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ABSTRACT Traditional vision methods for solar cell defect detection have problems such as low accuracy
and few types of detection, so this paper proposes an optimized YOLOvVS model for more accurate and
comprehensive identification of defects in solar cells. The model firstly integrates five data enhancement
methods, namely Mosaic, Mixup, hsv transform, scale transform and flip, to expand the existing data set
to improve the feature training accuracy and enhance the robustness of the model; secondly, CA attention
mechanism is introduced to improve the feature extraction ability of the model; to address the problems of
different target defect classification and localization concerns, the detection head in the original model is
replaced with a decoupling head, which significantly improve the detection accuracy of the model without
affecting the convergence speed of the model. The results show that the optimized model achieves an mAP of
96.1% on the publicly available dichotomous ELPV dataset, and can identify and locate a variety of common
defects in the PVEL-AD dataset, while the mAP can reach 87.4%, an improvement of 10.38% compared
with the original YOLOVS model, which enables the model to perform more accurately while ensuring the

real-time requirement of solar cell surface defects detection task.

INDEX TERMS YOLOVS, solar cell, defect detection, coordinate attention, decoupled detection head.

I. INTRODUCTION
With the proposal of ““‘carbon peaking” and ““carbon neutral-
ity”’, the use of clean energy has attracted more and more
attention. Among them, solar energy stands out from many
clean energy sources with its advantages of safety, reliability,
low cost, and wide application range. At present, the use of
solar energy is mainly realized by converting solar energy
into electrical energy through silicon cells. However, due
to the sensitivity of its raw materials, the product is prone
to cracks, short circuits and black cores during production
process. Therefore, identifying the defects in the solar cell
production process through efficient detection means can
greatly improve the yield rate of solar cells, which is partic-
ularly important for improving the photoelectric conversion
efficiency.

Traditionally, the detection of surface defects of solar cells
mainly adopts manual visual inspection and machine vision
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detection based on industrial cameras [1], however, these
methods not only have a large workload and low efficiency,
but also are easily affected by the subjective factors of the
inspectors, resulting in missed and wrong detections. Since
1950, with the introduction of the concept of deep learning,
deep learning models represented by convolutional neural
networks have been widely used in the fields of image recog-
nition [2], [3] and natural language processing [4], [5], but
they cannot be directly applied to the detection of solar cell
defects. Mainly because (1) it is difficult to collect solar cell
defect images, and the amount of available data is small; (2)
there are many types of defects in solar cells, and the shapes
are different; (3) solar cell defect detection is susceptible to
background interference; (4)with the continuous training and
downsampling of the network, many small defect features
gradually disappear. These issues are all challenges to be
faced when detecting solar cell defects.

Recently, the networks used for target detection include
one-stage network SSD [6], YOLO and two-stage network
R-CNN, Faster R-CNN [7], etc. Among them, R-CNN and
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Faster R-CNN have high detection accuracy, but they are
slow, take up a lot of memory, and require a lot of computa-
tional resources. SSD for small target detection still needs to
be improved and can not be detected in real time like YOLO.
YOLO series models have greater advantages over several
other mainstream methods in terms of detection accuracy
and detection speed. The YOLOVS is not only the relatively
small model and superior performance among YOLO series,
but also achieves the best balance between accuracy and
speed of detection in many application scenarios. Especially
in recent years, different researchers have improved and opti-
mized YOLOVS5 according to their needs, and the improved
YOLOVS has performed very well in many fields.

After the above analysis and demonstration, the one-stage
network YOLOVS plays an important role in target detection
has a powerful detection real-time processing capability and
low hardware requirements for real-time detection. Based on
this, this paper proposes an optimized YOLOvS model for
the complexity and specificity of solar cell defects, which
can identify and detect various defects of solar cells more
accurately. The main contributions of this paper can be sum-
marized as follows:

1.Using the idea of combining Mosaic, Mixup, hsv trans-
formation, scale transformation, and flipping five kinds of
data enhancement, the data set is expanded without losing the
original feature information, and the robustness of the model
is enhanced;

2.Adding CA attention mechanism between the neck and
head of the model to enhance the model’s ability to select
important channel information and make the model’s local-
ization and target recognition ability more accurate.

3.The decoupling head is used to replace the original
YOLOVS detection head to solve the problem of conflict
between classification and positioning due to different con-
cerns, thereby improving the accuracy of detection.

