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ABSTRACT Sleep staging serves as a critical basis for assessing sleep quality and diagnosing sleep
disorders in clinical practice. Most existing methods rely solely on a single channel for sleep staging,
thereby neglecting the complementary nature of multimodal electrophysiological signal characteristics.
In contrast, the current multi-stream sleep staging network primarily utilizes electrooculogram (EOG)
and electroencephalogram (EEG) signals as inputs and efficiently fuses the extracted multimodal features.
However, the importance of motion information in electrophysiological signals is rarely investigated, which
could improve the classification performance. Moreover, recent sleep staging models have been plagued
by issues of overparameterization and suboptimal classification accuracy. Moreover, EOG and EEG are
non-Euclidean graph-structured data that can be effectively handled by graph convolutional networks.
To address the aforementioned issues, we propose an efficient graph-based multi-stream model named 4s-
SleepGCN, which combines biological signal features to classify sleep stages. In each single-stream model,
the positional relationship of the modal sequences is incorporated into the proposed model to enhance the
feature representation for sleep staging. On this basis, graph convolutions are utilized to capture spatial
features, while multi-scale temporal convolutions are employed to model temporal dynamics and extract
more discriminative contextual temporal features. The EEG signal, EOG signal, and corresponding motion
information are separately fed into the single-stream model comprising our 4s-SleepGCN. Experimental
results show that the proposed 4s-SleepGCN achieves the highest accuracy compared to state-of-the-art
methods in both the Sleep-EDF-39 dataset (92.3%) and Sleep-EDF-153 dataset (85.5%). Additionally,
we conduct numerous experiments on two representative datasets that demonstrate the validity of the motion
modalities in sleep stage classification. Also, the proposed single-stream network shows higher accuracy
(89.2% and 89.8%) in classification while requiring 33% fewer parameters. Our proposed 4s-SleepGCN
model serves as a powerful tool to assist sleep experts in assessing sleep quality and diagnosing sleep-related
diseases.

INDEX TERMS Sleep staging, graph convolutional networks, multi-stream networks, multimodal electro-
physiological signal, motion information.

I. INTRODUCTION

Human beings generally sleep for approximately one-third
of their lives. It is undeniable that high-quality sleep can
help protect the mental and physical health of an individ-
ual [1]. Over the past few decades, sleep disorders [2] such as
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insomnia, sleep apnea, sleep-disordered breathing, and circa-
dian rhythm sleep disorders have affected millions of people
worldwide and can be considered a growing epidemic [3].
Sleep disorders exhibit different incidences and characteris-
tics across various sleep stages. As a result, a large portion
of researchers [4], [5], [6], [7] employ sleep stage scoring
to objectively evaluate sleep quality and effectively assist in
the prevention and diagnosis of sleep disorders. Therefore,
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monitoring and analyzing sleep based on the observed differ-
ent stages of sleep throughout the night is highly desirable.

As of date, the analysis of polysomnography (PSG) is
considered a representative criterion for sleep stage scor-
ing [8]. PSG is a collection of various biological signals,
including the electroencephalogram (EEG), electrooculo-
gram (EOGQG), electromyogram (EMG), and electrocardio-
gram (ECG), which are recorded using attached electrodes
and various sensors placed on different parts of the body [9].
In particular, the consecutive 30-second sleep epochs from
the PSG recordings are utilized for performing sleep stage
classification epoch-by-epoch. EEG can be regarded as a
cost-effective, typical, and scientifically-proven solution for
monitoring and recording electrical activity during sleep.
Moreover, EOGs and EMGs are also considered essential sig-
nals for sleep analysis [10]. Therefore, sleep staging is mainly
scored manually by human experts according to the biological
signals of overnight PSG recordings [11]. Rechtschaffen and
Kales (R&K) [12] have proposed the only widely accepted
standard for delineating six sleep stages, which include wake-
fulness (W), rapid eye movement (REM), and non-REM
(NREM). Within NREM, there are further categorizations
into four sleep stages (S1, S2, S3, and Ss). Nevertheless, this
variability in sleep stage classification evaluation has led to
a need for standardization. To address this, the American
Academy of Sleep Medicine (AASM) [13] has revised and
updated guidelines, based on the R&K sleep stage criteria,
establishing them as a definitive reference for PSG assess-
ment. Specifically, a major change in the AASM manual is
the integration of NREM stages S3 and S4 into a single deep
sleep stage called N3. The AASM manual is widely utilized
for scoring sleep stages, encompassing both manual and
automatic classification. Manual sleep stage classification is
a labor-intensive, time-consuming, tedious, and error-prone
task [14]. In comparison, the reliable and high-accuracy
approach of automatically classifying sleep stages deserves
significant attention in sleep research.

Over the past decade, there has been an influx of auto-
matic sleep stage classification methods in relevant research.
These methods can not only effectively identify sleep stages
but also provide a basis for the diagnosis and prevention of
sleep-related disorders. In the previous conventional meth-
ods, hand-engineered features in the time domain, frequency
domain, and time-frequency domain are usually used for
automatic sleep stage scoring. For example, consideration of
feature extraction in the time-frequency domain is raised by
Tsinalis et al. [15] who reach the accuracy of 78.9% in sleep
stage classification. In addition, great progress in classify-
ing sleep stages has been made in machine learning-based
methods, e.g., Support Vector Machine (SVM) [16] and
Random Forest (RF) [17]. However, machine learning-based
methods often exhibit unsatisfactory performance, and more
significantly, these methods typically rely on prior knowl-
edge of sleep analysis. As the elapse of time, deep learning
techniques have become extremely mainstream in sleep
stage classification, which can be categorized into Recurrent
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Neural Networks (RNNs), Convolutional Neural Networks
(CNNs), and Graph Neural Networks (GNNs). From our
own perspective, the latest deep learning-based methods
for sleep stage classification are based on two concepts:
the single-channel EEG-based method and the multi-modal
physiological signals-based method.

