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ABSTRACT Additive manufacturing is a promising manufacturing process with diverse applications, but
ensuring the quality and reliability of the manufactured products are key challenges. The digital twin has
emerged as a technology solution to address these challenge, allowing real-time monitoring and control of
the manufacturing process. This paper proposes a digital twin system framework for additive manufacturing
that integrates machine learning models, employing Unity, OctoPrint, and Raspberry Pi for real-time control
and monitoring. Particularly, the system utilizes machine learning models for defect detection, achieving
an Average Precision (AP) score of 92%, with specific performance metrics of 91% for defected objects
and 94% for non-defected objects, demonstrating high efficiency. The Unity client user interface is also
developed for control and visualization, facilitating easy additive manufacturing process monitoring. This
research article presents a detailed description of the proposed digital twin framework and its workflow
for implementation, the machine learning models, and the Unity client user interface. It also demonstrates
the effectiveness of the integrated system through case studies and experimental results. The main findings
show that the proposed digital twin system met its functional requirements and effectively detects defects
and provides real-time control and monitoring of the additive manufacturing process. This paper contributes
to the growing field of digital twin technology and additive manufacturing, providing a promising solution
for enhancing the quality and reliability in the field of additive manufacturing.

INDEX TERMS Additive manufacturing, digital twin, machine learning, unity, defect detection, real-time
control, smart manufacturing.

I. INTRODUCTION
Digital twins (DT) and additive manufacturing (AM) are
both key technologies in the fourth industrial revolution [1].
Additive manufacturing has the potential to produce complex
components or products that are difficult to manufacture
using conventional methods [2], [3], [4]. Unlike traditional
subtractive manufacturing methods, additive manufacturing
involves printing raw materials on a layer-by-layer basis
to produce final products with minimal waste of materi-
als [3], [5], [6], [7]. However, the quality of printed products
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is still a significant challenge [7], [8]. Digital twin technology
has emerged as a solution to this problem, enabling real-time
monitoring and controlling of the additive manufacturing
processes [3], [7], [8].

A digital twin is a virtual representation of a physical sys-
tem that allows for real-time monitoring and control through
two-way data exchange between the physical system and its
digital twin [4], [9], [10], [11], [12]. While the technology is
still in its early stages of development, it has the potential to
offer many benefits in additive manufacturing [10]. However,
the lack of a standardized architecture or structure for cre-
ating generic digital twin models for 3D printers is a major
challenge [3], [8], [13], [14].
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Recently developed digital twin systems for additive man-
ufacturing suffer from a number of problems. First, it is
challenging to integrate these solutions easily due to a lack of
a standard and effective architectural design and framework.
Current solutions generally rely on an excessive quantity and
variety of sensors, even though the machine has embedded
sensors. This redundancy adds complications and expenses
that are not essential. Furthermore, there is a lack of suffi-
cient intelligence integration within these solutions, which
is one of the most important functions of the digital twins,
hindering their effectiveness. The lack of a standard dig-
ital twin implementation guide for additive manufacturing
resulted in different approaches being adopted by various
researchers, which were briefly addressed in this research
paper.

The primary motivation of this research work is to solve
the above-mentioned problems, which are the creation of a
simple-to-follow universal digital twin implementation archi-
tecture and framework, using in-built sensor data to create
a digital twin, and integrating a certain level of intelli-
gence. Thus, this paper proposes a digital twin system for
Fused Deposition Modeling (FDM) printers that incorpo-
rates machine learning models. The system employs machine
learning models for defect detection and the Unity client
user interface to provide control and visualization of the
3D printing status and processes. The main objective is to
investigate recent research efforts in this area and to present
a detailed description of the proposed framework of digital
twin models for FDM printing, the machine learning models,
and the Unity client user interface. Initially, this research
reviewed the literature on FDM printing and digital twin
technology and proposed a simplified yet effective digital
twin implementation architectural design for FDM printers.
The research study also demonstrates the effectiveness of
the integrated system through a case study and experimental
results. The digital twin system framework proposed in this
paper is designed explicitly for fused deposition modelling
(FDM) 3D printers, utilizing a Raspberry Pi as the core con-
troller, OctoPrint as the communication software, and Unity
for user interaction. The proposed digital twin system has the
potential to provide a solution for enhancing the quality and
reliability of additively manufactured products, enabling the
realization of smart manufacturing and digitalization.

The key contributions of this research work are in the field
of digital twin implementation for fused depositionmodelling
(FDM) 3D printers. The development of a framework and
design for the digital twin that is especially suited for FDM
printers is one of its significant accomplishments. Moreover,
this research study emphasizes the importance of an approach
that minimizes the use of external sensors, thus enhancing
convenience and efficiency. Another notable accomplishment
that increases the digital twin’s overall efficiency is the inte-
gration of a certain level of intelligence. Finally, this study
focuses on three essential functional criteria for the digital
twin, which are also the critical contributions: bidirectional

communication between the physical and the digital models,
real-time monitoring and control capabilities, and integration
of intelligence.

