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ABSTRACT Audio denoising is a task to improve the perceptual quality of noisy audio signals. There is still
residual noise after the denoising of noisy signals, which will affect the quality of audio data. Traditional
and deep learning-based methods are still limited to the manual addition of artificial noise or low-frequency
noise. Recently, audio denoising has been transformed into an image segmentation problem, and deep neural
networks have been applied to solve this problem. However, its performance is limited to shallow image
segmentation models. This paper proposes a novel vision transformer model for visual bird sound denoising,
combining a pyramid transformer and DeepLabV3+ network (named PtDeepLab) to filter out the noise. The
proposed PtDeepLab model is based on the pyramid transformer, which generates long-range and multi-
scale representations. The PtDeepLab model can achieve intuitive noise reduction in audio, which helps to
separate clean audio from the mixture signal. Extensive experimental results showed that the proposed model
has a better denoising performance than state-of-the-art methods.

INDEX TERMS Audio denoising, transformer, DeepLabV3+.

I. INTRODUCTION
Audio denoising is a long-standing challenge for many tasks
(e.g., teleconferences, the speech-to-text function in social
media, and hearing aid) [1]. With the popularity of the Inter-
net in recent years, audio signals are widely used in our life
for information transmission. In the process of information
transmission, all kinds of noise will affect the clarity of the
audio. The maintenance of speech signal transmission quality
and retaining as much useful information as possible are
the main purposes of audio denoising. Over the last decade,
audio denoising research has shown that a viable solution
is to build a noise estimation generative model and use it
to recover intelligible audio signals with better quality from
noisy audio signals [2], [3], [4]. However, these methods with
added artificial noise or lower denoising quality have their
limitations and may not be efficient for speech processing.
Audio denoising can significantly improve audio quality.
Typically, traditional statistical methods and deep learn-
ing methods are used to reduce noise and separate audio.

The associate editor coordinating the review of this manuscript and

approving it for publication was Hui Ma

There are six different kinds of methods, including both tra-
ditional and deep learning models: (1) optimal FIR filter,
(2) spectrum subtraction, (3) minimum mean square error,
short-time spectral amplitude estimator (MMSE-STSA) [36],
(4) wavelet noise reduction based on image noise reduc-
tion, (5) processing-based image noise reduction, (6) noise
reduction based on deep learning [13]. In recent years, some
researchers have shown that image processing-based noise
reduction methods with deep learning models outperform
traditional methods. Deep learning-based audio-denoising
algorithms have attracted wide attention and revolutionized
the domain of audio denoising. By learning a deep nonlinear
network structure, deep neural networks (DNNs) have supe-
rior potential for complicated nonlinear mapping problems
and can be used for audio denoising. Different deep learning-
based audio-denoising approaches can often be categorized
into two main groups: the spectral mapping approach and the
mask mapping approach. By ignoring the structural features
of the speech spectrum and the long contextual relation-
ships between adjacent frames, these methods often lead
to spectral artifacts and speech distortion in high-frequency
bands. Bird sounds play an essential role in animal sound
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FIGURE 1. The overall progress of our proposed vision transformer framework. Different modules are marked with different color blocks.
The architecture of the main body extends the encoder-decoder structure of the DeepLabV3+ box based on a pyramid transformer.

recognition. Animal sound classification usually has three
processing steps [56]: signal preprocessing, feature extrac-
tion, and classification. Signal preprocessing mainly includes
signal segmentation and denoising. However, many audio
signals are directly collected in nature and obtained in a
relatively noisy environment, making it necessary to artifi-
cially reduce the noise from these biological recordings that
are directly obtained from nature. If we cannot accurately
filter out the noise signals, it will lead to sound distortion
and affect the recognition results of animal sounds [5]. This
paper mainly investigates how to reduce noise components in
bird sounds. Influenced by the neural network [6], [7], [8],
the audio signal is converted into images via the Short-Time
Fourier Transform (STFT) method. The image is then seg-
mented to achieve the purpose of noise reduction via the deep
learning method [9], [10], using samples from the natural
environment to perform audio noise reduction.

