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ABSTRACT Ecosystems are highly dynamic systems that are constantly changing under the influence
of a variety of external factors. This is especially true for marine ecosystems, which are under multiple
stresses. The cumulative effects of overexploitation, on the one hand, and the simultaneous manifestation
of anthropogenic climate change, on the other, mean that fish stocks are the most endangered components
of marine ecosystems. To minimize these vulnerabilities to marine ecosystems and ensure natural and sus-
tainable resource use, monitoring systems must be placed in oceans and seas. Examples of the development
of these monitoring systems are provided by the Underwater Fish Observatory (UFO) and UFOTriNet, two
projects being conducted by several researchers from marine biology, engineering, and industry in Germany
between 2014 and 2016 and between 2019 and 2023, respectively. The systems collect abiotic as well as
camera and sonar data to count and analyze fish populations over the seasons. This work proposes a method
for robust fish counting using sonar data, supplemented by camera data. To successfully accomplish this
task, activity segmentation and object tracking are important steps. Background subtraction is often used as
a pre-processing step for stationary sonars. Our proposed method improves this step by bandpass filtering
considering the motion of all actors in the sonar data. For the segmentation step, our method uses a simple
Gaussian distribution model with positional covariances which are computed directly from the intensity
image. The tracking step is performed using a classical Kalman filter which estimates the velocity and
position of each object in Cartesian coordinates. Sonar detections in close range of the observation area
are compared with camera detections for validation. In addition, automated parameter optimization is used
to maximize the correlation with the camera detections. Furthermore, the proposed method is applied to the
Caltech fish counting dataset and compared with a deep learning method based on YOLOv5. While YOLO
is still superior in detection and counting metrics, the multi object tracking accuracy is somewhat higher with
our method.

INDEX TERMS Acoustical imaging, activity segmentation, computer vision, fish tracking, imaging sonar,
underwater image processing.

I. INTRODUCTION
For effective implementation of sustainability in fisheries,
it is essential that adequate, accurate, and continuously reli-
able data on the diversity of fish species and their abundance,
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on the functioning of the ecosystems concerned, and on
fishing activities are available over time. However, this is
not currently the case, as the provision of high quality
data requires the availability of appropriate methods, tools,
and procedures for adequate appropriate monitoring, control,
and advisory services. The Underwater Fish Observatory
(UFO) [1] and the UFOTriNet [2] are projects that aim to
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FIGURE 1. Locations of the deployment of the UFOTriNet system.

automate many tasks that can be very time consuming and
costly, such as stock assessment and biomass estimation.
These tasks have traditionally been performed by marine
biologists using nets and vessels, as well as human under-
water observation and photography [3]. These methods are
considered invasive and in most cases provide results with
significant inaccuracies. In addition, the amount of data col-
lected is limited in both time and space and is not nearly
sufficient to describe the observed environment [4]. An auto-
mated system for data collection offers a better alternative,
and the data obtained can be extremely useful to successfully
solve tasks such as fish detection, fish segmentation, fish
tracking, and also fish classification with very low environ-
mental impact.

UFO is based on a stationary lander equipped with
numerous sensors to collect various information, deployed
underwater and continuously capturing sonar and optical
video throughout the year with very low environmental
impact. UFOTriNet is based on the establishment of a tri-
lateral network for automatic, continuous and non-invasive
monitoring of fish stocks. The goal is to detect, classify and
track fish in three modes: stationary UFO, portable UFO and
mobile UFO (see Figure 1).

The collected data will be used to develop and train
algorithms for fish detection [1] and fish species classifica-
tion [5], [6], [7]. The lander has a stereo system with two
cameras that capture optical images and a sonar that generates
acoustic images. An acoustic image is a gray-scale image
that does not clearly reveal the shape of the fish or its struc-
ture, but only a high intensity that may even be associated
with an object in the water column. In many cases, random
noise generated by the sensor or the environment results in
a similar sudden increase in intensity, but the behavior of
the noise pixels in successive images is different from the
actual fish pixels, making it somewhat easier for the viewer to
distinguish them. Despite the shortcomings of these images,

they are still very important when it comes to detecting and
tracking movements. They provide the ability to detect any
movement over a very large area, especially if it is not just a
single fish, but a large school of fish moving within the sonar
image area. One of the main goals of the UFOTriNet project
is to develop a hybrid method that combines both optical
and acoustic imagery to create a more robust system for fish
detection, classification, and tracking that will providemarine
biologists with a highly reliable automated assistant in their
research. Our main focus is on acoustic imaging to facilitate
the labeling and indexing of activities within the recordings.
Our work is divided into the following points:

