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ABSTRACT We introduce a novel method to derandomize the learning with errors (LWE) problem by
generating deterministic yet sufficiently independent LWE instances that are constructed by using linear
regression models, which are generated via (wireless) communication errors. We also introduce star-specific
key-homomorphic (SSKH) pseudorandom functions (PRFs), which are defined by the respective sets of
parties that construct them. We use our derandomized variant of LWE to construct a SSKH PRF family.
The sets of parties constructing SSKH PRFs are arranged as star graphs with possibly shared vertices, i.e.,
the pairs of sets may have non-empty intersections. We reduce the security of our SSKH PRF family to the
hardness of LWE. To establish the maximum number of SSKH PRFs that can be constructed — by a set of
parties — in the presence of passive/active and external/internal adversaries, we prove several bounds on the
size of maximally cover-free at most t-intersecting k-uniform family of sets H, where the three properties
are defined as: (i) k-uniform: ∀A ∈ H : |A| = k , (ii) at most t-intersecting: ∀A,B ∈ H,B ̸= A : |A∩B| ≤ t ,
(iii) maximally cover-free: ∀A ∈ H : A ̸⊆

⋃
B∈H
B̸=A

B. For the same purpose, we define and compute the mutual

information between different linear regression hypotheses that are generated from overlapping training
datasets.

INDEX TERMS Extremal set theory, key-homomorphic PRFs, learning with errors, learning with linear
regression, mutual information, physical layer communications.

I. INTRODUCTION
Derandomized LWE: The learning with errors (LWE)
problem [1] is at the basis of multiple cryptographic
constructions [2], [3]. Informally, LWE requires solving a
system of ‘approximate’ linear modular equations. Given
positive integers w and q ≥ 2, an LWE sample is defined
as: (a, b = ⟨a, s⟩ + e mod q), where s ∈ Zw

q and

a
$
←− Zw

q . The error term e is sampled randomly, typically
from a normal distribution with standard deviation αq where
α = 1/poly(w), followed by which it is rounded to the
nearest integer and reduced modulo q. Banerjee et al. [4]
introduced a derandomized variant of LWE, called learning
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with rounding (LWR), wherein instead of adding a random
small error, a deterministically rounded version of the sample
is announced. Specifically, for some positive integer p < q,
the elements ofZq are divided into p contiguous intervals con-
taining (roughly) q/p elements each. The rounding function,
defined as: ⌊·⌉p : Zq→ Zp, maps the given input x ∈ Zq into
the index of the interval that x belongs to. An LWR instance is

generated as: (a, ⌊⟨a, s⟩⌉p) for vectors s ∈ Zw
q and a

$
←− Zw

q .
For certain range of parameters, Banerjee et al. proved
the hardness of LWR under the LWE assumption. In this
work, we propose a new derandomized variant of LWE,
called learning with linear regression (LWLR). We reduce
the hardness of LWLR to that of LWE for certain choices of
parameters.
Physical Layer Communications and Shared Secret

Extraction: In the OSI (Open Systems Interconnection)
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model,1 physical layer consists of the fundamental hardware
transmission technologies. It provides electrical, mechanical,
and procedural interface to the transmission medium for
transmitting raw bits over a communication channel. Physical
layer communication between parties has certain inherent
characteristics that make it an attractive source of renewable,
shared secrecy. Multiple methods to extract secret bits from
channel measurements have been explored (e.g., [6], [7],
[8], [9], [10], [11], [12], [13], [14], [15], [16], [17], [18],
[19], [20], [21], [22], [23], [24], [25], [26], [27]). See [28]
and [29] for an overview of some of the notable results in
the area. Channel reciprocity simply means that the signal
distortion (attenuation, delay, phase shift, and fading) is
identical in both directions of a link. Hence, it follows
from channel reciprocity that the two receive-nodes of a
channel observe identical channel characteristic and state
information. Secrecy of this information follows directly
from the spatial decorrelation property, which states that in
rich scattering environments, the receivers located at least
half a wavelength away experience uncorrelated channels.
Therefore, an eavesdropper separated by at least half a
wavelength from the two communicating nodes experiences
an entirely different channel, and hence cannot make accurate
measurements. In typical cellular or wireles LAN frequen-
cies, this distance — of half a wavelength — is less than half
a foot, which is an acceptable assumption for separation from
an eavesdropping adversary [13]. Both channel reciprocity
and spatial decorrelation have been examined extensively
and demonstrated to hold in practice [30], [31], [32], [33],
[34], [35], [36]. For further details on these two properties
of communication channels, we refer the interested reader
to [37]. In this work, we use these two properties to securely
generate sufficiently independent yet deterministic errors to
derandomize LWE.
Cryptography From Physical/Hardware Properties: Apart

from complexity/information-theoretic assumptions, security
guarantees of cryptographic protocols can also be based
on physical/hardware principles/properties. For instance,
the physical principles of non-cloneability of quantum
states [38], [39] and monogamy of entanglement [40] are at
the heart of quantum cryptography [41], [42] — providing
an ensemble of (quantum) cryptographic protocols, including
quantum key distribution [43], [44], [45], quantum random
number generator [46], closed group quantum digital signa-
tures [47], long-term secure data storage [48] and quantum
multiparty computation [49]. In classical, i.e., non-quantum,
settings, physical/hardware principles/properties have been
used to circumvent impossibility results, and efficiency and
security bounds (e.g., [50], [51], [52], [53], [54], [55], [56],
[57], [58], [59]). Furthermore, protocols based on physical
properties or assumptions may offer qualitatively stronger
security guarantees than the ones based on purely complexity-
theoretic arguments/assumptions [60]. The subclass of such
protocols that is related to a portion of our work concerns

1See Section 1.4.1 from [5] for an introduction to the OSI model.

the so-called physically uncloneable functions (PUFs) which
are cryptographic functions, defined over stateless hardware
modules that implement/realize a function family with
some threshold min-entropy output [61] (see [62] for the
quantum analogue, called quantumPUF). Contrary to the
standard digital systems, the output of a PUF depends
on the unavoidably and sometimes purposefully included
nanoscale structural disorders in the hardware which lead
to a response behavior that cannot be cloned or reproduced
exactly, not even by the hardware manufacturer. To capture
their complex and disordered structure, formal definitions
for PUFs often include requirements for one-wayness and
unforgeability of output (typically against a probabilistic
polynomial-time (PPT) adversary) [61], [63], [64], [65], [66],
[67], [68], [69], [70] — which, in addition to deterministic
behavior, are also the requirements for pseudorandom
functions (PRFs).

In this work, our protocol relies on the inherent (random)
channel errors occurring in physical layer communications
over Gaussian channels with nonzero standard deviation.
Known information theoretic arguments establish that chan-
nel communications always have an inherent random error
component. Using mathematical proofs/arguments and sta-
tistical randomness tests such as the ones provided by
the NIST [71] and Dieharder [72] test suites, channel
randomness has been established with repsect to various
channel characteristics, including received signal strength
information [15], [16], [17], channel state information [11],
[18] and phase shifts [19], [20].
Determinism From Probabilistic Events: Algorithmic

information theory [73], [74] provides a fundamental mea-
sure of randomness of (finite) strings and (infinite) sequences
in terms of their Kolmogorov complexity [75], [76], leading
to the notions of algorithmic [73], [74] and c-Kolmogorov
randomness [73]. Such formal notions of randomness have
been used to establish that some (partially) deterministic
procedures and events can lead to (pseudo/perfectly)random
outcomes (e.g., see [77], [78], [79], [80], [81]). On the
other hand, particle physics establishes that even-even nuclei
demonstrate high degree of order in result of completely ran-
dom interactions [82], [83], [84]. Outside of particle physics,
approximating integer programs is an example problem
for which probabilistic constructions lead to deterministic
outcomes [85]. Our goal is similar in this work: we use
probabilistic errors occurring in channel communications to
generate a static and deterministic model M, which can be
used as a black box to generate deterministic errors (from
target distributions) that are sufficiently independent — to
a PPT adversary — due to the probabilistic nature of the
channel errors.
Rounded Gaussians: Using discrete Gaussian elements

to hide secrets is a common approach in lattice-based
cryptography. The majority of digital methods for gener-
ating Gaussian random variables are based on transforma-
tions of uniform random variables [86]. Popular methods
include Ziggurat [87], inversion [88], Wallace [89], and
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FIGURE 1. An example star graph, S7.

Box-Muller [90]. Sampling discrete Gaussians can also
be done by sampling from some continuous Gaussian
distribution, followed by rounding the coordinates to nearby
integers [90], [91], [92]. Using such rounded Gaussians can
lead to better efficiency and, in some cases, better security
guarantees for lattice-based cryptographic protocols [92].
In our work, we use rounded Gaussian errors that are derived
from deterministic yet sufficiently independent samples from
continuous Gaussians, which are themselves generated via
our modelM.
Key-Homomorphic PRFs: In a PRF family [93], each

function is specified by a key such that it can be evaluated
deterministically given the key but appears to be a random
function without the key. For a PRF Fk , the index k is called
its key or seed. A PRF family F is called key-homomorphic
if the set of keys has a group structure and there is an
efficient algorithm that, given Fk1 (x) and Fk2 (x), outputs
Fk1⊕k2 (x), where ⊕ is the group operation [94]. Multiple
key-homomorphic PRF families have been constructed via
varying approaches [94], [95], [96], [97], [98], [99]. In this
work, we introduce and construct an extended variant of key-
homomorphic PRFs, called star-specific key-homomorphic
(SSKH) PRFs, which are defined for settings wherein parties
constructing the PRFs are part of an interconnection network
that can be (re)arranged as a graph comprised of only
(undirected) star graphs with restricted vertex intersections.
An undirected star graph Sk can be defined as a tree with one
internal node and k leaves. Figure 1 depicts an example star
graph, S7, with seven leaves.
Henceforth, we use the terms star and star graph inter-

changeably.
Cover-Free Families With Restricted Intersections: Cover-

free families were first defined by Kautz and Singleton
in 1964 as superimposed binary codes [100]. They were
motivated by investigating binary codes wherein disjunction
of at most r (≥ 2) codewords is distinct. In early 1980s,
cover-free families were studied in the context of group
testing [101] and information theory [102]. Erdös et al. called
the corresponding set systems r-cover-free and studied their
cardinality for r = 2 [103] and r < n [104].
Definition 1 (r-cover-free Families [103], [104]): We say

that a family of sets H = {Hi}αi=1 is r-cover-free for some

integer r < α if there exists no Hi ∈ H such that:

Hi ⊆
⋃

Hj∈H(r)

Hj,

whereH(r)
⊂ H is some subset ofH with cardinality r .

In addition to earlier applications to group testing [101]
and information theory [102], cover-free families have found
many applications in cryptography and communications,
including blacklisting [105], broadcast encryption [106],
[107], [108], [109], anti-jamming [110], source authentica-
tion in networks [111], group key predistribution [109], [112],
[113], [114], compression schemes [115], fault-tolerant
signatures [116], [117], [118], frameproof/traceability
codes [119], [120], traitor tracing [121], modification
localization on signed documents and redactable signa-
tures [122], broadcast authentication [123], batch signature
verification [124], and one-time and multiple-times digital
signature schemes [125], [126].

In this work, we initiate the study of new variants of
r-cover-free families. The motivation behind exploring this
direction is to compute the maximum number of SSKH
PRFs that can be constructed by overlapping sets of parties.
We prove various bounds on the novel variants of r-cover-free
families and later use them to establish the maximum number
of SSKH PRFs that can be constructed by overlapping sets of
parties in the presence of active/passive and internal/external
adversaries.

A. OUR CONTRIBUTIONS
1) CRYPTOGRAPHIC CONTRIBUTIONS
We know that physical layer communications over Gaussian
channels introduce independent Gaussian errors. Therefore,
it is logical to wonder whether we can use some processed
form of those Gaussian errors to generate deterministic
yet sufficiently independent errors to derandomize LWE
without losing its hardness. Such an ability would have
direct applications to use cases wherein LWR is used
to realize derandomized/deterministic LWE. Our algorithm
to derandomize LWE uses channel communications over
Gaussian channels as the training data for linear regression
analysis, whose (optimal) hypothesis is used to generate
a model M that can be used as a black box to compute
deterministic yet sufficiently independent errors belonging
to the desired Gaussian distributions. We round the resulting
error to the nearest integer and reduce it modulo the LWE
modulus to generate the final error. It is worth mentioning
that many hardness proofs for LWE, including Regev’s
initial proof [1], used an analogous approach — without the
linear regression component — to sample random ‘‘LWE
errors’’ [1], [92], [127], [128]. We call our derandomized
variant of LWE: learning with linear regression (LWLR).
We prove that, for certain parameter choices, LWLR is as hard
as LWE.

We introduce a new class of PRFs, called star-specific key-
homomorphic (SSKH) PRFs, which are key-homomorphic
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PRFs that are defined by the respective sets of parties that
construct them. In our construction, the sets of parties are
arranged as star graphs wherein the leaves represent the
parties and edges denote communication channels between
them. Each SSKH PRF is unique to the set/star of parties that
constructs it. As an example application of LWLR,we replace
LWR with LWLR in the LWR-based key-homomorphic PRF
construction from [96] to construct the first SSKH PRF
family. Due to their conflicting goals, statistical inference
and cryptography are almost dual of each other. Given some
data, statistical inference aims to identify the distribution that
they belong to whereas in cryptography, the central aim is
to design a distribution that is hard to predict. Interestingly,
our work uses statistical inference to construct novel a
cryptographic tool. In addition to the known applications of
key-homomorphic PRFs — as given in [95] and [129] —
our SSKH PRF family also allows collaborating parties to
securely generate pseudorandom nonce/seed without relying
on any pre-provisioned secrets; hence supporting applications
such as interactive key generation over unauthenticated
channels.

2) MUTUAL INFORMATION BETWEEN LINEAR REGRESSION
MODELS
To quantify the relation between different SSKH PRFs,
we examine the mutual information between different linear
regression hypotheses that are generated via (training)
datasets with overlapping data points. A higher mutual
information translates into a stronger relation between the
corresponding SSKH PRFs, that are generated via those
linear regression hypotheses. The following text summarizes
the main result that we prove in this context.

Suppose, for i = 1, 2, . . . , ℓ, we have:

yi ∼ N (α + βxi, σ 2) and zi ∼ N (α + βwi, σ 2),

with xi = wi for i = 1, . . . , a. Let h1(x) = α̂1x + β̂1 and
h2(w) = α̂2w + β̂2 be the linear regression hypotheses
obtained from the samples (xi, yi) and (wi, zi), respectively.
We introduce the following notations:

• X1 =
∑ℓ

i=1 xi,X2 =
∑ℓ

i=1 x
2
i ,

• W1 =
∑ℓ

i=1 wi,W2 =
∑ℓ

i=1 w
2
i ,

• C1 =
∑a

i=1 xi =
∑a

i=1 wi,
• C2 =

∑a
i=1 x

2
i =

∑a
i=1 w

2
i ,

• C3 =
∑ℓ

i=1
∑ℓ

j=1,j̸=i xixj,
• 1 = ℓC2 − 2C1X1 + aX2,
• ℧ = ℓC2 − 2C1W1 + aW2,

• ℵ = (a− 1)C2 − C3.

Theorem 1: The mutual information between (α̂1, β̂1) and
(α̂2, β̂2) is:

I ((α̂1, β̂1); (α̂2, β̂2))

= −
1
2
log

(
1−

1℧
(ℓX2 − X2

1 )(ℓW2 −W 2
1 )

+
ℵ (ℵ + ℓ(X2 +W2)− 2X1W1)

(ℓX2 − X2
1 )(ℓW2 −W 2

1 )

)
.

3) BOUNDS ON t -INTERSECTING MAXIMALLY COVER FREE
FAMILIES
Since we use physical layer communications to generate
derandomized LWE instances, a large enough overlap among
different sets of parties/devices can lead to reduced collective
and conditional entropy for the SSKH PRFs constructed by
those sets.