The remainder of this paper is organized as follows, Part II
introduces some related work on detecting solar cell defects;
Part III mainly introduces the methods used in this paper;
Part IV analyzes the model method of this paper through
comparative experiments and ablation experiments; Part V
elaborates in conclusion.

Il. RELATED WORK

In recent years, detection methods based on machine vision
and computer vision have been continuously applied to the
detection of surface defects of solar cells [8]. In 2019,
the literature [9] designed a solar panel crack detection
device based on deep learning algorithms in Halcon image
processing software for the most common defects in the
solar panel production process, which can effectively detect
cracks in solar panels, reduce the rate of late defective
products, improve the production quality of solar cells,
and reduce energy waste and labor costs. However, the
detection accuracy and detection type of the method pro-
posed in this literature need to be improved. In the same
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year, the literature [10], edge detection and Hough transform
based image processing techniques were adapted for efficient
identification of faults. The processed image is subjected
to feature extraction and passed through a classification
algorithm for localization and identification of the type of
fault. Although the detection accuracy has been improved, the
computation is large and the detection speed does not meet the
requirement of real-time. In 2020, a novel structure-aware-
based crack defect detection scheme (SACDDS) is proposed.
Experimental results show that the proposed method can
completely extract crack defect in the inhomogeneously tex-
tured background, which is well effective and outperforms
the previous methods [11]. However, the method only inves-
tigates the detection of one defect type of cracks. It cannot
meet the actual production requirements of solar cell defect
detection. In the literature [12], an improved convolutional
neural network is proposed for the detection of defects in
inspection panels, and the model can achieve the recogni-
tion and detection of multiple defects such as broken grids,
open welds, and hidden cracks at the same time, but its
detection accuracy has more room for improvement. In 2021,
Zubair et al. [13] of the University of New South Wales in
Australia used a target classification neural network to detect
defects in solar cell PL images, but the network can only clas-
sify solar cell defects, and cannot accurately locate solar cell
defects. Wang et al. [14] of East China Normal University
proposed an automatic detection and classification method
for solar cell defects based on EL imaging. The team devel-
oped an unsupervised algorithm based on a recurrent neural
network, which can automatically detect defects based on EL
images. Defects and Classification. This method is the first
attempt to combine automatic defect detection with defect
texture classification. According to the experimental results
of various types of solar cells, the average uncertainty of this
method can reach as low as 5.15%, and the optimization rate
can reach as high as 98.9%. Although this method can save
a lot of time and cost waste caused by sample labeling, it is
difficult to meet the classification, recognition and detection
requirements for complex problems due to the randomness of
unsupervised learning. In 2022, Alaa et al. [15] proposed an
improved anomaly detection method for EL imaging of PV
cell surface defects based on Faster R-CNN, which integrates
lightweight channels and spatial convolutional attention mod-
ules. It can analyze crack defects in complex scenes more
effectively. In the same year, a series of improvements were
made to the YOLOVS model in the literature, and the accuracy
of the improved model for detecting solar cell defects was
substantially improved [16]. However, both methods are only
for three easy to detect defect types Finger, Black core, Crack,
and for other common types of detection still need to be
studied. In 2023, the literature [17] proposed a photovoltaic
panel defect detection method based on YOLOVS’s tiny target
prediction head (GBH-YOLOVS). Lightweight and detection
types also have limitations. An efficient Real-Time Multi
Variant Deep learning Model (RMVDM) is presented in this
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FIGURE 1. The number and location distribution of various defects.

article to handle this issue. The proposed model produces
efficient results with around 97% in defect detection and
localization with higher accuracy and less time complex-
ity [18]. However, this method uses a small data set and
can be fitted or overfitted. In the same year, literature [19]
was optimized on the basis of the Faster R-CNN model,
which combines lightweight channels and spatial convolution
attention modules, which can effectively identify and analyze
crack defects in solar cell complex data sets. At the same
time, the added clustering and loss functions are used to
improve the model’s ability to detect small target defects, but
the model only detects three common defects: cracks, black
corners, and broken grids.

