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ABSTRACT Speech Emotion Recognition (SER) is a common aspect of human-computer interaction and
has significant applications in fields such as healthcare, education, and elder care. Although researchers
have made progress in speech emotion feature extraction and model identification, they have struggled to
create an SER system with satisfactory recognition accuracy. To address this issue, we proposed a novel
algorithm called F-Emotion to select speech emotion features and established a parallel deep learning model
to recognize different types of emotions. We first extracted the emotion features from speech and calculated
the F-Emotion value for each feature. These values were then used to determine the combination of speech
emotion features that was optimal for speech emotion recognition. Next, a parallel deep learning model was
established with the speech emotion feature combination as input to train and test for each type of emotion.
Finally, decision fusion was applied to the parallel output results to obtain an overall recognition result. These
analyses were conducted on two datasets, RAVDESS and EMO-DB, with the accuracy of speech emotion
recognition reaching 82.3% and 88.8%, respectively. The results demonstrate that the F-Emotion algorithm
can effectively analyze the correspondence between speech emotion features and emotion types. The MFCC
feature best describes emotions of neutrality, happiness, fear, and surprise, and Mel best describes emotions
of anger and sadness. The parallel deep learning model mechanism can improve the accuracy of speech
emotion recognition.

INDEX TERMS Speech emotion recognition, F-emotion algorithm, feature clustering, parallel model, deep
learning.

I. INTRODUCTION
Speech is an essential mode of human communication [1],
as it allows us to express not only our thoughts but also our
emotions. Acoustic cues present in speech can reveal various
emotional states, allowing a deeper understanding of the mes-
sage being conveyed. Speech emotion recognition involves
the identification and analysis of these cues within recorded
speech signals, and their mapping to the corresponding emo-
tional states. This process is crucial for facilitating effective
communication and intelligent human-machine interaction.

The associate editor coordinating the review of this manuscript and

approving it for publication was Jolanta Mizera-Pietraszko .

Speech emotion recognition has numerous applications in
fields such as medicine [2], education [3], criminal investi-
gation [4], and elder care [5].

Selecting features that can represent different emotions
is a major challenge in speech emotion recognition, as the
precision of feature selection greatly impacts recognition [6].
Luengo et al. [7] employed the J1 Criterion formula to com-
pute speech emotion feature parameters, parameter combi-
nations and evaluated them using feature fusion technology.
The findings showed that spectral features outperformed
the other features in emotion recognition. Chen et al. [8]
combined non-personalized speech emotion features based
on derivatives with traditional personalized speech emotion
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features to enhance recognition accuracy. Özseven [9] pro-
posed a statistical feature selection approach capable of filter-
ing out effective features and improving classification success
rates. Abdulmohsin et al. [10] designed a method for extract-
ing feature means and standard deviations, and the method
exhibited strong recognition ability. Farooq et al. [11] uti-
lized deep convolutional neural networks (DCNNs) to extract
speech emotion features and integrated feature selection tech-
niques to identify suitable and discriminative features for the
classifier, achieving an accuracy of 81.30% on the RAVDESS
dataset. Er [12] combined acoustic and deep features to gen-
erate mixed features, and employed the Relief F algorithm
to select more effective speech emotion features from the
mixed feature vector, obtaining an accuracy of 79.41% on
the RAVDESS dataset. Sönmez et al. [13] developed a new
lightweight effective SER method called 1BTPDN, which
has low computational complexity. Previous research has
indicated that there are variations in the types of acoustic
features exhibited by different emotions [14], necessitating
a separate analysis of the speech emotion features or feature
combinations that represent different emotion types.

To examine the relationship between speech emotion fea-
tures and different emotion types, this study used statistical
methods to analyze the degree of aggregation and relative
dispersion of each emotion type for each speech feature
parameter. F-Ratio [7] is a statistic commonly used in vari-
ance analysis to test for significant differences in mean
values between two or more samples. In speaker recog-
nition, F-Ratio has been successfully applied [15], [16]
to evaluate the discriminative ability of individual speaker
recognition parameters and their dependence on other param-
eters to achieve favorable outcomes. Poh et al. [15] improved
speaker recognition systems by normalizing F-Ratio and stan-
dardizing the data before selecting the decision threshold.
Chen et al. [16] used the phoneme-average F-Ratio method
to examine the contributions of different frequency regions
to Chinese speakers’ phoneme recognition, and applied it to
speaker recognition. Compared with mel-frequency cepstrum
coefficient (MFCC) features, this feature reduced the recog-
nition error rate by 32.94%.

