
Received 26 June 2023, accepted 7 July 2023, date of publication 12 July 2023, date of current version 26 July 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3294573

Rapid Production Rescheduling for Flow Shop
Under Machine Failure Disturbance Using
Hybrid Perturbation Population Genetic
Algorithm-Artificial Neural
Networks (PPGA-ANNs)
PAKKAPORN SAOPHAN 1, WARUT PANNAKKONG2, RAVEEKIAT SINGHAPHANDU1,2,
AND VAN-NAM HUYNH 1, (Member, IEEE)
1School of Knowledge Science, Japan Advanced Institute of Science and Technology, Nomi, Ishikawa 923-1211, Japan
2School of Manufacturing Systems and Mechanical Engineering, Sirindhorn International Institute of Technology, Thammasat University, Khlong Nueng, Pathum
Thani 12120, Thailand

Corresponding authors: Van-Nam Huynh (huynh@jaist.ac.jp) and Warut Pannakkong (warut@siit.tu.ac.th)

ABSTRACT Rescheduling is essential in real-world production to adjust schedules when significant
disturbances render existing ones non-optimal. Manufacturers are often required to reschedule production
tasks as quickly as possible. This paper proposes a rapid production rescheduling framework for flow
shop under machine failure disturbance, called PPGA-ANNs, with the goal of minimizing makespan
while ensuring sufficient computational efficiency. The framework begins with a scheduling knowledge
creation phase conducted before starting production. It applies the proposed Perturbation Population Genetic
Algorithm (PPGA) to solve generated scenarios of flow shop production with machine failure problems.
The performance of the PPGA is compared to other research algorithms and to the standard genetic
algorithm (GA). The same data set from a widely used scheduling benchmark is used for all algorithms
to confirm the effectiveness of the PPGA. Artificial neural networks (ANNs) are then applied to store
the scheduling knowledge obtained from the PPGA. In the knowledge implementation phase, when a
machine failure problem occurs during production, the rescheduling solution is provided by the ANNs if
the machine failure problem is identical to a generated scenario. Otherwise, the rescheduling solution is
provided by the PPGA, using the initial solution obtained from the ANNs. Based on the experimental results,
the PPGA-ANNs framework demonstrates better performance in makespans than benchmark algorithms.
Additionally, it provides faster solutions, particularly for new machine failure problems. In conclusion, the
proposed framework is capable of minimizing the makespan with a short computational time for real-world
production, addressing the limitations of existing state-of-the-art meta-heuristic algorithms.

INDEX TERMS Artificial neural network, flow shop production, genetic algorithm, machine failure,
production rescheduling.

I. INTRODUCTION
Rescheduling problems of production systems are a form of
decision support that plays a crucial role in actual dynamic
manufacturing, where an unexpected situation can arise at any

The associate editor coordinating the review of this manuscript and
approving it for publication was Wei Liu.

time. In the current competitive environment, effective pro-
duction scheduling and rescheduling have become important
for supporting innovative production methods and maximiz-
ing resource utilization for survival in the marketplace [1].

Predetermined schedules have been the norm in produc-
tion and manufacturing for decades. However, achieving
maximum productivity while adhering to the schedule has

75794
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 11, 2023

https://orcid.org/0000-0001-6128-6071
https://orcid.org/0000-0002-3860-7815

P. Saophan et al.: Rapid Production Rescheduling for Flow Shop Under Machine Failure Disturbance

become challenging in today’s manufacturing environment,
which is fraught with uncertainties and complexities. Various
theoretical studies have been conducted to analyze novel
approaches to dynamic scheduling or rescheduling to miti-
gate the impact of intentional or unintentional disturbances
on production processes. Nevertheless, practical applications
in industry are rare [2].

In dynamic manufacturing, production rescheduling is typ-
ically required to moderate the consequences of disturbed
events while maintaining an optimum performance [3]. Sig-
nificant disturbances in production, such as machine fail-
ure, urgent job arrivals, and changes in due dates, make
previously established schedules infeasible and hence are
referred to as rescheduling factors [4]. These factors pose
a significant challenge to manufacturers, who are required
to perform rescheduling activities quickly and efficiently
to maintain high-quality production. Among these factors,
machine failure is a common occurrence in manufactur-
ing, which can lead to suboptimal machine performance
due to changes in the processing time. However, many
researchers in production scheduling have assumed that
machines are continuously available during the planning hori-
zon, which is a significant deviation from actual production
environments where unstable machines can delay product
launch [5].

Among the initiatives of Industry 4.0, new perspectives
and challenges in research on dynamic production scheduling
have received increasing attention [6]. This research pro-
poses a framework to address rescheduling problems in a
flow shop production with machine failure by using a hybrid
algorithm that combines a meta-heuristic algorithm, repre-
sented by the proposed genetic algorithm, and a supervised
learning approach, represented by an artificial neural net-
work (ANN). The proposed framework aims to generate a
new schedule in rapid computational time with minimized
makespan when a machine failure occurs. To achieve this
objective, the present research first produces scenarios of
machine failure in a large-scale flow shop production. Each
scenario is solved, and an appropriate schedule is found using
our proposed genetic algorithm, the Perturbation Population
Genetic Algorithm (PPGA). The PPGA’s performance is
evaluated and compared with existing algorithms using the
same data set from Taillard’s benchmark [7], which generates
scheduling problems of sizes that exceed the rare instances
published. Second, theANNs are trained using the knowledge
gained from the machine failure scenarios and the suitable
schedule for each scenario. Consequently, a predicted sched-
ule can be obtained from the trained ANNs. In case the
predicted schedule is infeasible, the PPGA is still applied by
using the predicted schedule from the trained ANNs as an
initial solution to achieve a feasible schedule in a more effi-
cient computational time. The proposed framework is called
PPGA-based knowledge obtained from the trained ANNs
(PPGA-ANNs). Finally, the optimality and computational
time of the proposed framework are compared to those of

the standard genetic algorithm (GA) and PPGA without the
initial solutions from the trained ANNs.

The remainder of this paper is organized as follows:
Section II provides a comprehensive review of the rele-
vant literature on production scheduling and rescheduling.
Section III provides a detailed description of the flow shop
production problem. Section IV proposes a framework to
generate rapid production rescheduling, with the aim of mit-
igating the impact of machine failures on the performance
of dynamic manufacturing systems. Section V presents the
numerical implementation and experimental results to verify
the effectiveness of the proposed framework. Section VI
offers a comprehensive discussion and analysis of the find-
ings and implications derived from the experimental results.
Finally, Section VII presents the conclusions and suggests
potential avenues for future research.

II. RELEVANT RESEARCH
Existing methodologies and techniques employed in the aca-
demic literature for production scheduling and rescheduling
problems serve as valuable resources for identifying gaps and
limitations in the current knowledge base. Moreover, they
aid in recognizing potential areas for integrating production
rescheduling systems. This literature review aims to present a
comprehensive survey of previous research on the methodol-
ogy of the problem domain, providing a clear understanding
of the need for content deliberation, position issues, and
the motivation behind the methodology developed in this
research. First, we provide a concise overview of previous
research on production scheduling, emphasizing the limita-
tions of previous methodologies. Subsequently, we present
new perspectives and existing research pertaining to the pro-
duction rescheduling problem.

A. PRODUCTION SCHEDULING
Production scheduling has been the focus of research in vari-
ous domains for several decades. It is defined as the problem
of determining an optimal schedule or sequence for a set of
jobs on a production line [8]. Moreover, based on a review
of the literature, the production scheduling problem is widely
recognized and classified as NP-hard [9].

The scheduling procedure also depends on the type of
environment, such as a singlemachine, parallel machine, flow
shop, or job shop [10]. Flow shop operation is one of the most
common production environments, used in several industries
such as automotive manufacturing [11], automobile manu-
facturing [12], plastic products [13], and wood industry [14].
Since the 1950s, many researchers have extensively explored
algorithms for developing production sequencing problems to
minimize makespan. In 1954, Johnson [15] introduced a sim-
ple algorithm for two-machine flow shop scheduling. Since
then, scheduling has become an independent field of research
with various algorithms.While exact optimization algorithms
are widely presented for scheduling (e.g., [16], [17], [18]),
the complexity of production scheduling problems renders

VOLUME 11, 2023 75795

P. Saophan et al.: Rapid Production Rescheduling for Flow Shop Under Machine Failure Disturbance

exact solvers infeasible of high-quality solutions for large-
scale problems. In practice, optimal solutions are hardly
required for moderate-and large-scale problems [19]. Heuris-
tic algorithms are more feasible (e.g., [20], [21], [22]), but
the computational time still takes remarkably long for even
moderate-scale problems. Consequently, many researchers
have turned to meta-heuristic algorithms that are feasible
for searching near-optimal solutions and achieving them in
a suitable amount of time.

Based on the literature, we can indicate famous
meta-heuristic algorithms to address flow shop scheduling,
such as tabu search [23], iterated greedy [24], simulated
annealing [25], the ant colony optimization algorithm [26],
GA [27], and recently using an algorithm inspired by a
mathematical operator called the arithmetic optimization
algorithm [28]. Among meta-heuristic algorithms, the GA
is currently the most widely used and efficient for solving
operational management problems, such as scheduling [29].
The GA is inspired by the biological evolution process and is
commonly used to respond to optimization problems in large
and continuous search spaces [30].

GA has gained significant popularity due to its ability
to efficiently solve scheduling problems within reasonable
computational time [31]. Previous studies have proposed
various GA-based approaches to tackle different scheduling
problems in diverse domains.Meena et al. [32] utilizedGA to
minimize workflow execution costs while meeting deadlines
in a cloud computing environment. Peng et al. [33] intro-
duced a hybrid GA to address the parcel delivery routing and
scheduling problem. In the context of dynamic production,
Yu et al. [27] proposed a GA incorporating a new decoding
method specifically designed for the total tardiness objective,
enabling the generation of tight schedules and solving the
hybrid flow shop scheduling problem. Additionally, Wang
and Zhu [34] employed a mathematical model, GA, and tabu
search to address the flexible job shop environment, con-
sidering sequence-dependent set-up times and job lag times.
These studies highlight the versatility and effectiveness of
GA-based approaches in solving various scheduling chal-
lenges across different application domains.

Although the GA has shown great success in produc-
tion scheduling problems, it is prone to being trapped in
local optima or experiencing early convergence when explor-
ing the search space [35], [36]. Accordingly, the proposed
PPGA was developed to overcome this limitation. More-
over, although meta-heuristic algorithms excel at providing
optimal solutions for large-scale production scheduling, they
may not be able to satisfy the computational time require-
ments for rapid production rescheduling when unforeseen
circumstances arise. In addition, most scheduling research
fails to consider the various execution issues that may arise
when implementing global manufacturing, assuming that the
algorithm will execute the schedule exactly as it was cre-
ated. Therefore, this research aims to enhance the GA as
a meta-heuristic algorithm to achieve a suitable and rapid
solution for rescheduling problems.

B. PRODUCTION RESCHEDULING
In dynamic production environments, belatedness can be
caused by unpredictable disturbances in the manufacturing
operations. The exigency for a new schedule should be exam-
ined to alleviate the impact of disturbances and fulfillment
of customer commitments. The process of updating the pro-
duction schedule under a flexible environment with shop
floor disruptions is referred to as production rescheduling.
These challenges pose significant obstacles and have given
rise to a growing array of rescheduling factors. Existing
scheduling approaches require considerable time to adjust the
original schedules and reschedule unprocessed work orders
in order to rapidly achieve a new optimal solution [19].
Consequently, the field of rescheduling problems contin-
ues to garner attention from researchers in academia and
industry. The production rescheduling has been motivated
by the strong application background and has been investi-
gated by several reviewer authors such as Vieira, Herrmann,
and Lin [3], Ouelhadj and Petrovic [37], Cardin et al. [38],
Uhlmann and Frazzon [2], and Larsen and Pranzo [39].

