IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received 24 June 2023, accepted 7 July 2023, date of publication 11 July 2023, date of current version 18 July 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3294334

== RESEARCH ARTICLE

Anomalous Sound Detection for Industrial
Machines Using Acoustical Features Related to
Timbral Metrics

YASUJI OTA", (Member, IEEE), AND MASASHI UNOKI, (Member, IEEE)

School of Information Science, Japan Advanced Institute of Science and Technology, Nomi, Ishikawa 932-1292, Japan
Corresponding author: Yasuji Ota (y_ota@jaist.ac.jp)

This work was supported by the Fund for the Promotion of Joint International Research (Fostering Joint International Research (B))
(20KK0233) and Grant-in-Aid for Transformative Research Areas (A) (23H04344).

ABSTRACT This paper proposes an anomalous sound detection (ASD) method that uses a combination
of timbral metrics and short-term features tailored to industrial machine faults to identify whether the
sound emitted from a target machine is anomalous. The timbral-feature-based ASD (TF-ASD) method
involves using five timbral metrics and two developed features as auditory features and a support vector
machine (SVM) for classification. We develop two types of short-term features to estimate the change
in the fluctuation of sound waves and pitch in terms of harmonics to improve the time resolution of
the timbral analysis. This combination of timbral metrics and our two short-term features is based on an
investigation of timbral association with industrial machine malfunction from the viewpoint of ‘“‘noticeable
difference in hearing™ that is the human ability to discriminate differences in sounds. We evaluated the ASD
performance of our method in terms of SVM classification using the MIMII (Malfunctioning Industrial
Machine Investigation and Inspection) dataset. The results indicate that the proposed method has excellent
classification performance with an accuracy of 0.984 on average for emitted sounds of 16 machine types and
models. This demonstrates that the combination of timbral metrics and our short-term features in accordance
with the “noticeable difference in hearing” is effective for ASD.

INDEX TERMS Anomalous sound detection, timbral metrics, industrial machine faults, support vector
machine.

I. INTRODUCTION However, there are practical issues with fault diagnosis

Daily maintenance of industrial machines is essential to
ensure safe operation for efficient production and business
management. Inspectors, who are in charge of the mainte-
nance of industrial machines, use their knowledge to detect
anomalous situations by using their senses, i.e., sight, sound,
smell, and touch. Monitoring based on acoustics, i.e., hearing
is excellent due to its instantaneousness, wide angle of accep-
tance, and large dynamic range of sensitivity. Inspectors have
excellent skills in discriminating differences in sounds using
their “noticeable difference in hearing™.
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using human hearing due to ambiguous criteria and perfor-
mance variations that heavily depend on individual skills
and knowledge. Therefore, it is difficult to manage human
resources dynamically to balance workload and cost while
maintaining stable manufacturing. Therefore, the Japanese
government states their requirements for technologies for
automation solutions of operation and inspection in their
future vision, and anomalous sound detection (ASD) is
expected to help inspectors identify whether the sound emit-
ted from a target machine is anomalous [1].

One of the most well-known worldwide ASD competitions
for industrial machines is Task 2 of Detection and Classi-
fication of Acoustic Scenes and Events (DCASE) [2], [3].
In this task, a common dataset of operation sounds emitted
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from real industrial machines is provided for anomalous
detection. The basic ASD framework tends to be a cascade
of acoustical feature extraction from operation sounds and
machine-learning-based classification of anomalies using the
extracted features. As a result of this competition, several
promising classification methods have been developed based
on machine learning [4], [5], [6], [7]. Fundamental but
primitive analysis metrics, such as Mel-frequency cepstrum
coefficients or log-Mel energies, are generally used as acous-
tic features. Therefore, the development of acoustical features
could be seen as making relatively little progress compared
with that of machine-learning techniques.

Anomalous sound detection aims to develop computational
methods to detect anomalies that deviate from the spatial
or temporal regularity that the “normal” acoustical sounds
follow. Therefore, the approaches can be categorized into two
areas; one is to deal with outliers in acoustical-feature space
for detection. The other is to detect the anomaly change in
sound as its time series. In both categories, it is important how
to deal with features for efficient detection. In recent works,
temporal modulation features on the gamma-tone auditory
filterbank are used to detect outliers [8]. From the change
in time series perspective, meta-features are derived as 1-D
sequence to describe the local dynamics with arbitrary length
[9] or multivariate time series are projected to a lower dimen-
sional space with a space-embedding strategy [10]. These two
approaches are designed to capture abrupt change with rela-
tively low computational cost. We think that it is important
to develop practical common features that can represent the
local dynamics with different temporal resolutions and then
captures the temporal change that can detect incipient failures
using the common features. In this study, we focus on the
issues to pursue the common features of ASD on industrial
machines.