II. RELATED WORK
Due to the lack of a universal digital twin implementation
method for FDM printers, several studies have explored dif-
ferent frameworks. Delli and Chang [15] utilized a camera to
acquire top-view images of parts during the printing process,
comparing them to a supervised machine learning model to
detect defects. Henson et al. [16] employed an optical images
method to detect defects of parts on a layer-by-layer basis.
Mourtzis et al. [17] used an augmented reality approach to
decrease part defects and provide a sophisticated user inter-
face. Similarly, Yi et al. [18] used augmented reality to mon-
itor greenhouse gas emissions, production costs, and energy
consumption. They also used the Volume Approximation
by Cumulated Cylinder (VACCY) approach to estimate the
volume of printed parts, geometrical shape, current, and target
positions of the nozzle or extruder. Paripooranan et al. [19]
created an augmented reality-enabled digital twin for an FDM
printer, developing a user-friendly virtual FDM printer using
various microcontrollers and software. Odada et al. [20] and
Pantelidakis et al. [21] used external sensors to measure and
detect nozzle movements and mimic them in a virtual envi-
ronment. Stavropoulos et al. [22] used a similar framework
to the above researchers but with different equipment, using
data visualization for visualization instead of augmented
reality.

However, there is a lack of studies that integrated machine
learning models along with the digital twin implementation
for FDM printers. Hence, some level of intelligence is one
of the essential parts of the digital twin. Before integrat-
ing this, it is important to address the recent developments
of machine learning in FDM printing. Various supervised
machine learning algorithms are used in FDM printing to
detect or predict defects. According to Sandhu et al., 2019,
geometrical anomalies of a printed part can be identified
accurately through pre-trained models [23]. These mod-
els can even suggest the best printing settings based on
the parameter value and geometry [24]. The research also
demonstrated that problem detection in real-time processes
of FDM printers might be implemented using pre-trained
offline ML at low or reasonable computing and experimental
expenses [5], [25].

Several studies have focused on real-time defect detection
and monitoring in the context of additive manufacturing. The
table below provides a summary of relevant papers that have
employed machine learning techniques for defect detection
in 3D printing processes (see Table 1).

III. METHODOLOGY
The adoptedmethodology is illustrated in Figure 1. The novel
architectural framework design of a digital twin implemen-
tation are developed after carefully observing and analyzing
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TABLE 1. Relevant studies that have employed machine learning techniques for defect detection in 3D printing processes.

the current literature review. Additionally, the development
process of a digital twin for FDM printers is discussed in
detail in further sections of this paper. The primary purpose
of the digital twin framework design is to employ open-
source platforms such as Octoprint due to its accessibility by
the public and free of charge for 3D FDM printer control.
Regarding real-time data and printer status monitoring and
controlling, the Unity client platform was used due to its
ability to design and implement high-quality custom design
and visualization tools. Three main functionalities of the
digital twin were intended to be solved by this research work,
such as real-time monitoring and controlling, bidirectional
communication between digital and physical models, and
integration of some level of intelligence. Finally, testing the
developed digital twin’s efficacy andmeeting its functionality
requirements.

The most critical outcome for widely used architecture for
FDM digital twins should be bidirectional communication
and machine learning models to predict possible errors in
printing parts. The bidirectional communication function of
the digital twin is the automatic data flow between physical
and digital models [9], [12]. However, achieving this without
proper middleware is not always possible due to a lack of
in-built or embedded communication technology compatible
with digital models and other technologies. Thus, middleware
plays an essential role in receiving data from physical models
and sending received data to digital models promptly and
with minimal errors. Similarly, digital models send data to
physical models through middleware in real time without
any errors so that the system can have proper bidirectional

FIGURE 1. Adopted research methodology.

communication. The lack of proper middleware architecture
in recent machines and technologies results in challenges in
acquiring a viable digital twin model.
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A. THE DEVELOPMENT OF A DIGITAL TWIN FRAMEWORK
FOR FDM PRINTERS
The following framework for the digital twin structure,
as shown in Figure 2, is created based on the needs and
capabilities of a digital twin. The physical device, data acqui-
sition, simulation, and digital model layers are the four main
core layers of the DT framework. There are FDM printers,
built-in sensors in the printer, a camera, and extra sensors
in the physical layer. The camera is used for remote visual
monitoring and video processing of pre-trained machine-
learning models during printing.

FIGURE 2. The digital twin framework.

The data collection layer, which is the second layer,
is important for gathering information from the attached
camera and the built-in sensors of the FDM printer. A free,
open-source program that works with the FDM printer can
be used for this process. By employing a microcomputer to
act as a bridge between the physical printer and the open-
source application, it is possible to monitor and control the
FDM printers using open-source software. Processing data is
very important through gathered data. The digital model and
simulation layers should receive all extracted data from the
physical FDM printer for processing.