According to the above research, it is found that there
are still many deficiencies in the detection of solar cell
defects.For example, 1) Since it is difficult to extract solar
cell defect images, the small amount of data is easy to cause
insufficient training and low accuracy; 2) There are many
types of solar cell defects, and the same type of defect has
different shapes, which is easy to misdetect and miss; 3)
The existing defect detection model of solar cells still has
problems such as poor recognition ability of target defects
and complex feature defects. These issues will affect the
reliability of industrial production, therefore, further research
is needed.

lll. METHOD

A. YOLOv5 OVERVIEW

There are four versions of YOLOvS, namely YOLOVSs,
YOLOv5m, YOLOvS], YOLOv5x [20]. The four models
have different depth and width parameters. The smaller the
network model, the lower the hardware requirements and the
easier it is to deploy. Therefore, this paper uses YOLOvS5s
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FIGURE 2. Training effect before and after data enhancement.

with the smallest network depth and width as the basic model,
and deepens and expands on this basis. YOLOvVS can be
roughly divided into three parts: Backbone, Neck, and Head.
Among them, Backbone adopts CSPDarknet53 architecture;
Neck is composed of Feature Pyramid Network (FPN) [21]
and Path Aggregation Network (Path Aggregation Network,
PAN) [22]; Head has a total of three detection heads.

B. HYBRID DATA AUGMENTATION

Figure 1 shows the number and location distribution of var-
ious types of defects in the data set PVEL-AD used in this
paper. It can be seen from the information in the figure that the
number of some defects is very sufficient, reaching more than
2000, but the number of some defects is very small, even less
than 10. In order to improve the overall detection accuracy,
it is ensured that each defect has enough sample size, improve
the ability of the neural network to identify each defect cate-
gory, this paper uses Mosaic data enhancement, Mixup data
enhancement [23], hsv transformation, scale transformation,
and flipping method to process according to the defect type
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and actual demand of solar cells The data set increases the
number of samples of various defects to improve the training
accuracy of the model and enhance the robustness of the
model.

Mosaic data enhancement is to randomly select four
images from the original data set for splicing, and then crop
them into an image of the same size as the original image to
complete the data enhancement.

As the network depth continues to increase, the sensitivity
of the network model to adversarial examples will decrease.
Therefore, this paper also uses the Mixup data enhance-
ment method to fuse two different images to complete data
enhancement to alleviate this problem. At the same time, this
method can also reduce the memory of wrong labels, thereby
enhancing the robustness of the model.

The hsv transformation can be enhanced from three angles
of hue, saturation, and brightness. It improves the richness
of the data set without destroying the key information in the
image, so that the YOLOvV5 model can see more data during
the training process, which greatly improves the It reduces the
computational cost and is a very practical data enhancement
method.

In this paper, we adopt the idea of combining five kinds of
data enhancement, and it can be seen from Figure 2 that the
optimized YOLOVS can increase the number of training sam-
ples by mixing data enhancement during the training process,
which solves the problem of easy fitting and overfitting due
to the small number of training samples for defect detection
to a certain extent and enhances the robustness of the model.

C. DECOUPLED DETECTION HEAD

In object detection, the conflict between classification tasks
and regression tasks is a well-known problem [24]. The rea-
son for the conflict is that classification and localization focus
on different points, among which classification focuses on the
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texture content of the target, while localization focuses on the
edge information of the target. Therefore, if the same feature
map is used for classification and positioning, the detec-
tion effect will be greatly reduced. However, in this paper,
YOLOVS is used to detect solar cell defects, not only for the
defect localization task, but also for the defect classification
task. As shown in Figure 3, the detection head of YOLOvS
is implemented directly through a 1x1 convolutional layer,
which is a coupled detection head with no separation of
the tasks of classification and regression, So the YOLOvVS
model also has the problem of classification and localization
conflicts. Wu et al. analyzed the two subtasks of classification
and positioning in the detection task for this problem [25], and
found that fc-head is more suitable for classification tasks,
and conv-head is more suitable for positioning tasks. With the
help of this idea, this paper improves YOLOVS by replacing a
new decoupling head and using different branches to perform
calculations, which can not only speed up the convergence
speed, but also improve the detection accuracy. The specific
structure is shown in Figure 4.

This decoupled detection head first passes through a con-
volution module with a convolution kernel size of 1x1,
a layout of 1, padding of 0, and a convolution kernel num-
ber of 256. This convolution module contains convolution
Multilayer, BN and SiLu activation functions, through this
convolution module, the number of channels can be unified
to 256. Then two branches are parallelized. Both branches use
a convolution module with a convolution kernel size of 3x 3,
a layout of 1, a padding of 1, and a number of convolution
kernels of 256. Then the first branch is connected with a 1x 1
convolutional layer to obtain a branch (cls branch) predicted
by this paper for the target category information, and the other
branch parallels two 1x1 convolutional layers to obtain a
predicted target A regression parameter branch(Reg branch),
a prediction branch (obj branch). The two branches complete
the defect localization and classification tasks separately,
solving the problem of conflicting localization and classifi-
cation tasks, thus improving the detection performance of the
model.