• Filtering of background and unwanted moving particles
• Segmentation of moving objects using a Gaussianmodel
• Fish tracking using Kalman Filter

This paper is organized as follows: Section II provides
an overview of scientific works related to fish detection,
segmentation and tracking based on sonar data. Section III
briefly describes the lander in the UFO and its sensor
content. The proposed method for segmentation and tracking
is described in Section IV. Different results and measurement
evaluations are included in Section V. Section VI summarizes
the whole work and gives an outlook on the future focus and
perspectives.

II. RELATED WORK
Activity segmentation and fish tracking based on sonar
images are essential tasks in various research issues in the
underwater field. In the realm of unsupervised learning,
several traditional methods, such as fuzzy-based segmenta-
tion [8], mixture-model MRF [9], and active contour (AC)
techniques [10], have been extensively employed for the
segmentation task. However, in the context of supervised
learning, challenges have arisen in segmenting fish in sonar
data, which has led researchers to prioritize fish detection
over the segmentation task.

Despite the complexity, unsupervised learning for seg-
mentation, where fishes are unlabeled, remains feasible.
For instance, in [11], the local spatial mixture (LSM) seg-
mentation method is designed to estimate pixel labels in
sonar images by considering the potential spatial correlation
between neighboring pixels. By incorporating an intermedi-
ate step (I-step) between the expectation (E-step) and max-
imization (M-step) steps in the expectation-maximization
algorithm, the LSM method enhances the algorithm’s ability
to leverage spatial information for more accurate segmen-
tation. Additionally, to address the challenge of intensity
inhomogeneity in underwater environments, the method
employs a new initialization algorithm, which automatically
sets appropriate thresholds to ensure robustness and consis-
tent performance across various underwater conditions.

Moreover, researchers have explored automated fish seg-
mentation in videos captured by DIDSON (Dual-Frequency
IDentification SONar) in [12]. This approach involves two
main parts: a fixed process that includes data extraction,
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pre-processing for geometric reconstruction, frame smooth-
ing, merging into a continuous video stream, and background
removal to enhance the quality and clarity of the raw
DIDSON images. The second part utilizes an iterative pro-
cess with optical flow analysis to track fish motion within
the video, followed by custom criteria for evaluating and
determining the most suitable foreground mask. To optimize
the parameter set for calculating the optical flow field and
assisting in fish target mask extraction, a genetic algorithm is
utilized.

In recent years, Convolutional Neural Networks (CNNs)
have emerged as a popular approach for fish detection in
sonar analysis. These networks effectively capture spatial
patterns and correlations within sonar data, enabling accu-
rate fish detection. For instance, in [13], a deep learning
model using CNN was developed to automatically detect
adult American eels from sonar data, achieving high accuracy
(>98%) for image-based classification, surpassing human
experts. Similarly, in [14], a DCNN method was presented
to enhance weakly illuminated underwater pictures. This
approach efficiently addresses the issue and adapts theDCNN
architecture for underwater detection and classification.

In addition to CNNs, researchers have explored the utiliza-
tion of pre-trained models such as Faster R-CNN (Region
Convolutional Neural Network) [15] and YOLO (You Only
Look Once) [16], [17] for fish detection in sonar images.
These pre-trained models leverage transfer learning by lever-
aging knowledge gained from large-scale visual datasets and
then fine-tuning them specifically on sonar data.

While Kalman Filters are typically used in navigation
problems [18], they are also well suited for multiple object
tracking in videos [19]. Different variants of Kalman Filters
have also previously been applied to vehicle tracking using
RADAR and SONAR systems. In [20] an Extended Kalman
Filter is used to track a target ship and in [21] an Unscented
Kalman Filter is used for submarine tracking.