We say that a set system H is (i) k-uniform if: ∀A ∈ H :
|A| = k , (ii) at most t-intersecting if: ∀A,B ∈ H,B ̸= A :
|A ∩ B| ≤ t .
Definition 2 (Maximally Cover-free Families): A family

of setsH is maximally cover-free if it holds that:

∀A ∈ H : A ̸⊆
⋃
B∈H
B̸=A

B.

It follows trivially that if the sets of parties — each of
which is arranged as a star — belong to a maximally cover-
free family, then no SSKH PRF can have zero conditional
entropy since each set/star of parties must have at least one
member that is exclusive to it. We know from Theorem 1
that based on the overlap in training data, we can compute
the mutual information between different linear regression
hypotheses. Since the training data for a set/star of parties
performing linear regression analysis is simply their mutual
communications, it follows that the mutual information
between any two SSKH PRFs increases with the overlap
between the sets of parties that construct them. Hence, given
a maximum mutual information threshold, Theorem 1 can be
used to compute the maximum acceptable overlap between
different sets of parties. To establish the maximum number
of SSKH PRFs that can be constructed by such overlapping
sets, we revisit and extend the notion of cover-free families.
Based on our requirements, we focus on the following two
cases:
• H is at most t-intersecting and k-uniform,
• H is maximally cover-free, at most t-intersecting and
k-uniform.

We derive multiple bounds on the size of H for both
these cases and later use them to establish the maximum
number of SSKH PRFs that can be constructed securely
against active/passive and internal/external adversaries. The
following theorem captures our central results on cover-free
families.
Theorem 2: Let k, t ∈ Z+, and C < 1 be any positive real

number.
1) Suppose t < k − 1. Then, for all sufficiently large N ,

the maximum size ν(N , k, t) of a maximally cover-free,
at most t-intersecting and k-uniform family H ⊆ 2[N ]

satisfies

CN ≤ ν(N , k, t) < N .
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2) Suppose t < k. Then, for all sufficiently large n, the
maximum sizeϖ (n, k, t) of an at most t-intersecting and
k-uniform familyH ⊆ 2[n] satisfies

Cnt+1

k(k − 1) · · · (k − t)
≤ϖ (n, k, t) <

nt+1

k(k−1) · · · (k − t)
.

In particular:

ν(N , k, t) ∼ N and ϖ (n, k, t) ∼
nt+1

k(k − 1) · · · (k − t)
.

We also provide an explicit construction for at most
t-intersecting and k-uniform set systems.

4) MAXIMUM NUMBER OF SSKH PRFs
We use the results from Theorems 1 and 2 to derive the
maximum number, ζ , of SSKH PRFs that can be constructed
securely against various adversaries (modeled as PPT Turing
machines). Specifically, we prove the following:

• For an external/eavesdropping adversary with oracle
access to the SSKH PRF family, we get:

ζ ∼
nk

k!
.

• For non-colluding semi-honest parties, we get:

ζ ≥ Cn,

where C < 1 is a positive real number.

We also establish the ineffectiveness of the man-in-the-
middle attack against our SSKH PRF construction.

B. ORGANIZATION
The rest of the paper is organized as follows: Section II
recalls the concepts and constructs that are relevant to
our solutions and constructions. Section III reviews the
related work. Section IV gives a formal definition of SSKH
PRFs. We prove various bounds on maximally cover-free,
at most t-intersecting and k-uniform families in Section V.
In Section VI, we present our protocol for generating the
desired Gaussian errors from physical layer communications.
The section also discusses the implementation, simulation,
test results, error analysis, and complexity for our protocol.
In Section VII, we analyze the mutual information between
different linear regression hypotheses that are generated from
overlapping training datasets. In Section VIII, we define
LWLR and construct LWLR instances. In the same section,
we reduce the hardness of LWLR to that of LWE.
In Section IX, we use LWLR to adapt the key-homomorphic
PRF construction from [96] to construct the first SSKH PRF
family, and prove its security under the hardness of LWLR
(and therefore that of LWE). In the same section, we use
our results from Section V, and Section VII to establish the
maximum number of SSKH PRFs that can be constructed by
a given set of parties in the presence of active/passive and
external/internal adversaries. Section X gives the conclusion.

II. PRELIMINARIES
For a positive integer n, let: [n] = {1, . . . , n}. As mentioned
earlier, we use the terms star and star graph interchangeably.
For a vector v = (v1, v2, . . . , vw) ∈ Rw, the Euclidean
and infinity norms are defined as: ||v|| =

√
(
∑w

i=1 v
2
i ) and

||v||∞ = max(|v1|, |v2|, . . . , |vw|), respectively. In this text,
vectors and matrices are denoted by bold lower case letters
and bold upper case letters, respectively. We say that an
algorithm is efficient if its running time is polynomial in its
input size.
Definition 3: The probability density function (p.d.f.) of a

continuous random variable X with support S is an integrable
function fX such that following conditions hold:
• ∀x ∈ S : fX (x) > 0,
•

∫
S fX (x)dx = 1,

• Pr[X ∈ ℑ] =
∫
ℑ
fX (x)dx.

Definition 4: The probability mass function (p.m.f.) pX of
a discrete random variable X with support S is a function for
which the following hold:
• ∀x ∈ S : Pr[X = x] = pX (x) > 0,
•

∑
x∈S

pX (x) = 1,

• Pr[X ∈ ℑ] =
∑
x∈ℑ

pX (x).

A. ENTROPY
The concept of entropy was originally introduced as a
thermodynamic construct by Rankine in 1850 [130]. It was
later adapted to information theory by Shannon [131] as a
measure of the uncertainty associated with a random variable.
Hence, (information) entropy is defined as a measure of the
average information content that is missing when value of a
random variable is not known.
Definition 5: For a finite set S = {s1, s2, . . . , sn} with

probabilities p1, p2, . . . , pn, respectively, the entropy of the
probability distribution over S is defined as:

H (S) =
n∑
i=1

pi log
1
pi

.

B. LATTICES
A lattice 3 of Rw is defined as a discrete subgroup of Rw.
In cryptography, we are interested in integer lattices, i.e.,3 ⊆
Zw. Given w-linearly independent vectors b1, . . . , bw ∈ Rw,
a basis of the lattice generated by them can be represented as
the matrix B = (b1, . . . , bw) ∈ Rw×w. The lattice generated
by B is the following set of vectors:

3(B) =

{
w∑
i=1

cibi : ci ∈ Z

}
.

Historically, lattices received attention from several math-
ematicians, including Lagrange, Gauss, Dirichlet, Hermite,
Korkine-Zolotareff, and Minkowski (see [132], [133], [134],
[135], [136], [137]). Problems in lattices have been of interest
to cryptographers since 1997, when Ajtai and Dwork [138]
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proposed a lattice-based public key cryptosystem following
Ajtai’s [139] seminal worst-case to average-case reductions
for lattice problems. In lattice-based cryptography, q-ary
lattices are of particular interest; they satisfy the following
condition:

qZw
⊆ 3 ⊆ Zw,

for some (possibly prime) integer q. In other words, the
membership of a vector x in 3 is determined by x mod q.
Given a matrix A ∈ Zw×n

q for some integers q,w, n, we can
define the following two n-dimensional q-ary lattices,

3q(A) = {y ∈ Zn
: y = AT s mod q for some s ∈ Zw

},

3⊥q (A) = {y ∈ Zn
: Ay = 0 mod q}.

The first q-ary lattice is generated by the rows of A
while the second contains all vectors that are orthogonal
(modulo q) to the rows of A. Hence, the first q-ary lattice,
3q(A), corresponds to the code generated by the rows of A
whereas the second, 3⊥q (A), corresponds to the code whose
parity check matrix is A. For a complete introduction to
lattices, we refer the interested reader to the monographs by
Grätzer [140], [141].

C. GAUSSIAN DISTRIBUTIONS
Gaussian sampling is an extremely useful tool in lattice-based
cryptography. Introduced by Gentry et al. [142], Gaussian
sampling takes a short basis B of a lattice 3 and an arbitrary
point v as inputs and outputs a point from a Gaussian
distribution discretized on the lattice points and centered at
v. Gaussian sampling does not leak any information about
the lattice 3. It has been used directly to construct multiple
cryptographic schemes, including hierarchical identity-based
encryption [143], [144], standard model signatures [143],
[145], and attribute-based encryption [146]. In addition,
Gaussian sampling/distribution also plays an important role
in other hard lattice problems, such as, learning single
periodic neurons [147], and has direct connections to standard
lattice problems [148], [149], [150].
Definition 6: A continuous Gaussian distribution,

Nw(v, σ 2), over Rw, centered at some v ∈ Rw with standard
deviation σ is defined for x ∈ Rw as the following density
function:

Nw
x (v, σ

2) =
(

1
√
2πσ 2

)w
exp

(
−||x − v||2

2σ 2

)
.

A rounded Gaussian distribution can be obtained by
simply rounding the samples from a continuous Gaussian
distribution to their nearest integers. RoundedGaussians have
been used to establish hardness of LWE [1], [127], [128] —
albeit not as frequently as discrete Gaussians.
Definition 7 (Adapted from [92]): A rounded Gaussian

distribution, 9w(v, σ̂ 2), over Zw, centered at some v ∈ Zw

with parameter σ is defined for x ∈ Zw as:

9w
x (v, σ̂

2) =
∫
Ax
Nw
s (v, σ

2) ds

=

∫
Ax

(
1

√
2πσ 2

)w
exp

(
−||s− v||2

2σ 2

)
ds,

where Ax denotes the region
∏w

i=1[xi −
1
2 , xi +

1
2 ); σ̂ and

σ are the standard deviations of the rounded Gaussian and
its underlying continuous Gaussian, respectively, such that

σ̂ =
√

σ 2 + 1/12.
Definition 8 (Gaussian channel): A Gaussian channel is a

discrete-time channel with input xi and output yi = xi +
εi, where εi is drawn i.i.d. from a Gaussian distribution
N (0, σ 2), with mean 0 and standard deviation σ , which is
assumed to be independent of the signal xi.
Definition 9 (Gram-Schmidt norm): Let B = (bi)i∈[w] be

a finite basis, and B̃ = (b̃i)i∈[w] be its Gram-Schmidt
orthogonalization. Then, Gram-Schmidt norm of B is defined
as:

||B||GS = max
i∈[w]
||b̃i||.

For an introduction to Gram-Schmidt orthogonalization,
see [151].
Definition 10 (Discrete Gaussian over Lattices): Given a

lattice 3 ∈ Zw, the discrete Gaussian distribution over 3

with standard deviation σ ∈ R and center v ∈ Rw is defined
as:

D(3, v, σ 2)x =
ρx(v, σ 2)
ρ3(v, σ 2)

; ∀x ∈ 3,

where ρ3(v, σ 2) =
∑
xi∈3

ρxi (v, σ
2) and

ρx(v, σ 2) = exp
(
−
||x − v||2

2σ 2

)
.

The smoothing parameter is defined as a measure of
the ‘‘difference’’ between discrete and standard Gaussians,
that are defined over identical parameters. Informally,
it is the smallest σ required by a discrete Gaussian
distribution, over a lattice 3, to behave like a continu-
ous Gaussian — up to some acceptable statistical error.
For more details, see [152] and [153]. Various methods
such as computing the cumulative density function, tak-
ing convolutions of smaller deviation discrete Gaussians,
and rejection/Bernoulli/Binomial/Ziggurat/Knuth-Yao/CDT
(cumulative distribution table) sampling have been employed
to efficiently sample from discrete Gaussians for lattice-based
cryptography [154], [155], [156], [157], [158], [159], [160],
[161], [162], [163], [164], [165], [166], [167], [168], [169],
[170], [171], [172].
Theorem 3 (Drowning/Smudging [173]): Let σ > 0 and

y ∈ Z. The statistical distance between 9(v, σ 2) and
9(v, σ 2)+ y is at most |y|/σ .
Typically, in lattice-based cryptography, drowning/

smudging is used to hide some information by introducing
a sufficiently large random noise — with large standard
deviation — such that the resulting distribution is, to the
desired degree, independent of the information that needs to
be hidden [4], [127], [173], [174], [175], [176], [177], [178],
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[179], [180], [181]. However, in our work, we do not use it for
that purpose; instead, we use it argue about the insignificance
of a small component of the total error.

D. LEARNING WITH ERRORS
The learning with errors (LWE) problem [1] is at the center of
the majority of lattice-based cryptographic constructions [2].
LWE is known to be hard based on the worst-case hardness
of standard lattice problems such as GapSVP (decision
version of the Shortest Vector Problem) and SIVP (Shortest
Independent Vectors Problem) [1], [182]. Multiple variants
of LWE such as ring LWE [183], module LWE [184],
cyclic LWE [185], continuous LWE [186], PRIM LWE [187],
middle-product LWE [188], group LWE [189], entropic
LWE [190], universal LWE [191], and polynomial-ring
LWE [192] have been developed since 2010. Many versatile
cryptosystems rely on the hardness of LWE [2], [193], [194].
Definition 11 (Decision-LWE [1]): For positive integers

w and q ≥ 2, and an error (probability) distribution χ over
Z, the decision-LWEw,q,χ problem is to distinguish between
the following pairs of distributions:

((ai, ⟨ai, s⟩ + ei mod q))i and ((ai, ui))i,

where i ∈ [poly(w)], ai
$
←− Zw

q , s ∈ Zw
q , ei← χ, and ui

$
←−

Zq.
Regev [1] showed that for certain noise distributions and

a sufficiently large q, the LWE problem is as hard as the
worst-case SIVP and GapSVP problems under a quantum
reduction (see [156], [182], [195] for other reductions).
Standard instantiations of LWE assume χ to be a rounded or
discrete Gaussian distribution. Regev’s proof requires αq ≥
2
√
w for ‘‘noise rate’’ α ∈ (0, 1). These results were extended

by Applebaum et al. [196] to show that the fixed secret s can
be sampled from a low norm distribution. Specifically, they
showed that sampling s from the noise distribution χ does not
weaken the hardness of LWE. Later, Micciancio and Peikert
discovered that a simple low-norm distribution also works
as χ [197].

E. PSEUDORANDOM FUNCTIONS
In a pseudorandom function (PRF) family [93], each function
is specified by a key such that it can be evaluated determin-
istically with the key but behaves like a random function
without it. Here, we recall the formal definition of a PRF
family. Recall that an ensemble of probability distributions
is a sequence {Xn}n∈N of probability distributions.
Definition 12 (Negligible Function): For security parame-

ter L, a function η(L) is called negligible if for all c > 0, there
exists a L0 such that η(L) < 1/Lc for all L > L0.
Definition 13 (Computational Indistinguishability [198]):

Let X = {Xλ}λ∈N and Y = {Yλ}λ∈N be ensembles, where
Xλ’s and Yλ’s are probability distributions over {0, 1}κ(λ) for
λ ∈ N and some polynomial κ(λ). We say that {Xλ}λ∈N
and {Yλ}λ∈N are polynomially/computationally indistin-
guishable if the following holds for every (probabilistic)

polynomial-time algorithm D and all λ ∈ N:∣∣∣Pr[t ← Xλ : D(t) = 1]− Pr[t ← Yλ : D(t) = 1]
∣∣∣ ≤ η(λ),

where η is a negligible function.
Remark 1 (Perfect Indistinguishability): We say that
{Xλ}λ∈N and {Yλ}λ∈N are perfectly indistinguishable if the
following holds for all t:

Pr[t ← Xλ] = Pr[t ← Yλ].

We consider adversaries interacting as part of probabilistic
experiments called games. For an adversary A and two
games G1, G2 with which it can interact, A′s distinguishing
advantage is:

AdvA(G1, G2) :=
∣∣∣Pr[A ⊢¬G1]− Pr[A ⊢¬G2]

∣∣∣,
where A⊢¬G denotes that A accepts in G. For the security
parameter L, the two games are said to be computationally
indistinguishable if it holds that:

AdvA(G1, G2) ≤ η(L),

where η is a negligible function.
Definition 14 (PRF): Let A and B be finite sets, and let

F = {Fk : A → B} be a function family, endowed
with an efficiently sampleable distribution (more precisely,
F ,A, and B are all indexed by the security parameter L).
We say that F is a PRF family if the following two games
are computationally indistinguishable:
(i) Choose a function Fk ∈ F and give the adversary

adaptive oracle access to Fk .
(ii) Choose a uniformly random function U : A → B and

give the adversary adaptive oracle access to U .