The machine learning model plays a significant role in
analyzing real-time video data and identifying whether there
are defects or not via video processing in the simulation
layer. The machine learning model does not interfere with
the system or alert it if there is no defect detected. To prevent
wasting more time, resources, and money, if a defect is found,
a signal is sent to the digital model layer informing it that
there is a defect so the operator can intervene in the system.
Humans should, however, get involved in this research sce-
nario. With the help of more coding and development can be
done to disregard human intervention throughout the system
completely.

The digital model layer cannot exist without the Unity
client because the Unity client user interface gathers all of the
important functions of the digital twin, such as real-timemon-
itoring, controlling functions, and some degree of intelligence
integration. Intelligence is one of the key characteristics and
functions of the digital twins. As a result, combining machine
learning with remote control and real-time monitoring of
the printing process yields a minimally viable digital twin

FIGURE 3. Digital twin workflow of FDM printers.

model for FDM printers. Finally, reverse communication is
required to achieve two-way communication, which is a very
important function of digital twins.

B. THE WORKFLOW OF A DEVELOPED DIGITAL TWIN
It is crucial to understand and define the proposed digital
twin implementation framework mentioned in the previous
subsection, and its workflow is shown in Figure 3. In a
conventional method, the sliced Gcode file of any CAD file
is uploaded to an SD card and inserted into the FDM printer
for printing. However, in this research case, created CAD
file is sliced to generate G-code. Then, the printer receives
the G-code remotely without using any SD card or physical
device and starts to print layer-by-layer when the command
is given to initiate the printing. All the printing data can
be extracted from the printer to open-source software with
the help of a microcontroller connected to the printer. All
manual work can be done remotely now via open-source
software. Then, all the printing details and parameter data can
be extracted from the software to the database to implement a
pre-trained machine learning model to predict possible errors
of printing parts and the AR platform to acquire a sophisti-
cated, responsive, user-friendly interface with the help of data
fed in real-time. At the same time, the Unity client receives
a signal from the database as to whether there is a defect.
If there is a defect, a special script in Unity triggers the stop
command to the printer. As can be seen, this methodology and
proposed research fulfil themost important parts of the digital
twin model: two-way communication between physical and
digital machines and intelligence with the help of a machine
learning algorithm.
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C. DIGITAL TWIN IMPLEMENTATION DEVELOPMENT
FOR FDM PRINTERS
A physical object is the FDM printer, in this case, the digital
twin to be created. All information from the FDM printer
can be extracted from in-built sensors and transferred to
a digital twin through the data channel. The digital twin,
in this case, is the digital replica of a physical FDM printer,
which can be in the form of data visualization or CAD file
viewed and controlled through an augmented reality plat-
form. More importantly, digital twins should be fed with
real-time data from physical FDM printers through a data
channel.

The middleware is the most important part that plays a
significant role in communication among physical and digital
models. The data channel should be efficient and reliable.
Hence there are different types of data from various sensors
and protocols. Moreover, middleware receives data from the
physical model, sends it to the digital model, and processes
it in parallel. Then, after analyzing the data, the digital twin
sends a command to the physical model according to the
decisions made based on the result of a data process.

The InterPrint FDM printer is selected as a physical object
in this research. This printer requires an extra microcontroller
to make this printer remotely accessible and controllable.
Thus, as a microcontroller, Raspberry Pi 3B is selected.
In addition to these, the Logitech camera and chair lamp are
chosen. The camera takes pictures of parts during printing
at certain stages and compares them with a trained machine-
learning model to determine defects. Due to the lack of
enough light and the constantly moving printer bed, it is
challenging to shoot good-quality pictures. Thus, with the
help of extra light, it can be done more precisely.

Octoprint is selected to control and monitor the 3D printer
remotely. It is an open-source platform, so that can be done
in terms of user customization. The Raspberry Pi was used
to run Octoprint software and make the 3D printer accessible
for requests. Moreover, Octoprint has a REST.API is a set of
rules defining how applications or devices can connect to and
communicate. Octoprint is an open-source application with
many ready-to-use plugins, making it easy to use. MS Azure
was chosen to create a cloud server to hold a database and run
ML algorithms. The starting point for integrating all compo-
nents of the project in Unity was to retrieve data from the
Octoprint web interface. Conveniently Octoprint already has
an API that, in turn, uses the REST API; for this purpose was
found a public GitHub repository called Printerface which
was used as a basis since it already contains methods for both
data output and various commands.

Raspberry Pi 3B was used as a bridge between the 3D
printer and the digital environment. Then, Octoprint software
was chosen as a part of cyberspace, where all information
comes from the 3D printer. Through Octoprint, 3D printers
can also be monitored (printer status, bed and nozzle tem-
peratures, real-time streaming, and G-code viewer). The core
of cyberspace is the MS Azure server, where the database

collects datasets from the 3D printer and ML algorithms
analyze and make predictions. Eventually, as a part of the
cognition level, the Unity client was developed for remote
visualization for users. All printing statuses and parameters
can be seen through a user interface and control. It is not pos-
sible to directly control the 3D printer. Thus, the commands
are first sent to Octoprint so that the software can intervene
or prevent the physical 3D printer. It is interesting to note that
all the data comes from in-built sensors in the 3D printer.

