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ABSTRACT In the era of advanced computer vision and natural language processing, the use of social
media as a source of information has become even more valuable in directing aid and rescuing victims.
Consequently, millions of texts and images can be processed in real-time, allowing emergency responders to
efficiently assess evolving crises and appropriately allocate resources. The majority of the previous detection
studies are text-only or image-only based, overlooking the potential benefits of integrating both modalities.
In this paper, we propose Multimodal Channel Attention (MCA) block, which employs an adaptive attention
mechanism, learning to assign varying importance to each modality. We then propose a novel Deep
Multimodal Crisis Categorization (DMCC) framework, which employs a two-level fusion strategy for better
integration of textual and visual information. TheDMCC framework consists of feature-level fusion, which is
accomplished through the MCA block, and score-level fusion, whereby the decisions made by the individual
modalities are integrated with those of the MCA model. Extensive experiments on publicly available
datasets demonstrate the effectiveness of the proposed framework. Through a comprehensive evaluation,
it was found that the proposed framework achieves a performance enhancement compared to unimodal
methods. Furthermore, it outperforms the current state-of-the-art methods on crisis-related categorization
tasks. The code is available at https://github.com/MarihamR/Categorizing-Crises-from-Social-Media-Feeds-
Via-Multimodal-Channel-Attention.

INDEX TERMS Multimodal deep learning, social media, natural disasters, crisis response, attention, fusion.

I. INTRODUCTION
Billions of posts are constantly shared every second on
social media platforms, which encompass a broad range of
significant events. In times of crisis, utilizing social media
platforms can provide valuable and actionable information
more efficiently than traditional emergency communication
channels [1]. Crisis management utilizing social media data
encompasses a plethora of endeavors, seeking to swiftly pin-
point and address emergency scenarios. One crucial aspect
is crisis detection and identification, which encloses the
automatic identification of posts suggesting a transpiring cri-
sis [2], [3], [4], such as: natural disasters [5], [6], terrorist
attacks [7], and public health emergencies [8], [9], [10].
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A further task is sentiment analysis, which identifies and
analyzes the emotional tone of crisis-related posts or tweets.
This provides a deeper understanding of public reactions to
the crisis [11], [12]. Additionally, crisis mapping task is also
of paramount importance because it creates visual represen-
tations of crisis-related information, such as the location of
affected areas and the spread of a disaster [13], [14]. Finally,
the use of early warnings and alerts during disasters gained
significant momentum recently. Because it allows individuals
to disseminate information quickly andwidely about the loca-
tion and magnitude of a crisis, as well as providing guidance
on evacuation routes and emergency shelter locations [15].

The field of crisis categorization and damage assessment
through social media analysis is lacking in studies that
employ multimodal methods. Such methods involve the inte-
gration of multiple forms of data, including text, images and
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videos, to gain a more thorough understanding of a situa-
tion. Despite the abundance of information readily shared on
social media platforms during crises, the majority of existing
studies on damage assessment have traditionally focused on
either image-based or text-based analysis. Thus, overlooking
the complementary information that can be obtained from
multiple modalities. Single modality methods in damage
assessment suffer from several limitations, such as lack of
context, ambiguity, bias, poor quality data, and limited infor-
mation. Practically, each modality captures a certain kind of
information that is likely to be complementary. For exam-
ple, images provide on-site information from the eyewitness
perspective which is hard to be described in words [16].
Therefore, integrating the information from multiple modali-
ties via fusion is expected to improve the crisis categorization
performance. Simple fusion techniques were adopted [17],
[18], [19], [20]. However, they do not capture relations among
the modalities.

To circumvent the above limitations, we first propose
Multimodal Channel Attention (MCA) block for learning
a common representation which discovers the interdepen-
dencies among the modalities. Finally, we introduce Deep
Multimodal Crisis Categorization (DMCC) framework for
integrating image and text data. The key contributions of the
presented work are:

• The incorporation of attention mechanism in the con-
text of deep multimodal learning is explored aiming
to focus on the most pertinent information from each
modality.