From the machine-fault-analysis point of view, diagnosis
methods have been proposed for detecting faults of specified
machine types or their parts, e.g., rotary machines or bearings,
by using perceptive features. One of these methods derived
a wide set of statistical features, such as mean, standard
deviation, skewness, and kurtosis of vibration signals, was
to feed an anomalous classifier of a support vector machine
(SVM) using vibration signature [11], [12]. A more intuitive
approach is mimicking human diagnosis. Acoustical features
related to timbre are important classifiers to detect anomalies
because timbre is a promising indicator of anomalous sound
perception. There have been several studies on acoustical fea-
tures regarding timbre. One used the difference of rotational
period of acoustic signals in the adjacent frame, which was
derived based on the discrete Fourier transform spectrum, as a
timbral feature [13]. Another method uses a combination of
timbre, roughness, and sharpness, and other audio metrics,
such as loudness and fluctuation strength. These metrics are
highly correlated with audible perception [14]. By specifying
the machine type or its parts, these methods statistically
discover the relation between observed perceptive signals and
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various machine faults using machine-learning techniques.
However, to address the factory inspection issue, an ASD
method that has an explainable decision criterion and is
widely applicable to primary industrial machinery is required.

When we consider the implementation of ASD to address
issues of industrial-maintenance workload, a human-centric
ASD method, with which the detection point matches what
anomalous sounds the inspector can hear from the target
machine, is substantial and practical. The following ques-
tion arises, ‘““What is the key to discriminating differences
in anomalous sounds from the perspective of timbre?” To
answer this question, we investigate using timbre as the key
to deriving related metrics and features for classification in a
signal-processing manner.

We, therefore, propose a timbral-feature-based ASD (TF-
ASD) method that involves the use of a combination of
timbral metrics (TMs) and two short-term features to identify
whether the sound emitted from a target machine is anoma-
lous. TF-ASD is comprised of timbral feature extraction from
sounds emitted from industrial machines, forming a proper
combination of the features to fit the machine’s property,
training with a combination of features, and classification
of anomaly based on the training model by incorporating
machine learning technology. To be a cogent approach for
users like inspectors, we focused on their “noticeable dif-
ference in hearing” from the sound emitted from industrial
machines. We investigated typical causes of malfunctioning
of four types of industrial machinery, then selected several
timbres that relate perception from the emitting sound of
malfunctioning from the “noticeable difference in hearing”
perspective. We used “onomatopoeia” [15] as a mediator to
bridge human ‘“‘noticeable difference in hearing” and their
auditory perception. We assume that inspectors intuitively
manipulate onomatopoeia to accumulate and exchange main-
tenance knowledge. Based on this assumption, an adequate
number of timbres plays an important role in classifying
machine anomalous sounds [16].

Based on the original investigation, we used five tim-
bral metrics (TMs), boominess, brightness, depth, roughness,
and sharpness, developed by the University of Surry. Since
the TMs express the overall characteristics with long-term
analysis, we developed two types of short-term features as
complementary characteristics for the TMs, the first feature
estimates the change in the fluctuation of sound waveforms
and the second feature estimates changes in pitch, in other
words, tone-height perception in terms of harmonics. To max-
imize the significance of applicable timbre-related features
for ASD to be associated with the human “noticeable dif-
ference in hearing”, four or five TMs are first selected to
fit the target machine type, and the short-term features are
added to the selected TMs to improve the time resolution of
the timbral analysis. The combination of TMs and short-term
features is incorporated to detect anomalous sounds emit-
ted from a target machine by using machine-learning
techniques.
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On the premise that both “normal” and “abnormal” oper-
ating sounds are already known, we verify the effectiveness
of the anomalous detection of timbral-related features as
binary classification performance. We incorporated a support
vector machine as the classification technique because SVM
classifiers perform well in high-dimensional space and have
excellent accuracy.

We then evaluated the TF-ASD performance of our pro-
posed method as an SVM classification assessment using a
publicly available industrial sound dataset. The evaluation
results showed that our proposed ASD method can provide a
stable classification performance with accuracy over 0.97 for
all four typical industrial types of machinery and demon-
strated our TF-ASD is superior to the recent conventional
method dedicated to bearing faults using sound quality met-
rics.

The rest of this paper is organized as follows. In Section II,
we briefly introduce TMs. In SectionIll, we present our
proposed method and the evaluation of its performance
in SectionIV. After discussing the evaluation results in
Section V, we conclude the paper in Section VI.