In this paper, we aim to propose a robust segmentation
model that is able to separate the clean audio from the mixture
audio. As shown in Fig. 1, our proposed model consists of
three key modules: the STFT module, a PtDeepLab model,
and the Inverse Short-Time Fourier Transform (ISTFT) mod-
ule. We convert the audio signal to an audio image using the
STFT module and then train the PtDeepLab model to seg-
ment the clean audio signal region. After obtaining the clean
audio signal region, we finally applied the ISTFT module to
reconstruct the denoised audio.

Our contributions are three-fold:

« We develop a novel deep visual transformer in the visual
bird audio denoising model that transfers the audio
denoising to an image segmentation problem to achieve
the purpose of audio denoising by removing the noise
region in the audio image.

« We propose a transformer-based encoder-decoder archi-
tecture to capture and fuse the multi-scale represen-
tation. The proposed PtDeepLab is based on a pyra-
mid transformer and DeepLabV3+ box, which is a
transformer-based framework that achieves audio image
segmentation with varying levels of resolution.
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o We achieved new state-of-the-art audio denoising results
on the BirdSoundDenoising dataset, demonstrating the
effectiveness of the proposed method and the enhanced
ability to learn data and features.

Il. RELATED WORK

There are various audio denoising methods, which can
be divided into three categories according to the signal
representation type: time-domain, frequency-domain, and
time-frequency domain. The vanilla audio denoising pro-
cesses are as follows: extract the relevant features and convert
them into the correct format, then define the Fourier window
to calculate the Fourier transform of the signal, train the
network to produce an estimated value, and optimize the
average variance between the output and the target signal.
Our work is related to three major research directions, and we
highlight some representative methods that are closely related
to our work.

A. TRADITIONAL AUDIO DENOISING METHODS

They mainly rely on estimating audio statistics [22]. Statisti-
cal methods like the Gaussian mixture model can be used to
build a denoising model of interest and recover clean audio
from the noisy input signal. Many methods use the STFT and
the ISTFT [17], which are time-domain algorithms, to solve
the audio enhancement problem and treat audio enhancement
as a filtering problem. The denoising performance can be
improved by the Wiener filter [11] or the LSA estimator [12].
Gradolewski et al. [58] used Gaussian white noise for sim-
ulation, using a wavelet-denoised algorithm to filter the real
phonocardiography (PCG) signal interference generated from
signals recorded by a mobile device in a noisy environment.
Linden et al. [25] decomposed a spectral graph into two
matrices: the spectral basis matrix and the encoding matrix.
Spectral bases belonging to the same source are then grouped
according to the periodicity of the encoded information.
Finally, the different sound sources are reconstructed based
on the clustering of the basis matrix and the corresponding
encoding information. And then, the noise components are
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removed to facilitate more accurate monitoring of biological
sounds. Zha et al. [26] proposed a novel rank residual con-
straint (RRC) model for the rank minimization problem and
applied it to image restoration tasks. In addition, some new
image restoration approaches were also presented, such as
the simultaneous nonlocal self-similarity priors method [27]
and the group sparsity residual constraint with non-local
priors method [28]. Haider et al. [29] proposed a filter-based
denoising scheme using the signal-to-noise ratio, which is
mainly used to simulate different levels of addictive Gaussian
noise. For example, the frequency range is usually between
1 kHz and 12 kHz [30], [31]. Some traditional methods of
sound denoising have difficulty tracking target sound sources
in multiple sources, which means that they cannot handle
long-term contexts [14], [34].

B. DEEP LEARNING METHODS

For the comparison of the deep learning model and the
traditional supervised methods, Alamdar et al. [15] applied
a full convolutional neural network (FCN) to denoise the
audio with only noise samples, reflecting the superiority
of the deep learning model. Germain et al. [16] trained the
FCN using deep feature loss, and their model can inter-
fere with background noise to suppress the noisy signals.
Xu et al. [47] introduced a deep learning model with auto-
matic speech denoising, which can better capture noise
patterns. Saleem et al. [5S5] used an ideal binary mask (IBM)
and the training DNNs to estimate the IBM, which is impor-
tant for the audio enhancement of complex noise. The result
also showed that DNNs have a better ability to learn data
and features from a few samples. Xu et al. [35] proposed
a DNN-based supervised method to enhance the audio by
finding a mapping function between noisy and clean audio
samples. Madhav [49] proposed a Noise2Noise approach
to tackle the problem of the heavy dependence on clean
speech data. Takuya et al. [45] proposed a training strategy
that does not require clean signals. Moreover, Tao et al. [42]
presented a method called Neighbor2Neighbor to train an
effective image-denoising model without only noisy images.
Aswin et al. [43] proposed self-supervised learning methods
as a solution to both zero- and few-shot personalization tasks.
Sonining et al. [37] investigated the performance of such a
time-domain network (Conv-TasNet) for speech denoising in
a real-time setting, comparing various parameter settings.