Building on the principles outlined above, we pro-
pose an F-Emotion algorithm for the cluster analysis of
speech emotion features to examine the association between
speech emotion features and emotion types. The F-Emotion
algorithm can precisely describe the degree of clustering
of a particular emotion under a speech feature parameter
and its relative dispersion compared with other emotions.
The higher the degree of clustering, the more prominent
the feature, whereas the higher the dispersion, the easier it
is for the classifier to recognize it. To assess the impact
of speech emotion features or feature combinations on dif-
ferent types of emotions, a parallel deep learning model is
required to test the effect of emotion recognition on dis-
tinct speech emotion features or speech emotion feature
combinations.

However, current speech emotion recognition models use
a single network architecture to recognize multiple emo-
tions. Singh et al. [17] proposed a hierarchical deep learning
approach for the overall recognition of eight emotions using
the RAVDESS dataset. Xiao et al. [18] achieved an 81%
recognition rate in the Danish emotion corpus by testing a
multilevel classification recognition model based on a dimen-
sional emotion model. Zehra et al. [19] used an ensemble
classifier with a majority voting mechanism to recognize
multilingual speech emotions across corpora. Atila et al. [20]
proposed an end-to-end attention-guided 3D CNN-LSTM
model that predicts emotion in speech. Sun et al. [21] pro-
posed a deep neural network (DNN) decision tree support
vector machine-based method that trains different DNN
networks for different emotion groups, thereby reducing
confusion between emotions. However, most existing mod-
els ignore differences in feature combinations on the input
side and rely on single-channel deep learning models.
To improve the accuracy of speech emotion recognition,
it is crucial to establish a parallel deep learning model
that recognizes each emotion individually and demonstrates
the impact of different feature combinations on different
emotions.

In this study, we analyzed the impact of speech emotion
feature parameters on emotion classification, and established
a parallel deep learningmodelmechanism for speech emotion
recognition. This study makes several contributions to the
literature.

First, a novel feature selection algorithm called F-Emotion
is proposed. For each type of selected speech emotion fea-
ture, the F-Emotion value corresponding to each type of
emotion was calculated. Based on the calculation results of F-
Emotion algorithm, the effect of each speech emotion feature
on the recognition accuracy of different emotion types was
analyzed.

Second, a parallel deep learning model was established
for speech emotion recognition. It uses the optimal features
or feature combinations analyzed by F-Emotion as inputs
and produces separate recognition results for each emotion
category.

Finally, a voting mechanism is established for decision
fusion, whereby the emotion classification of each parallel
channel was assigned a different weight. The overall result of
speech emotion recognition was achieved by combining the
outputs of all parallel channels.

The article was organized as follows. In Section II,
the overall framework of speech emotion recognition is
introduced, and the derivation process of the F-Emotion
algorithm was described in detail. In Section III, the
calculation results of speech emotion feature parameters
and the recognition accuracy of the parallel deep learn-
ing model were presented. In Section IV, the proposed
Multi-DNN model was compared with other deep learning
models. Section V summarizes the research conducted in
this study.
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FIGURE 1. Framework of speech emotion recognition.

TABLE 1. Speech emotion feature parameters.

II. PROPOSED METHODOLOGY
Figure 1 shows the overall framework of speech emotion
recognition. First, speech emotion features are extracted from
the original speech, which includes prosodic features, spec-
tral features, and voice quality features. The F-Emotion value
of each speech emotion feature is then calculated for each
emotion category. Based on these values, the effect of each
speech emotion feature type on the recognition of different
emotion types was analyzed, and then the optimal feature
combination of each speech emotion type was identified.
Next, a parallel deep learning model was established with
a separate channel built for each emotion type. Using the
optimal feature parameter combination as input, each channel
outputs the recognition results for the corresponding emotion
type. Finally, a weighted decision fusionmechanismwas used
to obtain the overall recognition result. DNN was the module
chosen for each channel in this study.