A. SINGLE-CHANNEL EEG-BASED METHODS

Given the growing trend in the application of deep learn-
ing, recent studies have been focusing on the task of sleep
stage classification on EGG signals to achieve outstand-
ing performance, which can be roughly divided into three
main approaches, namely recurrent neural networks (RNNs),
convolutional neural networks (CNNs), and graph convo-
lutional networks (GCNs). RNNs [18] are considered to
be able to model the long-term contextual dependencies of
temporal sequences in EEG signals. More recently, specific
RNN-based methods [19], [20] that learn sequential features
from EEG signals have achieved success in automatic sleep
staging. In addition, the Long Short-Term Memory (LSTM),
a representative structure of RNN, has demonstrated great
effectiveness and is utilized in IITnet [21] to learn the transi-
tion rules among sleep stages. However, due to the long-term
dependence of the data on RNNs, the problem of gradient
disappearance or explosion is extremely prone to occur, lead-
ing to instability in training the model. In contrast, CNNs
have better parallelizability and have the ability to directly
extract sleep stage transition features from texture images
encoded from sleep stage sequences. The CNN-based method
proposed by Tsinalis et al. [22] demonstrates the ability to
reliably score sleep stages using a single-channel EEG signal.
Sors et al. [23] employ CNNs to extract appropriate fea-
tures directly from raw EEG. Fang et al. [24] design a novel
adaptive-boosting-based dual-stream network framework to
extract different modalities features of single-channel EEG
signals for sleep staging. In addition, a novel CNN framework
based on single-channel EEG signals, called SleepEEG-
Net [25], has been proposed for sleep stage evaluation using
extracted time-invariant features. However, most CNN-based
methods struggle to capture temporal dependencies from
EEG signals. To address this issue, several integrated sys-
tems (i.e., DeepSleepNet [26] and TinySleepNet [27]) have
been proposed, which combine CNN and RNN to simulta-
neously extract features in the spatial and temporal domains,
resulting in accurate models for sleep stage discrimination.
Considering that EEG electrodes are distributed in a non-
Euclidean space, CNNs and RNNs are limited in that the
grid data are used as model input and the connection between
spatial correlations between electrodes is ignored. GCNs [28]
have been shown to be powerful in modeling the topo-
logical relationship of EEG electrodes. In this regard, the
spatiotemporal graph convolutional network (STGCN) [29],
as one of the most advanced extensions of GCN-based
models, has exhibited outstanding performance in sleep
staging. A quintessential example should be cited that the
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TABLE 1. Representative EEG and EOG characteristics during different sleep stages.

Sleep stages EEG-characteristics EOG-characteristics
REM qu—amphtude, mixed-frequency EEG activity without K complexes or sleep Rapid eye movements.
spindles. (Resembles eyes open wake epoch)
Ny Low-amplitude, predominantly 4-7 Hz, mixed EGG activity. Slow, rolling eye movements.
Sleep spindles: a train of distinct 11-16 Hz waves (most frequently 12-14 Hz) with
N a duration between 0.5 and 2 seconds. Either slow eye movements or absence of slow eye
2 K complex: negative, well-delineated, sharp waveforms immediately followed by | movements.
a high-voltage slow wave, with a total duration of at least 0.5 seconds.
N3 Delta waves of high amplitude (greater than 75..V) and low frequency (0.5-2 Hz). | None
Eye-close wakefulness: sinusoidal alpha rhythm (8-13 Hz activity). Eye-close wakefulness: slow-rolling eye movements.
Wake : . .
Eye-open wakefulness: Beta wave(highest frequency and lowest amplitude). Eye-open wakefulness: rapid eye movements.

GraphSleepNet [30] utilizes spatial graph convolutions in
conjunction with interleaving temporal convolutions to
effectively capture the transition rules among different
sleep stages. Furthermore, Jiaetal. [31] have developed
a novel deep graph neural network named MSTGCN to
extract time-varying spatial and temporal features from
multi-channel brain signals, using the spatial topological
information between brain regions to distinguish differ-
ent sleep stages. However, these methods overlook the
significance of spatiotemporal relations in sleep staging.
To address this limitation, Li et al. [32] propose a com-
bination of dynamic and static STGCN, incorporating
inter-temporal attention blocks. This approach effectively
captures long-range dependencies among different EEG
signals and achieves superior performance in sleep stage
classification. Despite achieving better performance, single-
channel EEG-based methods are frequently limited by the
fact that a single fixed physiological signal is suboptimal for
distinguishing specific sleep stages.

B. MULTI-MODAL PHYSIOLOGICAL SIGNALS-BASED
METHODS

The multi-modal fusion strategy aims to integrate diverse
media types, capturing complementary information and
thereby enhancing the performance and robustness of learn-
ing [33], [34]. Sleep staging is a complex dynamic pro-
cess, where different sleep stages are classified based on
physiological signals that exhibit varying frequencies and
amplitudes at different time periods. Table 1 shows repre-
sentative EEG and EOG characteristics during different sleep
stages, based on information from existing studies [35], [36].
In the N> and N3 stages, the EOG waves exhibit a similar
pattern, whereas EEG, as a unimodal physiological signal,
provides valuable and specific characteristic information,
enabling better classification. In contrast, when classify-
ing the REM and N; stages, the EEG signal, which lacks
some key features, may lead to misclassification. There-
fore, the effective identification of different sleep stages
requires the integration of different physiological signals.
In order to harness the complementary potential of PSG
signals, researchers have turned to utilizing multi-modal
signals to enhance sleep staging models. For instance, a vari-
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ation of CNN [37] demonstrates that using multi-channel
data achieves better performance compared to single-channel
data. Dong et al. [38] apply a combination of DNN and
RNN to extract salient features from EEG and EOG signals.
Additionally, Andreotti et al. [39] highlight the advantages
of incorporating multi-modal PSG signals for sleep staging.
And the SeqSleepNet [40] achieves an overall classifica-
tion accuracy of 87.1% based on multi-channel signals by
relying solely on a hierarchical RNN. In a similar vein,
Chambon et al. [41] use a spatiotemporal CNN model to
capture modality-specific information from all multivari-
ate and multi-modal PSG signals. Phan et al. [42] employ
a multi-task CNN combining joint classification and pre-
diction framework to identify sleep stages. These methods
primarily focus on extracting the features from different PSG
signals individually and combining them by concatenation.
However, this is not sufficient to model complex relation-
ships between multimodal signals. As a result, recent works
have emerged that fully fuse multimodal feature informa-
tion to showcase the distinct contributions of each modality
in identifying specific sleep stages, such as SalientSleep-
Net [43] and SleepPrintNet [44]. Moreover, Jia et al. [45]
design a squeeze-and-excitation network to model the hetero-
geneity between different modalities. In the latest research,
MMASIeepNet [46] introduces an effective feature fusion
module to capture the relationships among different modal-
ities. MaskSleepNet [47] effectively combines CNN with
an attention mechanism to capture feature information from
different PSG signals, leading to a classification accuracy of
up to 85.0% on the Sleep-EDF-153 dataset. However, these
methods fail to consider coherent features of the PSG signals,
such as the speed at which different PSG signals change from
frame to frame. Essentially, comprehensive spatial-temporal
dependencies may be ineffectively captured.