Hence, PRF families are efficient distributions of functions
that cannot be efficiently distinguished from the uniform
distribution. For a PRF Fk ∈ F , the index k is called
its key/seed. PRFs have a wide range of applications,
most notably in cryptography, but also in computational
complexity and computational learning theory. For a detailed
introduction to PRFs and review of the noteworthy results,
we refer the interested reader to the survey by Bogdanov and
Rosen [199].

F. LINEAR REGRESSION
Linear regression is a linear approach to model relationship
between a dependent variable and explanatory/independent
variable(s). As is the case with most statistical analysis,
the goal of regression is to make sense of the observed
data in a useful manner. It analyzes the training data and
attempts to model the relationship between the dependent
and explanatory/independent variable(s) by fitting a linear
equation to the observed data. These predictions (often) have
errors, which cannot be predicted accurately [200], [201]. For
linear regression, the mean and variance functions are defined
as:

E(Y |X = x) = β0 + β1x and var(Y |X = x) = σ 2,
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respectively, where E(·) and σ denote the expected value and
standard deviation, respectively; β0 represents the intercept,
which is the value of E(Y |X = x) when x equals zero;
β1 denotes the slope, i.e., the rate of change in E(Y |X = x)
for a unit change in X . The parameters β0 and β1 are also
known as regression coefficients.

For any regression model, the observed value yi might not
always equal its expected value E(Y |X = xi). This difference
between the observed data and the expected value is called
statistical error, and is defined as:

ϵi = yi − E(Y |X = xi).

For linear regression, errors are random variables that
correspond to the vertical distance between the point yi and
the mean function E(Y |X = xi). Depending on the type and
size of the training data, different algorithms such as gradient
descent and least squares may be used to compute the values
of β0 and β1. In this paper, we employ least squares linear
regression to estimate the values of β0 and β1, and generate
the optimal hypothesis for the target function. Due to the
inherent error in all regression models, it holds that:

h(x) = f (x)+ εx ,

where h(x) is the (optimal) hypothesis of the linear regression
model, f (x) is the target function and εx is the total (reducible
+ irreducible) error at point x.

G. INTERCONNECTION NETWORK
In an interconnection network, each device is independent
and connects with other devices via point-to-point links,
which are two-way communication lines. Therefore, an inter-
connection network can be modeled as an undirected graph
G = (V ,E), where each device is a vertex in V and edges
in E represent communication lines/channels between the
devices. Next, we recall some basic definitions/notations for
undirected graphs.
Definition 15: The degree deg(v) of a vertex v ∈ V is the

number of adjacent vertices it has in a graph G. The degree
of a graph G is defined as: deg(G) = max

v∈V
(deg(v)).

If deg(vi) = deg(vj) for all vi, vj ∈ V , then G is called
a regular graph. Since it is easy to construct star graphs
that are hierarchical, vertex edge symmetric, maximally
fault tolerant, and strongly resilient along with having other
desirable properties such as small(er) degree, diameter,
genus and fault diameter [202], [203], networks of star
graphs are well-suited to model interconnection networks.
For a detailed introduction to interconnection networks,
we refer the interested reader to the comprehensive book by
Duato et al. [204].

H. SOME USEFUL RESULTS
Here, we recall two useful, elementary results from probabil-
ity theory.
Definition 16 (Chebyshev inequality [205], [206]): Let X

be a random variable with meanµ and variance var(X ) = σ 2.

Then, the following holds for all ς > 0:

Pr[|X − µ| ≥ ς ] ≤
σ 2

ς2 .

Definition 17 (The Union Bound [207]): For any random
events A1,A2, . . . ,An, it holds that:

Pr

(
n⋃
i=1

Ai

)
≤

n∑
i=1

Pr(Ai).

Let X1,X2, . . . ,Xn be i.i.d. random variables from the
same distribution, i.e., all Xi’s have the same mean µ and
standard deviation σ . Let random variable Xn be the average
of X1, . . . ,Xn. Then, Xn converges almost surely to µ as
n→∞.

III. RELATED WORK
A. LEARNING WITH ROUNDING
Naor and Reingold [208] introduced synthesizers to con-
struct PRFs via a hard-to-learn deterministic function. The
obstacle in using LWE as the hard learning problem
in their synthesizers is that the hardness of LWE relies
directly on random errors. In fact, without the error, LWE
becomes a trivial problem, that can be solved via Gaussian
elimination. Therefore, in order to use these synthesizers
for constructing LWE-based PRFs, there was a need to
replace the random errors with deterministic yet sufficiently
independent errors such that the hardness of LWE is not
(significantly) weakened. Banerjee et al. [4] addressed this
problem by introducing the learning with rounding (LWR)
problem, wherein instead of adding a small random error,
as done in LWE, a deterministically rounded version of the
sample is generated. For q ≥ p ≥ 2, the rounding function,
⌊·⌉p : Zq→ Zp, is defined as:

⌊x⌉p =
⌊
p
q
· x
⌉

,

i.e., if ⌊x⌉p = y, then y · ⌊q/p⌉ is the integer multiple of ⌊q/p⌉
that is nearest to x. Hence, the error in LWR originates from
deterministically rounding x to a (relatively) nearby value
in Zp.
Definition 18 (LWR Distribution [4]): Let q ≥ p ≥ 2 be

positive integers, then: for a vector s ∈ Zw
q , LWR distribution

Ls is defined to be a distribution over Zw
q ×Zp that is obtained

by choosing a vector a
$
←− Zw

q and outputting (a, b =
⌊⟨a, s⟩⌉p).
For a given distribution over s ∈ Zw

q (e.g., the uniform
distribution), the decision-LWRw,q,p problem is to distinguish
(with advantage non-negligible in w) between some fixed
number of independent samples (ai, bi) ← Ls, and the
same number of samples drawn uniformly from Zw

q × Zp.
Banerjee et al. proved decision-LWR to be as hard as
decision-LWE for a setting of parameters where the modulus
and modulus-to-error ratio are superpolynomial in the secu-
rity parameter [4]. Alwen et al. [209], Bogdanov et al. [210],
and Bai et al. [211] made further improvements on the range
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of parameters and hardness proofs for LWR. LWR has been
used to construct pseudorandom generators/functions [4],
[95], [96], [212], [213], [214], and probabilistic [215], [216]
and deterministic [217] encryption schemes.

As mentioned earlier, hardness reductions of LWR hold
for superpolynomial approximation factors over worst-case
lattices. Montgomery [218] partially addressed this issue
by introducing a new variant of LWR, called Nearby
Learning with Lattice Rounding problem, which supports
unbounded number of samples and polynomial (in the
security parameter) modulus.

B. LWR/LWE-BASED KEY-HOMOMORPHIC PRFs
Since LWR allows generating derandomized/deterministic
LWE instances, it can be used as the hard-to-learn determinis-
tic function in Naor and Reingold’s synthesizers, and hence,
construct LWE-based PRF families for specific parameters.
Due to the indispensable small error, LWE-based key-
homomorphic PRFs only achieve what is called ‘almost
homomorphism’ [95].
Definition 19 (Key-homomorphic PRF [95]): Let F : K×

X → Zw
q be an efficiently computable function such that

(K,⊕) is a group. We say that the tuple (F,⊕) is a γ -almost
key-homomorphic PRF if the following two properties hold:
(i) F is a secure PRF,
(ii) for all k1, k2 ∈ K and x ∈ X , there exists e ∈ [0, γ ]w

such that:

Fk1 (x)+ Fk2 (x) = Fk1⊕k2 (x)+ e mod q.

Multiple key-homomorphic PRF families have been con-
structed via varying approaches [94], [95], [96], [97], [98],
[99], [212].

IV. SSKH PRF: DEFINITION
For any two sets X and Y , let PartFunc(X , Y ) denote the
space of partial functions from X to Y .
Definition 20: An efficient randomized algorithm A :

ℜ → PartFunc(Z, Z) is probabilistic to static-
independent (P2SI) if it takes some random r ∈ ℜ (chosen
according to some fixed probability distribution on ℜ) as
input, and outputs a deterministic function Mr : Xr → Z,
where Xr ⊆ Z, such that, for all xi, xj ∈ Z with xi ̸= xj:
1) the probability distributions of Mr (xi) (taken with

respect to the randomness r ∈ ℜ such that xi ∈ Xr )
and Mr (xj) are both computationally indistinguishable
from rounded Gaussians with the same parameters,

2) the following quantities are equal up to a negligible
function:
• H [Mr (xi) |Mr (xj)],
• H [Mr (xj) |Mr (xi)],
• H [Mr (xi)],
• H [Mr (xj)].

Next, we define a star-specific key-homomorphic (SSKH)
PRF family. Let G = (V ,E) be a graph, representing
an interconnection network, containing multiple star graphs

FIGURE 2. An example interconnection graph.

wherein the leaves of each star graph, ∂ , represent unique
parties and the root represents a central hub that broadcasts
messages to all leaves/parties in ∂ . Different star graphs may
have arbitrary numbers of shared leaves. Henceforth, we call
such a graph an interconnection graph. Figure 2 depicts
a simple interconnection graph with two star graphs, each
containing one central hub, respectively, along with eight
parties/leaves out of which one leaf is shared by both star
graphs. Note that an interconnection graph can also be viewed
as a bipartite graph with its vertices partitioned into two
disjoint subsets, V1,V2 ⊂ V , wherein the vertices in V1 and
V2 represent the central hubs and parties, respectively.
Definition 21: Let graph G = (V ,E) be an interconnec-

tion graph with a set of vertices V and a set of edges E . Let
there be ρ star graphs ∂1, . . . , ∂ρ inG. LetF =

(
F (∂i)

)
i=1,...,ρ

be a family of PRFs, where, for each i, F (∂i) : K × X → Zw
q

with (K,⊕) a group. Then, we say that the tuple (F,⊕) is a
star-specific (δ, γ, p)-almost key-homomorphic PRF family
if the following two conditions hold:
1) for all ∂i ̸= ∂j (i, j ∈ [ρ]), k ∈ K and x ∈ X , it holds

that:

Pr[F (∂i)
k (x) = F

(∂j)
k (x)] ≤ δw + η(L),

where F (∂)
k (x) denotes the PRF computed by parties in

star graph ∂ ⊆ V (G) on input x ∈ X and key k ∈ K, and
η(L) is a negligible function in the security parameter L,

2) for all k1, k2 ∈ K and x ∈ X , there exists a vector e =
(e1, . . . , ew) satisfying:

F (∂)
k1

(x)+ F (∂)
k2

(x) = F (∂)
k1⊕k2

(x)+ e mod q,

such that for all a ∈ [w], it holds that:

Pr[−γ ≤ ea ≤ γ ] ≥ p.

V. MAXIMALLY COVER-FREE AT MOST t-INTERSECTING
k-UNIFORM FAMILIES
Extremal combinatorics deals with the problem of determin-
ing or estimating the maximum or minimum cardinality of a
collection of finite objects that satisfies some specific set of
requirements. It is also concerned with the investigation of
inequalities between combinatorial invariants, and questions
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dealing with relations among them. For an introduction
to the topic, we refer the interested reader to the books
by Jukna [219] and Bollobás [220], and the surveys by
Alon [221], [222], [223], [224]. In this work, we focus on
extremal (finite) set theory, which concerns with determining
the size of set-systems that satisfy certain restrictions. It was
first investigated by Sperner [225] in 1928 by establishing
the maximum size of an antichain, i.e., a set-system where
no member is a superset of another. However, it was
Erdős et al. [226] who started systematic research in extremal
set theory. It is one of the most rapidly developing areas in
combinatorics, with applications in various other branches
of mathematics and theoretical computer science, including
functional analysis, probability theory, circuit complexity,
cryptography, coding theory, probabilistic methods, discrete
geometry, linear algebra, spectral graph theory, ergodic
theory, and harmonic analysis [187], [227], [228], [229],
[230], [231], [232], [233], [234], [235], [236], [237], [238],
[239], [240], [241]. For more details on extremal set
theory, we refer the reader to the book by Gerbner and
Patkos [242]; for probabilistic arguments/proofs, see the
books by Bollobás [243] and Spencer [244].

Our work in this paper concerns a subfield of extremal
set theory, called intersection theorems, wherein set-systems
under specific intersection restrictions are constructed, and
bounds on their sizes are derived. A wide range of methods
have been employed to establish a large number of intersec-
tion theorems over variousmathematical structures, including
vector subspaces, graphs, subsets of finite groups with given
group actions, and uniform hypergraphs with stronger or
weaker intersection conditions. The methods used to derive
these theorems have included purely combinatorial methods
such as shifting/compressions, algebraic methods (includ-
ing linear-algebraic, Fourier analytic and representation-
theoretic), analytic, probabilistic and regularity-type meth-
ods.We shall not give a full account of the known intersection
theorems, but only touch upon the results that are particularly
relevant to our set-system and its construction. For a broader
account, we refer the interested reader to the comprehensive
surveys by Ellis [245], and Frankl and Tokushige [246]. For
an introduction to intersecting and cross-intersecting families
related to hypergraphs, see [247] and [248].
Note 1: Set-system and hypergraph are very closely

related terms, and commonly used interchangeably. Philo-
sophically, in a hypergraph, the focus is more on vertices,
vertex subsets being in ‘‘relation’’, and subset(s) of vertices
satisfying a specific configuration of relations; whereas in a
set-system, the focus is more on set-theoretic properties of the
sets.

In this section, we derive multiple intersection theorems
for:
1) at most t-intersecting k-uniform families of sets,
2) maximally cover-free at most t-intersecting k-uniform

families of sets.
We also provide an explicit construction for at most
t-intersecting k-uniform families of sets. Later in the text,

we use the results from this section to establish the maximum
number of SSKH PRFs that can be constructed securely
by a set of parties against various active/passive and
internal/external adversaries.

For a, b ∈ Z with a ≤ b, let [a, b] := {a, a + 1, . . . ,
b− 1, b}.
Definition 22: H ⊆ 2[n] is k-uniform if |A| = k for all

A ∈ H.
Definition 23: H ⊆ 2[n] is maximally cover-free if

A ̸⊆
⋃

B∈H,B̸=A

B

for all A ∈ H.
It is clear thatH ⊆ 2[n] is maximally cover-free if and only

if every A ∈ H has some element xA such that xA ̸∈ B for all
B ∈ H where B ̸= A. Furthermore, the maximum size of a
k-uniform family H ⊆ 2[n] that is maximally cover-free is
n− k + 1, and it is realized by the following set system:

H = {[k − 1] ∪ {x} : x ∈ [k, n]}

(and this is unique up to permutations of [n]).
Definition 24: Let t be a non-negative integer. We say the

set systemH is
1) at most t-intersecting if |A ∩ B| ≤ t ,
2) exactly t-intersecting if |A ∩ B| = t ,
3) at least t-intersecting if |A ∩ B| ≥ t ,

for all A,B ∈ H with A ̸= B.
Property (iii) in Definition 24 is often simply called

‘‘t-intersecting’’ [249], but we shall use the term ‘‘at least
t-intersecting’’ for clarity.
Definition 25: Let F ,G ⊆ 2[n]. We say that F and G are

equivalent (denoted as F ∼ G) if there exists a permutation
π of [n] such that π∗(F) = G, where

π∗(F) = {{π (a) : a ∈ A} : A ∈ F} .

For n, k, t,m ∈ Z+ with t ≤ k ≤ n, let N (n, k, t,m)
denote the collection of all set systemsH ⊆ 2[n] of sizem that
are at most t-intersecting and k-uniform, and M (n, k, t,m)
denote the collection of set systems H ∈ N (n, k, t,m) that
are also maximally cover-free.