C. VISION TRANSFORMER

Transformer was originally proposed for natural language
processing (NLP) tasks. Transformers, which are currently
state-of-the-art across domains, including natural language
processing and computer vision (CV), have gone viral
in the field of speech processing [44]. Transformer has
also been adapted for audio processing with CNNs. Some
authors stack a transformer on top of a CNN, and they
combine a transformer and a CNN in each model block.
Other efforts combine CNNs with simpler attention modules.
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Kong et al. [19] presented CleanUNet, which is based on an
encoder-decoder architecture combined with self-attention
blocks. It has to be mentioned that Vision Transformer (ViT)
is the first transformer-based approach that can match or even
surpass CNNs in image classification. Many variants of visual
transformers have also been proposed recently. Liu et al. [53]
proposed a new vision transformer, called Swin Transformer,
whose architecture has the flexibility to model at various
scales and has linear computational complexity concerning
image size. Chen et al. [20] proposed CrossVit, a dual-branch
transformer to combine image patches (i.e., tokens in a trans-
former) of different sizes to produce stronger image features.
Gu et al. [24] proposed HRViT, which enhances ViTs’ ability
to learn semantically rich and spatially precise multi-scale
representations by integrating high-resolution multi-branch
architectures with ViTs. Recently, some transformer meth-
ods have been used to solve audio processing problems.
Gong et al. [21] built the Audio Spectrogram Transformer
(AST), the first convolution-free, a purely attention-based
model for audio classification.

In this work, we focus on a deep learning-based audio
denoising method using nature datasets. Our main inspiration
for this work is based on Zhang and Li [18], who were the first
to convert audio denoising into a visual image segmentation
problem. They first converted bird audio to images using the
STFT and proposed to segment the clean audio areas and
remove the noisy areas. Finally, they applied ISTFT to con-
vert segmented, clean audio images into audio to realize the
purpose of audio denoising. However, they did not propose
any new segmentation models and left the space to further
improve the performance of their proposed BirdSoundDe-
noising datasets. Priyadarshani et al. [57] have described a
combination of denoising methods using wavelet packet
decomposition and band-pass or low-pass filtering. Their
presented experiments demonstrate an order of magnitude
improvement over the noise reduction recorded by natural
bird noise. However, their model still has lower performance
in large-scale bird noise datasets. In this paper, we can con-
sider deleting the noise from the frequency domain. If we can
remove the noise areas from the frequency domain, we can
achieve the purpose of noise reduction. Inevitably, there are
always specific noise frequencies interspersed with the fre-
quency of bird sounds that cannot be removed. Therefore,
the denoising method of removing noise from the frequency
domain has certain limitations. In view of this problem,
we propose a DeepLabV3+ Vision Transformer method to
reduce noise areas and transform the audio noise reduction
problem into an image segmentation problem. After receiving
a noisy input signal, we will convert it into an image and
remove the noisy areas to extract a clean bird sound signal.

lll. METHODS
A. PROBLEM
A noisy audio signal y(¢) can be typically expressed as:

y(t) = x(1) + (1) ey
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where x(¢) and &(¢) denote clean audio and additive noise
signals of time index ¢, respectively [14]. A sequence of
noisy signal and clean signal are defined as ¥ = {yi}i.V: 1
and X = {xi}ﬁ\; |» Where N is the total number of audios.
The goal of audio denoising is to extract the clean audio
component X from the mixture audio signal Y by learning
a mapping F and minimize the approximation error between
the estimated denoised audio F(Y') and clean audio X. In our
paper, we also work on converting the audio denoising to an
image segmentation task. Given the audio images Z = {I,'}{.V= |
corresponding to Y, we aim to minimize the error between the
predictions of our segmentation model PtDeepLab (Z) and its
ground truth labeled masks U = {ui}?': 1