A. EXTRACTION OF SPEECH EMOTION FEATURE
PARAMETERS
Acoustical-based emotion features, including prosodic fea-
tures, voice quality features, and spectral features, are
commonly used to represent emotion information in speech.
Prosodic features, also called supra-segmental features [22],
have a good generalization performance for speech emotion
recognition across different languages. Voice quality features
are used to evaluate the clarity, purity, and intelligibility
of speech [23], whereas spectral-based features describe
the correlation between changes in the shape of the vocal

tract and vocal movements [24]. In this study, we selected
23 acoustic features and analyzed their maximum, minimum,
mean, standard deviation, and range values to obtain 115 sta-
tistical features. The speech emotion feature parameters are
listed in Table 1 (see the Appendix for details).

B. F-EMOTION ALGORITHM
The F-ratio is a statistical measure that compares the variance
between groups to the variance within groups. In the domain
of speech emotion recognition, we devised an improved
algorithm called F-Emotion, which was tailored to recognize
emotions in speech. The F-Emotion algorithm was specially
designed to be applicable to this task. In the formula for F-E
motion,

µi denotes the mean of the ith emotion for a particular
feature parameter i= 1. . .mwherem denotes the total number
of emotion types. µ̄ denotes the overall mean obtained by
averaging all µi values for a particular feature parameter.
Fi denotes the difference between the ith emotion type

and the other emotion types in a specific speech emotion
feature. The difference between the ith emotion type and
other emotion types in a particular speech emotion feature
is directly proportional to the variance of µi and µj, and it is
given in Equation (1).

Fi ∝

m∑
j=1

(
µi − µj

)2 (1)

where j = 1 . . .m, where j ̸= i, and i, j ∈ [1,m].
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FIGURE 2. Parallel deep learning model.

It is also directly proportional to the variance of µi and µ̄,
and it is given in Equation (2) and (3).

F i ∝

(
µi −

−
µ

)2
, i ∈ [1,m] (2)

So

Fi ∝

(
µi −

−
µ

)2 m∑
j=1

(
µi − µj

)2 (3)

where j = 1 . . .m, where j ̸= i, i, j ∈ [1,m]
For each emotional feature of speech, it is necessary to

calculate the coherence of the speech samples. The coherence
of n speech samples in the ith emotion type and is given in
Equation (4).

n∑
k=1

(xik − µi)
2 (4)

where k = 1 . . . n.
Here, xik denotes the feature parameters of the kth speech

sample for the ith emotion type. n represents the number
of speech samples in the ith emotion type. Therefore, the
coherence of all speech samples is given in Equation (5)

m∑
j=1

n∑
k=1

(xkj − µj)2 (5)

where k = 1. . .n ,where j = 1. . .m.
Fi is inversely proportional to the coherence of the samples,

and it is given in Equation (6)

Fi ∝
1

m∑
j=1

n∑
k=1

(
xkj − µj

)2 (6)

where k = 1. . .n, where j = 1. . .m.
Therefore, under the ith speech emotion feature, the

F-Emotion formula is given in Equation (7).

Fi =

(
µi −

−
µ

)2 m∑
j=1

(
µi − µj

)2
1

m(n−1)

m∑
j=1

n∑
k=1

(
xkj − µj

)2 (7)

where k = 1. . .n and j = 1. . .m.
The F-Emotion algorithm can be described using pseu-

docode as follows:

F-Emotion Algorithm

Input: A sample feature set X={X1, X2, X3,..,Xn}
the sample sum N
the feature classes F
the emotion classes C

Output: F-Emotion
1 Calculate the feature type count Fn |F|;
2 Calculate the emotion count Cn |C |;
3 Calculate the sample count of every emotion En |E |;
4 for y = 1 to Cn do
5 Calculate the µ̄

6 End
7 for y = 1 to Cn do
8 for z = 1 to Fn do
9 Calculate the µi
10 End
11 End
12 for z = 1 to Fn do
13 for y = 1 to Cn do

14 Calculate the A =

(
µi −

−
µ

)2 m∑
j=1

(
µi − µj

)2
15 for y = 1 to Cn do
16 for arr = 1 to En do

17 Calculate the sum =

n∑
k=1

(xik − µi)
2

18 End
19 End
20 B = sum / ( Cn * En )
21 F-Emotion = A/B
22 End

TABLE 2. Summary of used datasets.