Il. TIMBRAL METRICS AND THEIR IMPLEMENTATION
Humans obtain information about their surroundings from
sound, i.e., auditory perception, and many psycho-acoustic
studies have been conducted to determine the relation
between acoustical analysis and timbre, which is a percep-
tual variable [17]. Since timbre is multidimensional, it is
separated into several attributes corresponding to adjectival
phrases, such as sharpness or roughness [18].

Many studies have been conducted on timbral modeling
and implementation of each timbral attribute as objec-
tive metrics [19]. In one seminal study, the University of
Surry developed timbral models in the Audio Commons
project, and these models are widely used in psycho-acoustic
research [20]. The algorithm is based on kinds of literature
describing exemplary computational models and subjective
experiments. Furthermore, it is useful for statistical analysis
in that the calculated metric can be dealt with as an indicator.

A. SHARPNESS

Sharpness, which is a metric related to sharp or shrill
sensation, increases in magnitude with shifting the center
frequency to a higher region. From this perspective, Zwicker
defined 1 acum as a unit of a narrow-band noise centered at
1, 000 Hz with a loudness level of 60 phon [18]. A sharpness
model was then constructed based on the acum and expressed
as

SN (2) g(2) 2 dz

(1)
f024B ark N’ dz

S =0.11

where S is sharpness, N'(z) is the loudness density in the
critical-band rate z, and g(z) is the weighting factor of S at
z. Loudness is the intensive attribute of an auditory sensation.
The loudness level of a sound, in phons, is the sound pressure
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level in dB of a pure tone of frequency 1kHz that is judged
to be equivalent in loudness [21]. From psycho-acoustic
experiments, the weighting factor was defined as unity (1.0)
in the frequency range up to 3, 000 Hz, and increased rapidly
up to four (4.0) for higher frequencies.

B. ROUGHNESS

Roughness, describing buzzing, harsh, raspy sound quality,
is strongly related to the change in the modulation frequency
of loudness [18], [22]. From studies on a sinusoidal model
approach, a roughness-calculation model was proposed [23].
This model is constructed from three elements based on the
assumption that a signal has two sinusoidal components. The
components are specified with frequencies fi, f> and ampli-
tudes Ay, A, where fnin = min(f1, f2), fmax = max(f1, f2),
Amin = min(Ay, Az), Apax = max(Ay, Az).

Roughness in a 50 ms frame, Ryrame is calculated as

Rframe = Xo'l x 0.5 (Y3'11) x Z 2)
where
X = Amin X Amax 3)

The term X! is the dependence of roughness on intensity
related to the amplitude of two sinusoidal components.

Y =2 X Anin / (Amin + Amax) 4)

The second term Y311 is the dependence of roughness on
the amplitude-fluctuation degree related to the amplitude of
two sinusoidal components.

7 = ¢-3:5¢ (max—fanin) _ 45.75¢ (finax —fimin) 5)

where
0.24

© T 0.0207f,min + 18.96

The third term Z is the dependence of roughness on the
amplitude-fluctuation rate, which is the frequency difference
between two sinusoidal components.

Finally, the overall roughness is calculated using a regres-
sion formula with the mean of all frame roughness values
[24].

(6)

C. BOOMINESS
Boominess is measured to evaluate booming sensation by
using a method that is based on the power summation of the
1/3 octave band signals [25]. Since booming might be often
perceived as a low-pitch vibration, it uses the ratio of loudness
below 280 Hz to the total bandwidth.

The booming degree is calculated as the booming index by
using the following equation.

Booming index = Bandsum x (S1/St) 7)

where “Bandsum” is the power summation of the 1/3 octave
band signals, S; is the loudness of the total band, and Sj is the
loudness of the band below 280 Hz.

In the implementation of the timbral models, linear regres-
sion is used to obtain the final boominess value [26].
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FIGURE 1. Block diagram of the proposed method.

D. BRIGHTNESS

It has been reported that the spectral centroid and ratio of
high frequencies to the overall energy correlates with per-
ceived brightness [27]. Therefore, a brightness model was
previously developed to incorporate both a spectral centroid
variant and spectral energy ratio.

The frequency-limited spectral centroid, SCy,, was calcu-
lated in bandwidth over 2, 000 Hz and the energy ratio, ERyy,
was calculated as the proportion of energy over 2, 000 Hz to
energy over 20 Hz.

SCyr = 2 ke(2.000 08,000 Hz) J (k) m(k) ®)
Zke{2,000108,000Hz} m(k)

m(k)
ERy, = zke{2,000 t0 8,000 Hz} ©

2 ke(20108,000 Hz) (k)

where f(k) is the frequency of the k™ bin, and m(k) is the
magnitude of the k™ bin.