• MCA block is proposed as a feature level fusion tech-
nique, MCA block learns distinct weights for each
modality, providing an effective approach for fusion.

• A DMCC framework comprising a two-level fusion
strategy, intermediate fusion (MCA) and late fusion
(score-level fusion), is introduced.

• Extensive experiments are conducted on two benchmark
datasets: CrisisMMD [21] and DMD [17].

• The proposed framework shows superiority over the uni-
modal methods. Additionally, the evaluations demon-
strate that DMCC framework outperforms the current
state-of-the-art model by around 4 %, 5 %, and 1 % on
CrisisMMD dataset task 1, CrisisMMD dataset task 2,
and DMD dataset, respectively.

• The discriminatory capabilities of the proposed DMCC
framework are assessed by conducting both quantitative
and qualitative analysis.

The remaining part of the paper is organized as follows:
In Section II, we review the most recent and relevant liter-
ature. Section III presents the details of the proposed MCA
block and DMCC framework. Extensive experimental results
are reported in Section IV. Finally, we conclude the paper in
Section V.

II. RELATED WORK
Research on social media crisis identification spans nearly ten
years proposing many methods that use different modalities.
From modality type point of view, social media crisis iden-
tification methods can be categorized into two main groups:
1) Unimodal methods and 2) Multimodal methods.

A. UNIMODAL METHODS
There has been an extensive research conducted on
crisis-related tasks from textual data. Some researchers
adopted machine learning, graphical, and non-parametric
models. In [22], Sakaki et al. presented a earthquake reporting
system from tweets using Support Vector Machine (SVM).
Imran et al. [23] utilized Naïve Bayesian (NB) classifier in
identifying valuable information from disaster related tweets.
In a subsequent work, the authors proposed a framework for
detecting informative tweets using Conditional RandomField
(CRF) [24]. Singh et al. [25] presented a markov model to
predict the location victims. Shekhar and Setty [12] presented
system to extract information about the disaster nature, emo-
tions of affected people and relief efforts using K- Nearest
Neighbour (KNN).

After the revolutionary impact of deep learning on
computer vision tasks, researchers investigated using deep
learning models, including CNN, Long Short-Term Mem-
ory (LSTM), and Bidirectional LSTM (BiLSTM). For
the task of identifying informative tweets during a dis-
aster, Caragea et al. [26] used Bag of Words (BoW) and
Text-CNN [27]. Similarly, Nguyen et al. [28] explored var-
ious word embedding techniques and utilized Text-CNN
as for classifier. While Sreenivasulu et al. [29] combined
Text-CNN with Feed Forward Neural Network (FFNN)
to further improve the performance. In [30], Burel et al.
also employed Text-CNN in crisis situations type detection.
Alharbi and Lee [31] extracted crisis-related messages from
Arabic Twitter data using different deep learning techniques,
including Text-CNN, LSTM, and BiLSTM.

The majority of studies for assessing damage and disasters
from images applied CNN. For example, Nguyen et al. [32]
and Alam et al. [33] classified the damage severity using
CNNs, While Li et al. [34] formulated the problem as regres-
sion. They trained a CNN to quantify the degree of the
damage as a score. In [35], Kumar et al. also predicted
the damage severity from twitter images. They used various
CNN architectures for feature extraction, then applied dif-
ferent machine learning techniques, such as Support Vector
Machines (SVM), Naïve Bayesian (NB), K- Nearest Neigh-
bour (KNN), and Random Forest (RF), for the classification.
Alam et al. in [36] and [37] addressed various crisis-related
tasks using different CNN architectures in different tasks,
such as disaster type detection, and informativeness clas-
sification, humanitarian categorization and damage severity
assessment.
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FIGURE 1. The proposed DMCC framework using MCA block considers two modalities, specifically text and image.