Numerous studies have addressed the challenges of pro-
duction rescheduling problems. Sabuncuoglu and Goren [40]
introduced proactive scheduling, which integrates decision
theory to understand robustness and stability measures
in terms of when-to-schedule and how-to-schedule with
rescheduling policies. The Wilkerson-Irwin algorithm and
two heuristic algorithms based on an active schedule gen-
eration procedure were presented by Dong and Jang [41] to
minimizemean tardiness of production job shop rescheduling
caused by machine breakdowns, by enabling the change in
the processing sequence of operations to utilize idle machine
time. Kundakci and Kulak [42] developed a hybrid GA for a
dynamic job shop scheduling problem with machine break-
downs, new order arrivals, and changes in processing time.
The algorithm has been shown to deliver high-quality solu-
tions within an efficient computational time.

The use of Artificial Intelligence (AI)-based approaches
in various research fields has been highly successful and
has opened up opportunities to explore alternative solutions
for optimization problems. Deep learning has been utilized
to design optimization algorithms by learning through the
distribution of problem instances. Zhang et al. [43] proposed
a fuzzy neural network that adapts a rescheduling decision
model based on current system states and disturbances; how-
ever, this approach has not yet been implemented in a man-
ufacturing system or tested in production. Nazari et al. [44]
tackled the vehicle routing problem (VRP) using reinforce-
ment learning to train the network by computing the rewards
of outputs and incorporating an attention mechanism that
addresses various parts of the input.

Along with Industry 4.0, Li et al. [45] proposed an inte-
grated approach of machine learning (ML) classification and
optimization algorithms for identifying rescheduling patterns
in terms of when to reschedule and adopt GA to calcu-
late the initial schedule for the flexible job shop scheduling
problem. Recently, during the novel coronavirus pneumonia

75796 VOLUME 11, 2023

P. Saophan et al.: Rapid Production Rescheduling for Flow Shop Under Machine Failure Disturbance

(COVID-19) pandemic, Wu et al. [19] presented a neural
network with reinforcement learning for scheduling the emer-
gency production of medical masks. Although this proposed
algorithm processes the schedule within a short time, its
limitation is a baseline in reinforcement learning that need
much room to be improved.

Our research recognizes the importance of further investi-
gation in the field of production rescheduling. By emphasiz-
ing the need for additional research, our research contributes
to the ongoing discourse and advocates for intensified
research efforts to enhance the techniques, algorithms,
and methodologies used in production rescheduling. This
acknowledgment underscores the significance of continuous
improvement and the pursuit of innovative solutions to opti-
mize manufacturing scheduling practices.

The primary contribution of our research is the develop-
ment of the PPGA and its integration with ANNs, form-
ing a novel approach for rapid production rescheduling in
flow shop environments under machine failure disturbance.
The PPGA-ANNs framework offers distinct advantages over
existing literature. The proposed PPGA aims to overcome
the limitations of the GA, which avoids local optima and
improves optimization scheduling performance. Addition-
ally, the integration of ANNs aims to enhance rescheduling
performance, particularly in terms of faster computational
time.

Moreover, the rescheduling problem in flow shop produc-
tion has not received extensive investigation in the literature.
Given its complexity, precise meta-heuristics and deep learn-
ing techniques are necessary to propose solutions within a
rapid computational time. Therefore, the development of an
integrated rescheduling framework for flow shop production
constitutes another valuable contribution of this research.

In conclusion, the proposed PPGA-ANNs framework
offers several advantages, including enhanced optimiza-
tion capabilities, knowledge utilization, and superior perfor-
mance, distinguishing it from previous research and con-
tributing to the advancement of the field of manufacturing
scheduling.

III. PROBLEM DESCRIPTION
One of the most common production environments is the
flow shop operation. The scheduling problem in a flow shop
with m machines is recognized to be strongly NP-hard for
m ≥ 3 [46]. The flow shop production problem can be
formulated as an n × m, where n jobs must be scheduled
for line production on m different machines. All machines
(Mi) and jobs (Jj) are available at the start of production and
commence as soon as possible for i = {1, 2, . . . ,m} and j =

{1, 2, . . . , n}. Each job undergoes processing on all machines
in the same sequence, starting at M1, then proceeding to M2,
and so forth up to Mm. The processing time required for
each job on a specific machine is denoted by pij, where (i, j)
refers to the operation of job j on machine i. In this research,
setup time is included in processing time. Additionally, it is
important to note that each machine can only process one

job at the time, and the buffer capacity between machines
is assumed to be unlimited. The objective of the flow shop
scheduling in this research is to minimize the completion
time of the last job, also known as makespan, denoted by C ,
defined mathematically as:

min C

The significant scale of flow shop production in reschedul-
ing problems presents challenges in finding optimal solutions
due to the inherent complexity and time-consuming nature.
The extended processing time resulting from machine failure
requires manufacturers to promptly adjust production plans
to minimize makespan. However, these rescheduling prob-
lems often prove intractable for exact optimization algorithms
and also pose computational challenges for heuristic-based
search algorithms. In response to the practical need for rapid
rescheduling in manufacturing, this research presents the
proposed PPGA-ANNs framework designed to address the
rescheduling problem in flow shop production. The frame-
work aims to fulfill the requirements of efficient rescheduling
and enhance overall production performance in dynamic
manufacturing environments.

IV. METHODOLOGY
This section presents the detail of the proposed PPGA-ANNs
framework for production rescheduling. The framework is
divided into two main phases (i.e., knowledge creation and
knowledge implementation), as illustrated in Fig. 1.

In the knowledge creation phase, before the production
process begins, the framework focuses on training the ANNs
to capture and store rescheduling knowledge. This is achieved
by utilizing the rescheduling solutions generated by PPGA
under various simulation scenarios of machine failures.
Through this training process, the ANNs acquire the ability to
comprehend and retain valuable insights and patterns, which
can subsequently be employed to generate highly effective
rescheduling solutions.

Once the production process begins and a machine fail-
ure occurs, the knowledge implementation phase is acti-
vated. In this phase, the trained ANNs are used to propose
appropriate rescheduling solutions based on the specific
machine failure scenario encountered. The trained ANNs are
directly deployed to generate rescheduling solutions an actual
machine failure scenario aligns with the simulation scenarios,
denoted as Case 1.
In the event where the machine failure situation deviates

from the simulation scenarios employed during the training
process, denoted as Case 2, the solution generated by the
ANNs is used as the initial solution for PPGA. By incor-
porating the knowledge acquired from the ANNs, PPGA is
endowed with a more informed starting point for its optimiza-
tion process. This integration of PPGA and ANNs facilitates
a swift search and optimization process, enabling the iden-
tification of rescheduling solutions that are close to optimal
within a reduced computational time.

VOLUME 11, 2023 75797

P. Saophan et al.: Rapid Production Rescheduling for Flow Shop Under Machine Failure Disturbance

FIGURE 1. The proposed PPGA-ANNs framework for production rescheduling.

The detailed of the proposed PPGA-ANNs framework
is provided in the subsequent subsections. Subsection IV-A
presents the knowledge creation phase, encompassing the
simulation of machine failure scenarios, the PPGA for gen-
erating rescheduling solutions, and the storing rescheduling
knowledge by the ANNs. Subsection IV-B elucidates the
knowledge implementation phase, encompassing the utiliza-
tion of initial solutions resulted by the ANNs and the imple-
menting of rescheduling knowledge from the ANNs into the
PPGA.

A. KNOWLEDGE CREATION PHASE
The knowledge creation phase is conducted to create the
knowledge from the rescheduling solutions produced by
PPGA under various simulation scenarios of machine failure,
and store the knowledge in the ANNs via the training process
before starting the real production. The detail of the simula-
tion scenarios is described in Section IV-A1. Section IV-A2
provides an explanation of the PPGA used to generate the
rescheduling solutions. Finally, the ANNs utilized for storing
the acquired knowledge are elucidated in Section IV-A3.

1) MACHINE FAILURE SCENARIOS
The disturbance event addressed in this research is the impact
of machine failure on manufacturing processing time. It is
assumed that each machine has a risk of failure. The pro-
cessing time of each job j on machine i under the normal

production is denoted by pij, where i = {1, 2, . . . ,m} and
j = {1, 2, . . . , n}. The pij is defined as an n× m matrix.
In the scenario of machine failure, we assume that pro-

cessing times will be increased. The increased processing
time is represented by pScenij , and that machine overhaul is not
required. Scen represents the set of all possible scenarios of
machine failure. A member of Scen is a scenario of machine
failure consisting of a set containing the occurrence of all
failed machines. The occurrence of machine i is denoted by
MFi. In each scenario of machine failure, it is possible to
have a single or multiple failed machines. The members of
Scen are generated as the power set of i, excluding the empty
set, denoted by P{i} − ∅. Therefore, the total number of
all possible scenarios of machine failure is 2m − 1, where
m denotes the total number of machines. The member of
Scen can illustrate as {{MF1},. . . ,{MFm}, {MF1,MF2},. . . ,
{MF1,MFm},. . . , {MF1,MF2, . . . ,MFm}}. In addition, the
impact of machine failure is quantified as qi, which repre-
sents the tolerance level for increased processing times. The
tolerance level varies depending on the acceptance criteria of
individual manufacturers (Q) and does not require production
to be stopped. The acceptance of the tolerance level is repre-
sented by the positive real number (Q ∈ R+). Therefore, the
increased processing time (pScenij) is calculated using (1).

pScenij = qi × pij ; 1 < qi ≤ Q (1)

75798 VOLUME 11, 2023

P. Saophan et al.: Rapid Production Rescheduling for Flow Shop Under Machine Failure Disturbance

FIGURE 2. Example of machine failure scenarios.

For example, consider the machine failure scenarios pre-
sented in Fig. 2, where there are five jobs denoted as j =

{1, 2, . . . , 5}, and two machines denoted as i = {1, 2}. In this
case, the set of possible machine failure scenarios includes
{MF1}, {MF2}, and {MF1,MF2}, which are generated using
the power set of machines excluding the empty set, resulting
in 22 − 1 = 3 scenarios. The impact of machine failure is
quantified as qi, and for this example, it is assumed to have
a value of two. This means that in the event of failure, the
processing time (pScenij) will be twice the normal processing
time (pij). Consequently, if machine 1 fails (MF1), it will
result in the processing time (pMF11j) being doubled, while the
other machines continue to operate at their normal processing
times.

2) PPGA GENERATED RESCHEDULING SOLUTIONS
This section presents the proposed genetic algorithm named
the Perturbation Population Genetic Algorithm (PPGA). The
PPGA is built upon the standard genetic algorithm (GA) to
enhance its capabilities.

GA derives inspiration from the biological evolution
process and has demonstrated remarkable effectiveness in
tackling problems with vast search spaces, such as schedul-
ing problems in manufacturing. It is widely used among
meta-heuristic algorithms for addressing NP-hard problems
and has been shown to produce outstanding and effective
results. Additionally, the speed of the algorithmmakes it suit-
able for use in real-world manufacturing decisions. However,
it is noteworthy that although the GA demonstrates profi-
ciency in exploring solutions within complex spaces through

Algorithm 1 Pseudocode of the PPGA
Require: Processing time (pij), Population size (P),

Crossover probability (Cr), Mutation probability (Mu),
Number of iterations (Itr), Maximum runtime (Mrun),
Percentage of improvement (γ), Number of compared
iterations (β), Number of perturbations (Ptb)

Ensure: Position of jobs in sequence (S)
Iteration = 0
Perturbation = 0
x = 0
while Runtime ≤ Mrun do
while Iteration < Itr do
if x < β then
Population initialization
Crossover operator
Mutation operator
Fitness value calculation
Selection operator
Iteration = Iteration+ 1
if fitness value improves ≤ γ% then
x = x + 1

else
x = 0

end if
else if Perturbation < Ptb then

Perturb population initialization
Perturbation = Perturbation+ 1
x = 0

else
x = 0

end if
end while

end while

global search, it is also susceptible to becoming entrapped in
local optima during exploiting local search [35], [36].