C. PARALLEL DEEP LEARNING MODEL
Most researchers have developed speech emotion recognition
models using a single network structure to identify mul-
tiple emotions simultaneously. However, these approaches
didn’t consider the varying levels of contribution that dif-
ferent speech feature results in different emotion recognition
outcomes [25], [26].

We proposed a new model that divides the problem into
several subchannels. Each subchannel is designed to identify
a particular emotion, resulting in n subchannels for a classi-
fication task with n emotions. The DNN blocks used in all
subchannels have identical structures. See Figure 2.
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For each type of selected speech emotion feature, the
F-Emotion value corresponding to each type of emotion was
calculated. The feature combination for each emotion was
established according to the allocation algorithm. The allo-
cation algorithm distributes feature combinations based on
the probability distribution to cover a threshold value of the
F-Emotion sum, denoted by th. To determine the optimal fea-
ture combination, the speech emotion features corresponding
to speechwere ranked in descending order by their F-Emotion
values, and the top M features were selected. The resulting
probability distribution value, denoted as δ, should satisfy
coverage threshold th. Assuming that there are N speech
emotion features, this formula is used to establish the optimal
feature combination for speech emotion recognition.

δ =

M∑
i=1

Fi

N∑
j=1

Fj

> th (8)

The aforementioned method was used for each subchannel
to develop the best feature combination for each emo-
tion type. This feature combination served as the input
parameter for training and testing the DNN model in each
subchannel, which produced a probability distribution of the
emotion recognition results. Subsequently, a decision fusion
mechanism was integrated into the backend of the parallel
deep learning model to combine the emotion recognition
results from all subchannels. In this decision fusion process,
a weighted votingmechanismwas utilized, with eachmodel’s
recognition results being given a weight of 10.

III. EXPERIMENT RESULTS
A. DATASET AND SETTING
1) DATASETS
The data came from the Ryerson Audio-Visual Database of
Emotional Speech and Song (RAVDESS) [27] and Berlin
Emotional Speech Database (EMO-DB) [28]. In the training
and testing process, a five-fold cross-validation method was
adopted, with 80% of the dataset used as training data and
20% as test data.

The RAVDESS dataset is an English language dataset
consisting of two modalities: audio and audio-video. In this
study, only 1440 audio files were used. The audio samples
were categorized into eight emotions and recorded by 24 pro-
fessional actors (12 male and 12 female). In addition, each
expression was recorded at two levels of emotional intensity.
The approximate time of the utterances in RAVDESS was
three-five seconds with a 48 kHz sampling rate.

The EMO-DB dataset is a German language dataset. It was
recorded by ten experienced actors and included 535 utter-
ances with seven emotions. The dataset contained five male
and five female actors who read predetermined sentences
to express different emotions. The approximate time of the
utterances in the EMO-DB was three-five seconds with a
16 kHz sampling rate. Further details are provided in Table 2.

2) SETTING
The DNNmodel comprises an input layer, hidden layers, and
an output layer with the incorporation of batch normalization
and activation layers. The initial input layer of the DNN
model uses a 312-dimensional numerical array as input data
and is composed of 256 filters that undergo batch normaliza-
tion. Dropout was applied at a rate of 0.15, and the output was
activated using a rectified linear unit (ReLU). The subsequent
layer consists of 64 filters that receive the output from the
preceding input layer. Dropout was applied at a rate of 0.3,
and the output was also activated by ReLU. The DNN model
utilizes the Adam optimizer with a learning rate of 0.001 and
a decay rate of 1e-3. The threshold value for Eq. (8) was set
to 93%.