B. MULTIMODAL METHODS
The fusion of abundant and complementary information pro-
vides a common discriminative representation. There are
currently a limited number of multimodal learning frame-
works, developed specifically for crises related applications.
Rizk et al. [38] proposed a two stage multimodal framework
merging visual and semantic features to analyze twitter data
during crisis. They used computationally inexpensive visual
representations, including Gray-Level Co-OccurrenceMatrix
(GLCM) [39] and Gabor filters [40]. For text, they adopted
BoW as a text descriptor. Mouzannar et al. [17] identified
environmental and human damages from social media posts.
They combined multiple unimodal CNNs that independently
extract visual and textual feature representation. In [18],
Hossain et al. demonstrated a multimodal damage detec-
tion system that extracted visual features from a pretrained
ResNet50 [41] and textual features from a bidirectional
long-term memory (BiLSTM) network with attention mech-
anism. They then concatenated visual and textual feature
representation. Ofli et al. [20] adapted CNNs to learn a com-
mon modality-agnostic shared representations. Abavisani et
al. [19] also presented a multimodal framework based on a
cross-attention model. They used pretrained DenseNet [42]
and BERT [43] to extract visual and textual embeddings,
respectively. In [44], Gautam et al. presented simple decision
fusion between visual and textual networks. In [45], Kumar et
al. presented an end-to-end informativeness detector in tweets
which concatenates image and text embedding.

III. PROPOSED DMCC FRAMEWORK
The proposed DMCC framework shown in Fig. 1, consists of
four main modules. The first two modules are image and text

encoders which are responsible for visual and textual feature
representations, respectively. At the core of the framework
is the proposed MCA block which fuses visual and textual
modalities. Finally, the score fusion combines the decision of
the previous three components.

A. DMCC IMAGE ENCODER
Images are important in crisis identification because they pro-
vide detailed on-site information [34]. In this study, the visual
features are extracted using Convolutional Neural Networks
(CNNs). We employ transfer learning technique to overcome
the limited size of the available datasets [46]. In transfer
learning, a pretrained CNN on a large dataset (i.e ImageNet
dataset [47]) is fine-tuned on a smaller dataset. One of the
efficient yet effective CNN architectures is EfficientNet [48]
because it achieves high accuracy with few parameters. The
main breakthrough of EfficientNet is based on highly effec-
tive compound scaling of width, depth and resolution. For
the image encoder, we choose EfficientNetV2 [49], which
enhances both training speed and parameter efficiency. The
visual features are extracted from the final fully connected
layer of EfficientNetV2 as follows:

V = EfficientNetV2(I ), (1)

where I is the input image, V ∈ R1000 is the output of the
image encoder. The output is then split into two pathways.
The first of which is a fully connected layer, which outputs
the final classification scores for each class yV . The second
pathway is for the feature-level fusion, which is a linear
layer that acts as a visual features projection into a fixed
dimension D. The linear layer consists of a fully connected
layer, batch normalization and then an activation function,
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FIGURE 2. The proposed MCA block.

such as ReLU so that:

Ṽ = δ(Bn(W ′
VV )), (2)

where Ṽ ∈ RD is the visual features projection, WV is the
weight matrix of the linear layer, Bn is a batch normalization,
and δ is a ReLU activation function. In section IV-B1, we con-
duct a comparative study among different image encoders
candidates.

B. DMCC TEXT ENCODER
The choice of text encoder is crucial in the framework’s per-
formance. Transformers [50] are currently the state-of-the-art
in natural language processing. One of the most widely used
text encoders is BERT [43], a Google-developed bidirectional
transformer with 110 million parameters. BERT is pretrained
on a vast amount of text data. Here, BERT is fine-tuned on
crisis-related tweets, a relatively small dataset, to improve
the classification performance compared to random weight
initialization. This can be attributed to the fact that the main
textual patterns are already learnt during pretraining phase.
In the proposed framework, BERT is used to extract the
embeddings from each tweet sentence S as follows:

T = BERT (S), (3)

where S is the input tweet text, T ∈ R768 is the output
embedding of the text encoder. The output embedding of text
encoder is divided into two pathways, conforming with the
output of the image encoder. The first pathway yields the
final classification scores for each class yT through a fully
connected layer. The second pathway is for the feature-level
fusion. It consists of a linear layer acting as a textual features
projection into a fixed dimension D as follows:

T̃ = δ(Bn(W ′
TT )), (4)

where T̃ ∈ RD is the textual features projection, WT is the
weight matrix of linear layer, Bn is a batch normalization, and
δ is a ReLU activation function. For sake of completeness,
we compare various text encoders in Section IV-B2.