B. MOTIVATION

Most traditional filtering methods are limited to window-
adding or masking operations in the frequency domain or
time domain. Because of the strong time-frequency coupling
between the audio signal and noise, these filtering methods
are difficult to use to achieve effective signal and noise sep-
aration. Many existing deep audio denoising methods use
clean audio signals as output signals or study the magnitude
spectrum of the image to denoise. However, these methods
can be constrained by computing power or limited filtering
image areas, leading to low denoising performance. The
scientific goal of this paper is to develop a novel, fully
automatic deep-learning denoising model that can discover
differences between noisy and clean signal regions by digging
into audio images. If the clean signal area can be successfully
segmented, the goal of audio denoising can be achieved.
In summary, given a noisy input signal, we aim to build a
deep learning model that can extract clean signals and return
them to the user.

C. PRELIMINARY

In our model, we aim to obtain the raw images for each bird
sound by the STFT and reconstruct the denoised bird’s sound
based on the segmented bird sound image by the ISTFT.

1) STFT THEORY

The Short-Time Fourier Transform (STFT) and Inverse
Short-Time Fourier Transform (ISTFT) are widely used in
speech analysis and processing. They are suitable for slow
signal and time-varying signal spectrum analysis [22]. The
audio signal is non-stationary in most cases, meaning that
the mean and variance of the signal are not constant over
time. Therefore, it does not make much sense to calculate
the Fourier transform on the whole audio signal, so the
Fourier transform with window length and jump size values
is proposed [23]. In this method, the audio signal is first
divided into frames. Then, each frame of the audio signal can
be intercepted from various fixed signal waveforms by the
Fourier transform, and the short-term spectrum of each frame
is an approximation of the spectrum value of the smooth
signal waveform.
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2) AUDIO IMAGE CONSTRUCTION

STFT is a function of time ¢ and frequency f, which shows
how the frequency of the speech signal changes with time.
Fig. 1 shows the conversion from the bird sound audio to its
audio image. We can obtain the audio image (/) after imple-
menting the STFT calculation and the following equation,

I = abs(STFTy(t,f)) 2)

where STFT,(t,f) is the coefficient of STFT and abs takes
the absolute value from the complex frequency domain O.

3) DENOISED AUDIO RECONSTRUCTION

After we remove the noise areas from the frequency domain,
we can apply ISTFT to reconstruct the denoised audio signal.
Firstly, we need to filter out noise areas in O from the seg-
mentation model. The new frequent domain @’ is as follow
Eq. (3). More details of the ISTFT process are shown in the
Fig. 1.

0'=0, and OTu<11=0 3)
where u = PtDeepLab (7) is the predicted mask of the
segmentation model given the input image / and we finally
reconstruct the denoised audio as follows:

$(t) = ISTFT(O") @)

D. PROPOSED MODEL: PTDEEPLAB

The transformer method has gained wide attention in natural
language processing and computer vision in recent years
thanks to global information modeling derived from the
self-attention mechanism [24]. Previous studies have demon-
strated that both local and global features are essential for
depth models in dense prediction, such as the segmentation
of complex structures. In this section, we will introduce how
to directly apply a transformer to image patch feature repre-
sentation coding and elaborate on the overall framework of
PtDeepLab.

1) ENCODER-DECODER ARCHITECTURE
An overview of the PtDeepLab model is depicted in Fig. 1.
Our proposed PtDeepLab extends DeepLabV3+ [54], [59]
by employing pyramid transformer blocks in the encoder
and decoder. Specifically, the encoder module encodes the
input image into a highly representative space by applying
a pyramid transformer on multiple scales to encode multi-
scale contextual information. At the same time, the simple yet
effective decoder is utilized as a series of pyramid transformer
blocks with path-expanding operations applied to reach the
full resolution of images. Given an audio image I € R *WxC
with a spatial resolution of H x W and C number of channels,
our goal is to predict the corresponding mask given the input
image /. After segmenting the clean sound areas in the audio
image, we could remove the noise from the audio signal.