Finally linear regression with the SCy; and ERy, is used to
obtain the final brightness value [24].

E. DEPTH

Depth, defined as a timbral, not a spatial attribute, has
been reported to be related to an emphasized low-frequency
component [24]. Therefore, a model was developed for cal-
culating the depth metric by conducting linear regression with
mainly two elements, a spectral centroid, SCygp, in the range of
20 to 2, 000 Hz, and the ratio of energy, ERg4p, between 20 and
500 Hz.

2 ke(20108,000H) S (k) m(k)

SCap = (10)

Zke{ZO 108,000 Hz) "1(k)
2 ke(20t0500 Hz} M(K)

Zke{ZO 108,000 Hz) M(K)

ERgp = (11)
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where f (k) is the frequency of the kM bin, and m(k) is the
magnitude of the k™ bin [24].

llIl. PROPOSED METHOD
A. BASIC CONFIGURATION
The proposed method is configured as a sequence of TM
calculation, short-term features calculation, selection of the
TMs to fit each machine type, combining the selected TMs
and short-term features, and training / classification with a set
of selected TMs and short-term features, as shown in Fig. 1.
We introduce multiple temporal analysis in which TMs
extract the overall characteristics, that is “macro analy-
sis” and short-term features extract the local dynamics by
timbral-related characteristics with a relatively high temporal
resolution, that is ““micro analysis”.

B. MACHINE FAULT AND TIMBRE FROM THE NOTICEABLE
DIFFERENCE IN HEARING
In a factory, various machines are continuously working,
while the operation sound expresses their status. Inspec-
tors use their ability to discriminate differences in machine
sounds, named ‘‘noticeable difference in hearing”, as a
non-intrusive diagnosis. From interviews we conducted with
inspectors of a Japanese factory, we found that they tend to
describe their impression of manufacturing-machine sound
with onomatopoeia [28]. The on-site observation indicated
that onomatopoeia can be a useful interpreter to associate
the inspector’s noticeable difference in hearing in industrial
machine sounds from the perspective of timbre. Therefore,
we consider the association between industrial machine fault
and timbre perceived as audible differences by describing
impressions using onomatopoeia.

We exemplify the association among machine fault, notice-
able difference in hearing, and perception as timbre with
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four types of industrial machinery as representatives, i.e.,
rotating machinery, such as fans or motors; sliding machin-
ery, such as sliders or grinders; striking machinery, such as
valves or pressers; and liquid manipulators such as pumps or
COMPIessors.

1) ROTATING MACHINERY

The most typical fault in rotating machinery is rotor unbal-
ance [29]. It has been reported that the rotational energy
is transferred into vibration due to its inertia centrifugal
force. Other faults, such as rotor-to-stator rubbing or rotor
cracking, increase the friction between the inner parts of
rotating machinery. The maintenance procedure for rotating
and moving parts is using lubricant, which helps make the
parts move smoothly. However, a lack of lubricant causes
several faults due to the increase in friction.

Industrial fans emit booming and whir or whizz sounds due
to rotating the blades. Faults with these types of machines
generate scratching and rattling sounds due to unbalance or
misalignment of the rotor. This perception as timbre corre-
lates generated sound and machine faults from the viewpoint
of the noticeable difference in hearing. Roughness, sharpness,
and brightness can be used for measuring scratching and
rattling sounds, and boominess and depth can be used for
measuring masked sounds from the blades rotating.

2) SLIDING MACHINERY

A typical sliding-type machine is a linear slide rail, in which
a metal base moves periodically back and forth on a metal
rail. Such a machine uses many bearings for smooth recip-
rocation. Common bearing faults are the lack of lubricant
or misalignment, which result in rolling fatigue and may
lead to flaking, which is one of the most severe failures of
bearings [30]. Flaking is small pieces of the bearings split
off from the surface, making the surface rougher and coarser
and increasing friction.

A linear sliding rail emits hissing and clicking sounds in
normal operation and will emit squealing and grinding sounds
when there is a malfunction due to an increase in friction.
To correlate the impression of sound with timbre, sharpness
and brightness can be used for measuring normal operating
sounds and roughness can be used for measuring squealing
and grinding sounds. Depth can help measure anti-brightness
impressions in timbre.

3) STRIKING MACHINERY
Striking machinery, such as casting presses or solenoid
valves, strikes metal elements to other objects to mold orig-
inal materials into a shape or control the flow of liquid or
gas [31]. Solenoid valves open and close the main valve
orifice, which is the only flow path in the valve to control
flow. Therefore, it generates clicking sounds regularly, which
correspond to opening and closing operations.