Regarding fish tracking, in [14] the Kalman Filter (KF)
method is proposed for object tracking in combination with a
CNNmodel. Similarly, in [16], the SORT (Simple Online and
Realtime Tracking) algorithm is combined with YOLOv5 for
real-time and online tracking. Another approach, presented
in [2], utilizes a local optical flow application in which cor-
ners and key points are extracted from the estimated fish
contours. Instead of the traditional local forward optical flow
application, a forward and backward tracking of the corners is
performed, followed by an evaluation phase for the contours’
movements, trying to assign the correct track to the extracted
contours.

In summary, the literature review highlights the signifi-
cance of activity segmentation and fish tracking in under-
water environments. It discusses various traditional and deep
learning methods employed for segmentation and fish detec-
tion, as well as tracking algorithms utilized for monitoring
fish motion. While existing approaches have made signif-
icant contributions, the focus has often been on detection
rather than accurate segmentation. Therefore, there is a clear

FIGURE 2. Stationary UFO lander.

need to introduce a new method that overcomes these chal-
lenges and improves overall fish segmentation and tracking
performance. In response to this gap, our proposed method
combines traditional techniques and competes with advanced
methods.

III. SYSTEM OVERVIEW AND DATA DESCRIPTION
The collection of data underwater traditionally requires inten-
sive and very sensitive use of vessels, divers or fishing nets.
However, the amount of data collected and its quality cannot
be considered accurate because these methods are invasive
and do not capture the life form of fish underwater. In addi-
tion, the temporal and spatial coverage of these methods is
very limited and the type of data that can be obtained from
them is also limited. To address almost all of these shortcom-
ings, the use of a stationary lander equipped with multiple
sensors that can cover the desired location 24/7 is required.
In addition to this, mobile systems can be used to optimize
coverage in space. This solution guarantees the preservation
of the underwater environment and collects all the necessary
information, from optical and sonar images to other data such
as salinity, pressure, oxygen content and temperature. This
is exactly the goal of the UFOTrinet project. In this work,
we will limit ourselves to the use of the stationary UFO data
since suitable data with the mobile UFO is not yet available
at the current time.

A. GENERAL SYSTEM DESCRIPTION
In the stationary UFO, the lander in Figure 2 contains several
sensors for different tasks. The two most important for fish
counting are the stereo camera system, which is used to
detect, track, and classify fish species at close range, and
an imaging multibeam sonar, which plays a central role in
this work and is the only sensor that provides information at
long range because the visual range of the optical camera is
limited. This system was also used in [1]. The infrastructure
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FIGURE 3. Unprocessed sonar images with swarm of fish in highlighted
region.

FIGURE 4. Unprocessed sonar images with disturbances in highlighted
region.

for power supply and data transmission is realized by cable
connections to a computer cabin of a nearby fish farm.

B. DATA DESCRIPTION AND CHALLENGES
The used sonar has a horizontal field of view of 130◦, a ver-
tical beam width of 20◦ and is configured for a maximum
range of 50 m [1]. The raw unprocessed sonar images look
as shown in Figure 3. It can be seen that the fishes in the
highlighted region look the same as most static objects in the
image. Therefore, it is not feasible to detect them in single
images. Even as humans, it is often only possible to tell them
as fish by observing their motion in a time series of sonar
images. Also, the used sonar had some technical defects,
which caused very high intensity disturbances as shown in
Figure 4. These disturbances often only affect few or single
frames.

The activity detection method previously used in the UFO
project was intended to detect fish activities by normalizing
the intensity values of all pixels by previously calculated
per pixel mean and variance over time. Then everything
exceeding the 3σ border would be treated as activity. While
this method works fine on some recordings, it has some
problems when the water current is stronger and there are
some particles, sediment or plants in the water. A histogram
of the normalized intensities on a single sonar image without
fish activities can be seen in Figure 5. In this sonar recording,

FIGURE 5. Histogram of normalized intensities on sonar image without
fish activities.

FIGURE 6. Pre-processing using background subtraction (left) and
band-pass filter (right).

around 2% of pixels are always above the 3σ border even in
frames without fish activities. This leads to a large offset error
in the activity count.

IV. FISH TRACKING METHOD
Object tracking can be split into three consecutive tasks,
preprocessing, segmentation and actual tracking.