D. MACHINE LEARNING FOR DEFECT DETECTION
Machine learning plays a significant role in digital twin appli-
cations for identifying whether a printed object has defects.
Here are some key reasons whymachine learning is important
in this context:

• Defect Detection: Machine learning algorithms can be
trained to analyze 3D models and identify potential
defects in printed objects. By learning patterns and
characteristics of defective prints from labelled data,
machine learning models can detect anomalies, such as
structural imperfections, surface irregularities, or other
printing errors. This helps in ensuring the quality and
integrity of the printed objects.

• Automation and Efficiency: Digital twin systems gen-
erate vast amounts of data, including sensor readings,
images, and other measurements. Machine learning
algorithms can process this data at scale and automate
the defect detection process. This significantly reduces
manual inspection efforts, speeds up the analysis, and
enables real-time print quality monitoring.

1) DATASET COLLECTION AND PREPROCESSING
The data collection process for the OctoPrint interface
involved capturing both video and images to monitor the
3D printing process. The OctoPrint interface provided these
visual data sources for analysis and evaluation.

Initially, images were utilized to gather information about
the printing progress. However, if the images were deemed
insufficient in terms of quality or if there were issues with
repeated frames, a Python script was employed to divide the
video into individual images. This allowed for amore detailed
examination of the printing process.

In addition to visual data, OctoPrint also provided temper-
ature and other relevant information. This data was directly
fed into Unity, which could be analyzed and processed for
further use.

To account for potential defects or anomalies in the
printing process, some deliberately flawed images were cap-
tured. This was achieved by manually shaking the printer,
increasing the temperature beyond recommended levels,
or modifying certain parameters of the 3D printer. These
intentionally induced flaws served as valuable test cases for
evaluating the system’s robustness and identifying poten-
tial areas for improvement. The images were then manually
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labelled (defect and non-defect) with bounding box annota-
tions for the objects of interest using a labelling tool.

Due to their accessibility, simplicity of use, and wide range
of materials they can work with, fused deposition modelling
(FDM) printers are not without their own unique set of
difficulties and potential flaws, just like any other technol-
ogy. Stringing, Layer Separation and Splitting, and Clogging,
which cause excess and under extrusion, were found to be
the three main fault types in a dataset collected from FDM
printers.

1) Stringing (Hairy Prints/Spaghetti):
Stringing, often known as hairy prints, spaghetti,
or oozing, is an issue that frequently affects FDM
printers. Thin plastic strings or strands linking vari-
ous print components are the defining features of this
fault. When the printer’s extruder moves from one area
to another without ceasing to extrude, this problem
frequently arises. Numerous things, such as improper
retraction settings, an excessively high printing temper-
ature, or insufficient cooling, might result in stringing.

2) Layer Separation and Splitting:
When a print’s component layers do not adhere to one
another effectively, layer separation and splitting take
place. This flaw frequently leads to a final product that
is fragile and easily separated along the layer bound-
aries. Low extrusion temperature, a high cooling fan
speed, and an incorrect printing speed are all factors
that might cause layer separation and splitting. The
choice of material is particularly important since some
materials, like ABS, are more prone to this flaw than
others, like PLA, because of their greater thermal con-
traction.

3) Clogging (Over and Under Extrusion):
A clogged printer has a nozzle that is plugged, pre-
venting the flow of melted filament. Both over- and
under-extrusion are effects of this problem. Over-
extrusion is the process of extruding too much fila-
ment, which results in excess plastic and can produce
blobby, uneven prints. It may be caused by wrong
filament diameter or flow rate settings, inaccurate step-
per-millimetre calibration of the extruder, or even a
combination of these. On the other hand, insufficient
filament extrusion leads to under-extrusion. It results
in missing layers, print gaps, or prints that are not
solid. A partially clogged nozzle, improper extrusion
multiplier or filament diameter settings, or a problem
with filament feed, such as a tangle in the spool, can all
contribute to this.

In general, the data collection process for the OctoPrint
interface involved capturing video and images, utilizing a
Python script to extract images from the video, incorporating
temperature and other data fromOctoPrint directly intoUnity,
and intentionally generating defective images to assess sys-
tem performance. This comprehensive approach facilitated a
thorough analysis of the 3D printing process and contributed
to enhancing the overall system’s efficiency and reliability.

The data was then augmented with horizontal flipping and
scale jittering [0.1, 2.0] to make the data-rich and the model
perform accurately. Overall, 120 images were collected, and
25 images were used for testing. Feature extraction was done
using pre-trained models and transfer learning techniques,
and the models were then trained on the extracted features
to detect image defects.

2) TRANSFER LEARNING
EfficientDet-Lite, an object detection model, was chosen
as the source model for transfer learning. It is specifi-
cally designed for performance on mobile CPUs, GPUs,
and EdgeTPUs, making it suitable for real-time inference
in the additive manufacturing system. EfficientDet-Lite is
a variant of the EfficientDet architecture introduced by
Mingxing Tan et al. in [27]. The EfficientDet-Lite model
was originally trained on the COCO 2017 dataset, which
consists of a large number of images across multiple object
classes. It utilizes a bi-directional feature pyramid network
(BiFPN) to combine feature maps of different resolutions
and a classification and regression subnetwork to predict the
presence and location of objects (see Figure 4).