D. ATTENTION MECHANISM

In solar cell defect images, in addition to a large amount
of defect information, there is also a large amount of com-
plex background information. These complex background
information will undergo multiple iterations during the

71029



IEEE Access

S. Lu et al.: Solar Cell Surface Defect Detection Based on Optimized YOLOv5

Backbaone

Focus
¥ Neck

Head

Input { CBS J
P
. CBs }
R —
Mosaic ‘ a |
Mixup -
uansflt:;‘;lation ‘ &5 |
flip } )

Scale ‘ c3 |
transformation :

a
| _

Decoupled Detection
Head

Decoupled Detection
Head

Decoupled Detection
Head

[ ]

s = o | o sy

slice

slice
Focus = i Concat CBS

slice

e =| s l-l

FIGURE 6. Optimized YOLOv5s structure schematic.

convolution operation, resulting in a lot of interference infor-
mation, which affects the accuracy of detection. To solve
this problem, it is a good choice to introduce attention
mechanism. Currently, most of the attention mechanisms
of lightweight networks use SE [26] modules, but SE only
considers inter-channel information and ignores location
information. Although the later BAM [27] and CBAM [28]
try to extract location attention information by convolu-
tion after reducing the number of channels, convolution
can only extract local relations and lacks the ability of
long-distance relation extraction. But in 2021, an efficient
attention mechanism CA (coordinate attention) was proposed
in the literature [29], which can encode both horizontal and
vertical location information into channel attention, enabling
mobile networks to focus on a large range of location infor-
mation without excessive computational effort. At the same
time, the CA attention mechanism not only acquires inter-
channel information, but also considers direction-related
location information, which helps the model to better locate

71030

and identify targets, and is flexible and lightweight enough
to be simply inserted into the core structure of the mobile
network. Therefore, this paper introduces the coordinate
attention mechanism CA in the YOLOvVS model and adds it
between the neck and head of YOLOVS so that the network
model can focus on a large range of location information
without too much computation. Thus, the model in this paper
has better detection performance.

The CA module uses two pooling kernels with sizes (Hx 1)
and (1 x W) respectively to encode one-dimensional features
in the height and width of the input feature map, thus obtain-
ing two Feature map output in direction:

1 w
Zlm) = = > xelh, i) M
i=0
1 H
Zrw) = - > xel w) 2)
=0
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Among them, C represents the number of channels of the
input image, and H and W represent the height and width of
the input image.

Then send the output of the two feature maps to the con-
volution function with a weight of 1x 1. When the dimension
of the feature map drops to C/r, batch normalization can be
performed. Finally, after the Sigmoid activation function, you
will get The feature map f has a size of 1 x(W+H)xC/r, where
r is used to control the ratio of channel downsampling in
convolution.

f=o(Fi(78.22)) &)

The feature map f will be divided into two separate fea-
ture vectors on the channel, and can be transformed by two
1x1 convolutions and channel conversions respectively. The
converted size and input have the same number of channels
CxHx1 and Cx 1xW. After calculating activation function
Sigmoid, two attention weight graphs are obtained

¢ = (Fi (")) )
g" =0 (Fu (") )

Finally, after multiplying the original input feature map
with the two weight maps, the final output map is obtained:

yelis J) = xc(i, ) x g"G) x g7 ()) (©6)

IV. EXPERIMENT

A. DATA SET

This paper employed two currently publicly available solar
cell defect datasets. The first dataset is ELPV [30]created
and made public by Buerhop et al, This dataset contains
2624 samples of 300 x 300 pixel 8-bit grayscale images
extracted from 44 solar modules with different degrees of
functional degradation and defects, but this dataset does not
provide images with defect markers, only the data are clas-
sified according to the degree of defects as 0% defect-free
proportion, 33% probable defect proportion, 66% probable
defect proportion, and defect proportion 100% four types are
shown in Figure 7.

The second dataset is jointly released by Hebei University
of Technology and Beijing University of Aeronautics and
Astronautics the PVEL-AD dataset [31]. The dataset contains
1 class of non-anomalous images and images of abnormal
defects with 12 different classes, such as cracks (lines and
stars), broken grids, black cores, misalignment, thick lines,
scratches, chips, broken Corners and material defects. The
types of defects are shown in Figure 8.