C. THE PROPOSED MCA FOR FEATURE-LEVEL FUSION
The core of the framework shown in Fig. 1 is the proposed
MCA block. Attention [50] has been a significant break-
through in several fields, such as natural language processing
and computer vision. One type of attention mechanism,
known as channel attention, was introduced to increase the
network sensitivity to informative features [51]. We exploit a
new utilization of channel attention blocks as a fusion tech-
nique among several modalities, through which channels are
perceived as the modalities distinct representation. The goal
of the proposedMCA block is learning the interdependencies
for the modalities. It performs modality weighing by empha-
sizing on the more informative modality to learn a common
discriminative representation. In Figure 2, the architecture of
the proposed MCA is illustrated. The input to MCA block
is the concatenation of both visual Ṽ and textual T̃ features
projection, which can be mathematically represented as:

F = Ṽ | T̃ , (5)

where | means channel level concatenation, F ∈ R(D×1×C)

represents the fused features and C is the number of modal-
ities which is two channels (Visual and Textual). Both
modalities share the same size of features dimension (D),
where D is set to 1000, to ensure that all modalities are given
equal consideration during the fusion procedure.

Inspired by squeeze and excitation (SE) block [51], the
proposed MCA block collects features from both modalities
and outputs a joint global representation of these features.It
then assigns ingenious attention weights to this joint repre-
sentation to help the model prioritize what crucial features
to focus on across all modalities. The aggregation of spatial
features into a joint global channel descriptors is employed
through employing a global average pooling (GAP) technique
as follow:

F̃ =
1
D

D∑
j=1

F(j). (6)
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Subsequently, the process of assigning attention weights to
these joint representations is performed through the utiliza-
tion of two fully connected layers. The first layer incorporates
a ReLU activation function, while the second uses a sigmoid
activation function, allowing the scoring of each multimodal
channel (α) to be evaluated as follows:

α = σ (W ′

F2(δ(W
′

F1F̃))), (7)

where α, F̃ , WF1, and WF2 ∈ R(1×1×C), σ is a sigmoid
activation function and δ is a ReLU activation function. The
output of the MCA block is then obtained by scaling to the
fused features (F) as follows:

FA = α ⊗ F, (8)

where ⊗ is an element wise multiplication, α represents
channel attention weights, and FA ∈ R(D×1×C).

Lastly, the output of the MCA block undergoes processing
through a linear layer. This results in the final classification
scores of the fused image and text modalities for each class,
denoted as yMCA.
Additionally, we investigate alternative attention-based

blocks that draw inspiration from channel attention blocks
other than SE block [51], specifically Gated Channel Trans-
formation block (GCT) [52], Efficient Channel Attention
(ECA) [53], and Selective Kernel (SK) [54]. These blocks
are modified to accommodate the integration of multiple
modalities, as further discussed in section (IV-B5).

D. SCORE-LEVEL FUSION
Following the classification scores of image (yV ), text (yT ),
and feature-level fusedMCA (yMCA), the output classification
result is determined through an ensemble of the three out-
puts [55]. The proposed DMCC framework is the ensemble
of three pathways described in Eq. 9 as the summation of the
three scores of each class.

y = yV + yT + yMCA. (9)

IV. EXPERIMENTAL RESULTS
In order to evaluate the effectiveness of the proposed DMCC
framework, extensive experiments are conducted on two
publicly available multimodal crisis-related datasets. In this
section, first datasets and the implementation settings are
presented. Then, we conduct extensive ablation study to
gain a better understanding of each component of DMCC
framework. Next, quantitative and qualitative analysis of the
framework are provided. Finally, DMCC framework is com-
pared against the state-of-the-art methods.

A. DATASETS AND IMPLEMENTATION SETTINGS
Here, the datasets and the implementation settings used in the
experiments conduction are discussed.