Due to wear, tear, or damage to the valve orifice, misalign-
ment could lead to degradation of hammering. In an anoma-
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TABLE 1. Relation among machine fault, noticeable difference in hearing,

and associated timbre.

Machine Machine faults Noticeable Associated
type (Malfunction) difference timbre
in hearing
Rotating Unbalance, Scratching, Boominess,
machinery Misalignment, Rattling, Brightness,
Friction increase | Noisy hurtling Depth,
Roughness,
Sharpness
Sliding Misalignment, Squealing, Brightness,
machinery Flaking, Grinding, Depth,
Friction increase | Noisy rasping Roughness,
Sharpness
Striking Misalignment, Beat noise, Boominess,
machinery Degradation of Obscure click Brightness,
hammering Depth,
Roughness,
Sharpness
Liquid Clogged, Gurgle, Boominess,
manipulator Unstable flow Disappearance Brightness,
of splashing Roughness,
Sharpness

lous situation, clicking sounds become dull and obscured,
and beating sounds may occur. This sound change can be
detected through timbre in terms of a decrease in brightness
and sharpness, and an increase in roughness from the beating.
Boominess and depth can help measure the dull impression
of clicking sounds.

4) LIQUID MANIPULATOR

The most typical liquid manipulator is a pump, which is a
device that moves liquids. Common faults with this type of
machine are caused by wear or cavitation, leading to leak-
age or clogging [32]. During a malfunction, liquid cannot
be supplied constantly; thus, irregular suction and discharge
repeatedly occur.

A pump emits similar sounds as those from rotating
machinery, but since it is the most commonly used in water
discharge, it mainly generates splashing sounds in normal
operation and generates gurgling sounds when malfunction-
ing due to clogging. The sound under normal operation can be
discriminated through timbre as booming regarding rotation,
brightness, sharpness regarding splashing, and roughness
regarding gurgling.

Table 1 summarizes the relation among machine faults,
noticeable difference in hearing with the faults, and associ-
ated timbre.

C. FEATURE EXTRACTION
1) TIMBRAL METRICS
Five TMs (boominess, brightness, depth, roughness, and
sharpness) are calculated as an acoustical feature using
the timbral models developed by the University of Surry,
as described in Section II.

Since TMs express the degree to index the overall impres-
sion of hearing, each calculation algorithm is designed to
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FIGURE 2. (a) Waveform of a sound emitting from slider machine under
normal operation, (b) Shimmer value calculated from the sound, and (c)
Frame amplitude calculated from the sound.

derive long-term-frame-wise characteristics. In this study, all
TMs were calculated in a 1, 024 ms frame, the duration of
which is determined in the range from 700 ms and 1.5 s. It has
been reported that a minimum of 700 ms is required to deter-
mine the time order of sounds [33] and unitary perception
of duration occurs up to a maximum of approximately 1.5s
[34].

To tailor TMs to meet the perception of anomalous sound
related to each machine’s faults, we assigned four or five TMs
to each machine type based on our investigation result shown
in Table 1.

2) SHORT-TERM FEATURE: AMPLIFIED SHIMMER

As described above, TMs can be used to detect the “macro”
psycho-acoustical characteristics of machine sounds. It is
useful to introduce techniques to derive “micro” psycho-
acoustical characteristics associated with timbre. Thus,
we developed two short-term features related to TMs.

The first feature is amplified shimmer (AS), which mea-
sures the fluctuation in sound waveforms. This is a modifi-
cation of the acoustical feature ‘‘shimmer”’, which is used to
derive the differences in the amplitude of adjacent samples by
using the following equation [35].

N1 Tt 1A = Ai]
w il 1A
where A; is the i th amplitude of the input signal of a machine

sound, and N is the number of samples.

Shimmer has been reported to strongly relate to roughness
on the GRBAS scale. The GRBAS scale is used to rate
the overall severity of hoarseness psycho-acoustically and
is accepted as standard by the Japanese Society of Logo-
pedics and Phoniatrics [36]. GRBAS comprises five rating
elements, Grade of dysphonia, roughness, breathiness, asthe-
nia, and strain, and has been reported as being the most
reliable and relevant perceptual-voice-quality rating. Prior
research investigating the relation between the GRBAS scale
and other acoustical measures reported a high correlation
between roughness and shimmer [37].