The following proposition establishes a bijection between
equivalence classes of these two collections of set systems
(for different parameters):
Proposition 1: Suppose n, k, t,m ∈ Z+ satisfy t ≤ k ≤ n

and m < n. Then there exists a bijection

M (n, k, t,m) / ∼↔ N (n− m, k − 1, t,m) / ∼ .

Proof: We will define functions

f̄ : M (n, k, t,m) / ∼→ N (n− m, k − 1, t,m) / ∼

ḡ : N (n− m, k − 1, t,m) / ∼→ M (n, k, t,m) / ∼

that are inverses of each other.
Let H ∈ M (n, k, t,m). Since H is maximally cover-free,

for every A ∈ H, there exists xA ∈ A such that xA ̸∈ B for
all B ∈ H where B ̸= A. Consider the set system {A \ {xA} :
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A ∈ H}. First, note that although this set system depends on
the choice of xA ∈ A for each A ∈ H, the equivalence class
of {A \ {xA} : A ∈ H} is independent of this choice. Hence,
we get the following map:

f : M (n, k, t,m)→ N (n− m, k − 1, t,m) / ∼

H 7→ [{A \ {xA} : A ∈ H}].

Furthermore, it is clear that that if H ∼ H′, then f (H) ∼
f (H′). So, f induces a well-defined map as:

f̄ : M (n, k, t,m) / ∼→ N (n− m, k − 1, t,m) / ∼ .

Next, for a set system G = {G1, . . . ,Gm} ∈ N (n− m, k −
1, t,m), define

g : N (n− m, k − 1, t,m)→ M (n, k, t,m) / ∼

G 7→ [{Gi ∪ {n− m+ i} : i ∈ [m]}].

Again, this induces a well-defined map

ḡ : N (n− m, k − 1, t,m) / ∼→ M (n, k, t,m) / ∼

since g(G) ∼ g(G′) for any G, G′ such that G ∼ G′.
We can check that f̄ ◦ ḡ = idN (n−m,k−1,t,m) and that ḡ◦ f̄ =

idM (n,k,t,m). Hence, f̄ and ḡ are bijections.
Corollary 1: Let n, k, t,m ∈ Z+ be such that t ≤ k ≤ n

and m < n. Then there exists a maximally cover-free, at most
t-intersecting, k-uniform set systemH ⊆ 2[n] of size m if and
only if there exists an at most t-intersecting, (k − 1)-uniform
set system G ⊆ 2[n−m].
Remark 2: Both Proposition 1 and Corollary 1 remain true

if, instead of at most t-intersecting families, we consider
exactly t-intersecting or at least t-intersecting families.
At least t-intersecting families have been completely

characterized by Ahlswede and Khachatrian [250], but
the characterization of exactly t-intersecting and at most
t-intersecting families remain open.
Let H ⊆ 2[n] be a at most t-intersecting and k-uniform

family, and ϖ (n, k, t) = max {|H|} .
Proposition 2: Suppose n, k, t ∈ Z+ are such that

t ≤ k ≤ n. Then

ϖ (n, k, t) ≤

( n
t+1

)( k
t+1

) .
Proof: Let H ⊆ 2[n] be an at most t-intersecting and

k-uniform family. The number of pairs (X ,A), where A ∈ H
and X ⊆ A is of size t + 1, is equal to |H| ·

( k
t+1

)
. SinceH is

at most t-intersecting, any (t + 1)-element subset of [n] lies
in at most one set inH. Thus,

|H| ·
(

k
t + 1

)
≤

(
n

t + 1

)
H⇒ |H| ≤

( n
t+1

)( k
t+1

) .
Using Proposition 1, we immediately obtain the following

as a corollary:

Corollary 2: Suppose H ⊆ 2[n] is maximally cover-free,
at most t-intersecting and k-uniform. Then

|H| ≤
(n−|H|
t+1

)(k−1
t+1

) .

Similarly, by applying Proposition 1, other results on at
most t-intersecting and k-uniform set systems can also be
translated into results on set systems that, in addition to
having these two properties, are maximally cover-free. Thus,
henceforth, we do not explicitly state such results when their
derivation is trivial.

A. BOUNDS FOR SMALL n
In this section, we give several bounds onϖ (n, k, t) for small
values of n.
Lemma 1: Let n, k, t ∈ Z+ be such that t ≤ k ≤ n <

1
2k
( k
t + 1

)
. Let m′ be the least positive integer such that n <

m′k − 1
2m
′(m′ − 1)t . Then

ϖ (n, k, t) = m′ − 1.

Proof: First, we show that there exists m⋆
∈ Z+ such

that n < m⋆k − 1
2m

⋆(m⋆
− 1)t . Consider the quadratic

polynomial p(x) = xk − 1
2x(x − 1)t . Note that p(x) achieves

its maximum value at x = k
t +

1
2 . If we let m

⋆ be the unique
positive integer such that kt ≤ m

⋆ < k
t + 1, then

p(m⋆) ≥ p
(
k
t

)
=

1
2
k
(
k
t
+ 1

)
> n,

as required.
Next, supposeH is an at most t-intersecting, k-uniform set

family with |H| ≥ m′. Let A1, . . . ,Am′ ∈ H be distinct. Then

n ≥

∣∣∣∣∣∣
m′⋃
i=1

Ai

∣∣∣∣∣∣ =
m′∑
i=1

∣∣∣∣∣∣Ai \
i−1⋃
j=1

Aj

∣∣∣∣∣∣ ≥
m′−1∑
i=0

(k − it)

= m′k −
1
2
m′(m′ − 1)t,

which is a contradiction. This proves that |H| ≤ m′ − 1.
It remains to construct an at most t-intersecting, k-uniform

set familyH ⊆ 2[n] with |H| = m′− 1. Let m = m′− 1. The
statement is trivial if m = 0, so we may assume that m ∈ Z+.
By the minimality ofm′, we must have n ≥ mk− 1

2m(m−1)t .
Let k = αt + β with α, β ∈ Z and 0 ≤ β ≤ t − 1. Define a
set systemH = {A1, . . . ,Am} as follows:

Ai = {(l, {i, j}) : l ∈ [t], j ∈ [α + 1] \ {i}} ∪ {(i, j) : j ∈ [β]} .

It is clear, by construction, thatH is at most t-intersecting and
k-uniform. Furthermore, since α = ⌊k/t⌋ ≥ m, the number
of elements in the universe ofH is

t · |{i, j} : 1 ≤ i < j ≤ α + 1, i ≤ m| + mβ

= t
((

α + 1
2

)
−

(
α + 1− m

2

))
+ mβ

= t
(
mα −

1
2
m(m− 1)

)
+ mβ
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= mk −
1
2
m(m− 1)t.

Proposition 3: Let n, k, t ∈ Z+ be such that t ≤ k ≤ n.
(a) If n < 1

2k
( k
t + 1

)
, then

ϖ (n, k, t) =

1
2
+
k
t
−

√(
1
2
+
k
t

)2

−
2n
t

 .

(b) If t | k and n = 1
2k
( k
t + 1

)
, then

ϖ (n, k, t) =
k
t
+ 1.

Proof:

(a) Note that m =

⌊
1
2 +

k
t −

√(
1
2 +

k
t

)2
−

2n
t

⌋
satisfies

n ≥ mk− 1
2m(m−1)t andm

′
= m+1 satisfies n < m′k−

1
2m
′(m′−1)t; hence, the result follows immediately from

Lemma 1.
(b) LetH ⊆ 2[n] be an at most t-intersecting, k-uniform set

family. Wemay assume that |H| ≥ k
t . We will first show

that any three distinct sets inH have empty intersection.
Let A1, A2 and A3 be any three distinct sets inH, and let
A4, . . . , A k

t
∈ H be such that the Ai’s are all distinct.

Then∣∣∣∣∣∣∣
k
t⋃

i=1

Ai

∣∣∣∣∣∣∣ =
k
t∑

i=1

∣∣∣∣∣∣Ai \
i−1⋃
j=1

Aj

∣∣∣∣∣∣ ≥

k
t −1∑
i=0

(k − it)

=
1
2
k
(
k
t
+ 1

)
= n,

and thus we have must equality everywhere. In particu-
lar, we obtain |A3 \ (A1 ∪ A2)| = k − 2t , which together
which the fact that H is at most t-intersecting, implies
that A1 ∩ A2 ∩ A3 = ∅, as claimed. Therefore, every
x ∈ [n] lies in at most 2 sets inH. We get:

|H| · k = |(A, x) : A ∈ H, x ∈ A| ≤ 2n

H⇒ |H| ≤
2n
k
=
k
t
+ 1,

proving the first statement.
Next, we shall exhibit an at most t-intersecting,
k-uniform set family H ⊆ 2[n], where n = 1

2k
( k
t + 1

)
,

with |H| = k
t + 1. LetH = {A1, . . . ,A k

t +1
} with

Ai =
{
(l, {i, j}) : l ∈ [t], j ∈

[
k
t
+ 1

]
\ {i}

}
.

It is clear thatH is exactly t-intersecting and k-uniform,

and that it is defined over a universe of t ·
(
k/t + 1

2

)
= n

elements

Remark 3: The condition n < 1
2k
( k
t + 1

)
in Proposi-

tion 3(a) is necessary. Indeed, if n =
1
2
k
(
k
t
+ 1

)
, then

1
2
+
k
t
−

√(
1
2
+
k
t

)2

−
2n
t

 = k
t

<
k
t
+ 1.

Next, we examine the case where n = 1
2k
( k
t + 1

)
+ 1.

Unlike earlier cases, we do not have exact bounds for this
case. But what is perhaps surprising is that, for certain k and
t , the addition of a single element to the universe set can
increase the maximum size of the set family by 3 or more.
Proposition 4: Let n, k, t ∈ Z+ be such that t ≤ k ≤ n

and t | k. If n = 1
2k
( k
t + 1

)
+ 1, then

ϖ (n, k, t) ≤
k
t + 1

1− k
n

=

(
k2 + kt + 2t
k2 − kt + 2t

)(
k
t
+ 1

)
.

Proof: Let H ⊆ 2[n] be an at most t-intersecting and
k-uniform family. There exists some element x ∈ [n] such
that x is contained in at most ⌊ k|H|n ⌋ sets inH. We construct a
set familyH′ ⊆ 2[n]\{x} by taking those sets inH that do not
contain x. Since H′ is defined over a universe of 1

2k
( k
t + 1

)
elements, we obtain the following by applying Proposition 3:

|H| −
⌊
k|H|
n

⌋
≤ |H′| ≤

k
t
+ 1

H⇒

⌈
|H| −

k|H|
n

⌉
≤
k
t
+ 1

H⇒ |H| −
k|H|
n
≤
k
t
+ 1

H⇒ |H| ≤
k
t + 1

1− k
n

.

Remark 4: (a) If k = 3, t = 1, and n = 1
2k
( k
t + 1

)
+

1 = 7, then the bound in the Proposition 4 states
that ϖ (n, k, t) ≤

(
k2+kt+2t
k2−kt+2t

) ( k
t + 1

)
= 7. The Fano

plane, depicted in Figure 3, is an example of a 3-
uniform family of size 7, defined over a universe of
7 elements, that is exactly 1-intersecting. Thus, the
bound in Proposition 4 can be achieved, at least for
certain choices of k and t . An interesting side note:
Fano plane has applications/relations to integer factor-
ization [251], [252], [253] and octonians [254], [255],
[256], [257], both of which have direct applications to
cryptography [258], [259], [260], [261], [262], [263].

(b) Note that(
k2 + kt + 2t
k2 − kt + 2t

)(
k
t
+ 1

)
−

(
k
t
+ 1

)
=

2k2 + 2kt
k2 − kt + 2t

.

We can show that the above expression is (strictly)
bounded above by 6 (for k ̸= t), with slightly better
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FIGURE 3. The Fano plane.

bounds for t = 1, 2, 3, 4. It follows that

ϖ (n, k, t) ≤


k
t
+ 4 if t = 1,

k
t
+ 5 if t = 2, 3, 4,

k
t
+ 6 if t ≥ 5.

Furthermore, limk→∞
2k2+2kt
k2−kt+2t

= 2; thus, for fixed t ,
we have ϖ (n, k, t) ≤ k

t + 3 for large enough k .
Next, we give a necessary condition for the existence of at

most t-intersecting and k-uniform families H ⊆ 2[n], which
implicitly gives a bound on ϖ (n, k, t).
Proposition 5: Let n, k, t ∈ Z+ satisfy t ≤ k ≤ n, and

H ⊆ 2[n] be an at most t-intersecting and k-uniform family
with |H| = m. Then

(n− r)
⌊
km
n

⌋2
+ r

⌈
km
n

⌉2
≤ (k − t)m+ tm2

where r = km− n
⌊ km
n

⌋
.

Proof: Let αj be the number of elements that is
contained in exactly j sets in H. We claim that the following
holds:

m∑
j=0

αj = n, (1)

m∑
j=0

jαj = km, (2)

m∑
j=0

j(j− 1)αj ≤ tm(m− 1). (3)

(1) is immediate, (2) follows from double counting the set
{(A, x) : A ∈ H, x ∈ A}, and (3) follows from considering
{(A,B, x) : A,B ∈ H, A ̸= B, x ∈ A ∩ B} and using the fact
thatH is at most t-intersecting. This proves the claim.

Next, let us find non-negative integer values of α0, . . . , αm
satisfying both (1) and (2) that minimize the expression∑m

j=0 j(j− 1)αj. Note that

m∑
j=0

j(j− 1)αj =
m∑
j=0

(j2αj − jαj) =
m∑
j=0

j2αj − km.

So, we want to minimize
∑m

j=0 j
2αj, subject to the restric-

tions (1) and (2). If n ∤ km, this is achieved by letting α
⌊
km
n ⌋
=

n− r and α
⌈
km
n ⌉
= r , with all other αj’s equal to 0. If n | km,

we let α km
n
= n with all other αj’s equal to 0.

Indeed, it is easy to see that the above choice of α0, . . . , αm
satisfy both (1) and (2). Now, let α0, . . . , αm be some other
choice of the αj’s that also satisfy both (1) and (2). We will
show that the function f (α0, . . . , αm) =

∑m
j=0 j

2αj can be
decreased with a different choice of α0, . . . , αm.
Suppose αi ̸= 0 for some i ̸= ⌊ kmn ⌋, ⌈

km
n ⌉, and assume

that i < ⌊ kmn ⌋ (the other case where i > ⌈ kmn ⌉ is similar).
Since the αj’s satisfy both (1) and (2), there must be some
i1 with i1 ≥ ⌈ kmn ⌉ (the inequality is strict if n | km) such that
αi1 ̸= 0. It follows that if we decrease αi and αi1 each by
one, and increase αi+1 and αi1−1 each by one, constraints (1)
and (2) continue to be satisfied. Furthermore, considering that
i1 ≥ ⌊ kmn ⌋ + 1 > i+ 1, we get:

f (α1, . . . , αi, αi+1, . . . , αi1−1, αi1 , . . . , αm)

− f (α1, . . . , αi − 1, αi+1 + 1, . . . , αi1−1 + 1, αi1 − 1, . . . ,

αm) = i2 − (i+ 1)2 − (i1 − 1)2 + i21 = 2i1 − 2i− 2 > 0.

This proves the claim that the choice of α
⌊
km
n ⌋
= n − r and

α
⌈
km
n ⌉
= r minimizes f .

Therefore, we can only find non-negative integers
α0, . . . , αm satisfying all three conditions above if and only
if

(n− r)
⌊
km
n

⌋2
+ r

⌈
km
n

⌉2
− km ≤ tm(m− 1),

as desired.
Remark 5: For fixed k and t , if n is sufficiently large, then

the inequality in Proposition 5 will be true for allm. Thus, the
above proposition is only interesting for values of n that are
not too large.