After a thorough review of previous studies, we have
identified three main limitations that need to be addressed.
Firstly, the majority of existing multichannel-based methods
only consider the captured features from the EEG and EOG
signals and ignore the signal motion stream, which is not able
to obtain more comprehensive features. Secondly, current
multistream models for sleep staging are typically overpa-
rameterized to extract discriminative features from signal

70623



IEEE Access

M. Li et al.: 4s-SleepGCN: Four-Stream GCN's for Sleep Stage Classification

sequences, resulting in high model complexity and limit-
ing the development of multichannel-based sleep staging.
Thirdly, in current GCN-based approaches to sleep stag-
ing, there is a lack of adequate exploration of the semantic
information of signal sequences and long-range spatiotem-
poral dependencies are not well captured. To address the
aforementioned limitations, we propose a novel graph-based
multi-stream fusion model called 4s-SleepGCN for automatic
sleep staging. Our proposed model simultaneously fuses the
features of EEG signals, EOG signals, EEG motion, and
EOG motion within a unified GCN framework. Our proposed
model provides a better balance between performance and
parameter scale than some state-of-the-art models, achieving
the highest overall performance on two standard datasets.

Overall, the main contributions to this work can be sum-
marized as follows:

« To the best of our knowledge, we are the first to utilize
a multi-stream fusion strategy to facilitate the fusion
of EEG signals, EOG signals, and the correspond-
ing motion stream, which significantly outperforms the
state-of-the-art methods on two benchmark datasets
for sleep staging. Furthermore, the motion modality is
shown to be a beneficial addition to sleep staging.

o In each single-stream model, we utilize the position
embedding method along with spatial-temporal convo-
lutions to model spatial-temporal relationships effec-
tively and classify sleep stages.

o We propose a lightweight, single-stream solid baseline
that is more potent than most previous methods. We hope
that the solid baseline will be helpful for the study of
automatic sleep staging.

e On the Sleep-EDF-39 and Sleep-EDF-153 datasets, our
proposed 4s-SleepGCN outperforms both single-stream
and two-stream models. The experimental results under-
score the importance of multiple information. Our
proposed model addresses the current deficiencies of
multi-modal learning in sleep staging, paving the way
for multi-modal learning in sleep stage classification.

The remainder of this paper is organized as follows:
Section II elaborates on the proposed 4s-SleepGCN and
explains its components in detail. Next, the dataset used and
the experimental settings are described in Section III. Mean-
while, Section III verifies the effectiveness and advantages
of the proposed model using two publicly available datasets.
In Section IV, we discuss our proposed approach formally.
Finally, Section V concludes this work and offers insights into
future research directions.

Il. METHODOLOGY

In this article, we propose a multi-stream framework to
fuse the spatial information of two different PSG signals
(i.e., EEGs and EOGs) and the motion information of
their sequences to obtain a powerful sleep staging model.
Accordingly, in this section, we present the architecture and
components of our proposed network in detail. The proposed
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network consists of four functional modules: encoder, posi-
tion embedding, graph convolutional network module, and
temporal modeling module. Finally, a multi-stream feature
extraction strategy is introduced to promote the sleep stage
classification task.

A. NETWORK ARCHITECTURE

Inspired by the success of the two-stream framework and
graph convolution [48], we design a graph-based multi-
stream network to classify sleep stages from different per-
spectives. In Fig. 1(a), the PSG data is preprocessed to
obtain EEG sequence, EOG sequence, EEG motion, and EOG
motion information. Subsequently, the four data are respec-
tively fed into the SleepGCN network to obtain the softmax
scores. As described in [49], the weighted average method
has been successfully applied in the field of fusing clas-
sification results and can further improve the classification
results. Therefore, The prediction of sleep stage classifica-
tion is calculated by the weighted summation method of the
four softmax scores. Fig. 1(b) illustrates the architecture of
the SleepGCN. Among them, the input signal sequence is
composed of T frames, and the sleep information contained
in each frame is composed of the number of electrodes (V)
and the number of channels (Cy) with dimensions Cy x N,
which can be represented as an input tensor with the shape of
CoxT xN,where Cy is equal to 3. Then we use two fully con-
nected layers to encode the position to a dimension of 64 (C1)
and then merge it with the position of the same dimension to
obtain the new input for 128. The GCN module is adopted to
capture long-range spatial dependencies. In order to mitigate
the prevalent issue of over-smoothing encountered in most
GCN-based models, which has been documented in previous
studies [50], we employ ReL.U activation functions for each
GCN block of our proposed model. By applying activation
functions after each GCN block, our classification network
can effectively capture complex patterns in the PSG graph
data and preserve the expressive power of the node repre-
sentations, enhancing the model’s ability to perform accurate
sleep graph classification. The temporal modeling module
uses different dilation convolutions to effectively aggregate
contextual information. The Global Average Pooling (GAP)
layer is introduced to aggregate spatio-temporal features and
pool feature maps of distinct samples to a similar size of
1 x 1 x 512. Finally, the softmax layer is used to obtain
probabilities for the sleep stage. Each module is presented
separately in the following subsections.

B. ENCODER

Since sleep staging based on PSG data can be formulated as
a graph modeling problem, the raw PSG sequence of sleep
staging can be represented as an undirected graph G = (V, E)
with N electrodes and T frames, including a node set V =
{V1, Vo, .-, Vn}ofelectrodes N and E is the edge set repre-
senting the connection between the electrodes captured by an
adjacency matrix A € {0, 1}V*N . A denotes the relationship
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FIGURE 1. The proposed network architecture for sleep staging. (a) lllustration of the overall architecture of the multi-stream fusion sleep staging
network (4s-SleepGCN). The scores of four streams are fused to predict the final sleep staging; (b) Overview of the SleepGCN. The network consists of an
encoder, a position embedding, three graph convolutional network (GCN) modules, a temporal modeling module, and a global average pooling (GAP)
layer. Cy, T, and N denote the number of channels, sequences, and electrodes of input data, respectively. Using the encoder gives a dimension of 64 (C;),
which is the same dimension as the position. For the GCN module, the output channel numbers are 128, 256, and 384. The temporal modeling module is
used to extract the temporal feature from PSG sequences. The final output channel becomes 512 through the GAP layer. We also use the batch

normalization and activation function for each block of the model.

between the electrodes, where initially A; ; = 1 if there is a
functional connection between electrodes i and j, and O oth-
erwise. The PSG signal sequence can provide the coordinates
of each electrode in graph convolutional networks, which can
be described as X € RT*NXC Therein, N denotes the total
number of electrodes in a frame, T is the number of frames
in the raw signal sequence, and C represents the coordinates
of all electrodes in the entire frame sequence. We denote all
electrode features as a feature set X, which can be represented
as a matrix:

X = {Xm eRC0|neN;teT} (1)

where the electrode of type n = {1,2,---N} at time t =
{1,2,.--T} generates the dimensional feature vector X, ;.
Our goal is to employ the encoder including two fully con-
nected (FC) layers to encode the original position information
into a high-dimensional space, which can be described as
follows:

X' = ReLU (g (ReLU (g - X + k1) + k)) e R1  (2)
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where g € R€XC1 and g € RE1*C1 denotes weight matrices.
k1 and ky are the bias vectors. We use the ReLU function as
the activation function. In this work, the higher order infor-
mation by encoding instead of the original position is used as
input to improve the ability of personalized expression.