In this research, we developed the PPGA to address the
rescheduling problem ofmachine failure in flow shop produc-
tion. In the knowledge creation phase, the PPGA is employed
to obtain the rescheduling results under various scenarios of
machine failure. The overview of the PPGA is depicted in
Fig. 3, which provides a visual representation of its function-
ing and components. Moreover, the pseudocode of the PPGA
algorithm is presented in Algorithm 1, outlining the step-
by-step procedure and operations involved in its execution.
Initially, the rescheduling results are generated in a standard
genetic operation stage. To avoid the issue of local optima
entrapment during the schedule search process, this research
proposes a perturbation operation stage incorporating with
the standard genetic operation stage.

a: STANDARD GENETIC OPERATION STAGE
The standard genetic operation stage is the first stage of
the PPGA. It utilizes the standard genetic operators such as

VOLUME 11, 2023 75799

P. Saophan et al.: Rapid Production Rescheduling for Flow Shop Under Machine Failure Disturbance

FIGURE 3. The proposed PPGA workflow.

population initialization, crossover operator, mutation opera-
tor, fitness value calculation, and selection operator, to gen-
erate the rescheduling results. The details of this stages are
explained in the following paragraphs.
Chromosome representation: Traditionally, the chromo-

some representation of the GA, consisting of binary genes,
wherein each gene can assume a value of either 0 or 1,
is unsuitable for scheduling problems [47]. In this research,
the chromosome representation for the population of possible
solutions in the PPGA is redesigned as a sequence of jobs
for flow shop production. A set of individual chromosomes is
referred to as a population, which represent possible solutions
to the scheduling problem. Each chromosome is character-
ized by a set of parameters known as genes.

Fig. 4 illustrates a representation of a population consist-
ing of four chromosomes. Suppose there is a chromosome
fragment (i.e., gene) of ‘‘5 3 2 4 1,’’ indicating that the first

FIGURE 4. Chromosome representation.

position in this sequence is job number ‘‘5’’, the second
position is job number ‘‘3’’, followed by job number ‘‘2’’,
‘‘4’’, and ‘‘1,’’ respectively.
Population Initialization: The population initialization is

the first step in the standard genetic operation stage. The
initial population (a subset of all solutions) is generated in

75800 VOLUME 11, 2023

P. Saophan et al.: Rapid Production Rescheduling for Flow Shop Under Machine Failure Disturbance

FIGURE 5. Two-point crossover operator.

this step. The population can be defined as a set of chro-
mosomes. As reported by Konak et al. [48], diversity within
the population can lead to an approximate global optimal
solution. The population must be diverse in order to pre-
vent premature convergence, where the algorithm converges
before the optimal solution is reached. In order to ensure
the significance of diversity, random initialization is the one
to drive the population towards optimality [49]. Hence, the
population is initialized with entirely random solutions.

Previous research has recommended that the suitable pop-
ulation size (P) should be determined through experimen-
tation. It is important to note that maintaining a very large
population size may slow down the algorithm, whereas a
smaller population size may not be sufficient for a mat-
ing pool. Therefore, determining an optimal population size
requires trial and error.
Crossover Operator: The crossover operator, also known

as recombination, is an essential operator of the GA. To deter-
mine whether to apply the crossover operator on a given
chromosome pair, denoted by pair = {1, 2, . . . ,P/2}, the
algorithm evaluates a random probability for each chromo-
some pair, denoted by ProbCpair , against a predetermined
crossover probability, Cr . If ProbCpair is less than Cr , the
algorithm executes the crossover operator; otherwise, the
crossover operator is not applied for that particular pair.
It should be noted that the optimal value ofCr depends on the
specific problem and population characteristics. Typically,
in the hyperparameter tuning process, the value of Cr ranges
between 0.5 and 1.0 [50].

The crossover operator involves merging genes from
two chromosomes, referred to as parents, to produce two
novel chromosomes, known as offspring. In this research,
we employ a two-point crossover operator, as shown in Fig. 5.
As the chromosomes are encoded as actual numbers (job

numbers), exchanging parts of a chromosome may result in
the occurrence of duplicate gene fragments in the offspring
chromosomes (see job 1 and 4 in Fig. 5). Because our problem
is related to flow shop production, where each task position
should be located only once, such duplication is not allowed.
To address this issue, as depicted in the example, the dupli-
cated genes are randomly replaced by leftover genes after the
selected genes are swapped. Therefore, the crossover opera-
tion is deemed complete once the offspring are generated.
Mutation operator: The mutation operator in the GA is

intended to mitigate the risk of the algorithm becoming
trapped in local optima by promoting genetic diversity from

FIGURE 6. Swapping mutation operator.

one generation of chromosomes to the subsequent generation.
Fig. 6 illustrates the mutation applied to the PPGA.

In the PPGA, the decision to perform the mutation opera-
tion on a given chromosome, denoted by c = {1, 2, . . . ,P},
is determined by comparing a random probability, denoted
by ProbMc, with the mutation probability, denoted byMu. If
ProbMc is less than Mu, the algorithm executes the mutation
operator on that specific chromosome; otherwise, the muta-
tion operator is not applied. However, because the mutation
operator can potentially lead to a loss of diversity and neg-
atively impact performance, it is typically assigned a lower
probability compared to the crossover operator. The value
of Mu ranges from 0.001 to 0.05 [50]. After a chromo-
some is selected for mutation, swapping mutation is used
as the mutation operator. This involves exchanging genes in
the chromosome by randomly selecting a pair of different
positions.

It is important to note that although the mutation operator
can sometimes lead to substantial changes in the chromosome
structure, it is not guaranteed that the fitness value of the indi-
vidual chromosome will improve after undergoing mutation.
Nevertheless, the mutation operator is valuable for enhancing
the overall optimization control of the algorithm [51].
Fitness Value Calculation: The fitness function plays an

essential role in evaluating the quality of chromosomes in
the PPGA. The fitness value has a direct impact on the
probability of individuals being chosen to complete genetic
operations [52]. A well-designed fitness function can accel-
erate convergence and increase the likelihood of reaching the
optimal solution.

In the context of flow shop scheduling, the fitness value
of chromosome c, denoted as fc, is calculated using the
makespan of chromosome c, denoted as Cc, as follows.

fc =
1
Cc

(2)

The objective of the PPGA is to determine a chromo-
some c that maximize the fitness value fc by minimizing the
makespanCc, which is equivalent to minimizing the total idle
time on the last machine (machine m), in the flow production
line [10]. The makespan of chromosome c can be computed
as follows:

C =

m−1∑
i=1

pi1 +

n−1∑
k=1

Imk +

n∑
j=1

pmj, (3)

which is the summation of three terms. The first term is the
idle time of the last machine before starting the first job
in the sequence where pik denotes the processing time on
machine i of the job in the k th position in the sequence by
k = {1, 2, . . . , n}. The second term is the idle time of the last

VOLUME 11, 2023 75801

P. Saophan et al.: Rapid Production Rescheduling for Flow Shop Under Machine Failure Disturbance

FIGURE 7. Roulette wheel selection operator.

machine between the jobs in the sequence where Iik indicates
the idle time onmachine i between the operation of the jobs in
the k th position and (k+1)th position. The last term is the total
processing time of the last machine where pij is processing
time of each job j onmachine i. However, since the processing
time at the last machine (the last term) remains constant
regardless of the job sequence, the algorithm can focus on
optimizing only the first two terms in order to minimizing
the overall value.
Selection Operator: The selection of chromosomes for

recombination is used to determine which individuals will be
selected for breeding in the next iteration. Our PPGA uses
roulette wheel selection, which is a widely used selection
method in GA [53].

Each chromosome is assigned a section on a roulette wheel
in proportion to its corresponding fitness value (see Fig. 7).
The roulette wheel selection favors chromosomes with higher
fitness values, increasing the chances of being selected for
reproduction. Therefore, the larger the fitness value, the larger
the section occupied by the corresponding chromosome on
the wheel.

After assigning sections to each chromosome, the wheel is
spun, and the chromosome in the section where the pointer
lands is selected for reproduction in the next iteration. This
process is repeated until the desired number of chromosomes,
denoted by population size P, is reached. The probability of
selecting an individual chromosome (Probselectc) is calcu-
lated using the following formula:

Probselectc = fc/
A∑
c=1

fc, (4)

where A denotes the number of parents and offspring, and fc
denotes the fitness value of the individual chromosome c.
Fig. 7 illustrates an example of the roulette wheel selec-
tion process, where both the parent and offspring popula-
tions comprise four chromosomes. The chromosome with a

higher fitness value has a higher proportion on the roulette
wheel, thereby increasing its chance of being selected for
reproduction.

The roulette wheel selection is an effective and simple
method for maintaining genetic diversity while favoring indi-
viduals with higher fitness values. However, this may lead to
the elimination of all offspring from the crossover operator.
In this case, only the parents are passed through the next
iteration, resulting in an increased likelihood of converging to
a local minimum. This lack of diversity poses a challenge for
identifying globally optimal solutions. Therefore, it is neces-
sary to introduce perturbations to the population to maintain
genetic diversity and improve the chances of finding globally
optimal solutions.

b: PERTURBATION OPERATION STAGE
The perturbation operation stage is a component of the
PPGA that aims to improve the algorithm’s ability to escape
from local optima and explore uncharted search spaces. This
research proposes the perturbation operation stage that is
triggered when the fitness value of the best chromosome in
the current iteration does not improve by more than γ% com-
pared with the best fitness value in the previous β iterations.
This indicates that the algorithm has not made significant
progress in the current iteration, potentially indicating a state
of stagnation within the local optimum.

Once the perturbation operation stage is triggered, the top
α% of the chromosomes in the population based on fitness
values are selected to preserve the best chromosomes from
the population in the standard genetic operation stage. The
remaining (100 − α)% are removed from the population.
After that, the new chromosomes are randomly generated to
replace the removed population to enhance the population
diversity and explore uncharted search spaces. Moreover, set-
ting (100−α) to a value greater than α is possible to promote
greater genetic diversity. Suppose the improvement of the
chromosomes in the last β previous iterations is still lower
than γ% in comparison to the best chromosome obtained
from the standard genetic operation stage, the PPGA contin-
ues to perform the perturbation operation until the determined
number of perturbations (Ptb) is reached.

By employing this population diversity strategy, the chance
of obtaining an approximate optimal solution is potentially
improved by increasing the chance of escaping a local opti-
mum. Consequently, the standard genetic operators (i.e.,
crossover operator, mutation operator, fitness value calcula-
tion, and selection operator) are performed on the new pop-
ulation generated through the perturbation operation stage to
obtain improved fitness values.

c: TERMINATION CRITERIA
The termination criteria refer to the condition or set of
conditions that determines when the algorithm should stop
searching for better solutions. Several termination criteria
can be used in a GA, and the choice of criteria depends on
the problem being solved and the available computational

75802 VOLUME 11, 2023

P. Saophan et al.: Rapid Production Rescheduling for Flow Shop Under Machine Failure Disturbance

FIGURE 8. Solution from the PPGA.

resources. The termination criteria used should strike a bal-
ance between the quality of solutions and computational
time. Choosing appropriate termination criteria is crucial to
ensure that the algorithm produces good solutions within a
reasonable computational time.