The loss function used to train the models was a weighted
sum of the focal and smooth L1 loss.

The Focal Loss:

F(pt ) = −αt (1 − pt )γ log(pt ), (1)

where pt is the predicted probability of the true class, αt =

0.25 is the weighting factor, and γ = 1.5 is the focusing
parameter.

The Smooth L1 Loss:

loss(x, y) =

{
(x − y)2σ 2/2,

|x − y| − 1/2σ 2,

if |x − y| < 1/σ 2

otherwise
, (2)

where x and y are the predicted and target values, respectively,
and σ ∈ {0.5, 1, 2} is the point where the loss changes from
L2 to L1.

3) MODEL ADAPTATION
Transfer learning was employed to adapt the EfficientDet-
Lite model to the specific requirements of additive man-
ufacturing. The pre-trained EfficientDet-Lite model was
fine-tuned using the collected dataset of 120 images related
to additive manufacturing. The last few layers of the
EfficientDet-Lite model were replaced with new layers to
accommodate the specific number of object classes relevant
to additive manufacturing. During fine-tuning, the weights
of the pre-trained EfficientDet-Lite model were frozen, and
only the newly added layers were trained using the collected
dataset. The transfer learning process enables the model to
leverage the knowledge learned from the large-scale COCO
2017 dataset while adapting to the specific domain of additive
manufacturing.
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FIGURE 4. The EfficientDet architecture utilizes EfficientNet-Lite [27] as its backbone network, and features a BiFPN layer as its feature network, along
with a shared network for class and box predictions.

TABLE 2. The algorithmic hyperparameters of the EfficientDet-Lite model.

4) MODEL TRAINING AND EVALUATION
The adapted EfficientDet-Lite model was trained using the
collected dataset of annotated images. The training process
involved iterative optimization of model parameters to min-
imize the detection loss and improve the accuracy of object
detection. The dataset was divided into training and validation
sets to monitor the model’s performance during training and
prevent overfitting. Model performance was evaluated using
various evaluation metrics such as precision and mean aver-
age precision (mAP) on the validation set. Hyperparameters,
including learning rate, batch size, and the number of training
epochs, were tuned to achieve the best possible performance
(see Table 2).

The EfficientDet-Lite models used in this paper have
varying sizes, latencies, and average precisions. This paper
experiments with five different EfficientDet-Litemodels, as it
is important to choose the best one in lightness, accuracy, and
effectiveness for the whole digital twin system. As shown
in the table below, the models become more extensive and
more accurate as their index increases, with EfficientDet-
Lite4 being the largest and most accurate of the models.

The size of the models refers to the size of the integer
quantized models, with larger models requiring more storage
space. The latency of the models was measured on a Rasp-
berry Pi 4 using four threads on the CPU, with larger models
having the highest latencies. Finally, the average precision
of the models is the mean average precision (mAP) on the
COCO 2017 validation dataset, with larger models having the
highest average precision.

The EfficientDet-Litemodels were chosen due to their high
accuracy and low computational requirements. By choosing

TABLE 3. The performance of each EfficientDet-Lite models compared to
each other.

a smaller model, such as EfficientDet-Lite0 or EfficientDet-
Lite1, the system can achieve lower latencies and use less
storage space while sacrificing some accuracy. On the other
hand, using a larger model such as EfficientDet-Lite4 can
achieve higher accuracy at the cost of higher latencies and
larger storage requirements.

5) MODEL DEPLOYMENT
After training and evaluation, the final adapted EfficientDet-
Lite0-Lite4 models were ready for deployment in the additive
manufacturing system. The models were converted to Ten-
sorFlow Lite (TFLite) format, optimized for deployment on
Raspberry Pi. The deployment of the model enables real-
time object detection and monitoring within the digital twin
system of the additive manufacturing setup. By leveraging
transfer learning and fine-tuning the EfficientDet-Lite model,
it was possible to develop an accurate and efficient object
detection system tailored to the specific requirements of addi-
tive manufacturing. The trained model can now be integrated
into the digital twin system to enhance monitoring, control,
and quality assurance in the additive manufacturing process.

6) DECISION-MAKING
The decision-making is done in two ways: manually using
notifications and automatically. In both cases, the decision is
made using the confidence level probability, where the results
below 30% mean the defect is minor. The P ≥ 0.30 was
chosen to make an automatic stop of the printing process,
while 0 < P < 0.3 makes defect notifications to the user
to stop manually if needed. The defect detection results with
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confidence level are saved in real-time automatically and
accessed by Unity to control the whole system.

Overall, integrating machine learning models in a digi-
tal twin system shows promise for enhancing the quality
and reliability of additively manufactured products. The
system can provide operators with immediate feedback by
detecting defects in real time, allowing adjustments before
defective products are produced. The use of machine learn-
ing techniques, including data cleaning, feature extraction,
and transfer learning, helped improve the models’ accuracy,
demonstrating the potential of machine learning in defect
detection for additive manufacturing.