C. POSITION EMBEDDING

Position embedding is a widely employed technique for cap-
turing location information within sequences. It has shown
successful applications across various domains, with particu-
lar effectiveness in natural language processing. Since EEGs
and EOGs are time-series data, the sequential relationship
between frames affects the meaning of the entire signal.
Considering only the coordinate information of the electrodes
and the graph structure of the biosignals, it is difficult for
the model to capture the sequential relationships between
different time steps in the signal, which may result in sub-
optimal classification performance. Therefore, the absence
of the position relationships of sequences could weaken the
classification ability of sleep stage models. To address this
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GCN Module Inputs
TxXNXC
[ I
[lxlcnnv] [lxlconv] [1x1c0nv] [lxlconv]
TxNXxC/y TxNxC/y [rxNxcry | rxnxerr
Temporal Temporal
Pooling Pooling
1xXNXxC,
Q LxNxery Pairwise v
Subtraction il
TXNXN cony
)
x NXN' XT
Softmax
TXNXN /D) TXNxC
TXNxC

FIGURE 2. The architecture of the GCN module. The input feature map is
used as the input signal with dimension T x N x C, where T, N, and C are
the number of frames, electrodes, and channels, respectively. We set the
reduction rate y to 8 in our work to extract compact representations. ®
denotes matrix multiplication operation, ® denotes the elementwise
summation, and © denotes element-wise multiplication.

issue, position embedding is applied in our model to incor-
porate positional information in the model input, which can
better capture the sequential relationships between different
time steps in the sleep signals, leading to improved sleep
stage classification performance. Inspired by the previous
works [51], [52], two one-hot vectors are applied to charac-
terize the position relations of electrodes and frames. In frame
sequences T = {1, T», --- , T\y}, the w' frame T, is denoted
by a one-point vector, where the w dimension is set to one
and the others are zero. As for the same operation of the
frame sequences, we proceed to obtain a one-hot vector as
T,, for the electrode sequences. Similar to the encoding of the
inputs according to Eq. 2, the embedding representation in the
electrode and frame sequences can be expressed as N}, € R
and T, € R, respectively. Subsequently, the embedding
vectors in the frame- and electrode- dimensions are fused
and concatenated with the original features X’. Finally, the
output feature maps X” € RZC1*NxT can be obtained by the
concatenation operation —, as given in Eq. 3. Notably, we use
the original position as the residual embedding to make the
position encoding information explicitly.

X" = (N,+T,) X' 3)

D. GRAPH CONVOLUTIONAL NETWORK MODULE

Indeed, capturing long-range dependencies of PSG sequence
data is crucial for sleep staging. Inspired by the idea
of semantics-guided neural network [51] and non-local
block [53], we adopt the GCN module (see Fig. 2) to extract
correlations between electrodes, thereby capturing rich fea-
tures of sleep stages from PSG data to achieve sleep staging.
More specifically, the similarity between the electrodes in
the feature space is used to construct the sleep graph. The
long-range weight can be modeled by the pairwise similarity
between every two electrodes a™ and b in the same frame
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Temporal Modeling
Module Inputs
l I I l
[lxlcoan [lxlconv] [lxlcoan [lxlcoan
| I
1 X 3 conv 1 x 3 conv 1 X 3 conv Maxpooling
dilation = 1 dilation = 2 dilation = 3 3x1

FIGURE 3. The architecture of temporal modeling module. In order to
lower the computational costs due to the extra branches, we fix kernel
sizes at 1 x 3 and use different dilation rates for larger receptive fields.
Meanwhile, the 3 x 1 max-pooling layer is used to capture the most
salient feature.

T, which is defined as follows:
/ T
fla,b)y=9¢ (X)) NX}) 4

where ¢ and ) represent two transformations of the original
features. Since the long-range transformed feature f (a, b)
characterizes only the long-range spatiotemporal relationship
of the electrode pair, we use the following form to define the
relationship between shared bias on the channel dimension:

Ba.b) =8 (o (TP (X)) - B (TB(X))  5)

therein, the function of temporal pooling TP is to aggregate
temporal features, whereas in our work we use mean pooling.
The § € RT*C/8 o € REXC/8 and B € RE*C/8 are three
linear embedding functions implemented by the 1 x 1 con-
volutional layer. The distances along the channel dimension
B(---) € RVX¥XT yges the nonlinear transformations to
model the topological relationship on the channels. Further-
more, we use the bias for attention score calculation to update
the weighting information. We update the weights using an
overall attention score that is the sum of the two compo-
nent weights, thus the updated weights can be formulated as
follows:

Outputc = X" © (o (f (a, b) + B (a, b))) (6)

where © is the element-wise multiplication. o is the softmax
activation function. X" and Outputg denote input and output
feature maps.

E. TEMPORAL MIODELING MODULE

The duration of the different sleep stages varies. Therefore,
temporal modeling is also essential for sleep staging. Current
methods [54], [55] still use temporal convolutions with a
single fixed scale to perform temporal modeling. The feature
information obtained from distant frames is very limited, and
the long-range temporal dependence is not well captured,
which affects the accuracy of sleep stages. It is not opti-
mal to use temporal convolutions with a fixed kernel size
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to deal with the problem of sleep staging. Consequently,
the multi-scale temporal features extracted by convolution
kernels with different scales are fused to better model the
temporal topological features. The difference from the previ-
ous method is that we use four parallel temporal convolution
branches to achieve temporal modeling, as shown in Fig. 3.
In each branch, we introduce a bottleneck architecture [56]
that uses 1 x 1 convolution to reduce the computational cost
and thus speed up the training and model inference. In addi-
tion, the first three branches of the model utilize temporal
convolutions with a kernel size of 1 x 3, employing different
dilations [57] to analyze short-term and long-term temporal
dependencies, thus obtaining multi-scale temporal receptive
fields. In the final branch, a 3 x 1 max-pooling layer is
utilized to extract the most important features. Finally, we use
a concatenation strategy to fuse the features. In conclusion,
the temporal modeling module is proposed to extract richer
temporal features from the physiological signal sequences,
which can be used to capture the temporal dependencies
between sleep stages and distinguish the different duration
dynamics.