In our implementation, given an input audio image of size
H x W x 1, we first divide it into non-overlapping patches of
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size 8 x 8, and thus the feature dimension of each patch is 8 x
8 x 1 = 64. Each patch is treated as a ““token”’, whose feature
is set as a concatenation of the raw pixel values. The pyramid
transformer is applied to encode both local semantic and
long-range contextual representations. To construct Pt Spatial
Pyramid Pooling (PSPP), the pyramid transformer block is
designed to capture multi-scale information representation.
The obtained multi-scale contextual representations are fused
into the decoding module through a cross-contextual attention
mechanism. The cross-contextual attention block consists of
achannel attention operation and a spatial attention operation,
and they are applied to the tokens (derived from each level
of the pyramid) to formulate the multi-scale interaction [32].
In the final decoding process, we first upsample bilinearly the
extracted encoder high-level features and concatenate them
with the low-level features from the pyramid transformer
backbone in the encoder to update the feature representation.

2) PATCH EMBEDDING

An image I € RF*W*C is split into a sequence of patches
. = [&,...,¢N] € RNXPZXC, where (P, P) is the patch
size, N = HW /P? is the number of patches. We map the
vectorized patches ¢, into a latent D-dimensional embed-
ding space using a trainable linear projection to produce a
sequence of patch embeddings. To encode the patch spatial
information, we learn specific position embeddings Pos =
[Posi, ..., Posy] € RV*P which are added to the patch
embeddings to retain positional information as follows:

Z=[0E;QE, - ;(NE]+ Epog (5)

where E € RP*OxD g the patch embedding projection, and

Epys € RV*D denotes the position embedding.

3) PYRAMID TRANSFORMER BLOCK

Because of the traditional transformers’ single-scale, low-
resolution representations, it is difficult for ViTs to imple-
ment dense prediction tasks such as semantic segmentation
and effectively leverage the rich transformer layers in the
encoder for excavating helpful multi-modal context. In addi-
tion, these methods incur high computational and memory
costs due to the global self-focus mechanism. Pyramid trans-
former is designed to alleviate this problem [51], [52]. The
key design feature of the pyramid transformer is to design a
progressive shrinking pyramid and spatial-reduction attention
(SRA). SRA is a substitute for a multi-head self-attention
(MSA) module in the transformer block. Thus, each pyramid
transformer block comprises an attention layer and a feed-
forward layer with a LayerNorm (LN) layer, a two-layer
MLP, and GELU nonlinearity. The spatial-reduction attention
(SRA) module is applied in series in the transformer block,
as depicted in Fig. 2. With such a spatial-reduction attention
module, the successive pyramid transformer blocks can be

92544

WON 1akE
wis |

L/
iy oN‘ '191(91
[ aw |

Embedded | _
Sequence

FIGURE 2. Schematic of the Transformer layer used in this work.

expressed as:
SRA(Q, K, V) = Concat(heady, - - - ,heale.)WO (6)
head, =Attenti0n(QWjQ, SR(K)WjK, SR(V)ij)
@)

where Concat(-) is the concatenation operation. WjQ, WjK ,
ij € RCG*dwat and WO e RE*Ci are linear projection
parameters. NV; is the head number of the attention layer in
the stage i. SR(-) is the operation for reducing the spatial
dimension of the patch embedding, which is written as:

SR(Z) = Norm(Reshape(Z, R,-)WS) ®)

Here, Z € RHW)xCi represents a patch embedding, and R;
denotes the reduction ratio of the attention layers in stage
i. WS e REICIXCi jg 3 linear projection that reduces the
dimension of the patch embedding to C;. Norm(-) refers to
layer normalization.

With such a spatial-reduction scheme, consecutive pyramid
transformer blocks can be formulated as:

2!l = SRAUN(Z'" ")) + 27!
Zl = MLP(LN(ZY) + Z! ©)

where Z! and Z! denote the output features of the SRA
module and the MLP module for block L;, respectively. The
self attention as in the ViTs Transformer [33] is computed
according to:

QKT

Attention(Q, K, V) = SoftMax(

Vd
where Q, K, V € RN*4 are the query, key and value matrices;
d is the query/key dimension.