E. UNITY CLIENT USER INTERFACE
Unity engine is a powerful and versatile tool for building
digital twins of cyber-physical systems. Unity engine has
the ability to create digital twins of a physical system that
are highly realistic and immersive. These digital twins can
also correctly imitate the behaviour and performance of the
original system. With capabilities like powerful physics sim-
ulation, real-time rendering, and support for VR and AR
technologies, Unity is a great choice for creating digital
twins. In addition, Unity has a significant, involved developer
community that produces and distributes a variety of tools,
documentation, and tutorials meant to streamline and accel-
erate the production cycle. Overall, building digital twins for
additive manufacturing processes can be made much more
accurate, efficient, and useful by using the Unity engine.

Development of Unity client includes the following steps:

1) COLLECTING DATA
Gathering information about the 3D printing process, such
as temperature, its size, the materials it uses, and any other
useful information about how it works. This information was
obtained through Rest API from Octoprint.

2) DESIGNING A 3D MODEL
Designing a dimensionally accurate representation of the 3D
printer in CAD software such as 3DsMax. The model should
be as accurate as possible and include all the printer’s parts
and pieces.

3) ADDING FUNCTIONALITY
Making the 3D model of printer interactive by giving it
features like temperature and speed controls, as well as the
ability to manipulate the printer’s nozzle. All commands were
sent to the physical 3D printer through Rest API to Octoprint.

4) IMPLEMENTING PHYSICS SIMULATION
Unity scripts were written to add physics simulation to the 3D
model so that it can accurately simulate how the printermoves
and acts. The movement of the 3D printer was coordinated
due to the information from the G-code file.

5) CREATING AN INTERFACE FOR THE SOFTWARE
User-friendly interface was developed to enable users interact
with the digital twin, control the printer, and observe how its
behavior. The design of the Unity client was developed in
Figma software as shown in Figure 5.

IV. RESULTS
A. FUNCTIONAL REQUIREMENTS OF THE DIGITAL TWIN
Three main digital twin functional requirements are met with
this design, such as bidirectional communication between
models, real-time remote control and monitor, and a certain
level of intelligence integration. The following illustrates
how the developed digital twin model met its functional
requirements.

Representational state transfer application programming
interface (REST API) is a set of rules that provide how
communication and connection are defined with each other.
It offers greater flexibility to system developers. In this
research work, the data retrieval from the FDM printer
is through REST API protocol which is clearly explained
in ‘‘REST API, OctoPrint documentation.’’ The simplified
design layout of all these connections from physical to digital
and digital to physical is depicted in Figure 6.

Firstly, Octopi installed Pi is connected to the FDM printer.
Then, through Octoprint, it can be remotely accessible to the
physical printer and can all data retrieval from the physical
printer to the Unity client through REST API directly from
Octoprint. At the same time, themachine-learningmodel runs
on Raspberry Pi. If it detects unusuality, then it can be seen
from the monitor that the defect is detected. All the final data
and messages are in the Unity client interface. The data flow
from the physical to digital model is shown in green color
arrows in Figure 6.
The reverse communication either starts with the Unity

client or the machine learning model. There are virtual but-
tons such as cancel, pause, continue, and start. If one of
the buttons is pressed, the command goes to Octoprint so
that Octoprint initiates the command to the physical printer
through the Raspberry Pi microcomputer. Moreover, if any
defect is detected on the machine learning model, it sends
a signal to the unity client so the printing process can be
stopped. The reverse communication data flow is shown in
red colour arrows in Figure 6. The following results are
discussed in detail to illustrate how the developed machine
learning is effective in this digital twin model in the following
subsections.

B. UNITY CLIENT FEATURES
The goal of the project is to create a cutting-edge digital twin
solution for additive manufacturing using the capabilities of
Unity software. The innovative digital technology displays
a number of capabilities intended to transform the field of
additive manufacturing.
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FIGURE 5. Unity client interface.

FIGURE 6. Physical to Digital (green arrows) and Digital to Physical (red
arrows) model data flow.

Real-time Data Synchronization: Data is sent between the
physical and digital models in real-time. It is critical to obtain
precise and up-to-date information from the physical envi-
ronment in order to depict the condition of the digital twin
appropriately.

Command Execution: Unity client can send commands
such as Start, Stop, and Resume to control the printing pro-
cess. This feature can be enhanced by changing print speed,
temperature, and layer thickness.

Sensor Integration: By incorporating sensor measurements
and readings into the digital model, significant information
can be used to monitor and improve the additive manufactur-
ing process. The unity client accurately receives and displays
sensor data (e.g., nozzle temperature, bed temperature).

Visualization and Simulation: One of the critical features
is the digital mimicking of the movement of the real nozzle.

The visual representation gives users a more realistic and
intuitive experience. This feature can be further developed
to model the printing procedure in the digital environment
before the actual printing.