A. PRE-PROCESSING
The pre-processing step is responsible for removing the back-
ground of the sonar image caused by the seabed and static
objects on it. This is typically done by calculating the average
intensity of each pixel over a temporal cutout of the sonar
recording and subtracting these average values from each
frame [16]. As an alternative, we propose applying a finite
impulse response (FIR) band-pass filter on the intensity sig-
nal of each pixel. In addition to the background, this also
removes the high frequency noise resulting from the sonar
beamforming. Our sonar videos have been recorded with five
pings per second. The used FIR filter has 127 taps and is
designed using least square optimisation. The pass band is set
from 0.03 Hz to 0.3 Hz. As shown in Figure 6 the background
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subtracted image includes more noise than the band-passed
version.

B. SEGMENTATION
The segmentation process is typically implemented by group-
ing pixels with similar color or gray values together [22].
While this works well on camera images, it has some prob-
lems with sonar recordings, because the intensity of a single
object is often not constant on all pixels of the object. Espe-
cially small objects like fish often have an intensity maximum
in the center and fade out towards the edge. Instead, a new
algorithm is proposed, which first sorts the pixels starting
from the highest intensity and then labels them one by one.
Each time a new pixel is labeled, the positional covariance
of all pixels belonging to the labeled object is calculated.
The covariance of the tracked objects is used to calculate the
likelihood of the next pixels of belonging to each object.
The object with the highest probability is selected to label
the new pixel. If none of the tracked objects is likely enough
to belong to the pixel, a new tracked object is created with
the new pixel. The complete segmentation algorithm can
be seen in Algorithm 1. Here, tracks is a list of objects
with the fields µ, 6 and img where img is the collection
of pixels already assigned to this object. pixels is a list
of objects with the fields x, y and intensity and pdf() is
the probability density function of a multivariate Gaussian
distribution described by µ and 6. When the intensity of
a pixel at position

[
x y

]⊤ is given by the function I (x, y),
the positional center of mass µ can be calculated as shown
in (1) and the related positional covariance matrix 6 as
in (2).

µ =

∑
x

∑
y

[
x
y

]
· I (x, y)∑

x

∑
y
I (x, y)

(1)

6 =

∑
x

∑
y

([
x
y

]
− µ

)
·

([
x
y

]
− µ

)⊤
· I (x, y)∑

x

∑
y
I (x, y)

(2)

Together, the properties µ and 6 describe the position, size,
proportion and orientation of each object being tracked.
Larger objects with more complicated shapes could probably
not be described with just these two metrics, but as shown
in Figure 7, it accurately describes the shape of the fishes
visible in the sonar image. The ellipses in Figure 7 visualize
the 3σ border of the probability distribution of each pixel
being part of the tracked objects.

C. TRACKING
The proposed segmentation algorithm is relatively slowwhen
starting with an empty list of tracked objects because the
positional covariances of the objects have to be recalculated
each time a pixel is assigned to an object. A python imple-
mentation takes 1.2 seconds to segment 26 objects on a single

FIGURE 7. Preprocessed sonar image (left), segmented sonar image
(right).

Algorithm 1 Segmentation Algorithm Using Positional
Covariance
1: tracks← {} // empty list
2: pixels← {{x, y, intensity}} // list of pixels
3: sort pixels by intensity
4: for pixel in pixels do

// find maximum probability density
5: max_pdf← 0
6: for track_ in tracks do
7: pdf←pdf(track_.µ, track_.6, pixel.x, pixel.y)
8: if pdf > max_pdf then
9: max_pdf← pdf
10: track← track_
11: end if
12: end for
13: if max_pdf < threshold then

// add new object to list of tracks
14: track← new Track()
15: tracks

+
← track

16: end if
// assign pixel to object and update µ and 6

17: track.img
+
← pixel

18: track.µ← center_of_mass(track.img)
19: track.6← covariance_of_mass(track.img)
20: end for

sonar image. The performance can be significantly improved
by using the results from the previous frame as a starting
point. This is where the actual tracking comes into play.
To reliably predict the position of objects on a video, the
velocity of each object has to be estimated first. The most
common methods for velocity estimation in videos include
optical flow [2] and Kalman filters [23]. While optical flow
seems to work well on camera videos, it has some problems
with sonar recordings, because recognisable details of the
tracked objects are often hardly visible. Kalman filter based
tracking methods estimate the velocity by the positions given
by the segmentation of the previous frames. In this work,
a four state Kalman filter instance is created for each tracked
object. The states estimation vector x̂ consists of the positions
x and y and the associated velocities as shown in (3). The state
transition F and observation H are defined in (4) and (5)
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with 1t being the time difference between two consecutive
frames.