B. ASYMPTOTIC BOUNDS
A Steiner system is defined as an arrangement of a set
of elements in triples such that each pair of elements is
contained in exactly one triple. The study of Steiner systems
has a long history, dating back to the 19th century work
on triple block designs by Plücker [264], Kirkman [265],
Steiner [266], Reiss [267], Noether [268], Netto [269],
Moore [270], Sylvester [271], Power [272], and Clebsch
and Lindemann [273]. The term Steiner (triple) systems was
coined in 1938 by Witt [274]. The Fano plane — discussed
in Remark 4 and depicted in Figure 3 — represents a
unique Steiner system of order 7; it can be seen as having
7 elements in 7 blocks of size 3 such that each pair of elements
is contained in exactly 1 block. In cryptography, Steiner
systems primarily have applications to (anonymous) secret
sharing [275], [276] and low-redundancy private information
retrieval [277]. For a broader introduction to the topic,
we refer the interested reader to [278] (also see [279],
[280]). In this section, we will see how at most t-intersecting
families are related to Steiner systems. Using a result from
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Keevash [281] about the existence of Steiner systems with
certain parameters, we obtain an asymptotic bound on the
maximum size of at most t-intersecting families.
Definition 26: A Steiner system S(t, k, n), where t ≤ k ≤

n, is a family S of subsets of [n] such that
1) |A| = k for all A ∈ S,
2) any t-element subset of [n] is contained in exactly one

set in S.
The elements of S are known as blocks.
From the above definition, it is clear that there exists a

family H that achieves equality in Proposition 2 if and only
if S(t + 1, k, n) exists. It is easy to derive the following
well known necessary condition for the existence of a Steiner
system with given parameters:
Proposition 6: If S(t, k, n) exists, then

(n−i
t−i

)
is divisible by(k−i

t−i

)
for all 0 ≤ i ≤ t , and the number of blocks in S(t, k, n)

is equal to
(n
t

)
/
(k
t

)
.

In 2019, Keevash [281] proved the following result,
providing a partial converse to the above, and answering in
the affirmative a longstanding open problem in the theory of
designs.
Theorem 4 ( [281]): For any k, t ∈ Z+ with t ≤ k, there

exists n0(k, t) such that for all n ≥ n0(k, t), a Steiner system
S(t, k, n) exists if and only if(

k − i
t − i

)
divides

(
n− i
t − i

)
for all i = 0, 1 . . . , t − 1.

Using this result, we will derive asymptotic bounds for the
maximum size of an at most t-intersecting and k-uniform
family.
Proposition 7: Let k, t ∈ Z+ with t < k, and C < 1 be

any positive real number.
1) There exists n1(k, t,C) such that for all integers n ≥

n1(k, t,C), there is an at most t-intersecting and
k-uniform familyH ⊆ 2[n] with

|H| ≥
Cnt+1

k(k − 1) · · · (k − t)
.

2) For all sufficiently large n,

Cnt+1

k(k − 1) · · · (k − t)
≤ ϖ (n, k, t)<

nt+1

k(k − 1) · · · (k − t)
.

In particular,

ϖ (n, k, t) ∼
nt+1

k(k − 1) · · · (k − t)
.

Proof:
1) Let t ′ = t + 1. By Theorem 4, there exists n0(k, t ′) such

that for all N ≥ n0(k, t ′), a Steiner system S(t ′, k,N )
exists if(
k − i
t ′ − i

)
divides

(
N − i
t ′ − i

)
for all i = 0, 1 . . . , t ′ − 1.

(∗)

Suppose n is sufficiently large. Let n′ ≤ n be the largest
integer such that (∗) is satisfied with N = n′. Since(

k − i
t ′ − i

)
divides

(
N − i
t ′ − i

)
⇐⇒ (k − i) · · · (k − t ′ + 1) | (N − i) · · · (N − t ′ + 1),

all N of the form λk(k − 1) · · · (k − t ′+ 1)+ t ′− 1 with
λ ∈ Z will satisfy (∗). Hence,

n− n′ ≤ k(k − 1) · · · (k − t ′ + 1).

By our choice of n′, there exists a Steiner system
S(t ′, k, n′), which is an at most t-intersecting and k-
uniform set family, defined over the universe [n′] ⊆ [n],
such that

|S(t ′, k, n′)| =

(n′
t ′
)(k

t ′
) = n′(n′ − 1) · · · (n′ − t ′ + 1)

k(k − 1) · · · (k − t ′ + 1)

≥
(n− α)(n− α − 1) · · · (n− α − t ′ + 1)

k(k − 1) · · · (k − t ′ + 1)
,

where α = α(k, t ′) = k(k − 1) · · · (k − t ′ + 1) is
independent of n. Since C < 1, there exists n2(k, t ′,C)
such that for all n ≥ n2(k, t ′,C),

(n− α)(n− α − 1) · · · (n− α − t ′ + 1)
nt ′

≥ C,

from which it follows that

|S(t ′, k, n′)| ≥
Cnt

′

k(k − 1) · · · (k − t ′ + 1)

=
Cnt+1

k(k − 1) · · · (k − t)

for all sufficiently large n. From the above argument,
we see that we can pick

n1(k, t,C) = max
(
n0(k, t ′)+ α(k, t ′), n2(k, t ′,C)

)
.

2) By Proposition 2,

ϖ (n, k, t) ≤

( n
t+1

)( k
t+1

) = n(n− 1) · · · (n− t)
k(k − 1) · · · (k − t)

<
nt+1

k(k − 1) · · · (k − t)
.

The other half of the inequality follows immediately
from 1.

Proposition 8: Let k, t ∈ Z+ with t < k−1, and C < 1 be
any positive real number. Then for all sufficiently large N ,
1) there exists a maximally cover-free, at most

t-intersecting and k-uniform family H ⊆ 2[N ] with
|H| ≥ CN,

2) the maximum size ν(N , k, t) of a maximally cover-free,
at most t-intersecting and k-uniform family H ⊆ 2[N ]

satisfies

CN ≤ ν(N , k, t) < N .
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Proof: We note that (ii) follows almost immediately
from (i). So, we prove (i).

Fix C0 such that C < C0 < 1. It follows from
Propositions 1 and 7 that for all integers n ≥ n1(k−1, t,C0),
there exists a maximally cover-free, at most t-intersecting and

k-uniform familyH ⊆ 2

[
n+ nt+1

(k−1)(k−2)···(k−t−1)

]
with

|H| ≥
C0nt+1

(k − 1)(k − 2) · · · (k − t − 1)
.

Since C < C0, there exist δ > 1 and ε > 0 such that
C0 > δ(1+ ε)C . Given N , let n ∈ Z+ be maximum such that

n+
nt+1

(k − 1)(k − 2) · · · (k − t − 1)
≤ N .

Assume that N is sufficiently large so that n ≥ n1(k −
1, t,C0). Then, by the above, there is a maximally cover-
free, at most t-intersecting and k-uniform family H ⊆ 2[N ]

so that

|H| ≥
C0nt+1

(k − 1)(k − 2) · · · (k − t − 1)
.

Since n is maximal, we have

N < (n+ 1)+
(n+ 1)t+1

(k − 1)(k − 2) · · · (k − t − 1)
.

If N (and thus n) is sufficiently large such that

• (n+ 1) <
ε(n+1)t+1

(k−1)(k−2)···(k−t−1) ,

•

(
1+ 1

n

)t+1
< δ,

then

N <
(1+ ε)(n+ 1)t+1

(k − 1)(k − 2) · · · (k − t − 1)

<
δ(1+ ε)nt+1

(k − 1)(k − 2) · · · (k − t − 1)

and it follows that

|H| ≥
C0nt+1

(k − 1)(k − 2) · · · (k − t − 1)
>

C0N
δ(1+ ε)

> CN .

C. AN EXPLICIT CONSTRUCTION
While Proposition 7 provides an answer for the maximum
size of an at most t-intersecting and k-uniform family for
large enough n, we cannot explicitly construct such set
families since Theorem 4 (and hence Proposition 7) is
nonconstructive. In this section, we establish a method that
explicitly constructs set families with larger parameters from
set families with smaller parameters.

Fix a positive integer t . For an at most t-intersecting and
k-uniform familyH ⊆ 2[n], define

s(H) =
k|H|
n

as the ‘‘relative size’’ of H with respect to the parameters k
and n. Note that the maximum possible value of |H| should

increase with larger n and decrease with larger k , hence s(H)
is a reasonable measure of the ‘‘relative size’’ ofH.

The following result shows that it is possible to construct
a sequence of at most t-intersecting and kj-uniform families
H ⊆ 2[nj], where kj → ∞, such that all set families in the
sequence have the same relative size.
Proposition 9: Let H ⊆ 2[n] be an at most t-intersecting

and k-uniform family. Then there exists a sequence of set
familiesHj such that

(a) Hj is an at most t-intersecting and kj-uniform set family,
(b) s(Hj) = s(H) for all j,
(c) limj→∞ kj = ∞.

Proof: We will define the set families Hj inductively.
Let H1 = H, and Hj ⊆ 2[nj] be an at most t-intersecting
kj-uniform family for some j ∈ Z+ such that m = |Hj|.
Consider set families G(1), . . . ,G(m),H(1), . . . ,H(m), defined
over disjoint universes such that each G(ℓ) (and similarly, each
H(ℓ)) is isomorphic toHj. Let

G(ℓ)
= {B(ℓ)1 , . . . ,B(ℓ)m }, H(ℓ)

= {C (ℓ)
1 , . . . ,C (ℓ)

m }.

For 1 ≤ h, i ≤ m, define the sets Ah,i = B(i)h ⊔ C
(h)
i , and let

Hj+1 = {Ah,i : 1 ≤ h, i ≤ m}.

It is clear that Hj+1 is a 2kj-uniform family defined over a
universe of 2mnj elements, and that |Hj+1| = m2. We claim
that Hj+1 is at most t-intersecting. Indeed, if (h1, i1) ̸=
(h2, i2), then

|Ah1,i1 ∩ Ah2,i2 | = |(B
(i1)
h1
⊔ C (h1)

i1
) ∩ (B(i2)h2

⊔ C (h2)
i2

)|

= |B(i1)h1
∩ B(i2)h2

| + |C (h1)
i1
∩ C (h2)

i2
|

=


|C (h1)

i1
∩ C (h2)

i2
| ≤ t if h1 = h2 and i1 ̸= i2,

|B(i1)h1
∩ B(i2)h2

| ≤ t if h1 ̸= h2 and i1 = i2,

0 if h1 ̸= h2 and i1 ̸= i2.

Finally,

s(Hj+1) =
kj+1|Hj+1|

nj+1
=

2kjm2

2mnj
=
kj|Hj|

nj
= s(Hj).

Remark 6: In the above proposition, nj, kj, and |Hj| grow
with j. Clearly, given a family H, it is also possible to
construct a sequence of set families Hj such that s(Hj) =
s(H) for all j, where nj and |Hj| grow with j, while kj stays
constant.

It is natural to ask, therefore, if it is possible to construct
a sequence of set families satisfying s(Hj) = s(H), where
nj and kj grow with j, but |Hj| stays constant. In fact, this is
not always possible. Indeed, let H be the Fano plane, then
t = 1, n = 7, k = 3, and |H| = 7. Note that H satisfies
Proposition 5 with equality, i.e.,

(k|H|)2

n
= k|H| + t(|H|2 − |H|).

VOLUME 11, 2023 73249



V. S. Sehrawat et al.: Star-Specific Key-Homomorphic PRFs From Learning With Linear Regression

If we let n′ = λn and k ′ = λk for some λ > 1, then

(k ′|H|)2

n′
= λ

(k|H|)2

n
= λ

(
k|H| + t(|H|2 − |H|)

)
> k ′|H| + t(|H|2 − |H|).

Hence, by Proposition 5, there is no k ′-uniform and at most
t-intersecting familyH′ ⊆ 2[n

′] such that |H′| = |H| = 7.

VI. GENERATING ROUNDED GAUSSIANS FROM
PHYSICAL COMMUNICATIONS
In this section, we describe our procedure, called Rounded
Gaussians from Physical Communications (RGPC), that
generates deterministic errors from a rounded Gaussian
distribution — which we later prove to be sufficiently
independent in specific settings. RGPC is comprised of the
following two subprocedures:
• Hypothesis generation: a protocol to generate a linear
regression hypothesis from the training data, which,
in our case, is comprised of the physical layer commu-
nications between participating parties.

• Rounded Gaussian error generation: this procedure
allows us to use the linear regression hypothesis —
generated by using physical layer communications
as training data — to derive deterministic rounded
Gaussian errors. The outcome of this procedure is that it
samples from a rounded Gaussian distribution in a man-
ner that is (pseudo)random to a PPT external/internal
adversary but is deterministic to the authorized parties.

A. SETTING AND CENTRAL IDEA
For the sake of intelligibility, we begin by giving a brief
overview of our central idea. Let there be a set of n ≥
2 parties, P = {Pi}ni=1. All parties agree upon a function
f (x) = β0+β1 x, with intercept β0← Z and slope β1← Z.
Let H ⊆ 2P be a family of sets such that each set Hi ∈ H
forms a star graph ∂i wherein each party is connected to a
central hub Ci /∈ Hi (for all i ∈ [|H|]) via two channels: one
Gaussian and another error corrected. If H is k-uniform and
at most t-intersecting, then each star in the interconnection
graph formed by the setsHi ∈ H contains exactly k members
and 2k channels such that |∂i ∩ ∂j| ≤ t . During the protocol,
each party Pj sends out message pairs of the form xj, f (xj),
where xj ← Z and f is a randomly selected function of
specific type (more on this later), to the central hubs of all
stars that it is a member of, such that:
• f (x) is sent over the Gaussian channel,
• x is sent over the error corrected channel.
For the sake of simplicity, we only consider a single star for

analyses in this section. All arguments and analyses from this
section naturally extend to the setting with multiple stars. Due
to the guaranteed errors occurring in the Gaussian channel,
the messages recorded at each central hub Ci are of the form:
y = f (x)+εx ,where εx belongs to someGaussian distribution
N (0, σ 2) with mean zero and standard deviation σ . Recall
that for most schemes, the value of σ primarily relies on

the smoothing parameter. In our experiments, which are
discussed in Section VI-C, we choose the range of σ as
σ ∈ [10, 300] — which contains the ranges mandated by
New Hope [282], BCNS [283], and BLISS [168]. Note that
even though techniques such as Gaussian ‘convolutions’ [91]
can be used to shrink the range of σ that is required for the
security guarantees of the given cryptosystem [284], such
techniques are not necessary for our solution as any range for
σ can be trivially realized by generating training data from
a distribution with the suitable σ value/range. The central
hub, Ci, forwards {x, y} to all parties over the respective error
corrected channels in ∂i.
In our algorithm, we use least squares linear regression

which aims to minimize the sum of the squared residuals.
We know that the hypothesis generated by linear regression
is of the form: h(x) = β̂0 + β̂1x. Thus, the statistical error,
with respect to our target function, comes out as:

ēx = |y− h(x)|. (4)

Due to the nature of the physical layer errors and independent
channels, we know that the errors εx are random and
independent. Thus, it follows that for restricted settings, the
error terms ēxi and ēxj are independent (with respect to a PPT
adversary) for all xi ̸= xj, and — are expected to — belong
to a Gaussian distribution. Next, we round ēx to the nearest
integer as: ex = ⌊ēx⌉ to get the final error, ex , which:

• is determined by x,
• belongs to a rounded Gaussian distribution.

We know from [1], [92], [127], and [128] that — with
appropriate parameters — rounded Gaussians satisfy the
hardness requirements for multiple LWE-based construc-
tions. We are now ready to discuss RGPC protocol in detail.
Note 2: With a sufficiently large number of messages,

f (x) can be very closely approximated by the linear
regression hypothesis h(x). Therefore, with a suitable choice
of parameters, it is quite reasonable to expect that the error
distribution is Gaussian (which is indeed the case — see
Lemma 2, where we use drowning/smudging to argue about
the insignificance of negligible uniform error introduced
by linear regression analysis). Considering this, we also
examine the more interesting case wherein the computations
are performed in Zm (for some m ∈ Z+ \ {1}) instead of
over Z. However, our proofs and arguments are presented
according to the former case, i.e., where the computations
are performed over Z. We leave adapting the proofs and
arguments for the latter case, i.e., computations overZm, as an
open problem.