% (10)

4) ENCODER

Different from the CNN backbone networks, which use dif-
ferent convolution steps to obtain multi-scale feature maps,
our model uses stacked pyramid transformer modules as the
encoder. Furthermore, the pyramid transformer encoder has
four stages, which comprise some blocks at each stage. After
that, the embedded patches, along with a position embed-
ding, are passed into some successive pyramid transformer
blocks with L; layers to generate hierarchical representations.
Stage 1, stage 2, stage 3, and stage 4 have layers of 3, 4, 6,
and 3, respectively. In the beginning, our PtDeepLab encoder
first divides an input image into % X % patches and feeds the
flattened patches to a linear projection. The output is reshaped
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to a feature map M, of size % X % x Cj. To maintain the

hierarchical structure of the encoder, a patch merging layer is
utilized to decrease the resolution of feature representations
by a factor of 2 at the end of each stage. In the same way
as stage 1, using the feature map from the previous stage as
input, we obtain the following feature maps: M», M3, and
My, whose strides are 16, 32, and 64 pixels with respect to
the input image. Then, through stacking a series of pyramid
transformer blocks, the spatial dimension of the feature graph
is gradually reduced (similar to the CNN encoder), and the
feature dimension is increased. The results are then fed into
the PSPP module to capture multiscale representations.

5) PT SPATIAL PYRAMID POOLING

The PSPP block showed that regions of an arbitrary scale
could be accurately and efficiently classified by resampling
convolutional features extracted at a single scale. We have
implemented a variant that uses multiple parallel atrous con-
volutional layers with different sampling rates. The extracted
features for each sampling rate are further processed in sepa-
rate branches and fused to generate the final result. To capture
contextual information at multiple scales, compensate for
spatial representations, and produce multiscale representa-
tions, our PtDeepLab model utilizes a PSPP module that
replaces the pooling operation with atrous convolution. With
stacked pyramid transformer blocks and subsequent patch
merging layers (similar to the continuous downsampling
operation in the CNN encoder), the spatial resolution of the
deep features extracted by the pyramid transformer block
is greatly reduced. Specifically, PtDeepLab applies several
parallel convolution operations with multiple different rates,
making it possible to construct a feature pyramid. To model a
pooling operation such as a pure transformer, we create a Pt
spatial pyramid pooling (PSPP) block with different window
sizes to capture the multi-scale representation. In our design,
local and global information are captured by the smaller win-
dow and the larger window, respectively. The final multi-scale
representations are then fed to the cross-context attention
module, where the common representations are fused and
captured using nonlinear techniques.

6) CROSS-CONTEXTUAL ATTENTION

In our model, a cross-attention module is applied to model
multi-scale interactions and incorporate pyramid features.
We assume that each level of the pyramid represents the
object of interest on different scales, thus concatenating all
these features into a new dimension. We adopt a multi-
scale representation zﬁlTNC = [z1llz2---llzm], where ||
shows the concatenation operation, N and C indicate the
number of tokens and embedding dimension, and M denotes
the level number of the pyramid. Second, considering the
global representation of each channel and the channel rep-
resentation between pyramid levels, a proportional attention
module is applied to adaptively emphasize the contribution of
each feature map and outperform the less disparate features.
A channel attention operation AT7T, and a spatial attention
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operation ATT can be formulated as:

Z = ATT.(2)® 2
2 = ATTy(Z2)® Z' (11)

The channel attention operation ATT, can be written in the
following equation.

ATT (z) = oW1 (Prax(2)) + WZ(Pavg(Z))) dz (12)

where z is the input feature map and o is the Sigmoid activa-
tions, Pyqx and Py, denote adaptive maximum pooling and
adaptive average pooling functions, respectively. W;,i € 1,2
shares parameters and consists of a convolutional layer with
1 x 1 kernel size to reduce the channel dimension 12 times,
followed by a ReLU layer and another 1 x 1 convolutional
layer to recover the original channel dimension.

The spatial attention operation ATT can be formulated as:

ATTy(z) = o (K(Concat(Rinax(2), Ravg(z)))) ®z (13)

where R, and R,y represent the maximum and average
values obtained along the channel dimension, respectively.
Kisal x 1 convolutional layer with padding set to 0.