x̂ =
[
x y ẋ ẏ

]⊤ (3)

F =


1 0 1t 0
0 1 0 1t
0 0 1 0
0 0 0 1

 (4)

H =
[
1 0 0 0
0 1 0 0

]
(5)

The tracking and segmentation steps are performed alter-
nately. The prediction of the Kalman filter is used as starting
point forµ in the next segmentation iteration. The resultingµ

is then inserted as correction into the Kalman filter, before
predicting the next frame. The previous iterations 6 is used
as starting point for the next segmentation without further
prediction. The segmentation step can now assign all pixels
inside the 3σ borders of the objects at the positions predicted
by the Kalman filter at once and only the remaining pixels
exceeding a threshold have to be processed one by one.
In this configuration, the algorithm runs at a speed of around
40 frames per second, depending slightly on the number of
objects being tracked. This should also allow it to be used in
real-time applications.

Beside fish, other moving objects like particles in the
water are tracked as well. The metrics estimated by the filter
can be used to sort out these unwanted objects. In addition
to size, speed and proportion, the tracker outputs include
timestamps and positions of start and end of each track. For
example, particles are often smaller in size, more round in
their proportions and move slower than most fishes. As an
example, a selection of tracks to be classified as fish could
be used as defined in Table 1. The exact conditions can
be automatically optimized using annotations if available.
Since good annotations are not available for the collected
sonar recordings, the optimization is done by maximizing the
correlation with detections by the cameras of the UFO-lander.
Fishes more than 3 m away from the camera are ignored
during the optimization process, as these can probably not
be detected by the camera. Also, the times with bad visual
conditions such as at night are ignored. The limited visual
range of the camera leads only 10% of tracked objects taken
into account. The limitation to time spans with good enough
visual conditions leads to only 16% of the sonar recording
time being taken into account. In total this gives around 1.6%
of all available sonar data being used in the correlation,
resulting in 1635948 tracked objects.

TABLE 1. Minimal bounds for tracked objects to be classified as fish.

For the optimization, the features of the tracks are nor-
malized to have a mean of 0 and a standard deviation of 1.

Then the SciPy implementation of a Nelder-Mead optimizer
was used to optimize the upper and lower bounds for each
feature for maximal correlation with the camera detections.
Optimizing to maximum correlation with the camera detec-
tion class fish_clupeidae leads to the bounds given in Table 2.

TABLE 2. Automatically optimized minimal and maximal bounds to select
tracks.

V. EXPERIMENTAL RESULTS
A. EVALUATION USING CALTECH FISH
COUNTING DATASET
To compare the detection accuracy with previous meth-
ods, the proposed algorithm is applied to the Caltech fish
counting dataset [16]. For comparison, HOTA [24], CLEAR
MOTA [25], IDF1 [26], nMAE [16] metrics are computed
for the results of the new tracker and compared to the results
of the baseline and baseline++ methods from [16]. Both
methods are based on YOLOv5. The baseline++ method
includes additional preprocessing with background subtrac-
tion and difference between consecutive frames. The HOTA
and MOTA metrics describe object tracking accuracy. The
IDF1 metric describes the ID matching accuracy and nMAE
defines the normalized mean absolute error when count-
ing fish crossing a virtual line. The evaluation is done
on the elwha river recordings. The preprocessing step has
been extended to downsample the resolution from 0.012 m
to 0.024 m. The evaluation script has been modified to ignore
the annotations of the first and last 64 frames of each series
because the bandpass filter needs this time to initialize. The
results are shown in Table 3. It can be seen that the new
tracker performs on par with the baseline method according
to the HOTA and IDF1 metrics. In the (Multiple Object
Tracking Accuracy) MOTA metric, it performs better than
the baseline++ method, but in the normalized Mean Abso-
lute Error (nMAE) metric it is worse than both baseline
and baseline++ results. The reason why the new method
scores better in the MOTA metric is, that this metric strongly
penalizes false positives. As it can be seen in Table 4, the
new method has around four times fewer false positives than
baseline++, but also four times fewer true positives.