The experiment was carried out on Windows 7, where the
computer hardware was configured as an Intel i7 CPU at
2.80 GHz, with 16 GB of memory. Python version 3.8 was
used as the programming language. The running process of
the program relied mainly on the CPU for calculation. GPU is
not used. The runtimes are approximately 10 min and 7 min
on the RAVDESS and EMO-DB datasets, respectively. The
CPU resource usage is approximately 60%.

B. F-EMOTION CALCULATION RESULTS
The speech emotion features for each emotion category were
calculated using F-Emotion on the RAVDESS and EMO-DB
datasets. The resulting scores were sorted in descend-
ing order. The results were presented in Tables 3 and 4,
respectively.

Based on the computation results, the MFCC feature had
the most significant impact on emotion categories, such as
neutral, happiness, fear, surprise, and boredom. The Mel
frequency spectrum (Mel) feature had the most significant
impact on emotion categories, such as sadness and anger.
Speech energy and sound pressure level (SPL) had the
greatest influence on the calm emotion category, while the
spectrum centroid had the greatest influence on the disgust
emotion category.

TheMel frequency spectrum is based on the characteristics
of human auditory perception and corresponds nonlinearly
to the frequency. MFCC is calculated by applying a dis-
crete cosine transform (DCT) to the Mel frequency spectrum.
In this study, 50 coefficients were used for the MFCC,
while 128 band parameters were used for the Mel frequency
spectrum. Compared with the Mel frequency spectrum,
MFCC features have lower inter-correlations and higher
discriminative power, which is advantageous for linear mod-
els. Therefore, the MFCC features have relatively high
F-Emotion values for most emotion categories. The spectrum
centroid describes the brightness of sound, with a darker and
deeper sound quality in the lower frequency range and a more
cheerful sound quality in the higher frequency range. Calm
emotion speech usually has low amplitude and frequency,
low speech energy, and low sound pressure level, which dis-
tinguishes it from other speech emotion features and results in
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TABLE 5. Speech emotion recognition results from 8-channel on the RAVDESS dataset.

TABLE 6. Prediction performance of the proposed model in terms of
Precision, Recall, F1_score, Support, Weighted score, and Un-weighted
score on the RAVDESS dataset.

high F-Emotion values. Furthermore, an algorithm for feature
combination allocation was used to establish the optimal
feature combination for different emotion categories. This
algorithm assigns feature combinations that cover a thresh-
old value of th for the total F-Emotion score, based on the
principle of probability distribution.

C. SPEECH EMOTION RECOGNITION RESULTS
Table 5 presents the recognition results for each emotion
category using eight channels on the RAVDESS dataset. The
recognition rate for fear was 85%, which was lower than
the rate for the calm channel at 87%, while the recognition
results for the other seven emotion types corresponding to
their respective channels were all optimal. After applying
decision fusion, the final overall recognition rate was 82.3%.

Table 6 presents the predictive performance of the sys-
tem, including metrics such as Precision, Recall, F1_score,
and Support. The model achieved macro accuracy of 82%,
micro, weighted, and unweighted accuracies of 82%, 82%
and 80%, respectively. Figure 3 shows the confusion matrix
of the recognition results, displaying the actual and predicted
labels for each emotion. The model demonstrated recognition
rates of over 85% for calm, angry and surprised emotions.
However, it had a lower precision for happy than for the other
emotion types.

The recognition results for seven channels in the EMO-DB
dataset are listed in Table 7. The recognition rate for the
neutral channel was 94%, which was lower than the 100%
recognition rate for the disgust channel. The recognition
results for the other six channels for the corresponding

FIGURE 3. Confusion matrix on the RAVDESS dataset.

emotion types were optimal. After decision fusion, the final
overall recognition result was 88.8%.

Table 8 presents the predictive performance of the system,
including metrics such as Precision, Recall, F1_score, and
Support. The model achieved macro accuracy of 90%, micro
accuracy of 89%, a weighted accuracy of 89% and 90%,
respectively. Figure 4 shows the confusion matrix of the
recognition results, showing the actual and predicted labels
for each emotion. The recognition rates of this model for
neutral emotion, happiness, sadness, anger, fear, disgust, and
boredom were 94%, 64%, 100%, 88%, 93%, 100% and 88%
respectively.