B. HYPOTHESIS GENERATION FROM PHYSICAL LAYER
COMMUNICATIONS
In this section, we describe hypothesis generation from
physical layer communications which allows us to generate
an optimal linear regression hypothesis, h(x), for the target
function f (x). As mentioned in Note 2, we consider the
case wherein the error computations are performed in Zm.
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As described in Section VI-A, the linear regression data for
each subset of parties Hi ∈ H is comprised of the messages
exchanged within star graph ∂i—that is formed by the parties
in Hi ∪ Ci.

1) ASSUMPTIONS
We assume that the following conditions hold:
1) Value of the integer modulus m:
• is either known beforehand, or
• can be derived from the target function.

2) Size of the dataset, i.e., the total number of recorded
physical layer messages, is reasonably large such that
there are enough data points to accurately fit linear
regression on any function period. In our experiments,
we set it to 216 messages.

3) For a dataset D = {(xi, yi)} (i ∈ [ℓ]) of unique
function input, message received pairs, it holds for the
slope, β1, of f (x), that ℓ/β1 is superpolynomial. For our
experiments, we set β1 such that ℓ/β1 ≥ 100.

2) SETUP
Recall that the goal of linear regression is to find subset(s) of
data points that can be used to generate a hypothesis h(x) to
approximate the target function, which in our case is f (x)+εx .
Then, we extrapolate it to the entire dataset. However, since
modulo is a periodic function, there is no explicit linear
relationship between x ← Z and y = f (x) + εx mod m,
even without the error term εx . Thus, we cannot directly apply
linear regression to the entire dataset D = {(xi, yi)} (i ∈ [ℓ])
and expect meaningful results unless β0 = 0 and β1 = 1.
We arrange the dataset, D, in ascending order with respect

to the xi values, i.e., for 1 ≤ i < j ≤ m and all xi, xj ∈ D,
it holds that: xi < xj. Let S = {xi}ℓi=1 denote the ordered set
with xi (∀i ∈ [ℓ]) arranged in ascending order. Observe that
the slope of y = f (x) + εx mod m is directly proportional
to the number of periods on any given range, [xi, xj]. For
example, observe the slope in Figure 4, which depicts the
scatter plot for y = 3x + εx mod 12288 with three periods.
Therefore, in order to find a good linear fit for our target
function on a subset of dataset that lies inside the given range,
[xi, xj], we want to correctly estimate the length of a single
period. Consequently, our aim is to find a range [xi, xj] for
which the following is minimized:∣∣∣β̂1 −

m
xj − xi

∣∣∣, (5)

where β̂1 denotes the slope for our linear regression
hypothesis h(x) = β̂0 + β̂1x computed on the subset with
x values in [xi, xj].

3) GENERATING OPTIMAL HYPOTHESIS
The following procedure describes our algorithm for finding
the optimal hypothesis h(x) and the target range [xi, xj] that
satisfies Equation 5 for β0 = 0. When β0 is not necessarily 0,
a small modification to the procedure (namely, searching over

FIGURE 4. Scatter plot for y = 3 x + εx mod 12288 (three periods).

all intervals [xi, xj], instead of searching over only certain
intervals as described below) is needed.

Let κ denote the total number of periods, then it follows
from Assumption 3 (from Section VI-B1) that κ ≤ ⌈ℓ/100⌉.
Let δκ,i = |β̂1(κ, i) − κ|, where β̂1(κ, i) denotes that β̂1 is
computed over the range

[
x⌊(i−1)ℓ/κ⌋+1, x⌊iℓ/κ⌋

]
.

1) Initialize the number of periods with κ = 1 and calculate
δ1,1 = |β̂1(1, 1)− 1|.

2) Compute the δκ,i values for all 1 < κ ≤ ⌈ℓ/100⌉ and
i ∈ [κ]. For instance, κ = 2 denotes that we consider
two ranges: β̂1(2, 1) is calculated on

[
x1, x⌊ℓ/κ⌋

]
and

β̂1(2, 2) on
[
x⌊ℓ/κ⌋+1, xℓ

]
. Hence, we compute δ2,i for

these two ranges. Similarly, κ = 3 denotes that we
consider three ranges

[
x1, x⌊ℓ/κ⌋

]
,
[
x⌊ℓ/κ⌋+1, x⌊2ℓ/κ⌋

]
and

[
x⌊2ℓ/κ⌋+1, xℓ

]
, and we compute β̂(3, i) and δ3,i over

these three ranges. Hence, δκ,i values are computed for
all (κ, i) that satisfy 1 ≤ i ≤ κ ≤ ⌈ℓ/100⌉.

3) Identify the optimal value δ = minκ,i(δκ,i), which is the
minimum over all κ ∈ [⌈ℓ/100⌉] and i ∈ [κ].

4) After finding the minimal δ, output the corresponding
(optimal) hypothesis h(x).

What the above algorithm does is basically a grid search
over κ and i with the performance metric being minimizing
the δκ,i value.

Grid search: more details
Grid search is an approach used for hyperparameter

tuning. It methodically builds and evaluates a model for each
combination of parameters. Due to its ease of implementation
and parallelization, grid search has prevailed as the de-facto
standard for hyperparameter optimization in machine learn-
ing, especially in lower dimensions. For our purpose, we tune
two parameters κ and i. Specifically, we perform grid search
to find hypotheses h(x) for all κ and i such that κ ∈ [⌈ℓ/100⌉]
and i ∈ [κ]. Optimal hypothesis is the one with the smallest
value of the performance metric δκ,i.
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FIGURE 5. Distribution plot of ēx for y = 546 x + εx mod 12288. Slope
estimate: β1 = 551.7782.

C. SIMULATION AND TESTING
We tested our RGPC algorithm with varying values of m and
β1 for the following functions:

• f (x) = β0 + β1 x,
• f (x) = β0 + β1

√
x,

• f (x) = β0 + β1x2,
• f (x) = β0 + β1

3
√
x,

• f (x) = β0 + β1 ln(x + 1).

To generate the training data, we simulated the channel
noise, εx , as a random Gaussian noise (introduced by
the Gaussian channel), which we sampled from various
distributions with zero mean, standard deviation σ ∈

[10, 300], and m ∈ [20000]. Final channel noise was
computed by rounding εx to the nearest integer and reducing
the result modulo m.
For each function, we generated 216 unique input-output

pairs, exchanged over Gaussian channels, i.e., the dataset for
each function is of the form D = {(xi, yi)}, where i ∈ [216].
As expected, given the dataset D with data points xi, yi =
f (xi) + εi mod m, our algorithm always converged to the
optimal range, yielding close approximations for the target
function with deterministic errors, ēx = |y − h(x)| mod m.
Figure 5 shows a histogram of the errors ēx generated by our
RGPC protocol — with our training data — for the target
(linear) function y = 546 x + εx mod 12288. The errors
indeed belong to a truncated Gaussian distribution, bounded
by the modulus 12288 from both tails.

Moving on to the cases wherein the independent variable
x and the dependent variable y have a nonlinear relation:
the most representative example of such a relation is the
power function f (x) = β1xϑ , where ϑ ∈ R. We know that
nonlinearities between variables can sometimes be linearized

FIGURE 6. Distribution plot of ēx for y = 240
√

x + εx mod 12288. Slope
estimate: β1 = 239.84.

by transforming the independent variable. Hence, we applied
the following transformation: if we let xυ = xϑ , then
fυ (xυ ) = β1xυ = f (x) is linear in xυ . This can now be solved
by applying our hypothesis generation algorithm for linear
functions. Figures 6 to 9 show the histograms of the errors ēx
generated by our training datasets for the various nonlinear
functions from the list given at the beginning of Section VI-C.
It is clear that the errors for these nonlinear functions also
belong to truncated Gaussian distributions, bounded by their
respective moduli from both tails.

D. COMPLEXITY
Let the size of the dataset collected by recording the physical
layer communications be ℓ. Then, the complexity for least
squares linear regression is 2(ℓ) additions and multiplica-
tions. It follows from Assumption 3 (from Section VI-B1)
that ℓ2 is an upper bound on the maximum number of
evaluations required for grid search. Therefore, the overall
asymptotic complexity of our algorithm to find optimal
hypothesis, and thereafter generate deterministic rounded
Gaussian errors is O(ℓ3). In comparison, the complexity
of performing least squares linear regression on a dataset
{(xi, yi)} that has not been reduced modulo m is simply 2(ℓ)
additions and multiplications.

E. ERROR ANALYSIS
Before moving ahead, we recommend the reader revisit
Note 2.

Our RGPC protocol generates errors, ex = ⌈|y−h(x)|⌋, in a
deterministic manner by generating a mapping defined by the
hypothesis h. Recall that h depends on two factors, namely the
randomly generated function f (x) and the ℓ random channel
errors εx — both of which are derived via ℓ random inputs
x ← Z. Revisiting Definition 20, we observe that:
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FIGURE 7. Distribution plot of ēx for y = 125 x2 + εx mod 10218. Slope
estimate: β1 = 124.51.

• RGPC takes ℓ random elements x ← Z and ℓ

evaluations of f (x), each with an added random channel
error εx . Collectively, these form the random input, r ,
described in Definition 20,

• RGPC returns a deterministic mapping which depends
on r . Following the notation from Definition 20, we can
write this mapping as Mr . However, taking into account
the hypothesis, h, we choose the notation Mh instead,
but note that both are equivalent henceforth,

• Proving that Mh satisfies the requirements outlined
for the deterministic function/mapping in Definition 20
would directly establish RGPC as a P2SI algorithm —
as described in Definition 20.

Let difference of two values modulo m is always repre-
sented by an element in (−m/2, (m + 1)/2]. We make the
further assumption that there exists a constant b ≥ 1 such
that the xi values satisfy:

(xi − x̄)2∑ℓ
j=1(xj − x̄)2

≤
b
ℓ

(†)

for all i = 1, . . . , ℓ, where x̄ =
∑ℓ

j=1
xj
ℓ
.

Observe that if ℓ − 1 divides m − 1 and the xi values are
0, m−1

ℓ−1 , . . . ,
(ℓ−1)(m−1)

ℓ−1 , then

ℓ∑
j=1

(xj − x̄)2 =
ℓ(ℓ2 − 1)(m− 1)2

12(ℓ− 1)2
,

and the numerator is bounded above by (m−1)2
4 . Thus,

Equation † is satisfied for b = 3. In general, by the strong
law of large numbers, choosing a large enough number of
xi’s uniformly at random from [0,m− 1] will, with very high
probability, yield x̄ close to m−1

2 and 1
ℓ

∑ℓ
j=1(xj − x̄)

2 close

to (m2
−1)
12 (since X ∼ U (0,m − 1) H⇒ E(X ) = m−1

2 and

FIGURE 8. Distribution plot of ēx for y = 221 3√x + εx mod 11278. Slope
estimate: β1 = 221.01.

FIGURE 9. Distribution plot of ēx for y = 53 ln(x + 1) + εx mod 8857.
Slope estimate: β1 = 54.48.

var(X ) = m2
−1
12 ). Hence, Equation † is satisfied with a small

constant b, e.g., b = 4.
Recall that the dataset is D = {(xi, yi)}ℓi=1, where yi =

f (xi) + εi = β0 + β1xi + εi, with εi ∼ N (0, σ 2). Further
recall that the regression line is given by h(x) = β̂0 + β̂1x.
Then the error ēi is given by

ēi = (β̂0 + β̂1xi)− yi = (β̂0 + β̂1xi)− (β0 + β1xi + εi)

= (β̂0 − β0)+ (β̂1 − β1)xi − εi.

The joint distribution of the regression coefficients β̂0 and
β̂1 is given by the following well known result:
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Proposition 10: Let y1, y2, . . . , yℓ be independently dis-
tributed random variables such that yi ∼ N (α + βxi, σ 2)
for all i = 1, . . . , ℓ. If α̂ and β̂ are the least square estimates
of α and β respectively, then:(

α̂

β̂

)
∼ N

((
α

β

)
, σ 2

(
ℓ

∑ℓ
i=1 xi∑ℓ

i=1 xi
∑ℓ

i=1 x
2
i

)−1)
.

Applying Proposition 10, and using the fact that X ∼
N (µ, 6) H⇒ AX ∼ N (Aµ,A6AT ), we get:

(β̂0 − β0)+ (β̂1 − β1)xi

∼ N
(
0, σ 2

∑ℓ
j=1 x

2
j − 2xi

∑ℓ
j=1 xj + ℓx2i

ℓ
∑ℓ

j=1 x
2
j − (

∑ℓ
j=1 xj)2

)

= N
(
0,

σ 2

ℓ

(
1+

ℓ(xi − x̄)2∑ℓ
j=1(xj − x̄)2

))
.

Thus, by Equation †, the variance of (β̂0 − β0)+ (β̂1 − β1)xi
is bounded above by (1+ b)σ 2/ℓ.
Since Z ∼ N (0, 1) satisfies |Z | ≤ 2.807034 with

probability 0.995, by the union bound, ēi is bounded by

|ēi| ≤ 2.807034

(
1+

√
1+ b

ℓ

)
σ

with probability at least 0.99.
Note 3: Our protocol allows fine-tuning the Gaussian

errors by tweaking the standard deviation σ and mean µ for
the Gaussian channel. Hence, in our proofs and arguments,
we only use the term ‘‘target rounded Gaussian’’.
Lemma 2: Suppose that the number of samples ℓ is

superpolynomial, and that Equation (†) is satisfied with some
constant b. Then, the errors ei belong to the target rounded
Gaussian distribution.

Proof: Recall that the error ēi has two components:
one is the noise introduced by the Gaussian channel and
second is the error due to regression fitting. The first
component is naturally Gaussian. The standard deviation for
the second component is of order σ/

√
ℓ. Hence, it follows

from drowning/smudging that for a superpolynomial ℓ, the
error distribution for ēi is statistically indistinguishable from
the Gaussian distribution to which the first component
belongs. Therefore, it follows that the final output, ei = ⌈ēi⌋,
of the RGPC protocol belongs to the target rounded Gaussian
distribution (see Note 3).

To prove that all conditions in Definition 20 are satisfied
for Mh, it remains to show that no external PPT adversary
A has non-negligible advantage in guessing ex beforehand.
We assume that for an attack query x, A makes poly(L)
queries to Mh for x ′ ̸= x.
Lemma 3: For an external PPT adversary A, it holds

that Mh : x 7→ ex maps a random element x ← Z
to a random element ex in the target rounded Gaussian
distribution 9(0, σ̂ 2).

Proof: It follows from Lemma 2 that Mh outputs from
the target rounded Gaussian distribution. Note the following
straightforward observations:

• Since each coefficient of f (x) is randomly sampled from
Zm, f (x) is a random function.

• The inputs to f (x), x ← Z, are sampled randomly.
• The Gaussian channel introduces a noise εx to f (x), that
is drawn i.i.d. from aGaussian distributionN (0, σ 2) [9],
[11], [12], [15], [16], [17], [18], [19], [20]. Hence, the
receiving parties get a random element f (x)+ εx .

• It follows from the observations stated above that
⌈|f (x)−h(x)|⌋ outputs a random element from the target
rounded Gaussian 9(0, σ̂ 2).

Hence, Mh : x 7→ ex is a deterministic mapping that maps
each of the ℓ inputs {xi}ℓi=1 to an element ex in the desired
rounded Gaussian 9(0, σ̂ 2) such that all conditions from
Definition 20 are satisfied. It follows that given an input x not
seen before, no external PPT adversaryA has non-negligible
advantage in guessing ex .

VII. MUTUAL INFORMATION ANALYSIS
Definition 27: Let fX be the p.d.f. of a continuous random

variable X . Then, the differential entropy of X is

H (X ) = −
∫
fX (x) log fX (x) dx.