TABLE 3. Evaluation results on Caltech fish counting dataset.

B. EVALUATION BASED ON THE CAMERA RESULTS
The stationary UFO lander collected continuous sonar
and camera recordings from March 2021 to May 2022.
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TABLE 4. True positive (TP), false negative (FN) and false positives (FP)
on Caltech fish counting dataset according to CLEAR (CLR) and
Identity (ID) benchmarks.

FIGURE 8. Camera detection per fish class from March 2021 to May 2022.

The camera recordings have been processed as described
in [27]. To verify that the fish detections from the sonar data
are correct, they are correlated with the camera detections.

A correlation of the whole time span between camera and
sonar detections gave only a correlation value of 0.0104. This
poor correlation is probably caused by the fact that the num-
ber of camera detections changes significantly over the course
of the year as shown in Figure 8. It can be seen that the
camera has 10 times more fish detections in September than
in any other month. This causes all other months to become
meaningless in the correlation. Therefore, the correlation is
calculated for each month separately. The camera classifies
detected objects into 15 different classes of fish and jelly-
fish. The tracker results with the selection conditions from
Table 1 from each month are correlated with the different
classes of camera detection. The correlation results are shown
in Figure 9. It can be seen that there is some correlation
with unspecified fishes in April and May. The tracker results
correlate with clupeidae in August, with codfishes in October
and with salmonidae in January.

The same monthly correlation is performed again while
applying the selection conditions given in Table 2. The results
are shown in Figure 10. As can be seen, the results in April,
June, July andAugust start to correlate with the camera detec-
tions of type clupeidae. It is noticeable that the correlation
values never reach more than 0.5. This is caused by the
fact, that the field of view of sonar and camera in the water
column are not hundred percent overlapped. The sonar has
a larger horizontal field of view with 130◦ instead of 80◦,
while the camera has a higher vertical field of view with
64◦ instead of 20◦, additionally, the sonar is blind in the
first 50 cm.

FIGURE 9. Correlation of tracker results with different classes of camera
detections.

FIGURE 10. Correlation of tracker results with different classes of camera
detections optimized to detect fish of type clupeidae.

VI. CONCLUSION
In this work a new method for fish segmentation and tracking
was developed and successfully tested. It has been shown
that the proposed tracking method could successfully track
different fishes on the sonar recordings of the UFO project.
The correctness of the detections has been evaluated by cor-
relating them with the camera-based tracker. The correlation
values were significantly increased. In contrast to deep learn-
ing methods, the described method does not depend on the
accuracy of manual annotations and the computation time
is moderate. The proposed method can be fine-tuned for
different types of fish as shown by optimizing it to detect fish
of type clupeidae.

As the comparison with deep learning method has shown
superiority of deep learning in some metrics, it is planned to
combine deep learning with our proposed method in a future
research work.

96528 VOLUME 11, 2023



J. Winkler et al.: Activity Segmentation and Fish Tracking From Sonar Videos

AKNOWLEDGMENT
The authors gratefully acknowledge the support of Joachim
Groeger, Boris Cisewski, Catriona Clemmesen-Bockelmann,
Gordon Boer, Hauke Schramm, and Karin Boos for the valu-
able discussions and support.

REFERENCES
[1] L. M. Wolff and S. Badri-Hoeher, ‘‘Imaging sonar-based fish detection in

shallow waters,’’ in Proc. OCEANS, St. John’s, NL, Canada, Sep. 2014,
pp. 1–6.

[2] A. Bouzaouit, D. Fietz, and S. Badri-Höher, ‘‘Fish tracking based on sonar
images bymeans of amodified optical flow,’’ inProc. OCEANS, Sep. 2021,
pp. 1–7.

[3] S. Jenkins, P. Åberg, G. Cervin, R. Coleman, J. Delany, S. Hawkins,
K. Hyder, A. Myers, J. Paula, A. Power, P. Range, and R. Hartnoll, ‘‘Popu-
lation dynamics of the intertidal barnacle Semibalanus balanoides at three
European locations: Spatial scales of variability,’’Mar. Ecology Prog. Ser.,
vol. 217, pp. 207–217, Jul. 2001.