F. MULTI-STREAM FUSION

In this work, we utilize multi-stream fusion strategies to
model the first-order information (EEG and EOG signals)
and the corresponding motion information for sleep staging.
In the Sleep-EDF dataset, the sequence of electrode motion
information can be obtained by calculating the difference of
the same electrode between two consecutive frames, typically
in terms of the differences in the coordinates of EEG and EOG
electrodes. The position of the electrode of the human brain
can be defined as V,, ; {g € N, t € T}, where N and T denote
the number of electrodes and the number of frames of the
signal sequences, respectively. The g represents the electrode
in the frame ¢. As for the motion information, the position
difference of the same electrode in two consecutive frames
can be calculated to obtain a sequence of electrode motion
information, namely the displacement information. This dis-
placement information can then be used as an additional
input feature to help the model learn dynamic features. The
sequence of electrode motion information M for electrode
g in frame ¢ is obtained by subtracting the position of the
electrode in the next frame 7+ 1 from its position in the current
frame ¢, which can be expressed as follows:

M = Vers1 — Ve ™

Therein, V, ;41 is the position of the electrode g in frame
t + 1. M is a vector representing the motion of the electrode
between the two frames. Finally, the EEG, EOG, and corre-
sponding motion information are fed into four streams and
fused to classify different sleep stages.

lll. EXPERIMENTAL RESULTS

In this section, the effectiveness of the proposed approach
is evaluated using two publicly available datasets. The first
subsection provides a comprehensive description of the
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TABLE 2. Details of the number of sleep stages in the sleep-EDF-39 and
sleep-EDF-153 datasets.

Dataset w N1 N2 N3 R Total
Sleep-EDF-39 7927 2804 17799 5703 7717 41950
Sleep-EDF-153 65951 21522 69132 13039 25835 195479

Sleep-EDF-39 and Sleep-EDF-153 datasets, along with the
experimental setups employed in this study. Subsequently, the
metrics utilized to evaluate the performance of the sleep stage
model are explained. Finally, we present the performance
results of our proposed model and discuss its effectiveness
in comparison to other state-of-the-art models.

A. DATASET AND EXPERIMENTAL SETTINGS

1) SLEEP-EDF-39 AND SLEEP-EDF-153 DATASETS

The Sleep-EDF-39 and Sleep-EDF-153 datasets are two ver-
sions of the Sleep-EDF dataset [S8]. The Sleep-EDF-153
dataset is an expanded version of the Sleep-EDF-39 dataset.
The two publicly available datasets are commonly utilized in
sleep staging research and are sourced from the PhysioBank.
The participants are enrolled in the sleep cassette (SC) and
sleep telemetry (ST) studies. In our experiment, we adopt
the PSG sleep recordings from SC. They record the PSGs
of healthy Caucasians without any sleep-related medications.
Each subject records PSG recordings during two subsequent
day-night periods, which include two scalp-EEG, horizon-
tal EOG, chin EMG, and event markers. Therein, EEG is
sampled from F),-C, and P.-O; electrde locations. In our
experiments, the F),,-C; EEG is used as the input EEG signal.
All EEG and EOG are acquired at a sampling rate of 100 Hz.
The sleep-EDF-39 dataset contains data files for 20 male and
female subjects (age 28.7 £ 2.9). The number of participants
in the Sleep-EDF-153 data set is 78, ranging in age from 25 to
101 years. Consistent with some baseline approaches [26],
[43], the Sleep-EDF-39 and Sleep-EDF-153 datasets in our
experiment contain 41950 and 195479 sleep epochs, respec-
tively, as shown in Table 2. Moreover, in two datasets, each
30-s recording is manually classified into eight stages (wake,
S1, 82, 83, S4, REM, movement, and unknown) according to
the R&K standard [12]. In the latest AASM manual [13],
movement and unknown stages are excluded and the S3 and
S4 stages are combined into one signal stage N3. Therefore,
sleep stages in the datasets consist of W (Wake), N1 (S1), N2
(82), N3 (S3 + S4) and R (REM).

2) EXPERIMENTAL SETTING

In our experiment, the proposed model is implemented on the
Pytorch platform with an RTX3060 GPU card. The network
is trained with a batch size of 64. The Adam optimizer
as an optimization strategy is used to train the model for
120 epochs. The learning rate is set to 1073 and is decayed
by 10 at the 30", 60, and 90" epochs, respectively. In our
work, we set the weights of the EEG stream, the EOG
stream, and the corresponding motion stream to 0.6, 0.6, 0.4,
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(a) Average Training Loss on the Sleep-EDF-
39 Dataset

08

(c) Average Training Loss on the Sleep-EDF-
153 Dataset

(b) Average Test Loss on the Sleep-EDF-39
Dataset

(d) Average Test Loss on the Sleep-EDF-153
Dataset

-
i

FIGURE 4. Training and test loss vs. a number of epochs of the proposed model. The horizontal axes and the vertical axes represent epochs and the value
of the loss function, respectively. The sub-figure(a) and sub-figure(b) show the training loss and test loss on the Sleep-EDF-39 dataset. The sub-figure(c)
and sub-figure(d) show the proposed model loss for training and testing on the Sleep-EDF-153 dataset.

and 0.4 for weighted fusion like other multi-stream GCN
methods. To improve the generalization performance and
reliability of our proposed model and reduce the risk of
overfitting, we implement dropout and label smoothing [59]
during the training process. Specifically, in our experimen-
tal setup, we set the dropout rate to 0.2 and employ label
smoothing for better calibrated classification networks with
a smoothing factor of 0.1. In addition, we use K-fold cross-
validation to evaluate the performance of our sleep staging
model. We follow a rigorous evaluation methodology, using
a 20-fold cross-validation scheme with K set at 20 to ensure
a fair comparison with baseline models. For this purpose,
subjects in the sleep-EDF-39 and sleep-EDF-153 datasets are
divided into 20 groups. Accordingly, experimental results for
20-fold cross-validation are obtained. Eventually, we calcu-
late the average of the results of all 20 test samples as the final
experimental results of our model, which provide reliable
performance metrics for assessing the performance of the
network. Moreover, we use the TensorBoard to monitor the
training progress to evaluate the performance of our proposed
model on two public datasets. As shown in Fig. 4, we observe
that the training loss gradually decreases and stabilizes over
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iterations. This trend indicates that our model is effectively
learning patterns and features from the training data.