Shimmer (relative) =

(12)
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Fig. 2 shows a waveform of sound emitting from a sliding
machine (linear slider), shimmer calculated using (12) at a
256-ms-long frame, and mean amplitude of the waveform at
the same frame length. As shown in the figure, the calcu-
lated shimmer increases and decreases, conforming with the
waveform. This behavior is synchronized with the movement
of the sliding platform and fits the perception of roughness.
In consideration that the strength of perception must depend
on the amplitude of the waveform, we newly define AS as a
complementary feature for timbre, in which the differences
in the amplitude of adjacent samples are amplified with the
amplitude.

We use AS to estimate the time-variant nature associated
with the roughness perception of a sound emitted from a
machine. AS is calculated as

g I A -AL 1 Y
== x5 2 Al a3)
N Zi:l Al i=1

N

AS =

1 N—-1
=—— > JAi—A| (14)
N -1 P

where A; is the ith amplitude of the input signal of a machine
sound, and N is the number of samples in a 256 ms frame.

3) SHORT-TERM FEATURE: AMPLIFIED PREDOMINANT
FREQUENCY

Rotating machinery, such as a fan or motor, tends to emit
sounds characterized by timbral pitch, in other words, tone
height, which corresponds to its rotating speed. Since an
emitting sound caused by machine fault also depends on
the rotating speed i.e., pitch, a change in pitch can be an
important key for inspectors to diagnose the malfunction
using their noticeable difference in hearing. It was reported
that the ambiguity of the pitch of a complex signal can be
considered as virtual pitch [38]. The perception of pitch is
strongly related to a series of sub-harmonics [39].

Under normal fan operation, where components are mov-
ing smoothly, emitting sounds tend to have arranged harmon-
ics in their spectra and stable vibration of pitch can be heard,
which corresponds to the rotating speed. In an anomalous sit-
uation, the sound becomes unstable in pitch or becomes noisy
due to eccentricity or friction. The change in perception might
be represented as wakening the degree of harmonicity, and the
basic frequency may be shifted lower due to the reduction in
rotating speed. Therefore, to discover the harmonic change
from a machine’s sound, we also introduce a feature based
on sub-harmonic summation [40].

The sub-harmonic summation is conducted as follows:

1) Spectrum calculation
A 2, 048-point FFT is applied to the input machine’s
sound, then the amplitude spectrum is calculated. Con-
secutive spectra are obtained for the same frame length
of 2,048 samples (128 ms at 16 kHz sampling) with
shifted 1, 024 samples (64 ms at 16 kHz sampling).
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TABLE 2. Number of samples of MIMII dataset.

Number of | Fan Pump Slider Valve Total
samples

Normal 4,075 3,749 3,204 3,691 14,719
Abnormal 1,475 456 890 479 3,300
Total 5,550 4,205 4,094 4,170 18,019

2) Derive a spectral peak from the spectrum
A spectral peak is derived as the highest amplitude in
the 1, 024-point spectrum at lower frequencies below
2,000 Hz. The frequency having a peak is treated as
predominant frequency, fpqr. Thus, an amplitude in fqf
is expressed as A (fpdf)-

3) Sub-harmonics summation
Sub-harmonic summation is conducted by adding the
amplitude corresponding to n times the frequency of
Jpdat. Before summing up, each amplitude is multi-
plied by the factor h(n) to decrease the contribution
along with a distance from fj,qf. The summation value
“HS(fpar)” is calculated as

K
HS(fopar) = D h(n) Amp(nfpar), (15)
n=1
where A (fpar) is the spectral amplitude at fpar Hz, K
is the order of summation, which is 5, and h(n) was set
to 0.84"~! in this study.

The precise virtual-pitch magnitude is specified by
sub-harmonic pitch magnitude within the crucial interval
[39]. We consider that intensity of the virtual-pitch per-
ception deeply depends on its magnitude i.e., amplitude.
Therefore, to measure the predominant pitch frequency with
the intensity of the virtual perception, we newly define the
harmonic-related feature ‘“‘amplified predominant frequency
(APF)”’, which is calculated as

APF = fpar x HS(fpar) (16)

D. COMBINATION OF TIMBRAL METRICS AND
SHORT-TERM FEATURES

Five or four types of TMs are selected to fit the association of
timbre with assumed industrial machine fault in each machine
type. Assignment between related timbre and machine type is
determined from the summary in Table 1. If a target machine
type does not fall into the four types of machinery, all five
TMs are selected.

Since our two short-term features are designed to derive
signal fluctuation and spectral harmonics as common fea-
tures, we add AS and APF to a set of TMs for all machinery.
Finally, a combination of TMs and short-term features is
configured and used for classification.