B. EXPERIMENTAL CONDITIONS

The experimental environment of this research is Windows
10 operating system. The neural network framework uses
Pytorch1.11.0 to build the experimental platform, using GPU
RTX3090, CPUi5 128g, cuda version 11.3, and python lan-
guage environment 3.7. Batch size is set to 16, and Epoch is
set to 300 times.
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FIGURE 7. Samples of EL images of solar cells from ELPV dataset: a)
defect certainty = 0, b) defect certainty = 0.33, c) defect certainty = 0.66,
d) defect certainty = 1.

C. EVALUATION INDICATORS

The performance of the model is evaluated by Precision,
Recall and mean average precision (mAP), and the formula
for each metric is shown below:

.. TP
Precision = —— @)
TP + FP
P
Recall = ———— ()
TP + FN
1
AP = / PdR. ©)
0
N AP;
mAP = Zi=1 2 (10)
N

In the formula: Precision is the proportion of correct pre-
diction results; Recall is the proportion of all targets that are
correctly predicted; TP (true positive) indicates the number
of defects detected in the defective image, TN (true negative)
indicates the number of defects detected in the defect-free
image, FN (false negative) indicates the number of defects
detected in the defect-free image, and FP (false positive)
indicates the the number of defects detected in the defect-free
image. The AP value is the area of the P-R curve, and mAP is
the average value of all the corresponding solar cell surface
defect categories.

D. EXPERIMENTAL RESULTS AND ANALYSIS

1) ABLATION EXPERIMENT

In order to better and more comprehensively analyze the
performance impact of each module in the solar cell surface
defect detection model built in this paper and to verify the
effectiveness of each module structure, ablation experiments
were designed and trained in this paper, and the test results are
shown in Table 1: Each module and each optimization step
introduced in this paper effectively improves the accuracy
of the model, where the mAP is improved by 10.38% by
incorporating hybrid data enhancement, CA attention mech-
anism and decoupling head. The results show that this model
has been accumulated by various improvement methods, the
model accuracy has been gradually improved, and the model
has achieved a better detection effect.

2) ANALYSIS OF DETECTION RESULTS

After the model training is completed, the improved model
is evaluated by plotting the corresponding curves with appro-
priate smoothing through the metrics within the training log.
As shown in Figure 9, the comparison of the bounding box
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FIGURE 8. The morphology of 12 types of abnormal defects in the PVEL-AD dataset.
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FIGURE 9. Loss plots of two YOLOv5s detection models.

TABLE 1. Statistical results of ablation experiments.

Hybrid Decoupled

Original Data CA  Detection @31?(1; ) Innsief;se
Enhancement Head R0
v 77.02
v v 85.40 8.38
v v v 87.00 1.60
v v v v 87.40 0.40

loss values of the optimized network and the original network
is shown.

As can be seen from Figure 9, the loss values of the opti-
mized YOLOvVS model for both the training and validation
sets drop faster at the beginning of training. As the number
of iterations increases, it gradually smoothes out and the
inflection point appears earlier than the original YOLOvS5
model. Finally, the loss values of the optimized YOLOvVS
model for the training and validation sets are stable at around
0.0186 and 0.0197, respectively, which are lower than those
of the original YOLOVS at around 0.0189 and 0.0202 for
the training and validation sets. The results show that the
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TABLE 2. Performance comparison results of different models.

Models P% R%  mAPQ0.5(%)
YOLOv5s 90.60 78.13 77.02
SSD 79.80 89.42 75.36
Faster R-CNN  87.26  80.98 78.60
BAF-Detector \ \ 80.77
ours 91.34 91.32 87.40

optimized YOLOvVS model has faster convergence speed and
higher regression accuracy.

Figure 10 shows the mAP@0.5 curve of the original
YOLOVS and optimized model training. As can be seen from
the figure, the original YOLOVS has large ups and downs on
the first 100 Epoch iterations, but the optimized YOLOvS
becomes smoother at around 60 Epochs. The overall opti-
mized YOLOVS curve is always higher than the original
YOLOVS curve, which means that the detection accuracy of
the optimized YOLOVS model is generally higher than that
of the original YOLOV5 model, and the training curve of the
optimized YOLOv5 model is smoother, indicating that the

VOLUME 11, 2023



S. Lu et al.: Solar Cell Surface Defect Detection Based on Optimized YOLOv5 IEEEACC@SS

f — — —— s —

P

= = Ornginal YOLOvS |7
Improved YOLOVS

0 50 100 150 200 250 300
Epoch

FIGURE 10. Comparison of two YOLOv5s detection models mAP@0.5.
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FIGURE 11. Comparison of the average accuracy of the original YOLOv5 and optimized YOLOV5 algorithms for various types of defect

detection.

