also shown. The results
shown here are derived from 779 key research works from
Google Scholar, Scopus, PubMed, and Mendeley databases
within the period 2012 to June 2022.
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