[4] C. Spampinato, D. Giordano, R. Di Salvo, Y.-H.-J. Chen-Burger,
R. B. Fisher, and G. Nadarajan, ‘‘Automatic fish classification for under-
water species behavior understanding,’’ in Proc. 1st ACM Int. Workshop
Anal. Retr. Tracked Events Motion Imag. Streams, Firenze, Italy, Oct. 2010,
pp. 45–50.

[5] M. A. Iqbal, Z. Wang, Z. A. Ali, and S. Riaz, ‘‘Automatic fish species
classification using deep convolutional neural networks,’’ Wireless Pers.
Commun., vol. 116, no. 2, pp. 1043–1053, Jan. 2021.

[6] A. Salman, A. Jalal, F. Shafait, A. Mian, M. Shortis, J. Seager, and
E. Harvey, ‘‘Fish species classification in unconstrained underwater envi-
ronments based on deep learning,’’ Limnology Oceanogr., Methods,
vol. 14, no. 9, pp. 570–585, Sep. 2016.

[7] H. Qin, X. Li, J. Liang, Y. Peng, and C. Zhang, ‘‘DeepFish: Accurate
underwater live fish recognition with a deep architecture,’’ Neurocomput-
ing, vol. 187, pp. 49–58, Apr. 2016.

[8] A. Abu and R. Diamant, ‘‘Enhanced fuzzy-based local information
algorithm for sonar image segmentation,’’ IEEE Trans. Image Process.,
vol. 29, pp. 445–460, 2020.

[9] N. Sun, T. Shim, and H. Hahn, ‘‘Sonar image segmentation based on
Markov gauss-Rayleigh mixture model,’’ in Proc. Int. Workshop Educ.
Technol. Training, Int. Workshop Geosci. Remote Sens., Dec. 2008,
pp. 704–709.

[10] G. Huo, S. X. Yang, Q. Li, and Y. Zhou, ‘‘A robust and fast method
for sidescan sonar image segmentation using nonlocal despeckling and
active contour model,’’ IEEE Trans. Cybern., vol. 47, no. 4, pp. 855–872,
Apr. 2017.

[11] A. Abu and R. Diamant, ‘‘Unsupervised local spatial mixture segmentation
of underwater objects in sonar images,’’ IEEE J. Ocean. Eng., vol. 44, no. 4,
pp. 1179–1197, Oct. 2019.

[12] T.-M. Perivolioti, M. Tuser, D. Terzopoulos, S. P. Sgardelis, and
I. Antoniou, ‘‘Optimising the workflow for fish detection in DIDSON
(Dual-frequency IDentification SONar) data with the use of optical flow
and a genetic algorithm,’’Water, vol. 13, no. 9, p. 1304, May 2021.

[13] X. Zang, T. Yin, Z. Hou, R. P. Mueller, Z. D. Deng, and P. T. Jacobson,
‘‘Deep learning for automated detection and identification of migrating
American eel Anguilla rostrata from imaging sonar data,’’ Remote Sens.,
vol. 13, no. 14, p. 2671, Jul. 2021.

[14] K. Sreekala, N. N. Raj, S. Gupta, G. Anitha, A. K. Nanda, and
A. Chaturvedi, ‘‘Deep convolutional neural network with Kalman filter
based objected tracking and detection in underwater communications,’’
Wireless Netw., pp. 1–18, Mar. 2023.

[15] L. Zeng, B. Sun, and D. Zhu, ‘‘Underwater target detection based on
faster R-CNN and adversarial occlusion network,’’ Eng. Appl. Artif. Intell.,
vol. 100, Apr. 2021, Art. no. 104190.

[16] J. Kay, P. Kulits, S. Stathatos, S. Deng, E. Young, S. Beery, G. Van Horn,
and P. Perona, ‘‘The Caltech fish counting dataset: A benchmark for
multiple-object tracking and counting,’’ 2022, arXiv:2207.09295.

[17] J. Li, L. Chen, J. Shen, X. Xiao, X. Liu, X. Sun, X. Wang, and D. Li,
‘‘Improved neural network with spatial pyramid pooling and online
datasets preprocessing for underwater target detection based on side scan
sonar imagery,’’ Remote Sens., vol. 15, no. 2, p. 440, Jan. 2023.