1) DATASETS
Very few multimodal crisis datasets are publicly available for
disaster response classification tasks of social media data.

Our research uses the only two available multimodal crisis
datasets: CrisisMMD [21] and DMD [17] datasets. Both
datasets consist of image-tweet pairs with their annotated
class label.

The CrisisMMD is a multimodal dataset collected by
Alam et al. [21] in 2017 during seven different natural
disasters. The dataset consists of 18802 samples of tweet
image-text pairs, split into 70 %, 15 % and 15 % for train,
validation, and test sets respectively. In this study, we adhered
to the dataset settings outlined by the dataset authors [20].
Specifically, we selected the samples which the labels of
both text and image pairs align for a given task.1 The dataset
comprises three main tasks:

Task 1 Informative and Non-informative: The aim of
this task is to evaluate the usefulness of a certain tweet
text or image that was collected during a disaster event for
humanitarian assistance and aid purposes.

Task 2 Humanitarian Categories: The aim of this task is
to understand the type of the crucial and potentially action-
able information shared on either tweet image or text, and
categorize it into eight classes, which are: (1) Infrastruc-
ture and utility damage, (2) Vehicle damage, (3) Rescue,
volunteering, or donation efforts, (4) Affected individuals,
(5) Injured, or dead people, (6) Missing, or found people,
(7) Other relevant information, (8) Not humanitarian.

Task 3 Damage Severity: The purpose of this task is
to determine the severity of the damage shown in a tweet
image and divide it into three classes: severe, mild, and
little to none. This task is an image-based classification task;
therefore, we only consider the first two multimodal tasks as
in [20].

TheDamage IdentificationMultimodal Dataset (DMD)
is a benchmark multimodal damage dataset created
by Mouzannar et al. [17], which includes damage-related
images along with their associated tweets and annotations.
The dataset was created to be descriptive of the damage as
to direct the most effective resources for each situation. The
dataset consists of 5831 captioned images and is split into
4-folds to perform cross validation. In addition, each fold is
divided into 75 %, 7 %, and 18 % for training, validation,
and testing, respectively. This dataset contains the following
six different categories of disaster tweet image-text pairs:
(1) Damaged utility and infrastructure: includes damaged
buildings, wrecked cars, and destroyed bridges, (2) Damaged
nature: includes landslides, avalanches, and falling trees,
(3) Fires: includes wildfires and building fires, (4) Floods:
includes city, urban and rural, (5) Human damage: includes
injuries and deaths, (6) Non damage.

2) IMPLEMENTATION SETTINGS
In our experiments, SGD optimizer was used with a base
learning rate of 0.0002 and 0.1 reduction factor when vali-
dation loss was saturated. The batch size was 12 and 8 for

1The CrisisMMD dataset with the multimodal agreed labels annotations
are available at https://crisisnlp.qcri.org/crisismmd
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unimodal and multimodal models, respectively. Additionally,
the model’s training was performed for 80 epochs. Experi-
ments were executed on a machine with an Intel Core i7-9700
CPU with 8 cores and a Nvidia GeForce GTX-1080Ti GPU.
Models were implemented using pytorch. The most used
performance metrics for classification, namely accuracy, pre-
cision, F1 score, and recall were adopted in this study.

B. ABLATION STUDY
We conduct an ablation study to gain insights into the effect of
different configurations of DMCC components. All ablation
experiments are carried out on the two tasks of CrisisMMD
dataset, specifically, task 1 (Informative vs Non-Informative)
and task 2 (Humanitarian categories).

1) THE CHOICE OF IMAGE ENCODER NETWORK
The choice of image encoder is crucial, as it governs the
effectiveness of the visual representation. Here, we explore
several image classification networks on CrisisMMD dataset:
Densent121 [42], ResNet101 [41], RegNet [56], Vision
Transformers (VIT) [57], and EfficientNetV2 [49]. The
results are summarized in Table 1. We infer from the table
that EfficientNetV2 achieves the highest recognition accu-
racy 77.77 % and 74.00 % in task 1 and 2, respectively. These
results promote EfficientNetV2 as a good candidate for image
encoding.