D. ABLATION STUDY
We demonstrated the necessity of the F-Emotion algorithm
and parallel deep learning model through ablation experi-
ments. For verifying the validity of our proposed module,
we removed the F-Emotion algorithm and parallel deep
learning model. The experimental results are presented in
Tables 9 and 10, respectively.

Table 9 compares the performance of our model with
the experimental results when adding either the F-Emotion
algorithm or the parallel deep learning model to the
RAVDESS dataset. The recognition accuracy of a single net-
work without F-Emotion was 70%. The parallel deep learning
model alone improved the accuracy by 7.0%, while the
F-Emotion algorithm alone improved the accuracy by 8.0%.
Finally, our proposed methodology improves the accuracy
by 12.0%.

Table 10 compares the performance of our model with
the experimental results when adding either the F-Emotion
algorithm or parallel deep learning model to the EMO-DB
dataset. The recognition accuracy of a single network without
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TABLE 7. Speech emotion recognition results from 8-channel on the EMO-DB dataset.

TABLE 8. Prediction performance of the proposed model in terms of
Precision, Recall, F1_score, Support, Weighted score, and Un-weighted
score on the EMO-DB dataset.

FIGURE 4. Confusion matrix on the EMO-DB dataset.

TABLE 9. Experimental results of ablation study onthe RAVDESSdataset.

TABLE 10. Experimental results of ablation study on the EMO-DB dataset.

F-Emotion was 83%. The parallel deep learning model
alone improved the accuracy by 4.0%, while the F-Emotion
algorithm alone improved the accuracy by 1.0%. Finally, our
proposed methodology improves the accuracy by 6.0%.

Experimental results show that the F-Emotion algorithm
and parallel deep learning model can improve the accuracy
of speech emotion recognition.

IV. DISCUSSION
This study introduces a new method for analyzing speech
emotion features and a novel mechanism for emotion recog-
nition. We developed the F-Emotion algorithm to calculate
the weight of each speech emotion feature to select the
optimal speech emotion feature combination. A parallel deep
learning model was established, where the optimal speech
emotion feature combination was used as the input, and the
recognition results for each emotion category were output
separately. Finally, a voting mechanism is implemented for
decision fusion, which yields overall recognition results. The
evaluation was conducted on two datasets: RAVDESS and
EMO-DB. The results showed that the proposed method
achieved a recognition performance that surpassed the results
reported in previous studies.

TABLE 11. Comparison of recognition results in previous work and in the
proposed method on the RAVDESS dataset.

Table 11 presents a comparison of the speech emotion
recognition results in our study and those in previous stud-
ies that also used the RAVDESS dataset [17], [29], [30],
[31], [32] and the present study. Singh et al. [16] proposed
a hierarchical deep learning-based approach that employs
hierarchical DNN models and achieved an accuracy of
81.2%. Shaqra et al. [29] proposed a hierarchical classifi-
cation model using the eGeMAPS feature set, achieving
74.0% accuracy. Kwon et al. [30] proposed an AI-assisted
deep-stride convolutional neural network (DSCNN) architec-
ture that learned salient and discriminative features from the
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spectrogram of speech signals. Tests of the network showed
an improved recognition performance. Patel et al. [31] used
a traditional auto-encoder to reduce audio dimensionality,
and achieved an 80.0% recognition rate using a Support
Vector Machine (SVM), decision tree, and CNN models.
Ibrahim et al. [32] recently proposed a novel bidirectional
reservoir computing model by adopting two parallel reser-
voirs when the same direction output from the different
reservoirs is fused together, achieving 75.3% accuracy.
In comparison, the proposed method achieved an accuracy
of 82.3% on the RAVDESS dataset, surpassing the best per-
forming approach by Prabhav [17] by 1.1%.

TABLE 12. Comparison of recognition results in previous work and in the
proposed method on the EMO-DB dataset.