Using the maximum number of iterations as a termination
criterion is a common approach for a GA. This criterion spec-
ifies a fixed number of iterations that the algorithm should
be run before terminating. In addition, the maximum runtime
can be used to terminate the algorithm within a fixed time
frame. These two termination criteria are useful when there
are time constraints or when the algorithm is run with limited
computational resources.

In this research, the termination criteria of the PPGA are
both the maximum number of iterations (Itr) and the maxi-
mum runtime (Mrun). It is important to choose a reasonable
maximum number of iterations based on the complexity of
the problem and efficiency of the PPGA. Therefore, the max-
imum number of iterations (Itr) is defined through the exper-
iment. The maximum runtime (Mrun) depends on the time
constraint provided by the user.

d: SOLUTIONS FROM THE PPGA
The primary objective of the PPGA is to locate the opti-
mum of a given rescheduling problem by exploring different
regions of the solution space. The PPGA expands the pertur-
bation operation stage, enabling the algorithm to effectively
navigate the solution space and mitigate the issue of conver-
gence to a local optimum.

In the knowledge creation phase (Section IV-A), the PPGA
is utilized to generate rescheduling solutions under various
machine failure scenarios. The solution of the PPGA is an
appropriate job sequence for each scenario, denoted by SScen
where Scen is the set of all possible scenarios of machine
failure, and evaluates their makespan as illustrated in Fig. 8.
The solutions are then stored for further use by the proposed
ANNs.

3) STORING RESCHEDULING KNOWLEDGE BY ANNs
The relevant research publications mentioned that the com-
putational time of meta-heuristic algorithms could be more
practical for rapid rescheduling in real-world manufacturing
processes by incorporatingwithmachine learning techniques.
In this research, the incorporation between the PPGA and the
ANNs is proposed to conquer the limitation of previous publi-
cations in the literature. The proposed ANNs are employed to
store knowledge from the solutions generated by the PPGA.

The overall workflow of storing rescheduling knowledge
by the proposed ANNs is illustrated in Fig. 9. The ANNs
architecture is designed to extract the relationship between
the given rescheduling problems (inputs) and the solutions

FIGURE 9. The ANNs workflow.

generated by the PPGA (target outputs). Each ANN is con-
structed to predict the suitable sequence for a job in a given
rescheduling problem.Therefore, the total number of ANNs
depends on the total number of jobs in the problem. The steps
involved in storing rescheduling knowledge in the ANNs are
as follows:
Step 1. Define the Inputs: In the ANNs, input layer is the

initial layer and responsible for passing the input data to the
subsequent layers. Each input node in the input layer repre-
sents an input attribute, and the values of these nodes corre-
spond to the values of the input attributes. The input attributes
are the processing times of each job in each machine. The
number of input nodes is equal to the number of the input
attributes. In this research, the input layer comprises n × m
input nodes, where n denotes the number of jobs and m
denotes the number of machines. The number of instances
in the input data is the number of all possible machine failure
scenarios.

All values of the input attributes are normalized using a
standardization of data scaling method to avoid bias from
different data scales among the input attributes. The method
converts the values of each attribute into a standard normal
distribution. In other words, the method subtracts each value
by the mean of its corresponding attribute, and then divides
the result by its standard deviation. The normalized values for
each input is calculated through the following equation:

yij =
pij − pij

σij
, (5)

σij =

√∑
(pij − pij)2

N
, (6)

VOLUME 11, 2023 75803

P. Saophan et al.: Rapid Production Rescheduling for Flow Shop Under Machine Failure Disturbance

TABLE 1. Example of normalized inputs in the ANNs.

where yij represents the normalized value, pij represents the
original input value of processing time, pij and σij represent
the mean and the standard deviation of the processing time,
respectively, and N represents the number of machine fail-
ure’s scenarios, i = {1, 2, . . . ,m} and j = {1, 2, . . . , n}
represent indexes of jobs and machines, respectively. Table. 1
illustrates an example of the normalization of the input values
in the proposed ANNs.
Step 2. Define the Target Outputs: The output layer of

the ANNs serves as the final layer responsible for producing
predicted outputs. Ideally, once the values of the input nodes
are processed through the ANNs, the values of predicted
outputs should match the target outputs, which are solutions
generated by the PPGA. These solutions are represented as
sequences of jobs (Fig. 10 (a)); however, because of the
ANN’s ability to handle only numerical data, each solution
(SScen) is converted into binaries. Each binary represents
whether the job is assigned to a position in the sequence. The
number of binaries generated from each solution depends on
the number of positions that is equal to the number of jobs.
In this research, the ANNs are constructed dedicatedly for
each job, with the number of output nodes in each ANN being
equal to the number of binaries.

To demonstrate the results from the binarization, the binary
matrixes with dimension of n × n are created to repre-
sent target outputs (Fig. 10 (b)) from the sequences of the
solutions (SScen) in the binary format, where n denotes the
number of jobs. The elements of the matrixes, sjk , denote
whether job j is assigned to position k in the sequence where
j, k = {1, 2, . . . , n}. If job j is assigned to position k ,
then sjk is set to 1; otherwise, it is set to 0. For example,
in a scenario of five jobs (j = {1, 2, . . . , 5}), five posi-
tions (k = {1, 2, . . . , 5}), and two machines (i = {1, 2}),
for each job, its positions in the four solutions (sequences)
generated by the PPGA under all possible scenarios (i.e.,
base case, SMF1 , SMF2 , and SMF1,MF2) are presented in a
5 × 5 matrix representing sjk for five jobs and five positions
(i.e., s11, s12, . . . , s15, s21, . . . , s55). The arrows in Fig. 10

illustrate the connections between the original solutions from
PPGA and the binarized solutions (target outputs) for job 1.
Step 3. Define the Architecture of the ANNs: The architec-

ture of the ANNs includes input, hidden, and output layers,
with the details of the input and output layers described in
Steps 1 and 2. The number of the hidden layer can be a
positive integer. An example of architecture of the ANNs for
production of five jobs (n = 5) and two machines (m = 2) is
presented in Fig. 11.
The input layer of the ANNs in this example consists of

10 nodes of the processing times from 5 jobs × 2 machines.
Totally, five ANNs are constructed. The result from output
nodes of each ANN is used for predicting the position of each
job. This example consists of 5 output nodes representing
the number of possible positions for that job. The number of
nodes in the hidden layers is determined through fine-tuning
experiments.
Step 4. Define the Range of Hyperparameters: Hyperpa-

rameters in an ANN are set before training and affect the
behavior of the model. These parameters are not learned
during training but are chosen based on domain knowledge,
experimentation, or best practices.

1) Hidden layers and nodes: Hidden layers are interme-
diate layers between the input and output layers. They
perform computations on the input data to extract rele-
vant features and pass the results to the next layer. The
number of hidden layers and nodes in each hidden layer
are hyperparameters.

2) Activation function: The activation function is a math-
ematical function that transforms an aggregated input
into an output for the nodes in the hidden layers and the
output layer. It is possible to have multiple activation
functions in the ANN. This allows the ANN to learn
complex knowledge in the training data.

3) Learning Rate: The learning rate determines the step
size at which the weights and biases of the ANN are
updated during training. A higher learning rate allows
for faster convergence but may result in overshooting

75804 VOLUME 11, 2023

P. Saophan et al.: Rapid Production Rescheduling for Flow Shop Under Machine Failure Disturbance

FIGURE 10. Example of the outputs in the ANNs. (a) Solutions from the PPGA and (b) Target outputs of all ANNs.

the optimal weights, while a lower learning rate may
take longer to converge but may result in more accurate
weights.

4) Epochs: The number of epochs determines how many
times the training data is used to update the weights
and biases of the ANN. Too few epochs may result
in underfitting, where the ANN does not learn the
underlying patterns in the data, while too many epochs
may result in overfitting, where the ANN memorizes
the training data but does not generalize well to new
data. The suitable number of epochs depends on the
problem’s complexity and the data set’s size.

5) Batch Size: In each epoch, the training data is divided
into batches, and the weights and biases are updated
based on the average error calculated over each batch.
The batch size determines how many samples are used
in each update step. A larger batch size may result in
faster convergence but requires more memory, while
a smaller one may result in slower convergence but
requires less memory. The batch size depends on the
available computational resources and the characteris-
tics of the data set.

6) Optimizer: The optimizer is an algorithm used to
update the weights and biases of the ANN during the
training process in order to minimize the error or loss
between the predicted and target outputs.

The values of the hyperparameters of the proposed ANNs
are adjusted to minimize the loss between the predicted out-
puts and the target outputs. This results in an optimizedmodel
that can store the knowledge from PPGA and make accurate
predictions on new rescheduling problems.

Based on the same architecture used by all ANNs for a
specific number of jobs and machines, it is possible to either
use the same values for the hyperparameters that are found
to be optimal for a specific ANN (such as the ANN for
job 1), or to vary the values by deviating from the optimal
values of the ANN for job 1. The detail of the hyperparameter
optimization process is shown in Fig. 12.
Step 5. Train the ANNs: The ANNs are trained using

the machine failure scenarios that consist of inputs repre-
senting the processing times of jobs at specific machines,
and target outputs representing the corresponding optimal
production sequences resulting from PPGA. The entire data
set of solution from PPGA is passed through the ANNs
without separating it into training, validation, and test sets.
This decision is based on the primary objective of the ANNs,
which is to capture the knowledge inherent in the data set
generated by PPGA, rather than to make predictions for new
or unknown instances. Furthermore, this decision is due to the
wide distribution of simulation scenarios, which encompass
a diverse range of potential machine failure occurrences and
their corresponding effects on the processing time.

VOLUME 11, 2023 75805

P. Saophan et al.: Rapid Production Rescheduling for Flow Shop Under Machine Failure Disturbance

FIGURE 11. Example of the architecture of the ANNs. (a) Inputs for all ANNs, (b) Target outputs, and (c) The architecture of the ANNs.

During training, the ANNs perform forward propagation
to calculate the predicted outputs of the nodes in each layer,
starting from the input layer and propagating through the
hidden layers to the output layer. This involves applying the
activation function to the weighted sum of inputs for each
node in each layer.

The ANNs subsequently update the weights and biases
of the model to minimize a loss function, which serves
as a performance measure during the training process. The
loss function is essential in guiding the optimization pro-
cess by identifying the quantity that the ANNs should
minimize to accurately predict the outputs for the given
inputs.

This research employs the BinaryCrossentropy loss func-
tion for optimization during the training process. This func-
tion measures the probability of dissimilarity between the

predicted and target outputs and heavily penalizes the model
for assigning high probability to the wrong class. This mecha-
nism guides the ANNs towardmaking correct predictions and
improving accuracy in binary classification problems, such as
the one investigated in this research.
Step 6. Evaluate the Performance of the ANNs: The Accu-

racymetric is used to evaluate the performance of the trained
ANNs. This metric provides a straightforward way to assess
the ANN’s prediction capability by comparing its predicted
outputs with the target outputs of training data to obtain the
number of correctly classified samples. Then, the Accuracy
metric is calculated as the ratio of the number of correctly
classified samples to the total number of samples in the train-
ing set. Based on the value of this metric, the performance
of the ANNs can be evaluated in terms of overall correct
classification.

75806 VOLUME 11, 2023

P. Saophan et al.: Rapid Production Rescheduling for Flow Shop Under Machine Failure Disturbance

FIGURE 12. The optimization process of the hyperparameters in the
ANNs.