B. EVALUATION METRICS

To provide a comprehensive evaluation of the performance
of the sleep staging model, we introduce several metrics
including accuracy, macro-precision, macro-recall, macro-
averaged F1 score, and Cohen’s Kappa coefficient. The
overall accuracy (ACC), macro-precision (Pjcr0), Macro-
recall (Ryacro), macro-averaged F1 score (MF 1), and Cohen’s
Kappa coefficient(x) are defined as follows:

K
1 TP + TN
ACC=—Z + 8)
K TP+ FP+FN + TN},

1 TP
ZEZ(TPHVP),. ©)

1 & TP
ZEZ(TPHFN)i (10)
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FIGURE 5. Visualization of the experimental confusion matrix obtained from 20-fold validation. We employ the Sleep-EDF-39 and
Sleep-EDF-153 datasets to obtain two confusion matrices. The sub-figure(a) and sub-figure(b) show the confusion matrix for the

Sleep-EDF-39 dataset and the Sleep-EDF-153 dataset, respectively.

ROC Mean Curve for Sleep-EDF-39 Dataset
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ROC Mean Curve for Sleep-EDF-153 Dataset
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FIGURE 6. The mean ROC curve and AUC values for different sleep stages based on 20-fold cross-validation. The ROC mean curves in

sub-figure(a) and sub-figure(b) respectively use the Sleep-EDF-39 and Sleep-EDF-153 datasets as the testing dat

the five sleep stages are included in the legend.

1 & 2 % TP
MFl:—Z (11)
K < \2xTP+FN +FP),
ACC —
=" T Pe (12)
1—pe

where TP, FP, FN, and TN stand for the true positives, false
positives, true negatives, and false negatives, respectively.
K represents the total number of epochs used in the cross-
validation, which is defined as 20 in this work. p, denotes the
hypothetical probability of chance agreement.

C. EXPERIMENT RESULTS
In this subsection, the effectiveness of the proposed model
is evaluated using the Sleep-EDF-39 and Sleep-EDF-153
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ts. The AUC val for

datasets. In Fig. 5, the confusion matrices for the pre-
dicted sleep stage of each dataset are visualized, showing
agreement with the expert results. Based on Eq. 8 and
the confusion matrices, the overall accuracy of our model
for the two datasets can be determined by calculation
and is equal to 92.3% and 85.5%, respectively. For the
Sleep-EDF-39 dataset, the macro-precision, macro-recall,
and macro-F score are 88.7%, 90.0%, and 89.1%, respec-
tively. Similarly, from the sub-figure(b) of Fig. 5, we obtain
the macro-precision, macro-recall, and macro-F score of
the Sleep-EDF-153 dataset as 81.9%, 80.4%, and 80.6%,
respectively. Furthermore, we use Cohen’s kappa coeffi-
cients to measure the degree of accuracy and reliability in
sleep stage classification. The Cohen’s kappa coefficients for
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TABLE 3. Comparisons of the validation results with different input
modalities on Sleep-EDF-39 and Sleep-EDF-153 datasets.

Methods Acc. 1 (%) Acc. 11 (%)
1s-SleepGCN (only EEG) 89.2 82.1
1s-SleepGCN (only EOG) 89.8 82.8

2s-SleepGCN 91.5 84.4
4s-SleepGCN 92.3 85.5

2s-SleepGCN represents using the EEG and EOG modalities.
4s-SleepGCN represents using EEG stream, EOG stream, EEG motion
stream, and EOG motion stream.

Acc. Iand Acc. II shows the overall accuracy for Sleep-EDF-39 and Sleep-
EDF-153 datasets, respectively.

Sleep-EDF-39 and Sleep-EDF-153 are 0.89 and 0.80, respec-
tively, indicating that the classification results have high
consistency with the actual distribution of sleep stages, being
within the standard of 0.8 ~ 1 [60].

Moreover, to investigate the effects of the classification
accuracy of different sleep stages from two publicly available
datasets, the receiver operating characteristic (ROC) mean
curves of different sleep stages are obtained to show the effect
of the proposed sleep staging model on the final classification
accuracy, as shown in Fig. 6. As expected, the ROC curves
of all sleep stages, except for the N; stage, converge towards
the upper-left corner of the graph. This convergence signifies
that our model exhibits high true positive rates (TPR) and low
false positive rates (FPR). This trend further demonstrates the
excellent predictive performance of our model in accurately
classifying different sleep stages. Nevertheless, the area under
the curve (AUC) values for each sleep stage (ranging from
0.8 to 0.96) on both datasets significantly exceed the value
of 0.75 in [61]. This substantial improvement in AUC values
underscores the superior performance of our model, which
holds high clinical value. These results indicate that our
proposed model not only outperforms random classification
but also demonstrates a noteworthy ability to differentiate
between positive and negative instances.

To further verify the advantage of the proposed
multi-stream fusion strategy in sleep staging, we test the
performance using four data modalities: single-stream model,
which uses either the EEG or EOG stream independently;
two-stream model, which fuses the EEG and EOG modalities;
four-stream model, which incorporates the EEG stream, the
EOG stream, the EEG motion stream, and the EOG motion
stream. Table 3 shows that the EOG modality performs
slightly better than the EEG modality in sleep staging. The
superiority of the multi-stream method over the single-stream
method is evident. Compared to the two-stream model,
we respectively obtain 0.8% and 1.1% improvement on two
datasets with the fusion of all four streams. This suggests
that the fusion of the EEG stream, the EOG stream, and the
corresponding motion stream can yield better classification
performance, thus becoming a better choice for sleep staging.

D. COMPARISON WITH STATE-OF-THE-ART MODELS
To evaluate the effectiveness of our proposed method,
we conduct a comparison between our proposed 4s-
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SleepGCN model and several baseline models using the
Sleep-EDF-39 and Sleep-EDF-153 datasets. The results of
this comparison are presented in Table 4. In comparison to
other baseline methods, our method reaches state-of-the-art
(SOTA) accuracy of 92.3% and 85.5%, outperforming the
baseline models by more than 1.3% and 0.2% on two public
datasets.