[18] N. H. Ali and G. M. Hassan, ‘‘Kalman filter tracking,’’ Int. J. Comput.
Appl., vol. 89, no. 9, pp. 15–18, 2014.

[19] X. Li, K. Wang, W. Wang, and Y. Li, ‘‘A multiple object tracking method
using Kalman filter,’’ in Proc. IEEE Int. Conf. Inf. Autom., Jun. 2010,
pp. 1862–1866.

[20] A. S. D. Murthy, S. K. Rao, K. S. Naik, R. P. Das, K. Jahan, and K. L. Raju,
‘‘Tracking of a manoeuvering target ship using radar measurements,’’
Indian J. Sci. Technol., vol. 8, no. 28, Oct. 2015.

[21] K. L. Raju, ‘‘Passive target tracking using unscented Kalman filter based
on Monte Carlo simulation,’’ Indian J. Sci. Technol., vol. 8, no. 1, pp. 1–7,
Jan. 2015.

[22] Z. Chen, Y.Wang,W. Tian, J. Liu, Y. Zhou, and J. Shen, ‘‘Underwater sonar
image segmentation combining pixel-level and region-level information,’’
Comput. Electr. Eng., vol. 100, May 2022, Art. no. 107853.

[23] A. Bewley, Z. Ge, L. Ott, F. Ramos, and B. Upcroft, ‘‘Simple online
and realtime tracking,’’ in Proc. IEEE Int. Conf. Image Process. (ICIP),
Sep. 2016, pp. 3464–3468.

[24] J. Luiten, A. Osep, P. Dendorfer, P. Torr, A. Geiger, L. Leal-Taixe, and
B. Leibe, ‘‘HOTA: A higher order metric for evaluating multi-object
tracking,’’ Int. J. Comput. Vis., vol. 129, pp. 548–578, Feb. 2021.

[25] K. Bernardin and R. Stiefelhagen, ‘‘Evaluating multiple object tracking
performance: The CLEAR MOT metrics,’’ EURASIP J. Image Video Pro-
cess., vol. 2008, pp. 1–10, Jan. 2008.

[26] E. Ristani, F. Solera, R. Zou, R. Cucchiara, and C. Tomasi, ‘‘Performance
measures and a data set for multi-target, multi-camera tracking,’’ in Com-
puter Vision—ECCV, G. Hua and H. Jegou, Eds. Cham, Switzerland:
Springer, 2016, pp. 17–35.

[27] G. Böer, J. P. Gröger, S. Badri-Höher, B. Cisewski, H. Renkewitz,
F. Mittermayer, T. Strickmann, and H. Schramm, ‘‘A deep-learning based
pipeline for estimating the abundance and size of aquatic organisms in an
unconstrained underwater environment from continuously captured stereo
video,’’ Sensors, vol. 23, no. 6, p. 3311, Mar. 2023.

JULIAN WINKLER received the master’s degree
in electrical engineering from the Kiel University
of Applied Sciences, Kiel, where he is currently
pursuing the Ph.D. degree with the Signal Pro-
cessing Group. His research interests include
underwater localization, navigation, and commu-
nication by means of acoustical signals.

SABAH BADRI-HOEHER received the mas-
ter’s degree in physics from the University of
Casablanca, Casablanca, Morocco, in 1991, the
Dipl.-Ing. (M.Sc.) degree in electrical engineer-
ing from the University of Paderborn, Paderborn,
Germany, in 1996, and the Dr.-Ing. (Ph.D.) degree
in electrical engineering from the University of
Erlangen, Erlangen, Germany, in 2001. She has
been several years with the Fraunhofer Institute of
Integrated Circuits, Erlangen, and the Christian-

Albrechts-University of Kiel. Since 2009, she has been a Full Professor
with the Faculty of Computer Sciences and Electrical Engineering, Kiel Uni-
versity of Applied Sciences, Kiel, Germany. Her research interests include
signal processing and communication techniques with a focus on underwater
applications.

FATNA BARKOUCH received the master’s degree
in data science and big data from the Hassan II
University of Casablanca, Morocco, in 2020.
She is currently pursuing the Ph.D. degree with
the Signal Processing Group, Kiel University of
Applied Sciences. Her research interests include
computer vision and image processing.

VOLUME 11, 2023 96529