7) DECODER

In the decoder process, the obtained features corresponding
to the attention module are first up-sampled by the pyramid
transformer block with a factor of 4 and then concatenated
with the low-level features. The scheme of concatenation
of shallow and deep features together reduces the loss of
spatial detail with the help of the subsampling layer. Finally,
a series of cascaded pyramid transformer blocks with path
extension operations are applied to achieve the full resolution
of H x W.

8) OBJECTIVE FUNCTION
We use the Dice loss function to optimize our proposed
PtDeepLab model.

~

uNu
u+tu
The overall training algorithm is shown in Alg. 1.

Diceloss =1 —2 x

(14)

IV. DATASETS

A. DATASETS AND COMPARED MODELS

To test our proposed model, we show its performance on the
BirdSoundsDenoising dataset.

1) BIRDSOUNDSDENOISING

The BirdSoundsDenoising dataset, which has 14,120 audio
signals from one second to fifteen seconds and con-
tains 10,000/1,400/2,720 in training, validation, and testing,
respectively, is a large-scale dataset of bird sounds. [18].
Unlike many audio-denoising datasets, which have manu-
ally added artificial noise, this dataset contains many natural
noises, including wind, waterfalls, rain, etc.
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Algorithm 1 DeepLabV3+ Vision Transformer for Visual
Bird Sound Denoising. Batch of Audio Images: B(Z) =
{T 1. , 2"}, and Their Labeled Mask Images B(M) =
{Ml, ..., M"8}, Where np Is the Total Number of Batch. IT
Is the Number of Iterations and k& Is One Batch

1: Input: Noise audio signals ¥ = {yi}ﬁ\; | and labeled mask
images M = {mi}ﬁ\': |» Where N is the total number of
audios.

2: Output: Denoised audio signals F(Y)

3: Generate audio images Z using Eq. (2)

4: for iter = 1to Il do

5: fork=1tongdo

6: Derive batch-wise data: Z¥ and M* sampled from Z
and M

7: Optimize our segmentation model PtDeepLab using
Eq. (14)

:  end for
9: end for

10: Get the clean frequency domain using Eq. (3)
11: Output the denoised audio signals using Eq. (4)

2) BASELINE MODELS

We compare our results with other nine models, including
U? — Net [46], MTU-Net [41], Segmenter [39], U-Net [40],
SegNet [38], DVAD [18], R-CED [48], Noise2Noise [49]
and TS-U-Net [50]. For a fair comparison, we evaluate these
models for both validation and test datasets.

B. IMPLEMENTATION DETAILS

We implement our model using the PyTorch framework with
an RTX A6000 GPU to speed up the computation. It took
less than 0.5 seconds per audio image during the inference,
while it took around 2 weeks of GPU time to train our
model. The hyperparameter details are as follows: We used
the AdamW optimizer for pyramid transformer networks to
update the network parameters. The learning rate is set to
le-4, and the weight decay is adjusted to le-4 too. Further,
we resize the input images to 512 x 512 x 3 with a mini-
batch size of 8 for 100 epochs. Nine different state-of-the-art
segmentation methods use the same training settings as the
above PtDeepLab.

V. RESULTS

In this section, we compare our PtDeepLab model with
existing methods in terms of learning ability, capability, and
qualitative results.

A. EVALUATION METRICS

We employ three widely-used evaluation metrics, including
F1, IoU, and Dice to evaluate the performance of image
segmentation [18]. For audio denoising, we use signal-to-
distortion ratio (SDR) to evaluate our model using Eq. (15).
The higher these four metrics, the better of segmentation
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TABLE 1. Results comparisons of different methods (F1, loU, and Dice
scores are multiplied by 100. “—" means not applicable.