For some traditional machine learning-based methods, e.g.,
SVM and RF, the inability to adequately extract various
features often leads to poor results in sleep stage classifi-
cation. Deep learning methods have become a predominant
approach for sleep staging to achieve better performance,
including those using only CNNs, only GCNs, and a mixture
of CNNs and RNNs. Despite the fact that these methods
perform reasonably well in the sleep stage classification,
resulting in varying degrees of drawbacks. For instance, it is
difficult to adjust and optimize some mixed deep-learning
models with extensive parameters such as DeepSleepNet,
SeqSleepNet, and TinySleepNet. Moreover, there are also
methods, e.g., ResnetLSTM and SleepEEGNet, that con-
vert physiological signals into time-frequency images, which
often leads to partial information loss. This contrasts with
the previous work, where our model uses a multi-information
flow fusion method to capture the distinctive complementary
features of the original data. Moreover, the motion infor-
mation from EEG and EOG aids in further enhancing the
performance of sleep staging. Therefore, our proposed 4s-
SleepGCN achieves the highest accuracy compared with
other baseline models.

On the Sleep-EDF-153 dataset, the classification per-
formance of the W and N, stages is the best among all
sleep stages. Specifically, the F1 score of the W and N,
stages reaches 94.0% and 86.1%, respectively. Moreover,
for this reason, the N stage belongs to the sleep transition
period [66], which can be mainly misclassified into N, and
REM stages. The classification effect for the N; stage falls
short of expectations compared to the other sleep stages, but it
still achieves an optimal result compared to the other baseline
methods. This is sufficient to illustrate that our model can
effectively classify sleep stages in a large sample dataset.
Additionally, we can observe that the F1 score of N3 and
REM stages is worse than that of most baseline models. The
poor results attributed to the fact that N3 — N, and REM —
N, are also misclassified pairs. In classifying the N3 stage,
an important factor contributing to its lower classification
performance is the small proportion of N3 stage instances
within the Sleep-EDF-153 dataset, representing only 6.67%
of the total. The limited number of N3 stage examples in the
dataset poses a challenge for the classification model to effec-
tively learn the specific patterns and features associated with
the N3 stage. Due to this scarcity, our proposed model may
not be sufficiently familiar with the minority class, resulting
in suboptimal generalization and a drop in performance in
classifying the N3 stage. However, the precision of the N3 and
REM stages reaches 84.8% and 84.0%, respectively. There-
fore, our proposed model can to a large extent reproduce the
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TABLE 4. Performance of the Sleep-EDF-39 and Sleep-EDF-153 datasets compared with baseline methods.

Sleep-EDF-39 dataset

Sleep-EDF-153 dataset

Methods Overall results F1-Score for Sleep Stag(%) Overall results F1-Score for Sleep Stag(%)
Macro-F score(%) Accuracy(%) Wake N1 N2 N3 REM Macro-F score(%) Accuracy(%) Wake N1 N2 N3 REM

SVM [43] 63.7 76.1 71.6 13.6 85.1 76.5 71.8 57.8 71.2 80.3 13.5 79.5 57.1 58.7

RF [43] 67.6 78.1 749 225 86.3 80.8 73.3 62.4 72.7 81.6 23.2 80.6 65.8 60.8
SleepEEGNet [25] 79.7 84.3 89.2 52.2 86.8 85.1 85.0 77.0 82.8 90.3 44.6 85.7 81.6 82.9
U-time [62] 78.6 78.2 87.0 52.0 86.0 84.0 84.0 76.4 - 92.0 51.0 84.0 75.0 80.0
MultitaskCNN [42] 75.0 83.1 87.9 33.5 87.5 85.8 80.3 72.8 79.6 90.9 39.7 832 76.6 73.5
AttnSleep [63] 78.1 84.4 89.7 42.6 88.8 90.2 79.0 75.1 81.3 92.0 42.0 85.0 82.1 742
DeepSleepNet [26] 76.9 82.0 84.7 46.6 859 84.8 824 75.3 78.5 91.0 47.0 81.0 69.0 79.0
TinySleepNet [27] 80.5 85.4 90.1 51.4 885 88.3 84.3 78.1 83.1 92.8 51.0 853 81.1 80.3
SeqSleepNet [40] 79.7 86.0 91.9 47.8 87.2 85.7 86.2 78.2 83.8 92.8 48.9 854 786 85.1
ResnetLSTM [64] 73.7 82.5 86.5 28.4 87.7 89.8 76.2 714 78.9 90.7 34.7 83.6 80.9 67.0
MLTCN [65] 77.1 84.2 88.5 394 87.7 87.0 82.7 74.9 81.0 922 42.8 833 883 777
SleepPrintNet [44] 78.0 83.1 88.8 48.0 86.7 86.2 80.3 76.5 81.6 92.7 474 83.6 80.0 78.8
SalientSleepNet [43] 83.0 87.5 923 56.2 89.9 87.2 89.2 79.5 84.1 93.3 542 858 783 85.8
Lietal. [32] 89.0 91.0 92.1 79.7 93.2 88.2 91.6 81.1 85.3 929 66.6 86.0 75.2 84.6
4s-SleepGCN (ours) 89.1 92.3 92.0 759 95.6 91.0 91.2 80.6 85.5 94.0 68.4 86.1 70.7 83.7

The numbers in bold indicate the highest performance metrics among all approaches, while the result underlined represents the sub-optimal performance.

TABLE 5. Comparison of model parameters on Sleep-EDF-39 dataset.

Methods Param.(M) Acc.(%)
SleepEEGNet [25] 2.1 84.3
TinySleepNet [27] 1.3 85.4

U-time [64] 1.1 78.2
SalientSleepNet [43] 0.9 87.5
1s-SleepGCN (only EEG) 0.6 89.2
1s-SleepGCN (only EOG) 0.6 89.8
2s-SleepGCN 1.2 91.5
4s-SleepGCN 2.5 92.3

The Acc. denotes the accuracy for Sleep-EDF-39 dataset.

2s-SleepGCN represents using the EEG and EOG modalities.
4s-SleepGCN represents using EEG stream, EOG stream, EEG motion
stream, and EOG motion stream.

sleep scoring of human experts and thus provide assistance in
the diagnosis of sleep problems.