B. KNOWLEDGE IMPLEMENTATION PHASE
The knowledge implementation phase is an important part of
the proposed PPGA-ANNs framework (Fig. 1) as it involves
utilizing the knowledge obtained during the knowledge cre-
ation phase to make decisions about rescheduling and min-
imizing the impact of machine failures on the production
process. This phase is initiated upon the machine failure is
detected during the production process. The machine failure
can be classified as Case 1 and Case 2. In Case 1, where the
machine failure during production is identical to the inputs
used in the trained ANNs, the new schedule can be directly
obtained from the solutions provided by the trained ANNs.

Moreover, inCase 2, where the machine failure situation is
different from the inputs used to train the ANNs (i.e., a new
instance), the new schedule is obtained from PPGA by using
the solutions from the trained ANNs as initial solutions in the
PPGA’s initial population. The process of predicting the solu-
tions from the trained ANNs is presented in Section IV-B1.

The PPGA’s implementation of the initial solutions generated
by the trained ANNs to produce a new schedule is described
in Section IV-B2.

1) INITIAL SOLUTIONS RESULTED BY THE ANNs
In Case 2, the ANNs are used to generate initial solutions
for PPGA when machine failure situations during production
differ from the inputs in the training process. To obtain initial
solutions for a given machine failure situation, the processing
times of jobs in each machine are passed through the corre-
sponding ANNs (as shown in Fig. 13).

Each ANN generates confidences, ŝjk , for a specific job (j)
in each position (k) in the sequence, which represent the level
of suitability for assigning the job to that position. However,
this approach may result in the occurrence of repetitive posi-
tions in the sequence as multiple jobs can have the highest
confidences in the same position. This repetition of positions
violates the condition of flow shop production, where each
job should be assigned to a unique position.

In the presented example, feeding a new machine failure
situation that deviates from themachine failure scenario in the
training process through the trained ANNs results in multiple
jobs (i.e., job 1, job 2, job 3, and job 4) being assigned to
position 1, leading to repetitive positions for multiple jobs.

To address the issue, a process for managing repetitive
positions is proposed as depicted in Fig. 14. In Step 1, the
confidences of jobs for each position are sorted in descending
order. In Step 2, for each position, starting from the first
to the last position, the job having the highest confidence
is assigned to that position while adhering to the following
conditions: 1) Jobs that have already been assigned to other
positions cannot be used, and 2) If the difference in confi-
dences between selected jobs is less than δ (which is set as
0.03 in this research), these jobs will be considered as having
the same priority for position assignment, potentially leading
to multiple solutions.

The solutions provided from the ANNs are included
in the initial population of the PPGA. To preserve diversity
in the search space on PPGA, the maximum number of initial
solutions from the ANNs is restricted to half of the total
population size (P/2). However, if the total number of the
solutions from the ANNs exceeds this limit due to repetitive
positions, the solutions are selected by their makespan (C).

2) IMPLEMENTING RESCHEDULING KNOWLEDGE FROM
THE ANNs INTO THE PPGA
The utilization of PPGA in the knowledge implementation
phase allows for addressing new instances that differ from
the inputs used to train the ANNs. The process of PPGA in
this phase is similar to the knowledge creation phase, with the
difference being that the initial population incorporates the
initial solutions obtained from the trained ANNs, which store
the rescheduling knowledge from various machine failure
scenarios, rather than relying purely on a randomized initial
population. By incorporating the knowledge from the trained
ANNs, the proposed PPGA can generate new schedules for

VOLUME 11, 2023 75807

P. Saophan et al.: Rapid Production Rescheduling for Flow Shop Under Machine Failure Disturbance

FIGURE 13. Example of repetitive positions in the sequence.

FIGURE 14. Handling repetitive positions in the sequence.

machine failure occurrences, potentially improving computa-
tional time.

V. EXPERIMENTAL ANALYSIS
In this research, the proposed PPGA-ANNs framework
(Fig. 1) is developed for a rapid rescheduling of large-scale

flow shop production with machine failure occurring. All
experiments for the proposed framework are implemented
using the Python programming language and facilitated by
the Anaconda platform. The experiments are conducted on a
laptop computer with a 16 GB RAM and 11th Gen Intel(R)
Core(TM) i5 CPU clocked at 2.4 GHz.

75808 VOLUME 11, 2023

P. Saophan et al.: Rapid Production Rescheduling for Flow Shop Under Machine Failure Disturbance

The following sections are conducted to demonstrate the
experiments of the proposed PPGA-ANNs framework. The
generation of machine failure scenarios in flow shop produc-
tion is introduced in Section V-A. In Section V-B, we present
the details of the adjustment of hyperparameters used in
the standard GA, the PPGA, and the ANNs. Finally, in
Section V-C, the proposed PPGA-ANNs framework is eval-
uated by comparing the performance with other approaches
and presenting the result analysis.

A. MACHINE FAILURE SCENARIOS GENERATION
The machine failure scenarios are tested with the benchmark
data set designed by Taillard [7], widely applied in many
studies, especially in scheduling problems of different scales.
This research adopts the processing time of large-scale flow
shop production with 20 jobs (n = 20) and 10 machines
(m = 10) in the benchmark’s first data set. The processing
time (pij) takes a uniform distribution value on U[1,99].
To simulate the situation whenmachines fail in production,

the scenarios are composed by (1). Consequently, we begin
with a base instance from the benchmark, where the pro-
cessing time of all jobs is uniformly distributed from 1 to
99minutes.We set qi to four values for this experiment: 1.5, 2,
2.5, and 3, by assuming that the limit of changing processing
time (Q) acceptable by the individual manufacturer is less
than or equal to 3.

Based on the above parameter setting, the number of sce-
narios is 4× (210 − 1) plus one case of the ordinary situation
without machine failure, which results in 4,093 scenarios in
total. Each scenario is solved by the proposed PPGA. The
ANNs are then trained using the scenarios of the disturbed
processing time as the inputs and the results from PPGA
as the target outputs. The ANNs will provide an excellent
solution if the training instances can accurately simulate the
disturbed production.

B. HYPERPARAMETERS ADJUSTMENT
The present research defines the hyperparameters for address-
ing rescheduling of the flow shop production problem with
20 jobs and 10 machines. Experimental investigations are
conducted to determine the optimal values for these hyper-
parameters. The hyperparameters used in the standard GA,
the proposed PPGA, and the ANNs are detailed in Table 2.
Results from the experimentation reveal that for the pro-

posed PPGA, a population size (P) of 300 chromosomes is
suitable for the considered problem. Fig. 15 shows the exper-
iment with base case of the scheduling problem, where the
PPGA obtains a relatively short runtime for a population size
of less than 300 chromosomes, but it has a longer makespan
(C). On the other hand, for population sizes exceeding
300 chromosomes, the algorithms require a longer runtime
and a longer makespan (C).

Moreover, the literature review indicates that a higher
crossover probability (Cr) accelerates the convergence to a
solution at the expense of reduced population diversity [50].
A higher mutation probability (Mu) enhances search space

TABLE 2. The hyperparameters used in the standard GA, the PPGA, and
the ANNs.

FIGURE 15. Experimentation on population size (P).

exploration but increases the likelihood of encountering in a
suboptimal solution [50]. Hence, the proposed PPGA uses
a crossover probability of 0.8 and a mutation probability
of 0.01.

In addition, the maximum number of iterations (Itr) and
the maximum runtime (Mrun) are the termination criteria
for PPGA. The experiment reveals that 500 iterations are
suitable as the PPGA converges prematurely before reaching
the optimal solution with the number of iterations less than
500. In contrast, for a number of iterations exceeding 500, the
algorithms exhibit prolonged computational time even after
already discovering the optimal solution. As for the maxi-
mum runtime (Mrun), it is assumed that a duration exceeding
10minutes does not meet the rapid rescheduling requirement.

VOLUME 11, 2023 75809

P. Saophan et al.: Rapid Production Rescheduling for Flow Shop Under Machine Failure Disturbance

The perturbation operation stage of the PPGA is triggered
when the best chromosome’s fitness value in the current
iteration has not improved by more than 0.1% (γ) compared
to the best fitness value in the previous 50 iterations (β).
The percentage improvement threshold (γ) and the number
of considered previous iterations (β) should be defined based
on the user’s or individual manufacturer’s preferences. More-
over, the improvement threshold (γ) does not have to be in
percentage form and may be in minutes of the makespan (C)
or any other appropriate unit, depending on the decision of
individual manufacturers.

The top 25% of the chromosomes in the population (α),
based on their fitness values, are then selected to preserve
the best chromosomes from the standard genetic operation
stage. The population’s remaining 75% (100−α) is produced
randomly to increase population diversity and investigate
uncharted search spaces.

According to the maximum number of perturbations (Ptb),
the PPGA continues to perform the perturbation operation
until it reaches five times. However, in some cases, the max-
imum number of iterations (Itr) can be reached before the
maximum number of perturbations (Ptb).

The hyperparameters used in the ANNs are selected from
a range of values to determine the optimal combination of
parameters that can achieve high performance and improve
the accuracy and robustness of the ANNs. Table 3 shows the
range of values for each hyperparameter, which is consis-
tently applied to all ANNs. The number of hidden layers is
tested between 1 and 7 layers, and the number of nodes in
each hidden layer is set within the range of n and n×m, where
n represents the number of output nodes (number of jobs),
m represents the number of machine, and n × m represents
the number of input nodes. The learning rate is tested at
0.001, 0.01, and 0.1, while the number of epochs is varied
from 1000 to 5000. The batch size is selected from either
32 or 64. Moreover, two optimization algorithms, Adam and
stochastic gradient descent (SGD), are also tested in the
ANNs.

This research conducts a comprehensive exploration of the
components of ANNs, involving trial and error experimenta-
tion with various hyperparameters, including the optimizer,
learning rate, and batch size. Subsequently, a detailed abla-
tion study is conducted to investigate the impact of different
configurations of the hidden layers. The initial experimenta-
tion focuses on determining the optimal number of hidden
layers, starting with the ANN for job 1 using a baseline of
two layers and training it for 1000 epochs. Further analysis
explores the influence of the number of nodes in each hidden
layer. Remarkably, once the ANN for job 1 achieves an
accuracy exceeding 99%, the configuration of the number
of hidden layers and the number of nodes in each hidden
layer is finalized. For the remaining jobs, optimization is
achieved by varying the number of epochs. This ablation
study provides valuable insights into the optimal hyperpa-
rameter settings and configuration of the ANNs, enabling the
generation of accurate and efficient rescheduling solutions

TABLE 3. The range of hyperparameters in the ANNs.

in the production environment. However, it is important to
acknowledge that this specific ablation study may not be
directly transferable to other problems or data sets. The effi-
cacy of hyperparameter configurations is highly dependent
on the unique characteristics and complexities of individual
problem domains and data sets.