Camera Monitoring/Image Processing: Using cameras to
keep an eye on the printing process is a fantastic tool. A user
is able to see the printing process from various angles, and the
camera feed is shown in the Unity client. Camera monitoring
is enhanced by an ML algorithm, which examines camera
feeds and delivers insights or warnings based on predefined
criteria.

User interface: An intuitive user interface allows users to
easily interact with the digital twin. Users can send control
commands, view sensor readings, and have access to the
camera feed.

Data Analytics and Optimization: The Machine Learn-
ing algorithm is used to analyze the collected data during
the printing process, which helps to identify patterns and
anomalies and improve the quality of the printing process.
ML model constantly monitors the printing parameters and
sends signals to the Unity client; then Unity client sends a
request to stop printing if the 3D object defected. This feature
optimizes the printing parameters and enhances the overall
efficiency.

C. MACHINE LEARNING
Table 4 shows the performance of each EfficientDet-Lite
model in detecting defects in the additive manufacturing
process. The models were evaluated based on their average
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precision (AP) in detecting both defected and non-defected
prints, as well as their AP in detecting only defected prints.

Moreover, Table 4 and Figure 7 show that as the model size
increases, the average precision in detecting both defected
and non-defected prints improves. This is evident in the
higher AP_No_Defected scores for efficientdet_lite3 and
efficientdet_lite4 compared to the smaller models. How-
ever, for detecting only defected prints, the efficientdet_lite3
model outperformed the larger efficientdet_lite4 model, sug-
gesting that the former may be a better choice for defect
detection specifically.

TABLE 4. The performance of each EfficientDet-Lite models for each
defected, nondefected data, and general.

FIGURE 7. The EfficientDet-Lite 0 - 4 models and their performance using
average precision metrics.

According to the figures provided, the use of EfficientDet-
Litemodels in the digital twin system allowed for the accurate
detection of defects in real time during the additive manu-
facturing process. The choice of model will depend on the
specific requirements of the system, such as accuracy, latency,
and storage space. Moreover, there is another factor that is
crucial when working with images, which is the image qual-
ity. Figure 13 shows the performance of the models on one
test image with confidence level values. The confidence level
is a probability score assigned by the classification network
for the detected object belonging to a certain class (defect,
no_defect). Though the quality of the images is not the best,
the figure below shows that model works perfectly.

Overall, during the real-time tests, the EfficientDet-Lite2-4
models showed better performance than EfficientDet-
Lite0-1. However, in terms of the model’s size, only
EfficientDet-Lite2 -3 showed the best results in speed effi-
ciency. The test on how the image quality might affect the
performance was also made. Figure 9 shows the loss for

FIGURE 8. The EfficientDet-Lite 0 - 4 models and their performance on
the same image.

EfficientDet-Lite2-4 models, which is near 0 for all models,
showing how effective the models performed. Furthermore,
table 6 shows the performance of all models on specific test
images. The table displays the confidence level and whether
the model detected a defect (D) or not (T=True, F=False)
for each image. The results show that the EfficientDet-Lite
models were able to accurately detect defects in the additive
manufacturing process with varying levels of confidence.

V. DISCUSSION
In this research work, three functional requirements of the
digital twins are addressed. Real-time monitoring and con-
trolling, bidirectional communication (data flow from the
physical to the digital model and digital to the physical
model manually or automatically), and intelligence integra-
tion are among the essential functions of a digital twin. The
developed digital twin for the FDM printer met its defined
functional requirements. Most state-of-the-art research works
also fully or partially meet these functions by adopting dif-
ferent methodologies. However, in terms of implementation,
simplicity and integration of machine learning algorithms to
leverage digital twins are the main benefits of this research
work.

Regarding the comparison of the functionalities with the
existing state-of-the-art studies, this research work performs
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TABLE 5. The Performance of each EfficientDet-Lite 0-4 model on specific images (C=Confidence level, D=Defected, T=True, F=False).

FIGURE 9. The EfficientDet-Lite 2 - 4 models training and validation
losses.

better and employs the most important parts of the digital
twin, as shown in Table 6.

The proposed digital twin system for additive manufac-
turing that integrates machine learning models for defect
detection and a Unity client user interface shows promise for
enhancing the quality and reliability of additive manufactur-
ing. The system provides operators with immediate feedback
by detecting defects in real time, allowing adjustments before
producing defective products. The use of machine learn-
ing techniques, including data cleaning, feature extraction,
and transfer learning, helped improve the models’ accuracy,
demonstrating the potential of machine learning in defect

TABLE 6. The comparison of this research work with state-of-the-art.

detection for additive manufacturing. Though the proposed
architecture works well, it brings challenges and limitations.
One of the frequently faced issues was the constant change
in the IP address of Raspberry Pi, which created difficulty
in remote access to the system. Moreover, it required an
extra monitor to see and access the IP address. In addition
to this, it can be accessed by the system only through the
same wireless network. Thus, it creates functionality limita-
tions. For this issue, the Octoeverywhere plugin was tested,
which allowed access to the system regardless of the network
difference. Though the plugin makes it easy to access the IP
address, it has limitations in visually monitoring the printing
system through the camera. It allows 20 seconds of monitor-
ing every 5 minutes through the Logitech webcam camera.
In addition, this plugin creates problems in the communica-
tion between models.