E. CLASSIFICATION OF ANOMALOUS SOUND

We used a support vector machine (SVM) as the binary
classification technique because SVM classifiers perform
well in high-dimensional space and have excellent accuracy.
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To apply the SVM for binary classification, the extracted
combination of TMs and short-term features (combi-features)
with normal / abnormal flags are used to train a model. In the
training process, the combi-features from abnormal sounds
are assigned “true”, and those from normal sounds are
“negative”’. The SVM then obtains the separation plane to
classify two categories, true and negative, to maximize the
gap between the two categories.

The training process generates a classification model, then
the classification of unknown data of each machine is con-
ducted based on the model dedicated to each machine type.

IV. EVALUATION

A. SOUND DATA SETUP

We used the MIMII dataset for our experiment [41]. This
dataset contains four machines, i.e., fan, pump, slider (slide
rail), and valve, which correspond to the machine types listed
in Table 1. The fan represents an industrial fan, which pro-
vides a continuous flow in normal operation, and in abnormal
situations, unbalanced or clogging occurs. The pump is a
water pump that discharges water to a pool continuously,
and in abnormal situations, leakage or clogging occurs. The
slide rail, or slider, is a linear slider that consists of a moving
platform and a stage base, and in abnormal situations, rail
damage or no grease occurs. The valve is a solenoid valve
that is repeatedly opened and closed, and in abnormal situ-
ations, various contaminations occur. Normal and abnormal
sounds were recorded as 10s-long sound files at 16 kHz
sampling in a reverberant environment. Background noise
which was recorded in multiple real factories was mixed with
the recorded machine sound files. The total number of sound
files is 14, 719 for normal conditions and 3, 300 for abnormal
conditions (see Table 2). Four models with ID 00, 02, 04, and
06 were used for all machine types where a signal-to-noise
ratio of the background noise was 6 dB.

B. CLASSIFICATION EVALUATION
We used accuracy, F-measure, and Matthews Correlation
Coefficient (MCC) to evaluate ASD performance in terms of
SVM classification performance.

Accuracy measures the proportion of correctly classified
data instances over the total number of data instances. The
calculation formula is

R TP + TN -
ccuracy =
Y= TP+ TN+ FP+EN

where TP is true positive, TN is true negative, FP is false
positive, and FN is false negative.

F-measure is an error metric for measuring model perfor-
mance by calculating the harmonic mean of precision and
recall of the model.

The formula for F-measure is as follows:

2 x Precision x Recall
F-measure = — (18)
Precision + Recall

Precision is used to measure the proportion of positive class
predictions that belong to the positive class. Thus, precision
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TABLE 3. Classification performance evaluation on each machine type.