TABLE 1. Accuracy performance comparison among different image
classification networks on CrisisMMD dataset.

2) THE CHOICE OF TEXT ENCODER NETWORK
Towards finding a descriptive text representation, two
text encoders are evaluated, specifically BERT [43] and
RoBERTa [58]. The experimental results tabulated in Table 2,
indicate BERT has a higher recognition accuracy than
RoBERTa by around 7 % and 13 % in task 1 and 2, respec-
tively. These results imply the effectiveness of BERT as a text
encoder.

TABLE 2. Comparing the performance of RoBERTa and BERT on
CrisisMMD dataset.

3) THE IMPACT OF TRANSFER LEARNING FROM TASK 2 TO
TASK 1
We investigate the significance of domain specific trans-
fer learning to the attained performance in task 1. Here,
we compare two strategies. One strategy is to fine-tune the
network starting from the original pretrained weights denoted
as ‘‘original’’ in Table 3. The other strategy is fine-tuning the
network using weights obtained from task 2 as illustrated in
Algorithm 1. This strategy is denoted as ‘‘Task2’’ in Table 3.
From the table, it is inferred that using task 2 as a pretrained
model yields a higher performance than using the original
pretrained model by around 2.5 % and 1 % for text and image
modalities, respectively. The performance improvement is
due to pretraining on a source domain similar to the target
domain.

Algorithm 1 Transfer Learning From Task 2 to Task 1
1: Train the network on the dataset for task 2.
2: Utilize the obtained weights as an initialization.
3: Fine-tune the network for task 1.

TABLE 3. The effect of transfer learning from task 2 to task 1 on
CrisisMMD dataset.

4) THE CHOICE OF LOSS FUNCTION
Next, we assess the choice of the appropriate loss function
for the MCA block, we explore two losses namely: Cross
Entropy Loss (CE) and Focal Loss (FL) [59]. Table 4 shows a
comparative study between the model performance with CE
and FL with different focusing parameter (γ ). The results
demonstrate that CE has a better performance than FL in
task 1. On the other hand, FL with γ = 0.5 in task 2 performs
better than CE by around 1 %. Therefore, CE and FL with
γ = 0.5 are chosen in task 1 and 2 throughout the experi-
ments, respectively.

TABLE 4. Accuracy performance comparison for MCA output among
different Loss Functions on CrisisMMD dataset.

5) CHANNEL ATTENTION BLOCKS FOR MULTIMODAL
FUSION
To demonstrate the advantage of utilizing squeeze and
excitation block as the inspiration to the proposed MCA,
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we conduct a comparison between MCA and various chan-
nel attention blocks specifically: GCT [52], ECA [53], and
SK [54] as a multimodal fusion technique between visual
and textual modalities. The results are reported in Table 5.
As observed, both the MCA and SK blocks demonstrate
superior performance compared to the other blocks in task 1.
However, the SK block is computationally expensive [54],
yet exhibits comparable performance. Moreover, MCA block
achieves the highest accuracy in task 2. This results justify the
effectiveness of the proposed MCA block.

TABLE 5. Accuracy performance comparison among different channel
attention blocks for multimodal fusion on CrisisMMD dataset.

C. QUANTITATIVE AND QUALITATIVE ANALYSIS
In this section, quantitative and qualitative analysis on DMD
datatset are presented, providing insights into the proposed
DMCC framework.

1) QUANTITATIVE ANALYSIS
To gain insights about DMCC framework, confusionmatrices
of unimodal and multimodal models on DMD dataset are
depicted in Fig. 3. The figure implies that unimodal mod-
els (EfficientV2/BERT) suffer a noticeable confusion among
some classes. For example, ‘‘Damaged Nature’’ is highly fre-
quently confused with ‘‘Damaged Infrastructure and Utility’’
and ‘‘Non-Damage’’. This is evidenced by the relatively low
true positive rate in ‘‘Damaged Nature’’ of 66.7 % and 68.9
% for image and text models, respectively. On the other hand,
multimodal models attain a higher true positive rate than
single modality; as demonstrated by the 73.3 % true positive
rate achieved by MCA model and further enhanced by the
proposed DMCC framework, reaching 77.8 %. Conversely,
the proposed multimodal models (MCA model and DMCC
framework) show a significant decrease in the false positive
rate compared to unimodal models. Specifically, when the
‘‘Damaged Nature’’ class is mistakenly classified as ‘‘Non-
Damage’’, the false positive rate drops from 12.2 % and
11.1 % in image and text models, respectively, to 6.7 % in
MCA model, and further to 4.4 % in the proposed DMCC
framework.