Another issue is with the backend of the system.
The machine learning model works efficiently and well,
but the challenging part is integrating the machine learning
into the digital twin model, which makes the system very
complex. However, the problem might be solved with a cloud
database that collects detection results andmakes it accessible
for the Unity part. The proposedML approach used a transfer
learning method with EfficientDet-Lite0 – Lite4 models. The
choice of EfficientDet-Lite models for defect detection in this
digital twin system is a good fit due to their high accuracy
and low computational requirements. However, the choice of
model will depend on the specific requirements of the system,
such as accuracy, latency, and storage space. In addition, the
performance of the models is affected by the quality of the
images, which should be taken into consideration. Never-
theless, it was proposed to use EfficientDet-Lite2-3 as they
are smaller in size than EfficientDet-Lite4 and show similar
performance.
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The integration of the Unity engine for creating the digital
twins of a physical system that are highly realistic and immer-
sive, correctly imitating the behaviour and performance of the
original system, further enhancing the accuracy, efficiency,
and usefulness of the proposed system. The Unity client user
interface lets users talk to the digital twin, control the printer,
and keep an eye on how it’s doing in a user-friendly way.

In this research, the digital twin is fed in real-time using
varieties of data obtained from 3D printers, including noz-
zle and bed temperatures, Gcode, printing time estimates,
and others. A camera can also be used for a number of
other things, including providing video and image data to
the machine learning component for fault identification and
enabling remote access for real-time monitoring outside of
the laboratory. The integration of additional printing pro-
cess data, such as temperature and vibrations, along with
image and video data, will be investigated as part of future
studies and the project’s continuation. The machine learn-
ing algorithm’s accuracy and detectability are intended to
be improved by this integration. The initiative aims to
increase overall performance and contribute to the creation
of more effective and efficient systems by combining these
developments.

The printed objects may also contain various defects due
to variations in the materials used, printing techniques, and
process conditions. The printing materials utilized in our
study, including their features and characteristics, are crucial
factors that affect the efficiency of the digital twin system.
In our experiment with the ML model, we used simple cubic
from PLA material to train the algorithm. It is important to
mention that relying exclusively on image processing may
not completely reflect the nature of faults. Therefore, it is
necessary to implement a multifaceted strategy for defect
detection, considering not just visual inspections but also
incorporating data from sensors and other pertinent sources
(e.g., bed temperature, nozzle temperature, and vibration).
This strategy will be implemented in future research work.

This project is a step toward the development of digital twin
solutions.

VI. CONCLUSION AND FUTURE WORK
The proposed digital twin system for additive manufacturing
that integrates machine learning models for defect detection
and a Unity client user interface provides operators with
immediate feedback by detecting defects in real time, allow-
ing adjustments before defective products are produced. The
use of machine learning techniques, including data cleaning,
feature extraction, and transfer learning, helped improve the
models’ accuracy, demonstrating the potential of machine
learning in defect detection for additive manufacturing. Inte-
grating the Unity engine further enhances the proposed
system’s accuracy, efficiency, and usefulness. Despite the
research progress made as a step towards the development
of digital twin solutions, challenges and limitations still need
to be solved.

This work is part of an ongoing research programmewhich
aims to improve the proposed system for defect detection
in additive manufacturing processes using the digital twin
with machine learning algorithms. One of the challenges is
connecting to different wireless networks, which can cause
connectivity issues and delay in bidirectional communica-
tions. To address this challenge, future work can focus on
developing a more robust and reliable wireless connection
system, possibly using mesh networks or other technolo-
gies that can ensure seamless connectivity across different
networks.

The integration of more sophisticated machine learning
algorithms in digital twin implementation systems requires
further investigation. While the EfficientDet-Lite models
used in this study showed promising results, more complex
geometries and defect types may require more advanced
machine-learning models. Future work can focus on explor-
ing other state-of-the-art algorithms, such as deep learning
techniques, that can improve the accuracy and efficiency of
defect detection in additive manufacturing processes.

Data augmentation with random brightness and contrast
can be used to increase the variability of the training data,
which can improve the generalization capability of the
machine learning models. Future research work can focus on
implementing more advanced data augmentation techniques
to enhance the performance of the models.

Incorporating Augmented Reality (AR) for interactive use
can be another area of future work. AR can provide an
immersive and interactive experience for operators to visu-
alize and manipulate the digital twin model, allowing for
better control and monitoring of the additive manufacturing
process.

Finally, developing an automatic two-way communication
system can help minimize human intervention and improve
the efficiency of the defect detection process. Further research
efforts should focus on developing a system that can auto-
matically detect defects and stop the printing process or
send notifications to the operator to take necessary actions.
Moreover, such a system can also provide feedback to the
machine learning models, allowing for continuous learning
and improvement of the models over time.
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