Definition 28: The mutual information, I (X;Y ), of two
continuous random variables X and Y with joint p.d.f. fX ,Y
and marginal p.d.f.’s fX and fY respectively, is

I (X;Y ) =
∫ ∫

fX ,Y (x, y) log
(
fX ,Y (x, y)
fX (x)fY (y)

)
dy dx.

From the above definitions, it is easy to prove that I (X;Y )
satisfies the equality:

I (X;Y ) = H (X )+ H (Y )− H (X ,Y ).

Let us now describe our aim. Suppose, for i = 1, 2, . . . , ℓ,
we have

yi ∼ N (α + βxi, σ 2) and zi ∼ N (α + βwi, σ 2),

with xi = wi for i ∈ [a]. Let h1(x) = α̂1x + β̂1 and h2(w) =
α̂2w + β̂2 be the linear regression hypotheses obtained from
the samples (xi, yi) and (wi, zi), respectively. Our goal is to
compute an expression for the mutual information

I ((α̂1, β̂1); (α̂2, β̂2)).

We begin by recalling the following standard fact:
Proposition 11: Let X ∼ N (v, 6), where v ∈ Rd and

6 ∈ Rd×d . Then:

H (X) =
1
2
log(det6)+

d
2
(1+ log(2π)).

We introduce the following notations:
• X1 =

∑ℓ
i=1 xi,X2 =

∑ℓ
i=1 x

2
i ,

• W1 =
∑ℓ

i=1 wi,W2 =
∑ℓ

i=1 w
2
i ,

• C1 =
∑a

i=1 xi =
∑a

i=1 wi,
• C2 =

∑a
i=1 x

2
i =

∑a
i=1 w

2
i ,

• C3 =
∑ℓ

i=1
∑ℓ

j=1,j̸=i xixj,
• 1 = ℓC2 − 2C1X1 + aX2,
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• ℧ = ℓC2 − 2C1W1 + aW2,

• ℵ = (a− 1)C2 − C3,
• £ = 1+ log(2π).

Our main result is the following:
Proposition 12: Let α̂1, β̂1, α̂2, β̂2 be as above. Then

H (α̂1, β̂1) = 2 log σ −
1
2
log(ℓX2 − X2

1 )+ £,

H (α̂2, β̂2) = 2 log σ −
1
2
log(ℓW2 −W 2

1 )+ £,

and

H (α̂1, β̂1, α̂2, β̂2)

= 4 log σ −
1
2
log

(
(ℓX2 − X2

1 )(ℓW2 −W 2
1 )
)
+ 2£

+
1
2
log

(
1−

1℧
(ℓX2 − X2

1 )(ℓW2 −W 2
1 )

+
ℵ (ℵ + ℓ(X2 +W2)− 2X1W1)

(ℓX2 − X2
1 )(ℓW2 −W 2

1 )

)
.

The mutual information between (α̂1, β̂1) and (α̂2, β̂2) is:

I ((α̂1, β̂1); (α̂2, β̂2))

= −
1
2
log

(
1−

1℧
(ℓX2 − X2

1 )(ℓW2 −W 2
1 )

+
ℵ (ℵ + ℓ(X2 +W2)− 2X1W1)

(ℓX2 − X2
1 )(ℓW2 −W 2

1 )

)
.

Proof: The expressions for H (α̂1, β̂1) and H (α̂2, β̂2)
follow from Propositions 10 and 11, and the expression for
I ((α̂1, β̂1); (α̂2, β̂2)) is given by:

I ((α̂1, β̂1); (α̂2, β̂2))

= H (α̂1, β̂1)+ H (α̂2, β̂2)− H (α̂1, β̂1, α̂2, β̂2).

It remains to derive the expression for H (α̂1, β̂1, α̂2, β̂2).
First, define the following matrices:

X =


1 x1
1 x2
...

...

1 xℓ

 , W =


1 w1
1 w2
...

...

1 wℓ

 .

Then

θ̂ :=


α̂1

β̂1
α̂2

β̂2

 =


α

β

α

β

+ ( X▽XTU
W▽WTV

)

=


α

β

α

β

+ (X▽XT 0
0 W▽WT

)(
U
V

)
,

where U, V ∼ N (0, σ 2Iℓ),X▽
= (XTX)−1 and W▽

=

(WTW)−1. Hence, it follows that:

var(θ̂ ) =
(
X▽XT 0

0 W▽WT

)
· var

(
U
V

)(
XX▽ 0
0 WW▽

)
.

For any matrix M = (Mi,j), let [M]a denote the matrix with
the same dimensions asM, and with entries

([M]a)i,j =

{
Mi,j if i, j ≤ a,
0 otherwise.

Note that

var
(
U
V

)
=

(
σ 2Iℓ σ 2[Iℓ]a

σ 2[Iℓ]a σ 2Iℓ

)
,

which implies that

var(θ̂ ) = σ 2
(

X▽ [X▽XT ]a(WW▽)
[W▽WT ]a(XX▽) W▽

)
.

det(var(θ̂ )) = σ 8 det(X▽
− B(W▽)−1C) det(W▽),

where

X▽
= (XTX)−1 =

 X2
ℓX2−X2

1
−

X1
ℓX2−X2

1

−
X1

ℓX2−X2
1

ℓ

ℓX2−X2
1

 ,

B = [X▽XT ]a(WW▽)

=


a∑
i=1

(X2−xiX1)(W2−wiW1)

(ℓX2−X2
1 )(ℓW2−W 2

1 )

a∑
i=1

(ℓwi−W1)(X2−xiX1)

(ℓX2−X2
1 )(ℓW2−W 2

1 )
a∑
i=1

(ℓxi−X1)(W2−wiW1)

(ℓX2−X2
1 )(ℓW2−W 2

1 )

a∑
i=1

(ℓxi−X1)(ℓwi−W1)

(ℓX2−X2
1 )(ℓW2−W 2

1 )

 ,

C = [W▽WT ]a(XX▽)

=


a∑
i=1

(X2−xiX1)(W2−wiW1)

(ℓX2−X2
1 )(ℓW2−W 2

1 )

a∑
i=1

(ℓxi−X1)(W2−wiW1)

(ℓX2−X2
1 )(ℓW2−W 2

1 )
a∑
i=1

(ℓwi−W1)(X2−xiX1)

(ℓX2−X2
1 )(ℓW2−W 2

1 )

a∑
i=1

(ℓxi−X1)(ℓwi−W1)

(ℓX2−X2
1 )(ℓW2−W 2

1 )

 ,

W▽
= (WTW)−1 =

(
ℓ W1
W1 W2

)−1
.

After a lengthy computation, we obtain the following
expression for det(var(θ̂ )):

σ 8

(ℓX2 − X2
1 )(ℓW2 −W 2

1 )

(
1−

1℧
(ℓX2 − X2

1 )(ℓW2 −W 2
1 )

+
ℵ (ℵ + ℓ(X2 +W2)− 2X1W1)

(ℓX2 − X2
1 )(ℓW2 −W 2

1 )

)
.

The expression for H (α̂1, β̂1, α̂2, β̂2) follows by applying
Proposition 11.
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VIII. LEARNING WITH LINEAR REGRESSION (LWLR)
In this section, we define LWLR and reduce its hardness
to LWE. It is very important to recall that, as mentioned in
Note 3, our RGPC protocol allows freedom in tweaking the
target (rounded) Gaussian distribution 9(0, σ̂ 2) by simply
selecting the desired standard deviation σ . Therefore, when
referring to the desired (rounded) Gaussian distribution in the
hardness proofs, we use 9(0, σ̂ 2) (or 9(0, σ̂ 2) mod m, i.e.,
9m(0, σ̂ 2)) without divulging into the specific value of σ .
Let P = {Pi}ni=1 be a set of n parties.
Definition 29: For modulus m and a uniformly sampled

a ← Zw
m, the learning with linear regression (LWLR)

distribution LWLRs,m,w over Zw
m × Zm is defined as: (a, x +

ex), where x = ⟨a, s⟩ and ex ∈ 9(0, σ̂ 2) is a rounded
Gaussian error generated by the RGPC protocol, on input x.
Theorem 5: For modulus m, security parameter L, ℓ =

g(L) samples (where g is a superpolynomial function), PPT
adversary A /∈ P , some distribution over secret s ∈ Zw

m,
and a deterministic mapping Mh : Z→ 9(0, σ̂ 2) generated
by the RGPC protocol, where 9(0, σ̂ 2) is the target rounded
Gaussian distribution, solving decision-LWLRs,m,w is at least
as hard as solving the decision-LWEs,m,w problem for the
same distribution over s.

Proof: Recall from Lemma 2 that, since ℓ is superpoly-
nomial, the errors belong to the desired rounded Gaussian
distribution 9(0, σ̂ 2). As given, for a fixed secret s ∈ Zw

m,
a decision-LWLRs,m,w instance is defined as (a, x + ex) for

a
$
←− Zw

m and x = ⟨a, s⟩. Recall that a decision-LWEs,m,w
instance is defined as (a, ⟨a, s⟩ + e) for a← Zw

m and e← χ

for a rounded (or discrete) Gaussian distribution χ . We know
from Lemma 3 that Mh is a deterministic mapping from
random inputs x ← Z to errors ex ∈ 9(0, σ̂ 2). We define
the following two games:
• G1: in this game, we begin by fixing a secret s. Each
query from the attacker is answered with an LWLRs,m,w

instance as: (a, x + ex) for a unique a
$
←− Zw

m, and x =
⟨a, s⟩. The error ex ∈ 9(0, σ̂ 2) is generated as: ex =
Mh(x).

• G2: in this game, we begin by fixing a secret s. Each
query from the attacker is answered with an LWEs,m,w

instance as: (a, ⟨a, s⟩ + e) for a
$
←− Zw

m and e ←
9(0, σ̃ 2), where 9(0, σ̃ 2) denotes a rounded Gaussian
distribution that is suitable for sampling LWE errors.

Let the adversary A be able to distinguish LWLRs,m,w
from LWEs,m,w with some non-negligible advantage, i.e.,
AdvA(G1, G2) ≥ ϕ(w) for a non-negligible function ϕ.
Hence, it follows that AdvA(9(0, σ̃ 2), 9(0, σ̂ 2)) ≥ ϕ(w).
However, we have already established in Lemma 3 that
Mh is random to A /∈ P . Furthermore, we know that
σ̂ can be brought arbitrarily close to σ̃ (see Note 3).
Therefore, for appropriate Gaussian parameters, it holds
that AdvA(9(0, σ̃ 2), 9(0, σ̂ 2)) ≤ η(w) for a negligible
function η, which directly leads to AdvA(G1, G2) ≤

η(w). Hence, for any distribution over a secret s ∈ Zw
m,

solving decision-LWLRs,m,w is at least as hard as solving

the decision-LWEs,m,w problem for the same distribution
over s.

IX. STAR-SPECIFIC KEY-HOMOMORPHIC PRFs
In this section, we use LWLR to construct the first star-
specific key-homomorphic (SSKH) PRF family.We adapt the
key-homomorphic PRF construction from [96] by replacing
the deterministic errors generated from the rounding function
in LWR with the errors produced via the deterministic
mapping, generated by our RGPC protocol.

A. BACKGROUND
For the sake of completeness, we begin by recalling the
key-homomorphic PRF construction from [96]. Let T be a
full binary tree with at least one node, i.e., every non-leaf
node in T has two children. Let T .r and T .l denote its right
and left subtree, respectively, and ⌊·⌉p denote the rounding
function from LWR (see Section III-A for an introduction to
LWR).

Let q ≥ 2, d = ⌈log q⌉, and x[i] denote the ith bit of a
bit-string x. Define a gadget vector as:

g = (1, 2, 4, . . . , 2d−1) ∈ Zd
q .

Define a decomposition function g−1 : Zq → {0, 1}d

such that g−1(a) is a ‘‘short’’ vector and ∀a ∈ Zq, it holds
that: ⟨g, g−1(a)⟩ = a, where ⟨·⟩ denotes the inner product.
Function g−1 is defined as:

g−1(a) = (x[0], x[1], . . . , x[d − 1]) ∈ {0, 1}d ,

where a =
d−1∑
i=0

x[i] · 2i is the binary representation of a. The

gadget vector is used to define the gadget matrix G as:

G = Iw ⊗ g = diag(g, . . . , g) ∈ Zw×wd
q ,

where Iw is the w × w identity matrix and ⊗ denotes the
Kronecker product [285]. The binary decomposition func-
tion, g−1, is applied entry-wise to vectors and matrices over
Zq. Thus, g−1 can be extended to get another deterministic
decomposition function

G−1 : Zw×u
q → {0, 1}wd×u

such that G · G−1(A) = A.
Given uniformly sampled matrices, A0,A1 ∈ Zw×wd

q ,
define function AT (x) : {0, 1}|T |→ Zw×wd

q as:

AT (x) =

{
Ax if |T | = 1,
AT .l(xl) · G−1(AT .r (xr )) otherwise,

(6)

where |T | denotes the total number of leaves in T and x ∈
{0, 1}|T | such that x = xl ||xr for xl ∈ {0, 1}|T .l| and xr ∈
{0, 1}|T .r|. The key-homomorphic PRF family is defined as:

FA0,A1,T ,p =

{
Fs : {0, 1}|T |→ Zwd

p

}
,
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where p ≤ q is the modulus. Amember of the function family
F is indexed by the seed s ∈ Zw

q as:

Fs(x) = ⌊s · AT (x)⌉p.

B. OUR CONSTRUCTION
We are now ready to present the construction for the first
SSKH PRF family.

1) SETTINGS
Let P = {Pi}ni=1 be a set of n honest parties, that are arranged
as the vertices of an interconnection graph G = (V ,E),
which is comprised of Sk stars ∂1, . . . , ∂ρ , i.e., each subgraph
∂i is a star with k leaves. As mentioned in Section VI-
A, we assume that each party in ∂i is connected to ∂i’s
central hub Ci via two channels: one Gaussian channel with
the desired parameters and another error corrected channel.
Each party in P receives parameters A0,A1, i.e., all parties
are provisioned with identical parameters. Hence, physical
layer communications and measurements are the exclusive
source of variety and secrecy in this protocol. Since we are
dealing with vectors, the data points for linear regression
analysis, i.e., the messages exchanged among the parties
in the stars, are of the form {(xi, yi)}ℓi=1, where xi, yi ∈
Zwd . Consequently, the target rounded Gaussian distribution
becomes 9wd (0, σ̂ 2). Let the parties in each star exchange
messages in accordance to the RGPC protocol such that
messages from different central hubs Ci,Cj (∀i, j ∈ [ρ]; i ̸=
j) are distinguishable to the parties belonging to multiple
stars.

2) CONSTRUCTION
Without loss of generality, consider a star ∂i ⊆ V (G).
Each party in ∂i follows the RGPC protocol to generate its
linear regression hypothesis h(∂i). Parties in star ∂i construct
a ∂i-specific key-homomorphic PRF family, whose member
F (∂i)
si (x), indexed by the key/seed si ∈ Zw

m, is defined as:

F (∂i)
si (x) = si · AT (x)+ e

(∂i)
b mod m, (7)

where AT (x) is as defined by Equation (6), b = si ·AT (x), and
e(∂i)b =Mh(∂i) (b) denotes a rounded Gaussian error computed
by the deterministic mapping Mh(∂i) on input b. Recall that
Mh(∂i) is generated by our RGPC protocol from hypothesis
h(∂i). The star-specific secret si can be generated by using
a reconfigurable antenna (RA) [286], [287] at the central
hub, Ci, and thereafter reconfiguring it to randomize the
error-corrected channel between itself and the parties in ∂i.
Specifically, si can be generated via the following procedure:
1) After performing the RGPC protocol, each party Pj ∈ ∂i

sends a random rj ∈ [ℓ] to Ci via the error corrected
channel. Ci broadcasts rj to all parties in ∂i and ran-
domizes all error-corrected channels by reconfiguring
its RA. If two parties’ rj values arrive simultaneously,
then Ci randomly discards one of them and notifies the
corresponding party to resend another random value.
This ensures that the channels are re-randomized after

receiving each rj value. By the end of this cycle, each
party receives k random values {rj}kj=1. Let℘i denote the
set of all rj values received by the parties in ∂i.