2) QUALITATIVE ANALYSIS
For qualitative analysis, we present in Fig. 4, examples of
image and text pairs along with their predictions. Careful
observation shows the effectiveness of the proposed DMCC
framework over unimodal models (EfficientV2/BERT).

FIGURE 3. DMD confusion matrices.

For example, the unimodal models fail in predicting
the sample (1). The visual model is not able to discern
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FIGURE 4. DMD Tweet Image-Text pair Examples with unimodality and multimodal predictions. The symbol (✓) and (×) indicates the correct and
incorrect prediction respectively.

the damage caused by the flood and classified the event
as ‘‘Non Damage’’. Similarly, the textual model failed,
as well, to give a proper prediction and falsely classi-
fies the event as ‘‘Damaged Utility’’. However, the MCA
model and the proposed DMCC framework correctly predict

the event as ‘‘Flood’’. These results imply the influence
of discriminative representation of MCA block on the
prediction.

From samples (2) and (3), we notice that either visual
or textual model misclassifies the event. Interestingly, MCA
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FIGURE 5. DMD features representations.

model exhibits the capability of matching the modality with
the correct prediction.

Another noteworthy example is sample (4), where the
visual model correctly interprets the picture as ‘‘Fire’’. Con-
versely, the textual model presumes the text as ‘‘Damaged
Utility’’. Additionally, the MCA model incorrectly recog-
nize the sample as ‘‘Damaged Utility’’. This is because the
sample includes both fired and damaged vehicles, which
may be misclassified as ‘‘Fire’’ and ‘‘Damaged Utility’’.
However, the proposed DMCC framework predicts the
event correctly as ‘‘Fire’’. This demonstrates the superi-
ority of the DMCC framework in identifying the damage
information.

Additionally, we visualize the feature subspace of uni-
modal (EfficientV2/BERT) and multimodal models (MCA
model/DMCC framework) on DMD dataset using t-SNE [60]
in Fig. 5. From the figure, we observe that the between class
distance is small and the classes are smeared in the unimodal
models. On the other hand, similar classes are more distinctly
separated in the multimodal models, while the samples in the
same class are more compactly clustered. Since the MCA
block helps in separating the space in more distinctive man-
ner, we believe that the application of the proposed DMCC
framework may help in improving the performance in other
application areas as well.

D. COMPARISON AGAINST STATE-OF-THE-ART
Beyond analyzing each component in the proposed DMCC
framework, shown in Fig. 1, we also assess the perfor-
mance of DMCC framework against unimodal baselines
(visual/textual) and other state-of-the-art methods. We con-
duct the experiments on two publicly available multimodal
social media crisis datasets: CrisisMMD and DMD. We opt
to use EfficientNetV2 (visual) and BERT (textual) as strong
baseline to assess DMCC framework.

1) CrisisMMD DATASET
Table 6 presents the results on the CrisisMMD dataset. The
MCA model demonstrates a significant improvement over
EfficientNetV2, with an average of improvement of ∼11 %
across all metrics for both tasks. Also, it outperforms BERT
with an average of ∼4.5 % and ∼11 % for tasks 1 and 2,
respectively. Compared with the other state-of-the-art multi-
modal methods namely Ofli et al. [20] and Abavisani et al.
[19],2 the proposed MCA model shows a substantial superi-
ority. Additionally, the proposed DMCC framework surpass
the current state-of-the-art methods by ∼4 % in task 1 and
∼5 % in task 2.