Table 12 shows the speech emotion recognition results of
our study on the EMO-DB dataset and the results of previous
studies [33], [34], [35], [36], [37]. Sajjad et al. [33] proposed
an algorithmic transformation strategy that extracted distinc-
tive and salient features from spectrograms, and used a deep
bidirectional long short-term memory (BiLSTM) network
to learn and recognize long-term sequences in audio data.
Their method achieved a recognition accuracy of 85.6%
on the EMO-DB dataset. Jiang et al. [34] introduced a par-
allel convolutional recursive neural network (PCRN) that
utilized spectral features for speech emotion recognition, and
achieved an accuracy of 84.5% on the EMO-DB dataset.
Issa et al. [35] directly extracted features from raw audio
files and used an incremental approach to modify the initial
CNN model, achieving a recognition accuracy of 86.1% on
the EMO-DB dataset. Singh et al. [36] explored the use
of constant-Q transform based modulation spectral features
(CQT-MSF) and used a DNN-SVM framework, achieving
a recognition accuracy of 79.8% on the EMO-DB dataset.
Li et al. [37] proposed a new deep network architecture,
bidirectional long short-term memory with directional self-
attention (BLSTM-DSA). The proposed algorithm automati-
cally annotates the weights of frames using a self-attention
mechanism to improve the efficiency of SER, achieving a
recognition accuracy of 85.9%.

Our proposed method achieved the highest recognition
accuracy of 88.8% on the EMO-DB dataset, which was
2.7% higher than that of the best-performing method by
Issa et al. [35].

V. CONCLUSION
In this study, we proposed an F-Emotion feature selection
algorithm to calculate the F-Emotion value of the extracted
speech emotion features for each emotion category. Based on
the F-Emotion value, we analyzed the weight of each speech
emotion feature, or feature combination for each emotion
classification. We then determined the optimal combination
of speech emotion features for each emotion type. Based on
this approach, we established a parallel deep learning model
mechanism that inputs the optimal speech emotion feature
combination for each channel and assigns different weights
to the output emotion classification. A voting mechanismwas
then used to obtain the overall emotion recognition results.
We evaluated our approach on two datasets, RAVDESS
and EMO-DB, and achieved accuracy rates of 82.3% and
88.8%, respectively. These results demonstrate that using
the F-Emotion feature selection algorithm and parallel deep
learning model mechanism can improve the accuracy of
speech emotion recognition.

APPENDIX
Chroma_cens The normalization of

chromatographic energy, which
converts the speech signal into
the corresponding spectrogram
and performs normalization
processing.

Energy The loudness of the sound, also
known as volume.

Formants Frequencies produced by
physical vibrations of objects
that do not change in pitch.

Mel Mel spectrogram. The speech
signal is converted into the
corresponding spectrogram, the
data on which are utilized as
the feature of the signal.

MFCC Cosine transform is performed
after the Mel spectrogram is
obtained, and some of the
coefficients are taken.

Pitch The vibration frequency of the
vocal cords.

Shimmer abs The absolute value of shimmer.
Shimmer describes the change
of sound wave amplitude
between adjacent periods,
mainly reflecting the degree of
hoarseness.
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Short-time energy The sum of the squares of the
amplitude values of the frame
speech signal.

Sound pressure level The pressure level of a sound.
Take the common logarithm of
the ratio of the sound pressure
to be measured p to the
reference sound pressure p(ref)
and multiply it by 20. The unit
is decibels.

Spectral contrast The centroid of the spectrum.
Zero-crossing rate The number of times the speech

signal passes through the zero
point (from positive to negative
or from negative to positive)
in each frame.

ABBREVIATIONS
BiLSTM bidirectional long short-term memory
BLSTM-DSA Bi-directional Long-Short Term

Memory with Directional
Self-Attention

CQT-MSF Constant-Q transform based
modulation spectral features

DCNNs deep convolutional neural networks
DCT discrete cosine transform
DNN deep neural network
DSCNN deep strides convolutional neural

network
ESN Echo state network
Max maximum
Mean average value
MFCC mel-frequency cepstrum coefficient
Min minimum
PCRN parallel convolutional recursive neural

network
Ptp Range: The difference between the

maximum and minimum values
SER speech emotion recognition
SPL sound pressure level
STD standard deviation
SVM support vector machine
ZCR zero-crossing rate
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