2) Each party in ∂i computes
⊕
rj∈℘i

rj = s mod m.

3) This procedure is repeated to extract the required
number of bits to generate the vector si.

Since Ci randomizes all its channels by simply reconfiguring
its RA, no active or passive adversary can compromise all
rj ∈ ℘i values [286], [287], [288], [289], [290], [291], [292],
[293]. In honest settings, secrecy of the star-specific secret si,
generated by the aforementioned procedure, follows directly
from the following three facts:
(i) All parties are honest.
(ii) All data points {xi}ℓi=1 are randomly sampled integers,

i.e., xi
$
←− Z.

(iii) The coefficients of f (x), and hence f (x) itself, are
random.

In the following section, we examine the settings with
active/passive and internal/external adversaries. Note that
the protocol does not require the parties to share their
identities. Hence, the above protocol is trivially anonymous
over anonymous channels (see [294], [295] for surveys on
anonymous communications). Since anonymity has multiple
applications in cryptographic protocols [187], [275], [276],
[296], [297], [298], [299], [300], [301], [302], [303], [304],
[305], [306], it is a useful feature of our construction.

C. MAXIMUM NUMBER OF SSKH PRFs AND DEFENSES
AGAINST VARIOUS ATTACKS
In this section, we employ our results from Section V to
derive the maximum number of SSKH PRFs that can be
constructed by a set of n parties. Recall that we use the terms
star and star graph interchangeably. We know that in order to
construct a SSKH PRF family, the parties are arranged in an
interconnection graphGwherein the— possibly overlapping
— subsets of P form different star graphs, ∂1, . . . , ∂ρ , within
G. We assume that for all i ∈ [ρ], it holds that: |∂i| = k .
Recall from Section V that we derived various bounds on the
size of the following set families H defined over a set of n
elements:
1) H is an at most t-intersecting k-uniform family,
2) H is a maximally cover-free at most t-intersecting

k-uniform family.
We set n to be the number of vertices inG. Hence, k represents
the size of each star with t being equal to (or greater than)
max
i̸=j

(|∂i ∩ ∂j|).

In our SSKH PRF construction, no member of a star ∂

has any secrets that are hidden from the other members
of ∂ . Also, irrespective of their memberships, all parties
are provisioned with identical set of initial parameters. The
secret keys and regression models are generated via physical
layer communications and collaboration. Due to these facts,
the parties in our SSKH PRF construction must be either
honest or semi-honest but non-colluding. We consider these
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factors while computing the maximum number of SSKH
PRFs that can be constructed securely against various types of
adversaries. For a star ∂ , letO∂ denote an oracle for the SSKH
PRFF (∂)

s , i.e., on receiving input x,O∂ outputsF
(∂)
s (x). Given

oracle access toO∂ , it must holds that for a PPT adversaryA
who is allowed poly(L) queries to O∂ , the SSKH PRF F (∂)

s
remains indistinguishable from a uniformly random function
U — defined over the same domain and range as F (∂)

s .
Let Ei denote the set of Gaussian and error-corrected

channels that are represented by the edges in star ∂i.

1) EXTERNAL ADVERSARY WITH ORACLE ACCESS
In this case, the adversary can only query the oracle for
the SSKH PRF, and hence the secrecy follows directly from
the hardness of LWLR. Therefore, at most t-intersecting
k-uniform families are sufficient for this case, i.e., we do not
need the underlying set family H to be maximally cover-
free. Moreover, t = k − 1 suffices for this case because
maximum overlap between different stars can be tolerated.
Hence, it follows from Proposition 7 (in SectionV) that the
maximum number of SSKH PRFs that can be constructed is:

ζ ∼
nk

k!
.

2) EAVESDROPPING ADVERSARY WITH ORACLE ACCESS
Wyner’s wiretap model [307] models an eavesdropper
observing a degraded version of the information exchanged
on the main channel through a wiretap channel. Let A be
an eavesdropping adversary with wiretap channels, observing
a subset E ′ of Gaussian and/or error-corrected channels
between parties and central hubs. Furthermore, assume that
A has oracle access to the traget star’s SSKH PRF. Without
loss of generality, let ∂i be the target star. Also, note that there
can be more than one target stars. Let us analyze the security
with respect to this adversary.

1) Secrecy of si: After each party Pz ∈ ∂i contributes to
the generation of si by sending a random value rz to
Ci, which then broadcasts rz to all parties in ∂i, Ci ran-
domizes all error-corrected channels by reconfiguring its
RA. This means thatA cannot compromise all rz values.
Hence, it follows that no information about si is leaked
to A. Furthermore, it follows from the wiretap channel
model that A cannot get precise value of any rz.

2) Messages exchanged via the channels in E ′: leakage
of enough messages exchanged within star ∂i would
allow A to closely approximate the deterministic
mapping Mh(∂i) . Note that for this attack to work,
A must successfully eavesdrop on enough channels
in ∂i. However, since A is an outsider with only access
to wiretap channels, it follows from Proposition 12,
and known information-theoretic results about physical
layer communications [308], [309] and (Gaussian)
wiretap eavesdropping [307], [310], [311], [312], [313],
[314], [315], [316], [317] that A cannot gain any
non-negligible information on Mh(∂i) .

Hence, an eavesdropping adversary with wiretap channels
and oracle access has no non-negligible advantage over an
external adversary with oracle access. Therefore, it follows
that the maximum number of SSKH PRFs that can be
constructed in this case is:

ζ ∼
nk

k!
.

3) NON-COLLUDING SEMI-HONEST PARTIES
Let P∂i ⊆ P denote the set of parties that form the star
∂i — in addition to the central hub Ci. Suppose that some
or all parties in P are semi-honest, i.e., they follow the
protocol correctly but try to gain/infer more information
than what is allowed by the protocol. Further suppose that
the parties do not collude with each other. However, this
assumption is redundant if all malicious parties belong to
same set of stars because broadcast in our protocol provides
malicious parties with all the information exchanged in the
stars they belong to. The restriction of non-collusion is
required when at least one pair of malicious parties are
members of different sets of stars. In such settings, the only
way any party Pj /∈ ∂i can gain additional information
about the SSKH PRF F (∂i)

si is to (mis)use its membership of
other stars. For instance, if Pj ∈ P∂d ,P∂j ,P∂o and P∂i ⊂

P∂o ∪ P∂j ∪ P∂d , then because the parties send identical
messages to all central hubs they are connected to, it follows
that H (F (∂i)

si |Pj) = 0. This follows trivially because Pj can
compute si. Having maximally cover-free families eliminates
this vulnerability against non-colluding semi-honest parties.
This holds because with members of a maximally cover-free
family denoting unique stars in G, the following can never
hold true for any P∂i :

P∂i ⊆

⋃
j∈ϱ

P∂j ,

where ϱ ⊆ [ρ]−{i}. Hence, it follows from Proposition 8 that
the maximum number of SSKH PRFs that can be constructed
with non-colluding semi-honest parties is at leastCn for some
positive real number C < 1.
Thus, in order to construct SSKH PRFs that are secure

against all types of adversaries and threat models discussed in
this section, the underlying family of sets must be maximally
cover-free, at most (k − 1)-intersecting and k-uniform.

4) MAN-IN-THE-MIDDLE
Physical-layer-based key generation schemes exploit the
channel reciprocity for secret key extraction, which can
achieve information-theoretic secrecy against eavesdroppers.
However, these schemes have been shown to be vulner-
able against man-in-the-middle (MITM) attacks. During
a typical MITM attack, the adversary creates separate
connection(s) with the communicating node(s) and relays
altered transmission packets to them. Eberz et al. [318]
demonstrated a practical MITM attack against RSS-based
key generation protocols [15], [319], wherein the MITM
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adversary A exploits the same channel characteristics as the
target/communicating parties P1,P2. To summarize, in the
attack from [318], A injects packets that cause a similar
channel measurement at both P1 and P2. This attack enables
A to recover up to 47% of the secret bits generated by
P1 and P2.
To defend against such attacks, we can apply techniques

that allow us to detect an MITM attack over physical
layer [320], and if one is detected, the antenna of ∂i’s central
hub, Ci, can be reconfigured to randomize all channels in
∂i [290]. This only requires a reconfigurable antenna (RA)
at each central hub. An RA can swiftly reconfigure its
radiation pattern, polarization, and frequency by rearranging
its antenna currents [286], [287]. It has been shown that
due to multipath resulting from having an RA, even small
variation by the RA can create large variations in the channel,
effectively creating fast varying channels with a random
distribution [321]. One way an RA may randomize the
channels is by randomly selecting antenna configurations in
the transmitting array at the symbol rate, leading to a random
phase and amplitude multiplied to the transmitted symbol.
The resulting randomness is compensated by appropriate
element weights so that the intended receiver does not
experience any random variations. In this manner, an RA
can be used to re-randomize the channel and hence break
the temporal correlation of the channels between A and the
attacked parties, while preserving the reciprocity of the other
channels.

Therefore, even if an adversary A is able to perform
successful injection in communication round ß, its channels
with the attacked parties would be randomly modified (by
the RA) when it attempts injections in round ß+1. On the
other hand, the channels between the parties in star ∂i and
the central hub Ci remain reciprocal, i.e., they can still make
correct/identical measurements. Hence, by reconfiguringCi’s
RA, we can prevent further injections fromA without affect-
ing the legitimate parties’ ability to make correct channel
measurements. Further details on this defense technique are
beyond the scope of this paper. For detailed introduction to
the topic and its applications in different settings, we refer the
interested reader to [286], [287], [288], [289], [290], [291],
[292], and [293]. In this manner, channel state randomization
can be used to effectively reduce an MITM attack to the
less harmful jamming attack [322]. See [323] for a thorough
introduction to jamming and anti-jamming techniques.

D. RUNTIME AND KEY SIZE
We know that the complexity of a single evaluation of
the key-homomorphic PRF from [96] is 2(|T |wω log2 m)
ring operations in Zm, where ω ∈ [2, 2.37286] is the
exponent of matrix multiplication [324], [325]. Using the
fast integer multiplication algorithm from [326], this gives
a time complexity of 2(|T |wωm log3 m). The time taken by
the setup of our SSKH PRF construction is equal to the
time required by our RGPC algorithm to find the optimal

hypothesis, which we know from Section VI-D to be 2(ℓ)
additions andmultiplications. If B is an upper bound on xi and
yi, then the time complexity isO (ℓB logB). Once the optimal
hypothesis is known, it takes 2(wm log2m) time to generate
a deterministic LWLR error for a single input. Hence, after
the initial setup, the time complexity of a single function
evaluation of our SSKH PRF remains 2(|T |wωm log3m).
Similarly, the key size for our SSKH PRF family is the

same as that of the key-homomorphic PRF family from [96].
Specifically, for security parameter L and 2L security against
the well known lattice reduction algorithms [327], [328],
[329], [330], [331], [332], [333], [334], [335], [336], [337],
[338], [339], [340], [341], [342], [343], [344], [345], [346],
[347], [348], [349], [350], the key size for our SSKH PRF
family is L.

E. CORRECTNESS AND SECURITY
Recall that LWR employs rounding to hide all but some of the
most significant bits of ⌊s · A⌉p; therefore, the rounded-off
bits become the deterministic error. On the other hand,
our solution, i.e., LWLR, uses linear regression hypothesis
to generate the desired rounded Gaussian errors, which
are derived from the (independent) errors occurring in the
physical layer communications over Gaussian channel(s). For
the sake of simplicity, the proofs assume honest parties in
the absence of any adversary. For other supported cases, it is
easy to adapt the statements of the results according to the
bounds/conditions established in Section IX-C.
Recall that the RGPC protocol ensures that all parties in a

star ∂ receive an identical dataset D, and therefore arrive at
the same linear regression hypothesis h(∂) and errors e(∂)b .
Theorem 6: The function family defined by Equation 7 is

a SSKH PRF under the decision-LWE assumption.

Proof: We know from Theorem 5 that for si
$
←− Zw

m and
a superpolynomial number of samples ℓ, the LWLR instances
generated in Equation 7 are as hard as LWE — to solve
for si (and e(∂i)b ). The randomness of the function family
follows directly from the randomness of si and the public
parameters, A0,A1. The deterministic behavior follows from
the following two facts:
• AT (x) is a deterministic function,
• the mapping, Mh(∂i) , used to generate the errors is
deterministic.

Hence, it follows from [96] that the family of functions
defined by Equation 7 is a PRF family.
Next, define

G(∂i)
s (x) = s · AT (x)+ ⌊ε

(∂i)
b ⌉ mod m,

where ε
(∂i)
b is the (raw) Gaussian error corresponding to b for

star ∂i; defineG
(∂j)
s similarly. Since the errors ε

(∂i)
b and ε

(∂j)
b are

independent Gaussian random variables, each with variance
σ 2, it holds that:

Pr[G(∂i)
s (x) = G

(∂j)
s (x)] = Pr[⌊ε(∂i)b ⌉ = ⌊ε

(∂j)
b ⌉]

≤ Pr[||ε(∂i)b − ε
(∂j)
b ||∞ < 1]
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= Pr[|Z | < (
√
2σ )−1]w

where Z is a standard Gaussian random variable.
Furthermore, since the number of samples is superpoly-

nomial in the security parameter L, by drowning/smudging,
the statistical distance between e(∂i)b and ε

(∂i)
b is negligible

(similarly for ε
(∂j)
b and e

(∂j)
b ). Hence,

Pr[F (∂i)
s (x) = F

(∂j)
s (x)] = Pr[G(∂i)

s (x) = G
(∂j)
s (x)]+ η(L)

≤ Pr[|Z | < (
√
2σ )−1]w + η(L),

where η(L) is a negligible function in L. By choosing
δ = Pr[|Z | < (

√
2σ )−1], this function family satisfies

Definition 21(i).
Finally, by Chebyshev’s inequality and the union bound,

for any τ > 0,

F (∂)
s1 (x)+ F (∂)

s2 (x) = F (∂)
s1+s2 (x)+ e

′ mod m,

where each entry of e′ lies in [−3τ σ̂ , 3τ σ̂ ] with probability
at least 1− 3/τ 2. For example, choosing τ =

√
300 gives us

the bound that the absolute value of each entry is bounded by
√
2700σ̂ with probability at least 0.99.
Therefore, the function family defined by Equation 7 is a

SSKH PRF family — as defined by Definition 21 — under
the decision-LWE assumption.

X. CONCLUSION
In this paper, we introduced a novel derandomized variant
of the celebrated learning with errors (LWE) problem, called
learning with linear regression (LWLR), which derandomizes
LWE via deterministic, yet sufficiently independent, errors
that are generated by using special linear regression models
whose training data consists of physical layer communica-
tions over Gaussian channels. Prior to our work, learning
with rounding and its variant nearby learning with lattice
rounding were the only known derandomized variant of the
LWE problem; both of which relied on rounding. LWLR
relies on the naturally occurring errors in physical layer
communications to derandomize LWE while maintaining its
hardness — for specific parameters.

We also introduced star-specific key-homomorphic
(SSKH) pseudorandom functions (PRFs), which are directly
defined by the physical layer communications among the
respective sets of parties that construct them. We used LWLR
to construct the first SSKH PRF family. In order to quantify
the maximum number of SSKH PRFs that can be constructed
by sets of overlapping parties, we derived:

• a formula to compute the mutual information between
linear regression models that are generated from over-
lapping training datasets,

• bounds on the size of at most t-intersecting k-uniform
families of sets. We also gave an explicit construction to
build such set systems,

• bounds on the size of maximally cover-free at most
t-intersecting k-uniform families of sets.

Using these results, we established the maximum number
of SSKH PRFs that can be constructed by a given set of
parties in the presence of active/passive and internal/external
adversaries.
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