2) DMD DATASET
The DMCC framework evaluation results on DMD dataset
are listed in Table 7. The results show that the MCA
model has higher recognition accuracy than the uni-
modal methods by ∼5 %. DMCC framework exceeds the

2Results in the Table 6 are obtained from running the implementation
available at https://github.com/PaulCCCCCCH/Multimodal-Categorization-
of-Crisis-Events-in-Social-Media
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TABLE 6. CrisisMMD dataset performance comparison of different unimodal and multimodal models on the test set. Here, Acc, P, R, and WF1 denotes the
accuracy, precision, recall, and weighted F1-score, respectively.

TABLE 7. DMD dataset performance comparison of different unimodal and multimodal models on the test set. STD means standard deviation.

FIGURE 6. SOTA comparison of confusion matrix and t-SNE feature visualization technique for DMD dataset.

state-of-the art method by∼1% empowered by the capability
of the MCA block in learning a discriminative joint feature
representation.

In addition to the comprehensive analysis on DMD dataset
presented in Fig. 3, Fig.4 and Fig.5, we extend our evaluation
by conducting a detailed comparative analysis between the
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FIGURE 7. Example tweet text and image pairs showcasing DMD classes, with a focus on comparing the predictions made by the
proposed DMCC model and those made by Mouzannar et al. [17] for DMD dataset.

proposed DMCC framework and the state-of-the-art (SOTA)
method proposed by Mouzannar et al. [17]3 in-terms of
confusion matrix and t-SNE feature visualization. The con-
fusion matrix presented in Fig. 6 clearly indicates that the
DMCC framework consistently outperforms SOTA method
across five classes. Particularly, in the human damage class,
the DMCC framework exhibits notable improvement com-
pared to the comparative method. In this comparison, the
DMCC framework successfully eliminates the confusion
with ‘‘Non-Damage’’ and significantly reduces the confusion
with ‘‘Damaged Infrastructure and Utility’’ from 11.9 %
to 4.8 %. However, it is noteworthy that the method of
Mouzannar et al. [17] displays superior accuracy specifically
in classifying fire instances, as indicated by the confusion
matrix.

Furthermore, Fig. 6 compares t-SNE feature visualizations
of DMCC framework and SOTA. It shows large inter-class
distance in certain classes, particularly ‘‘Non-Damage’’
and ‘‘Human Damage’’ within the feature subspace,

3Fig. 6 and Fig.7 are produced from running the implementation
available at https://github.com/husseinmozannar/multimodal-deep-learning-
for-disaster-response

demonstrating that our DMCC framework learns more dis-
criminative feature representation than SOTA.

Additionally, Tweet text and image pairs exemplifying
different DMD classes are presented in Fig. 7. DMCC frame-
work classifies these samples correctly, while the SOTA
method by Mouzannar et al. [17] demonstrates instances of
misclassifications.

V. CONCLUSION
In this paper, a novel DMCC framework for the fusion
of multiple modalities in the context of crisis-related posts
categorization was presented. Our approach utilized two par-
allel deep learning networks, specifically EfficientNetV2 and
BERT, to extract visual and textual features, respectively.
Additionally, a feature-level fusion approach named MCA
block was proposed, which effectively fuses multiple modal-
ities by assigning distinct weights to each modality. The
MCA block effectively filters out any irrelevant or misleading
information and selectively fuses the informative components
from each modality. The proposed DMCC framework was
quantitatively and qualitatively evaluated on two publicly
available datasets: CrisisMMD and DMD. The experimental
findings demonstrated that the proposed DMCC framework
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outperformed the current state-of-the-art model by ∼4 %
(task 1) and by ∼5 % (task 2) on CrisisMMD dataset. Addi-
tionally, it achieved 93.68 % surpassing the state-of-the-art
method by ∼1 %. Furthermore, the results of the qualitative
analysis were consistent with the quantitative findings, indi-
cating that the inclusion of an attention mechanism yields a
notable improvement in the analysis of crisis-related social
media data. we believe that the application of the proposed
DMCC framework may help in improving the performance
in other application areas as well.
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