The ANNs are constructed based on the processing time
data for 20 jobs (n = 20) and 10 machines (m = 10),
resulting in 20 separate networks comprising 200 input and
20 output nodes. Based on the experiment, the suitable num-
ber of hidden layers is 5 layers with 70, 60, 50, 40, and
30 hidden nodes, respectively. The hidden layers are equipped
with the Rectified Linear Unit (ReLU) activation function.
The output layer uses a sigmoid function, whichmaps outputs
to a range between 0 and 1, making it ideal for binary values
that need to be interpreted as probabilities. The learning rate
is set to 0.001. The number of epochs ranges from 2000 to
5000 to achieve high accuracy. Based on the experiment
results, the optimal number of epochs for each job’s theANNs
are determined. The ANNs for job 1, 2, 4, 5, and 16 achieve
high accuracy within 2000 epochs, while those for jobs 3, 6,
7, 9, 10, 12, 13, 17, and 18 require 3000 epochs. The ANNs
for job 8, 11, 14, and 19 use 4000 epochs, and those for
jobs 15 and 20 use 5000 epochs. The batch size used in the
ANNs is 32. The optimizer in the ANNs is Adam, a popular
algorithm variant of stochastic gradient descent optimization.
The Adam optimizer is applied as one of the arguments
when compiling the ANNs. It uses moving averages of the
parameters to provide a running estimate of the gradients and
helps to maintain a stable learning rate and avoid oscillations.
It is computationally efficient and well-suited for large-scale
problems [54].

The values reported in Table 2 represent hyperparameters
critical in controlling the learning process. Typically, these
values are determined through an iterative trial and error
search process. Although the same hyperparameter values
may be suitable for other problems, it is necessary to period-
ically explore alternative values to optimize the algorithm’s
performance.

C. EVALUATION EXPERIMENTS
This section presents an evaluation of the proposed
PPGA-ANNs framework by demonstrating the capabilities
of its two main components, the PPGA and the ANNs. The
PPGA’s performance is assessed by comparing its results with
those of existing algorithms. The benefit of the perturbation
operation stage in avoiding local optima can be revealed

75810 VOLUME 11, 2023

P. Saophan et al.: Rapid Production Rescheduling for Flow Shop Under Machine Failure Disturbance

TABLE 4. Comparison of the makespan between PPGA, standard GA, HGA, IIGA, DSOMA, and DWWO.

through a comparison of the scheduling results obtained from
the PPGA and the standard GA. Moreover, we evaluate the
effectiveness of applying the knowledge stored in the ANNs
for rapid rescheduling by comparing the convergence of
our proposed PPGA-based initial solutions from the trained
ANNs with the PPGA and the standard GA.

1) COMPARISON OF THE PPGA IN THE KNOWLEDGE
CREATION PHASE WITH EXISTING ALGORITHMS
In the knowledge creation phase of the proposed PPGA-
ANNs framework, the PPGA, a novel approach to improve
the standard GA for production scheduling by incorporating
a perturbation operation stage, is developed. The PPGA aims
to optimize the production scheduling performance by mini-
mizing the makespan criterion.

To evaluate the effectiveness of the PPGA in terms of
makespan, this research utilizes the comprehensive bench-
mark developed by Taillard [7] that includes instances of
different scales. The PPGA is run five times, and the best
makespan values are recorded to compare the performance
with the standard GA, hybrid GA (HGA) [55], improved
iterated greedy algorithm (IIGA) [56], discrete water wave
optimization algorithm (DWWO) [57], and upper bounds (the
minimum possible makespan) [7].

Table 4 shows themakespan results obtained from different
approaches using the same data set from the benchmark.
It is noteworthy that the PPGA utilized for solving prob-
lems of various scales does not incorporate the criterion of
maximum runtime (Mrun), as the objective is to obtain the
best solution for comparisonwith existing approaches. There-
fore, the PPGA was executed until it reached the specified
number of iterations (Itr). The results indicate that the pro-
posed PPGA outperforms other algorithms, yielding better
makespan values. In some cases, the standard GA can achieve
a near-optimal solution similar to the PPGA, indicating that
the standard GA does not fall into local optima.

Moreover, the perturbation operation stage in the PPGA is
evaluated to determine its efficiency in enhancing population
diversity and increasing the chance of finding optimal solu-
tions. This stage preserves the best chromosomes from the
previous iteration while randomly generating new chromo-
somes. The evaluation involves comparing the convergence
performance of the PPGA with that of the standard GA
using the same random seed to solve flow shop scheduling

with machine failure scenarios. The results are shown
in Fig. 16.

The experiment illustrated examples of four extreme
machine failure scenarios: (a) Machine 1, 5, and 9 (i = {1,
5, 9}) fail with qi = 3, (b) Machine 2, 4, 6, 8, and 10 (i = {2,
4, 6, 8, 10}) fail with qi = 3, (c) Machine 3, 4, 5, 6, 7, 8, and 9
(i = {3, 4, . . . , 9}) fail with qi = 3, and (d) Machine 1, 2, 3,
4, 5, 6, 7, 8, and 9 (i = {1, 2, . . . , 9}) fail with qi = 3. In the
graph, the red points represent the number of perturbations
(Ptb) performed during the perturbation operation stage. The
results indicate that the PPGA which incorporates the per-
turbation operation stage with the standard genetic operation
stage, provides lower makespan (C) of better near-optimal
solutions compared to the standard GA. Specifically, the
convergence curves of the PPGA exhibited improvements
even in extreme cases, demonstrating the efficiency of the
perturbation operation stage in exploring uncharted search
spaces.

Additionally, the box plot (Fig. 17) provides a visual rep-
resentation of the comparison between the standard GA and
PPGA in terms of the makespan, utilizing the data set from
Ta011 of Tailard’s benchmark. The box plot summarizes
the distribution of the makespan values obtained from ten
experimental runs.

The box in the plot represents the interquartile range (IQR),
encompassing the lower quartile (Q1) to the upper quartile
(Q3) values. The median value is indicated by the horizontal
line inside the box. The whiskers extend from the box to
denote the minimum and maximum values within the range.

Upon analyzing the box plot, the standard GA exhibits
a median makespan of 1649.5 minutes, whereas the PPGA
demonstrates a median makespan of 1634.5 minutes. These
median values provide insights into the central tendency of
each algorithm’s performance. The median makespan value
for the PPGA is lower than that of the standard GA, offer-
ing compelling evidence of the PPGA’s superior makespan
results. This finding underscores the effectiveness of the
proposed PPGA in the context of production scheduling and
highlights its potential for improving production efficiency
and resource utilization.

2) EFFECTIVENESS OF THE PROPOSED FRAMEWORK IN
TERMS OF COMPUTATIONAL TIME
The PPGA-ANNs framework proposes the use of the ANNs
to store the knowledge from PPGA in the knowledge creation

VOLUME 11, 2023 75811

P. Saophan et al.: Rapid Production Rescheduling for Flow Shop Under Machine Failure Disturbance

FIGURE 16. Comparison of the result between the standard GA and the
PPGA.

phase. In the knowledge implementation phase, the ANNs
are then used to provide direct solutions or initial solutions
for the PPGA to address the issue of machine failures that

FIGURE 17. The box plot of the makespan (minutes) between GA and
PPGA.

could result in unfavorable solutions for primary sequence
execution.

The performance of the ANNs is evaluated based on the
loss and accuracy metrics. The numerical results demonstrate
the ANNs strong memory capabilities and excellent under-
standing of relationships within the network, as shown by the
high accuracy scores and low loss values. The ANNs exhibit
an average accuracy score of 99.85% and an average loss of
0.37%, suggesting the high potential in mitigating machine
failures and improving the performance of the PPGA.

The ANNs aim to generate initial solutions that can expe-
dite the PPGA in searching for optimal solutions and allow for
rapid production rescheduling, even when the actual machine
failure situation differs from the training inputs.

To evaluate the effectiveness of the initial solutions gen-
erated by the ANNs in the PPGA-ANNs, new instances are
passed through the ANNs. These new instances differ from
the machine failure scenarios used during training, as we
introduce a percentage change in the processing time of the
inputs. The percentage change formulation is expressed by
the following equation:

Percentage change =
|qinew − qi|

qi
× 100 (7)

where qi represents the impact of machine failure on pro-
cessing time in the training scenarios, qinew represents the
new impact of machine failure on processing time that has
not been used in the training process, and the absolute value
ensures that the resulting percentage change value is positive
regardless of the direction of change.

The resulting percentage change value indicates the mag-
nitude of the increase or decrease in processing time in the
new instance compared to the inputs used during the training
process. This allows us to evaluate the effectiveness of the ini-
tial solutions and the potential to accelerate the rescheduling

75812 VOLUME 11, 2023

P. Saophan et al.: Rapid Production Rescheduling for Flow Shop Under Machine Failure Disturbance

process in a broader range of situations beyond the machine
failure scenarios used in the training process.

The PPGA-ANNs framework is tested using fifteen
instances, as depicted in Fig. 18. These instances include:
(a) three instances that are identical to the inputs used during
training process (with a percentage change of 0%). Further-
more, (b) three instances are generated with a 10% increase
in the percentage change of the new instances (qinew = 3.3)
from the inputs (qi = 3). Additionally, (c) three instances are
generated with a 30% increase in the percentage change of the
new instances (qinew = 3.9) from the inputs (qi = 3). Another
set of (d) three instances are generated with a 50% increase
in the percentage change of the new instances (qinew = 4.5)
from the inputs (qi = 3). Finally, (e) three instances are
generated with a 100% increase in the percentage change of
the new instances (qinew = 6) from the inputs (qi = 3). The
processing times of the testing instances are normalized using
the mean (pij) and standard deviation (σij) from the training
set to ensure consistency in the evaluation process.

Fig. 18 shows the convergence behavior of the standard
GA, the PPGA, and the PPGA-ANNs with respect to the
percentage change of the new instances. The comparisons
among instances can provide insights into the potential bene-
fits of incorporating initial solutions generated by the ANNs
in enhancing overall performance.

The results reveal that the GA fails to achieve optimal solu-
tions for all new instances. For instances with 0% deviation
from the inputs, i.e., (a1), (a2), and (a3), the initial solutions
provided by the trained ANNs significantly assist the PPGA,
which leads to PPGA-ANNs achieving the optimal solutions
at the first iteration.

The PPGA-ANNs framework also shows improved con-
vergence speed compared to PPGA for new instances with
10% and 30% deviation from the inputs. For instances (b1),
(b2), and (c1), finding the optimal solutions is not too com-
plex; therefore, PPGA-ANNs can easily achieve the optimal
solutions with a few iterations. Moreover, for instances (b3),
(c2), and (c3) where finding the optimal solutions is more
complex, the PPGA-ANNs can still outperform PPGA in
terms of providing the optimal solutions faster.

For instances with a deviation of more than 50% from the
inputs, the initial solutions provided by the trained ANNs
are found to be ineffective. In the case of instances (d1) and
(e1), the solutions obtained from the standard GA, PPGA,
and PPGA-ANNs are all the same because permuting the
sequence of jobs is not effective when the new impact of
machine failure on processing time (qinew) is too signifi-
cant and only one machine has failed. For instances (d2),
(d3), (e2), and (e3), the runtime of PPGA-ANNs cannot be
guaranteed, even when the initial solutions from the trained
ANNs are used. However, PPGA-ANNs can still find optimal
solutions that are better than those obtained by the standard
GA.

The results imply that the trained ANNs can effectively
provide initial solutions for the new instances with a devi-
ation of 30% or less. As explained in Sections IV-A1, the

acceptable impact on processing time (qi) in this research
is confined to a range that does not require production to
be stopped. Therefore, the initial solutions from the ANNs
can be employed to the PPGA for rescheduling the previous
schedules when the deviation of processing time falls within
this acceptable range, and can achieve faster results than the
PPGA.

However, it is important to acknowledge the limitations
of the generalizability of the trained ANNs to completely
new and unknown instances. The performance of the ANNs
can be negatively impacted when confronted with instances
that significantly deviate from the training data set. In this
research, the initial solutions generated by the ANNs are
utilized as the population for the first iteration of PPGA.
These initial solutions, illustrated by the first iteration of the
green line (PPGA-ANNs), represent the solution with respect
to the makespan aspect of the problem.