Validation Test

Networks

F1 IoU Dice SDR|F1 IoU Dice SDR
UZ-Net [46] 60.845.2 60.6 7.85 [60.244.859.9 7.70
MTU-NeT [41] 69.156.569.0 8.17 [68.355.7 68.3 7.96
Segmenter [39] 72.659.6 72.5 9.24 |70.857.770.7 8.52
U-Net [40] 75.764.375.7 9.44 (74.462.9 744 8.92
SegNet [38] 77.566.9 77.5 9.55 [76.165.376.2 9.43
DVAD [18] 82.673.582.6 10.33|81.672.3 81.6 9.96
PtDeepLab 83.475.9 83.4 10.49/83.175.4 83.0 10.43
R-CED [438] - - - 238 |- - - 1.93
Noise2Noise [49]— — — 240 |- — — 1.96
TS-U-Net[50] — — — 248 |— — — 1.98

TABLE 2. Ablation results.

Model F1 ToU Dice SDR
DeepLabv3 82.6 73.5 82.6 10.33
Pyramid-transformer 79.4 72.4 80.5 10.14
Full Model 83.4 75.9 83.4 10.49
model is.
Juel >
SDR = 10log9 (15)

1[5 — ul|?

B. EXPERIMENTS

In our experiments, we compare our model with another
nine different baseline models on the BirdSoundsDenoising
dataset to evaluate the performance of our proposed model.
The first six selected segmentation models in Tab. 1 also have
an encoder-decoder structure. The encoder-decoder structure
of these comparison methods has a similar architecture to
ours. To demonstrate the superiority of our proposed model,
we also compare it with three other audio-denoising methods.

C. PERFORMANCE COMPARISONS

Fig. 3 shows the comparisons of six different segmentation
models. The segmentation mask of the PtDeepLab model
has better performance than that of other models. The com-
pared results are tabulated in Tab. 1, which compares our
best results with those of previous state-of-the-art models.
Four commonly used objective performance metrics from
section V-A are considered to evaluate the effectiveness of
the developed PtDeepLab method. We can observe that our
model outperforms other competitors in terms of evaluation
metrics (F1, IoU, and Dice scores) for the BirdSoundsDe-
noising dataset among all segmentation models. It is worth
noting that three of the audio denoising methods (R-CED,
Noise2Noise, and TS-U-Net) performed relatively lower than
all other segmentation models. Furthermore, the SDR score
of our PtDeepLab model achieves the highest value between
the average SDRs of all bird sounds in the validation and
test datasets. The comparisons of raw bird audio, ground
truth labeled denoised audio, and denoised audio from other
models are shown in Fig. 4. Our model is also closer to the
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FIGURE 3. Segmentation results comparisons. Leftmost column is the original audio image. Ground truth is the labeled mask.
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FIGURE 4. Denoising results comparisons. Raw audio is the original noise audio.

labeled, denoised signal. As a result, these benchmarks vali-
date the effectiveness of our approach in segmenting images,
and our model improves the audio-denoising performance of
BirdSoundDenoising datasets.

V1. DISCUSSION

Compared to the CNN-based DeepLab model, our approach
produces better segmentation results and improves the repre-
sentation ability of the model in context patterning by probing
features at multiple scales to attain multi-scale information.
In addition, among six different state-of-the-art segmentation

VOLUME 11, 2023

models and three deep audio denoising methods, one obvious
advantage of our model is its higher performance than other
methods. To further validate the effectiveness of the pro-
posed method, we performed an ablation analysis. In Tab. 2,
we can observe that ablation results for a DeepLabv3 model
and a pyramid transformer model are compared to the full
PtDeepLab model, which demonstrates the effectiveness of
the improved transformer. The compelling advantage of our
model lies in the image segmentation section. We can main-
tain the crucial clean signal via a segmented mask, as shown
in Fig 3. Therefore, the novel proposed segmentation model
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successfully improves the performance of the already pro-
posed birdsoundnoise dataset.

VII.

CONCLUSION

In this paper, we propose a novel DeepLabV3+ Vision
Transformer model to remove the noise from the large-
scale BirdSoundsDenoising dataset. Based on the DeepLab
framework, the main body of PtDeepLab utilizes the pyra-
mid transformer backbone as an encoder to explicitly extract
more powerful and robust features. Extensive experimental
results demonstrate that the proposed model outperforms
many state-of-the-art methods, including CNN-based self-
attention methods. As for future work, we look forward to
evaluating DeepLavbV3+ Vision Transformer on other dense
prediction vision tasks to stimulate more novel ideas for
solving the visual task and demonstrate the strength of this
model as a vision backbone.
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