Besides, we show the comparative results in terms of
accuracy and model complexity (number of parameters) with
some SOTA methods to demonstrate the superiority of our
model. As can be seen in Table 5, the efficiency of our model
has improved compared to previous models for the Sleep-
EDF-39 dataset. At first glance, our proposed 4s-SleepGCN
has a larger number of parameters than SalientSleepNet.
However, our method has adopted the four-stream network
architecture, which consists of four backbones. In compari-
son, the proposed single-stream model based on the EEG or
EOG modality achieves relatively great results with an accu-
racy of 89.2% and 89.8%, respectively. Besides, the proposed
single-stream model requires only 0.6 million parameters,
which reduces the number of parameters by about 0.3 million.
This proves that our proposed single-stream solid baseline
can be introduced as a strong and powerful baseline for
sleep staging. The proposed 2s-SleepGCN and 4s-SleepGCN
require about 0.3M+ and 1.6M+ more parameters compared
to the SalientSleepNet, while improving the accuracy by 4%
and 4.8%, respectively. We conclude that the lightweight,
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single-stream solid baseline constructed in this study can
significantly reduce the number of model parameters while
ensuring classification accuracy. In addition, the two-stream
and four-stream proposals show better performance when
more parameters are requested.

IV. DISCUSSION
Sleep disorders have indeed risen in striking proportion
worldwide over the past 40 years [67], [68], [69]. Sleep
stage classification plays a critical role in the diagnosis
and treatment of sleep disorders. Automated sleep stage
scoring is expected to play a leading role in the diagno-
sis and treatment of sleep disorders in the future. In this
work, a graph-based multi-stream fusion model named 4s-
SleepGCN is proposed for sleep staging. EEG, EOG, and the
corresponding motion information are fused to enhance the
understanding of brain activity and aid in the identification of
different sleep stages. This confirms that the motion modality
holds significant potential for sleep staging and contributes
to improved accuracy and temporal understanding of sleep
stages. The proposed EEG or EOG single-stream method
with a lightweight network has demonstrated acceptable per-
formance on benchmark datasets, making it a promising
candidate for application in residential healthcare settings.
In clinical medicine, there is a need to accurately classify
different sleep stages and provide reliable results for special-
ists. The proposed multi-stream model holds the potential to
assist doctors in making accurate diagnostic and treatment
decisions, thereby improving patients’ sleep health outcomes.
The Sleep-EDF-39 dataset and Sleep-EDF-153 dataset
utilize in our study comprise practical data obtained from
patients. It is important to note that these datasets are
non-independent and non-identically distributed, meaning
there are significant variations in the sample sizes across
different sleep stages. Nevertheless, our proposed method
demonstrates robustness by achieving satisfactory classi-
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fication results for each sleep stage. This also under-
scores its effectiveness in handling the complexities inher-
ent in real-world patient data. In addition, our proposed
multi-stream model demonstrates remarkable classification
performance, particularly in the N, stage. Abnormalities
observed in NV, sleep features have been identified as potential
indicators for various sleep disorders such as sleep apnea
and parasomnias. The accurate classification of the N, stage
by our model holds significant promise in the identifica-
tion, diagnosis, and intervention of sleep disorders, ultimately
leading to enhanced sleep quality and overall well-being. The
exceptional classification performance of our multi-stream
model, particularly in the N stage, highlights its potential
as a valuable tool in sleep research, clinical assessments,
and interventions aimed at optimizing sleep architecture. Its
robust capabilities make it an asset in furthering our under-
standing of sleep-related phenomena and facilitating effective
interventions to address sleep disorders. By leveraging the
strengths of our proposed model, researchers and clinicians
can make significant strides in the field of sleep medicine,
ultimately improving the lives of individuals affected by
sleep-related issues. Furthermore, for the Sleep-EDF-153 and
Sleep-EDF-39 datasets, the ratio of the average training time
per fold (approximately 4.17 and 1.36 hours, respectively) is
smaller than the ratio of the respective data sizes (195k and
42k). In other words, the training time of our proposed model
does not increase proportionally to the increase in data size.
Therefore, our model can effectively manage the processing
of larger datasets without significantly increasing the training
time. This indicates that the proposed model demonstrates a
certain degree of scalability. Such scalability is particularly
valuable in real-world scenarios where the volume of data is
substantial.

However, there is still room for improvement. First, clas-
sifying sleep stages, especially the N; stage, can remain
challenging due to its transitional nature between wakeful-
ness and sleep, making correct recognition a tricky task.
Second, sleep staging typically relies on the subjective
interpretation and classification of physiological signals by
experts. Nonetheless, different experts may interpret the same
data and arrive at varying conclusions. To this end, there
may be variations in sleep patterns and characteristics among
individuals, necessitating an individualized approach to clas-
sification. Furthermore, existing sleep staging models are
typically processed offline, analyzing and capturing post-
sleep data. However, for the timely detection and intervention
of potential sleep issues, real-time monitoring is crucial.
This is particularly significant for patients with sleep apnea,
as real-time detection enables the adjustment of ventilation
pressure and treatment parameters, leading to optimized treat-
ment outcomes.

V. CONCLUSION

In this work, we propose a novel multi-stream fusion graph
convolutional network called 4s-SleepGCN to efficiently
classify different sleep stages by combining multi-stream bio-
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logical signal features. The positional relationship of modal
sequences is embedded into the sleep staging network to
improve the feature characterization capability, which can
better leverage the task of sleep stage classification. Besides,
the proposed 4s-SleepGCN model uses graph convolution
and temporal convolution to directly model spatial-temporal
dependencies from the PSG graph sequences. Graph con-
volution can effectively extract the long-range dependencies
between electrodes. Temporal convolution can learn richer
temporal features and aggregate multi-scale contextual infor-
mation. Furthermore, we model EEG, EOG, and the corre-
sponding motion information in a unified multi-stream net-
work framework for the first time, demonstrating the validity
of motion modality. Experiments on the Sleep-EDF-39 and
Sleep-EDF-153 datasets evaluate the feasibility and superi-
ority of our proposed model. Our proposed 4s-SleepGCN
model achieves significantly better accuracy on both of them
than the current state-of-the-art model. In addition, the pro-
posed lightweight single-stream network with only 0.6 mil-
lion model parameters achieves higher accuracy and smaller
network size compared to some baseline models, which pro-
vides a new perspective in the field of sleep staging and thus
can be used to monitor and track sleep in a home environment.
The proposed multi-stream model can be used as a powerful
tool to assist sleep experts in assessing sleep quality and diag-
nosing sleep-related diseases. The flexibility and adaptability
of our proposed model make it suitable for various appli-
cations beyond sleep stage classification, such as medical
applications, healthcare monitoring, and sports analysis.

In future work, we will focus on how to better understand
the complex characteristics of the Ny stage and improve the
classification accuracy of the N; stage. We will also intend
to collaborate with hospitals or research institutes to validate
the scalability and real-world applicability of our proposed
method. Furthermore, we aim to enhance the generalization
ability of our 4s-SleepGCN model, allowing it to be applied to
a broader range of domains beyond sleep stage classification.
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