In the first iteration of each green line, it is observed that
when a new instance precisely aligns with the given inputs
((a)), the ANNs are capable of accurately predicting the
outcome and yielding the optimal solution. However, when
the new instance deviates from the given inputs ((b), (c), (d),
and (e)), the initial solution generated by the ANNs may
occasionally be suboptimal. In such cases, the complemen-
tary nature of the PPGA comes into effect. By employing
the PPGA-ANNs framework, we can effectively harness the
strengths of both algorithms to obtain solutions within a faster
computational time.

VI. DISCUSSION
In practical applications, it is suggested to process the PPGA
and the PPGA-ANNs framework in parallel. This parallel
processing approach is advocated due to the inherent uncer-
tainty surrounding the deviation or percentage change in the
new impact of machine failure on processing time (qinew) with
respect to the provided inputs. By simultaneously running
both algorithms, it guarantees the generation of optimal solu-
tions that surpass the performance of the standard GA.

Either PPGA or PPGA-ANNs for achieving optimal solu-
tions within a shorter computational time depends on the
particular instance under consideration such as the problem’s
complexity, the unique characteristics of the production envi-
ronment, and the attributes of the disturbance encountered.
By executing both algorithms in parallel, manufacturers can
capitalize on the respective strengths of each approach,
enabling them to obtain the most advantageous rescheduling
solutions.

Moreover, to assess the importance of rescheduling,
we conducted a research comparing makespan (C) for
a production process with and without rescheduling by
PPGA-ANNs under various machine failure scenarios, rang-
ing from the failure of one machine to the failure of all ten
machines. In each scenario, we randomly selected three sets
of failed machines from all possible sets of failed machines
under a specific number of failed machines. The makespans
from the three sets of failed machines are then averaged.

VOLUME 11, 2023 75813

P. Saophan et al.: Rapid Production Rescheduling for Flow Shop Under Machine Failure Disturbance

FIGURE 18. Comparison of the convergence between the standard GA, PPGA, and PPGA with initial solutions from the trained ANNs
(PPGA-ANNs).

75814 VOLUME 11, 2023

P. Saophan et al.: Rapid Production Rescheduling for Flow Shop Under Machine Failure Disturbance

TABLE 5. Comparison of the average makespan (minutes) between un-rescheduled (Un) and rescheduled (Re) production when machine failure occurs.

FIGURE 19. The improvement in minutes of the average makespan
between un-rescheduled (Un) and rescheduled (Re) production when
machine failure occurs.

As shown in Table 5, the results show that the implemen-
tation of rescheduling (represented by Re) resulted in the
shorter average makespans compared to the un-rescheduled
production (represented by Un) in all scenarios. More-
over, the runtime for the rescheduling process was between
214-377 seconds (less than 6 minutes). These findings
demonstrate the significance of rescheduling in improving
production efficiency by reducing makespans within a short
computational time.

The results in Fig. 19 plotted based on the data in
Table 5, indicate that rescheduling effectively improves the
makespans in almost scenarios. For scenarios where only
one or two machines fail, the improvement in the makespans
is consistent regardless of the impact of processing time
(qi) when a machine fails. However, when three to nine
machines fail, the makespans show significant improvement
with higher values of qi, particularly in the case of six failed
machines.

In contrast, in a scenario where all ten machines fail, the
improvement in makespan is found to be insignificant. This
is because the impact of machine failure (qi) is uniformly
distributed among all machines, resulting in no significant

improvement in makespan through rescheduling. Although
the experiment indicates that rescheduling is most urgent
when six machines fail, it may not necessarily hold true for
other data sets.

VII. CONCLUSION AND FUTURE WORK
Effective production scheduling and rescheduling strategies
are crucial in today’s highly competitive marketplace, where
unexpected events can occur at any time, making produc-
tion rescheduling a critical aspect of decision-making in
dynamic manufacturing environments. To address this chal-
lenge, we propose a novel framework that combines the
Perturbation Population Genetic Algorithm (PPGA) with
Artificial Neural Networks (ANNs). This integration lever-
ages the strengths of both meta-heuristic and supervised
learning approaches, enabling the framework to effectively
generate new schedules in a timely manner while minimizing
makespan.

The proposed PPGA-ANNs framework and its methodol-
ogy offer a dependable solution for production rescheduling
in flow shop environments with machine failure occurrence.
Its superiority in terms of makespan and computational time
has been demonstrated through comprehensive comparative
experiments. The proposed framework’s capability comes
from two key components: the PPGA in the knowledge
creation phase and the ANNs in the knowledge implemen-
tation phases. The PPGA contributes to better performance
in reducing makespan, while applying the initial solutions
generated by the trained ANNs to the PPGA provides shorter
runtime for obtaining a new schedule.

In conclusion, this research contributes to the body of
knowledge in flow shop rapid production rescheduling with
machine failure problems. The proposed framework and its
methodology minimize the makespan with short computa-
tional time, offering a reliable and flexible solution for real-
world production. Consequently, the proposed PPGA-ANNs
framework can be applied as an alternative for production
rescheduling to address machine failures, particularly when
multiple machines are involved, for improving the efficiency
and performance of manufacturing processes.

To further enhance the realism and relevance of the prob-
lem and provide possible extensions for future work, the

VOLUME 11, 2023 75815

P. Saophan et al.: Rapid Production Rescheduling for Flow Shop Under Machine Failure Disturbance

scope of the problem can be expanded to include additional
complexities. This can involve increasing the number of jobs
and machines, or extending the analysis to include different
production environments, such as job shop production, for a
more comprehensive representation of real-world manufac-
turing situations. Additionally, a termination criterion that
stops the PPGA if it fails to find a better solution within
a certain number of iterations, such as 100 iterations, can
be proposed to reduce the computational time required for
rescheduling.

Additionally, the performance of the proposed PPGA-
ANNs framework is subject to the scenarios used to represent
disturbed situations. To overcome this limitation and improve
the applicability of the proposed framework, it is recom-
mended to integrate reinforcement learning techniques [58]
such as Q-learning. By doing so, the algorithm can store
and manage novel knowledge or unseen instances that differ
significantly from the initial scenarios, thereby enhancing the
algorithm’s adaptability.

REFERENCES
[1] M. Ghaleb, H. Zolfagharinia, and S. Taghipour, ‘‘Real-time produc-

tion scheduling in the Industry-4.0 context: Addressing uncertainties in
job arrivals and machine breakdowns,’’ Comput. Oper. Res., vol. 123,
Nov. 2020, Art. no. 105031.

[2] I. R. Uhlmann and E. M. Frazzon, ‘‘Production rescheduling review:
Opportunities for industrial integration and practical applications,’’
J. Manuf. Syst., vol. 49, pp. 186–193, Oct. 2018.

[3] G. E. Vieira, J. W. Herrmann, and E. Lin, ‘‘Rescheduling manufacturing
systems: A framework of strategies, policies, and methods,’’ J. Scheduling,
vol. 6, no. 1, pp. 39–62, Jan. 2003.

[4] A. Dutta, ‘‘Reacting to scheduling exceptions in FMS environments,’’ IIE
Trans., vol. 22, no. 4, pp. 300–314, Dec. 1990.

[5] S. Lu, J. Pei, X. Liu, and P. M. Pardalos, ‘‘A hybrid DBH-VNS for high-
end equipment production scheduling withmachine failures and preventive
maintenance activities,’’ J. Comput. Appl. Math., vol. 384, Mar. 2021,
Art. no. 113195.

[6] Z. Jiang, S. Yuan, J. Ma, and Q. Wang, ‘‘The evolution of production
scheduling from Industry 3.0 through Industry 4.0,’’ Int. J. Prod. Res.,
vol. 60, no. 11, pp. 3534–3554, Jun. 2022.

[7] E. Taillard, ‘‘Benchmarks for basic scheduling problems,’’ Eur. J. Oper.
Res., vol. 64, no. 2, pp. 278–285, Jan. 1993.

[8] S. C. Graves, ‘‘A review of production scheduling,’’ Oper. Res., vol. 29,
no. 4, pp. 646–675, 1981.

[9] J. Berlińska and B. Przybylski, ‘‘Scheduling for gathering multitype data
with local computations,’’ Eur. J. Oper. Res., vol. 294, no. 2, pp. 453–459,
Oct. 2021.

[10] M. L. Pinedo, Scheduling, vol. 29. New York, NY, USA: Springer, 2012.
[11] J. Xu and X. Zhou, ‘‘A class of multi-objective expected value decision-

making model with birandom coefficients and its application to flow shop
scheduling problem,’’ Inf. Sci., vol. 179, no. 17, pp. 2997–3017, Aug. 2009.

[12] P. Fattahi, S. M. H. Hosseini, and F. Jolai, ‘‘A mathematical model and
extension algorithm for assembly flexible flow shop scheduling problem,’’
Int. J. Adv. Manuf. Technol., vol. 65, nos. 5–8, pp. 787–802, Mar. 2013.

[13] A. Allahverdi and H. Aydilek, ‘‘The two stage assembly flowshop schedul-
ing problem to minimize total tardiness,’’ J. Intell. Manuf., vol. 26, no. 2,
pp. 225–237, Apr. 2015.

[14] A. M. Fathollahi-Fard, L. Woodward, and O. Akhrif, ‘‘Sustainable dis-
tributed permutation flow-shop scheduling model based on a triple bottom
line concept,’’ J. Ind. Inf. Integr., vol. 24, Dec. 2021, Art. no. 100233.

[15] S. M. Johnson, ‘‘Optimal two- and three-stage production schedules with
setup times included,’’ Nav. Res. Logistics Quart., vol. 1, no. 1, pp. 61–68,
Mar. 1954.

[16] E. F. Stafford Jr., F. T. Tseng, and J. N. D. Gupta, ‘‘Comparative evaluation
of MILP flowshop models,’’ J. Oper. Res. Soc., vol. 56, no. 1, pp. 88–101,
Jan. 2005.

[17] F. T. Tseng and E. F. Stafford, ‘‘New MILP models for the permutation
flowshop problem,’’ J. Oper. Res. Soc., vol. 59, no. 10, pp. 1373–1386,
Oct. 2008.

[18] C. Gicquel, L. Hege, M. Minoux, and W. van Canneyt, ‘‘A discrete time
exact solution approach for a complex hybrid flow-shop scheduling prob-
lem with limited-wait constraints,’’ Comput. Oper. Res., vol. 39, no. 3,
pp. 629–636, Mar. 2012.

[19] C.-X. Wu, M.-H. Liao, M. Karatas, S.-Y. Chen, and Y.-J. Zheng,
‘‘Real-time neural network scheduling of emergency medical mask pro-
duction during COVID-19,’’ Appl. Soft Comput., vol. 97, Dec. 2020,
Art. no. 106790.

[20] M. Nawaz, E. E. Enscore, and I. Ham, ‘‘A heuristic algorithm for the m-
machine, n-job flow-shop sequencing problem,’’ Omega, vol. 11, no. 1,
pp. 91–95, Jan. 1983.

[21] S. M. A. Suliman, ‘‘A two-phase heuristic approach to the permutation
flow-shop scheduling problem,’’ Int. J. Prod. Econ., vol. 64, nos. 1–3,
pp. 143–152, Mar. 2000.

[22] Y. Zheng and J. Xue, ‘‘A problem reduction based approach to discrete
optimization algorithm design,’’ Computing, vol. 88, nos. 1–2, pp. 31–54,
Jun. 2010.

[23] J. Gao, R. Chen, and W. Deng, ‘‘An efficient tabu search algorithm for the
distributed permutation flowshop scheduling problem,’’ Int. J. Prod. Res.,
vol. 51, no. 3, pp. 641–651, Feb. 2013.