TABLE 3. Detection results of our model on ELPV dataset. 3) PERFORMANCE COMPARISON EXPERIMENTS
Models  P% R%  mAP@0.5(%) Based on the comparison with the original model, in order
-~ 93.97 9323 %61 to further 'vahd'ate the performance of the improved met'hod
proposed in this paper in solar cell surface defect detection,
we detected the optimized YOLOVS5 detection model together
detection performance of the optimized YOLOvV5 model is with several mainstream models such as SSD, Faster R-CNN,
higher than that of the original YOLOvVS model. and BAF-Detector [32] for solar cell surface defects and
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FIGURE 13. Visualization of partial detection results of YOLOv5s after optimization.

performed multivariate analysis on the detection results, and
the obtained data are shown in Table 2.

Also to verify the effectiveness of the model, it was trained
on the publicly available dichotomous dataset ELPV as well,
and the training results are shown in Table 3.

In this paper, P, R and mAP are used as evaluation indexes,
and IOU greater than or equal to 0.5 is a positive sample
and IOU less than 0.5 is a negative sample in the training
process. As can be seen from Table 2, the detection accuracy
of the optimized YOLOvVS model is improved by at least
6.63% compared with several other classical models. This
is because the models in this paper are optimized with full
consideration of the characteristics of the solar cell defect
data concentration target, through comparison test, can be
concluded that the optimized YOLOv5 model can meet the
requirements of solar cell surface defects higher detection
accuracy. And the mAP of the model can reach 96.1% when
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trained on the public dataset, which further verifies the effec-
tiveness of the optimized model. In addition, the optimized
model in this paper can accurately detect nine types of
defects, and the comparison of YOLOV5 detection accuracy
for each type of defects before and after optimization is shown
in Figure 11.

From the figure, it can be found that the optimized model
has greatly improved the identification and detection of some
defect types that are difficult to be detected by other models,
including the detection accuracy of star cracks from the orig-
inal 76% to 87%, and the detection accuracy of black corners
from the original 33% to 50%. The detection accuracy of the
remaining several defects has also been improved to a greater
or lesser extent. In general, the model has a detection accuracy
of more than 50% for the nine types of defects in solar cells,
and even the detection accuracy of five types of defects such
as black core and short circuit has reached about 95%.
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Several representative solar cell defect images are ran-
domly selected for detection, and the detection results of
the original YOLOVS5s detection model and the optimized
YOLOVS5s model are shown in Figure. Figure 12(a) shows
the detection results of the original YOLOvS5s model, and
Figure 12(b) shows the detection results of the optimized
YOLOvS5s model. From Figure 12(a), we can see that
YOLOVS5s has the problems of missed detection and low
detection accuracy under the interference of complex back-
ground. And in Figure 12(b), the optimized YOLOv5s model
in this paper reduces the leakage detection and improves the
detection accuracy. The comparison shows that the optimized
YOLOvV5s model has more accurate detection results, can
capture the key information of defects, and has better detec-
tion performance.

Finally, a variety of types of solar cell defect images were
selected for detection, and the detection results are shown in
Figure 13.

V. CONCLUSION

In this paper, an optimized YOLOVS solar cell surface defect
detection model is proposed for solar cell defects that are
difficult to collect, difficult to distinguish, easy to mis-detect
and miss detection, etc. The model achieves defect detection
at different scales by introducing a CA attention mechanism
and replacing the decoupling head to enhance the feature
extraction capability. Meanwhile, in order to make the model
detection ability more effective, this paper adopts a combi-
nation of five data enhancement methods, namely Mosaic,
Mixup, hsv transform, scale transform and flip, to improve
the accuracy of feature training and enhance the robustness of
the model. Finally, the comparison experiments and ablation
experiments show that the optimized YOLOv5 model not
only improves the mAP by 10.38% to 87.4% compared with
the original detection model, but also has significant adapt-
ability to accurately detect nine types of defects in solar cells.
Meanwhile, in order to further verify the effectiveness of the
model, its test mAP reached 96.1% on the public dataset.
It indicates that the model has a good application prospect in
solar cell defect detection. The direction of future work will
be to further optimize the model, further solve the problems
of imbalance of defect types in the dataset and difficulty
in detecting some defect types, and consider whether it is
possible to further improve the detection accuracy and speed
of the model by reducing the number of model parameters to
make the model more practical.
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