[24] W. Shao, D. Pi, and Z. Shao, ‘‘Optimization of makespan for the distributed
no-wait flow shop scheduling problem with iterated greedy algorithms,’’
Knowl.-Based Syst., vol. 137, pp. 163–181, Dec. 2017.

[25] H. Wei, S. Li, H. Jiang, J. Hu, and J. Hu, ‘‘Hybrid genetic simulated
annealing algorithm for improved flow shop scheduling with makespan
criterion,’’ Appl. Sci., vol. 8, no. 12, p. 2621, Dec. 2018.

[26] O. Engin and A. Güçlü, ‘‘A new hybrid ant colony optimization algorithm
for solving the no-wait flow shop scheduling problems,’’ Appl. Soft Com-
put., vol. 72, pp. 166–176, Nov. 2018.

[27] C. Yu, Q. Semeraro, and A. Matta, ‘‘A genetic algorithm for the hybrid
flow shop scheduling with unrelated machines and machine eligibility,’’
Comput. Oper. Res., vol. 100, pp. 211–229, Dec. 2018.

[28] L. Abualigah, A. Diabat, S. Mirjalili, M. A. Elaziz, and A. H. Gandomi,
‘‘The arithmetic optimization algorithm,’’ Comput. Methods Appl. Mech.
Eng., vol. 376, Apr. 2021, Art. no. 113609.

[29] S. Katoch, S. S. Chauhan, and V. Kumar, ‘‘A review on genetic algorithm:
Past, present, and future,’’ Multimedia Tools Appl., vol. 80, no. 5,
pp. 8091–8126, Feb. 2021.

[30] K. Keskin and O. Engin, ‘‘A hybrid genetic local and global search
algorithm for solving no-wait flow shop problem with bi criteria,’’ Social
Netw. Appl. Sci., vol. 3, no. 6, pp. 1–15, Jun. 2021.

[31] H. Piroozfard, K. Y. Wong, and A. Hassan, ‘‘A hybrid genetic algorithm
with a knowledge-based operator for solving the job shop scheduling
problems,’’ J. Optim., vol. 2016, Apr. 2016, Art. no. 7319036.

[32] J. Meena, M. Kumar, and M. Vardhan, ‘‘Cost effective genetic algorithm
for workflow scheduling in cloud under deadline constraint,’’ IEEE Access,
vol. 4, pp. 5065–5082, 2016.

[33] K. Peng, J. Du, F. Lu, Q. Sun, Y. Dong, P. Zhou, and M. Hu, ‘‘A hybrid
genetic algorithm on routing and scheduling for vehicle-assisted multi-
drone parcel delivery,’’ IEEE Access, vol. 7, pp. 49191–49200, 2019.

[34] Y. Wang and Q. Zhu, ‘‘A hybrid genetic algorithm for flexible job shop
scheduling problem with sequence-dependent setup times and job lag
times,’’ IEEE Access, vol. 9, pp. 104864–104873, 2021.

[35] M. Amirghasemi and R. Zamani, ‘‘An effective evolutionary hybrid for
solving the permutation flowshop scheduling problem,’’ Evol. Comput.,
vol. 25, no. 1, pp. 87–111, Mar. 2017.

[36] M. S. Umam, M. Mustafid, and S. Suryono, ‘‘A hybrid genetic algorithm
and tabu search for minimizing makespan in flow shop scheduling prob-
lem,’’ J. King Saud Univ.-Comput. Inf. Sci., vol. 34, no. 9, pp. 7459–7467,
Oct. 2022.

[37] D. Ouelhadj and S. Petrovic, ‘‘A survey of dynamic scheduling in
manufacturing systems,’’ J. Scheduling, vol. 12, no. 4, pp. 417–431,
Aug. 2009.

[38] O. Cardin, D. Trentesaux, A. Thomas, P. Castagna, T. Berger, and
H. B. El-Haouzi, ‘‘Coupling predictive scheduling and reactive control
in manufacturing hybrid control architectures: State of the art and
future challenges,’’ J. Intell. Manuf., vol. 28, no. 7, pp. 1503–1517,
Oct. 2017.

[39] R. Larsen and M. Pranzo, ‘‘A framework for dynamic rescheduling prob-
lems,’’ Int. J. Prod. Res., vol. 57, no. 1, pp. 16–33, Jan. 2019.

75816 VOLUME 11, 2023

P. Saophan et al.: Rapid Production Rescheduling for Flow Shop Under Machine Failure Disturbance

[40] I. Sabuncuoglu and S. Goren, ‘‘Hedging production schedules against
uncertainty in manufacturing environment with a review of robustness
and stability research,’’ Int. J. Comput. Integr. Manuf., vol. 22, no. 2,
pp. 138–157, Feb. 2009.

[41] Y.-H. Dong and J. Jang, ‘‘Production rescheduling for machine break-
down at a job shop,’’ Int. J. Prod. Res., vol. 50, no. 10, pp. 2681–2691,
May 2012.

[42] N. Kundakcı and O. Kulak, ‘‘Hybrid genetic algorithms for minimizing
makespan in dynamic job shop scheduling problem,’’ Comput. Ind. Eng.,
vol. 96, pp. 31–51, Jun. 2016.

[43] J. Zhang, W. Qin, L. H. Wu, and W. B. Zhai, ‘‘Fuzzy neural network-
based rescheduling decision mechanism for semiconductor manufactur-
ing,’’ Comput. Ind., vol. 65, no. 8, pp. 1115–1125, Oct. 2014.

[44] M. Nazari, A. Oroojlooy, L. Snyder, and M. Takác, ‘‘Reinforcement learn-
ing for solving the vehicle routing problem,’’ in Proc. Adv. Neural Inf.
Process. Syst., vol. 31, 2018, pp. 1–11.

[45] Y. Li, S. Carabelli, E. Fadda, D. Manerba, R. Tadei, and O. Terzo,
‘‘Machine learning and optimization for production rescheduling in Indus-
try 4.0,’’ Int. J. Adv. Manuf. Technol., vol. 110, nos. 9–10, pp. 2445–2463,
Oct. 2020.

[46] M. R. Garey, D. S. Johnson, and R. Sethi, ‘‘The complexity of flowshop
and jobshop scheduling,’’ Math. Oper. Res., vol. 1, no. 2, pp. 117–129,
May 1976.

[47] O. Etiler, B. Toklu, M. Atak, and J. Wilson, ‘‘A genetic algorithm for flow
shop scheduling problems,’’ J. Oper. Res. Soc., vol. 55, no. 8, pp. 830–835,
2004.

[48] A. Konak, D. W. Coit, and A. E. Smith, ‘‘Multi-objective optimization
using genetic algorithms: A tutorial,’’ Rel. Eng. Syst. Saf., vol. 91, no. 9,
pp. 992–1007, Sep. 2006.

[49] C. W. Ahn and R. S. Ramakrishna, ‘‘A genetic algorithm for shortest
path routing problem and the sizing of populations,’’ IEEE Trans. Evol.
Comput., vol. 6, no. 6, pp. 566–579, Dec. 2002.

[50] M. Srinivas and L. M. Patnaik, ‘‘Adaptive probabilities of crossover and
mutation in genetic algorithms,’’ IEEE Trans. Syst., Man, Cybern., vol. 24,
no. 4, pp. 656–667, Apr. 1994.

[51] M. Chen, J. Wen, Y.-J. Song, L.-N. Xing, and Y.-W. Chen, ‘‘A population
perturbation and elimination strategy based genetic algorithm for multi-
satellite TT&C scheduling problem,’’ Swarm Evol. Comput., vol. 65,
Aug. 2021, Art. no. 100912.

[52] Y. Du, T. Wang, B. Xin, L. Wang, Y. Chen, and L. Xing, ‘‘A data-
driven parallel scheduling approach for multiple agile earth observation
satellites,’’ IEEE Trans. Evol. Comput., vol. 24, no. 4, pp. 679–693,
Aug. 2020.

[53] M. Squires, X. Tao, S. Elangovan, R. Gururajan, X. Zhou, and
U. R. Acharya, ‘‘A novel genetic algorithm based system for the schedul-
ing of medical treatments,’’ Expert Syst. Appl., vol. 195, Jun. 2022,
Art. no. 116464.

[54] D. P. Kingma and J. Ba, ‘‘Adam: A method for stochastic optimization,’’
2014, arXiv:1412.6980.

[55] L.-Y. Tseng and Y.-T. Lin, ‘‘A hybrid genetic algorithm for no-wait flow-
shop scheduling problem,’’ Int. J. Prod. Econ., vol. 128, no. 1, pp. 144–152,
Nov. 2010.

[56] J.-Y. Ding, S. Song, J. N. D. Gupta, R. Zhang, R. Chiong, and C. Wu,
‘‘An improved iterated greedy algorithm with a tabu-based reconstruction
strategy for the no-wait flowshop scheduling problem,’’ Appl. Soft Com-
put., vol. 30, pp. 604–613, May 2015.

[57] F. Zhao, H. Liu, Y. Zhang, W. Ma, and C. Zhang, ‘‘A discrete water wave
optimization algorithm for no-wait flow shop scheduling problem,’’ Expert
Syst. Appl., vol. 91, pp. 347–363, Jan. 2018.

[58] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction.
Cambridge, MA, USA: MIT Press, 2018.

PAKKAPORN SAOPHAN received the B.S.
degree in management mathematics from Tham-
masat University, Thailand, in 2017, and the
M.S. degree in management mathematics from the
Sirindhorn International Institute of Technology
(SIIT), Thammasat University, Thailand, in 2018.
She is currently pursuing the Ph.D. degree in
knowledge science with the Japan Advanced Insti-
tute of Science and Technology (JAIST), Japan.
Her research interest includes developing and

incorporating machine learning for Industry 4.0 manufacturing.

WARUT PANNAKKONG received the B.Engr.
degree in industrial engineering and the M.Engr.
degree in logistics and supply chain systems engi-
neering from the Sirindhorn International Insti-
tute of Technology (SIIT), Thammasat University,
Thailand, in 2010 and 2014, respectively, and the
Ph.D. degree in knowledge science from the Japan
Advanced Institute of Science and Technology
(JAIST), in 2017. He is currently an Associate
Professor with the School of Manufacturing Sys-

tems and Mechanical Engineering (MSME), SIIT, Thammasat University.
His research interests include artificial intelligence for industry, time series
forecasting, data mining, machine learning, computer vision in industrial
applications, discrete event system simulation and optimization, production
planning, and logistics and supply chain management.

RAVEEKIAT SINGHAPHANDU received the
B.S. degree in computer science from the Sirind-
horn International Institute of Technology (SIIT),
Thammasat University, Thailand, in 2014, and the
M.S. degree in informatics from the Technical
University of Munich, Germany, in 2017. He is
currently pursuing the Ph.D. degree with SIIT,
Thammasat University, and the Japan Advanced
Institute of Science and Technology, Japan. His
research interests include machine learning, com-

puter vision, and software engineering in industrial engineering applications.

VAN-NAM HUYNH (Member, IEEE) received
the Ph.D. degree in mathematics from the Vietnam
Academy of Science and Technology, in 1999.
He is currently a Professor with the School of
Knowledge Science, Japan Advanced Institute
of Science and Technology (JAIST). His cur-
rent research interests include machine learning
and data mining, AI reasoning, argumentation,
multi-agent systems, decision analysis, manage-
ment science, and Kansei information processing

and applications. He currently serves as an Area Editor for International
Journal of Approximate Reasoning, the Editor-in-Chief for International
Journal of Knowledge and Systems Science, and the Editorial BoardMember
of the Array journal.

VOLUME 11, 2023 75817