. Accuracy F-measure MCC
M;Ch]:e D T™Ms | TMs | TMs T™s | TMs | TMs T™s | TMs | TMs
P IMs | app | sas [sascapr| ™S | iapp | sas [sasiarr| ™5 | iapF | sAs |sasiapr
00| 0926 0.953 0.932 0.977 0.862 0.913 0.872 0.958 0.792 0.873 0.827 0.932
Fan 02| 0.994 0.994 0.995 0.994 0.989 0.988 0.991 0.988 0.980 0.985 0.986 0.990
04| 0975 0.979 0.996 0.997 0.949 0.958 0.991 0.993 0.927 0.928 0.986 0.981
06| 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
00 0.980 0.981 0.988 0.988 0.908 0.916 0.950 0.950 0.901 0.901 0.946 0.932
Pump 02| 0993 0.993 0.993 0.991 0.965 0.964 0.965 0.954 0.947 0.957 0.930 0.915
04| 0.996 0.996 0.998 0.996 0.983 0.983 0.992 0.983 0.981 0.981 0.990 0.981
06| 0982 0.991 0.986 0.991 0.901 0.948 0.918 0.949 0.878 0.933 0.920 0.923
00| 0.998 0.996 0.999 1.000 0.995 0.992 0.998 1.000 0.988 0.988 0.997 1.000
Slider 02| 0979 0.987 0.987 0.987 0.945 0.967 0.966 0.966 0.912 0.947 0.957 0.977
04| 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.994 0.994
06| 0.903 0.924 0.949 0.947 0.517 0.663 0.786 0.781 0.558 0.641 0.808 0.739
00 1.000 0.999 1.000 1.000 1.000 0.993 1.000 1.000 1.000 0.992 1.000 1.000
Valve 02| 0956 0.952 0.988 0.983 0.819 0.800 0.957 0.938 0.745 0.730 0.920 0.917
04| 0972 0.985 0.978 0.989 0.852 0.927 0.886 0.949 0.799 0.890 0.832 0.914
06/ 0.901 0.907 0.904 0.911 0.141 0.277 0.198 0.306 0.079 0.128 0.000 0.128
Average on each machine
Fan 0.974 0.981 0.981 0.992 0.950 0.965 0.964 0.985 0.925 0.947 0.950 0.976
Pump 0.988 0.990 0.991 0.992 0.939 0.953 0.956 0.959 0.927 0.943 0.947 0.938
Slider 0.970 0.977 0.984 0.983 0.865 0.905 0.937 0.937 0.865 0.894 0.939 0.927
Valve 0.957 0.961 0.968 0.971 0.703 0.749 0.760 0.798 0.656 0.685 0.688 0.740
Total 0.972 0.977 0.981 0.984 0.864 0.893 0.904 0.920 0.843 0.867 0.881 0.895
is calculated as 1) The classification performance by applying only TMs
TP showed rather a high-performance rate, over 0.926 in
Precision = ——— (19) accuracy, over 0.819 in F-measure, and over 0.792 in
TP + FP . .
MCC except under two conditions. This demonstrates
Recall is used to measure the proportion of positive class that selected TMs are effective for ASD in classifying
predictions out of all positive instances and calculated as anomalous sounds since these metrics were selected to
TP fit ““noticeable difference in hearing” from anomalous
Recall = TP FN (20) machine sounds.
+ 2) Adding the short-term features, AS and APF, improves
MCC measures a correlation between predicted classes and the classification performance. The results indicate
ground truth, calculated by following the formula. the proposed method’s excellent classification per-
MCC TP x TN — FP x FN on f(;rr(;l&;l;coe Wi(tlh an l\zécgra;yoogfgg.%{ an F—n}easuge
= of 0.920, and an of 0. on average for the
V(TP+FP)(TP+EN)(TN+FP)(TN+FN) 16 conditions. The evaluation results of the F-measure
and MCC indicated nearly identical trends. The results
C. EVALUATION RESULT of the accuracy ranging from 0.971 to 0.992 in each
Table 3 lists the evaluation results of the SVM classifica- machine type are comparable to those of the recent
tion performance of the proposed method using the MIMII conventional method [14] with which the classification
dataset. Four combinations of features were compared to accuracies range from 97.0t0 99.7 %. The conventional
verify how much each addition of the feature contributes to method was designed for diagnosing bearing faults
improving classification performance. The first combination using sound-quality metrics. Our proposed method has
is the selected TMs for each machine type (“TMs”). The superiority in capability of a wide range of machinery
second is APF added to the TMs (“TMs+APF”). The third is including rotating and sliding machinery that use bear-
AS added to the TMs (“TMs+AS’’). The fourth combination ings.
is APF added to the TMs and AS (“TMs+AS+APF”). Since 3) The contribution of adding short-term features seems to

the evaluation was conducted for each machine type and
model which is identified as ID 00, 02, 04, and 06, the number
of conditions was 16 in total, as listed in Table 3.

The results indicate that:
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be effective for all machine types. AS seems to improve
the classification for slider and valve rather than fan and
pump and APF improves the classification for fan and
pump rather than slider and valve.
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(a) Normal sound spectrogram [slider]

Time (s)

(b) Abormal sound spectrogram [slider]
i i N o

Time (s)

(c) Normal sound spectrogram [fan]

Time (s)

(d) Abnormal sound spectrogram [fan]

Time (s)

FIGURE 3. Spectrograms: (a) Normal sound of a slider, (b) Abnormal
sound of a slider, (c) Normal sound of a fan, and (d) Abnormal sound of a
fan.

4) Only two models, valve ID 06 and slider ID 06, did
not improve enough regarding F-measure. Since the
performances of the other 14 models had scores higher
than 0.938 in F-measure, it suggests that different TMs
should be added, especially for valve ID 06 and slider
ID 06. Since only the F-measure was low, e.g., 0.306,
for valve ID06 under TM+AS+APF and accuracy
remained rather high, e.g., 0.911, under the same condi-
tion, a decrease in the number of FNs for SVM training
seems to be necessary. From these results, we can ana-
lyze the false reason and consider a solution by investi-
gating the correlation of each timbre (see Section V-D).
This can demonstrate the effectiveness of the proposed
method in detecting various faults in terms of timbre.

V. DISCUSSION
A. MACHINE SOUND CHANGE AND THE NOTICEABLE
DIFFERENCE IN HEARING
We verify the relation between machine-sound change and
the noticeable difference in hearing on the MIMII dataset.
We exemplify a slider and fan as representative machines
and investigate to illustrate the change point between their
“normal” and “abnormal’’ operating sounds.

For the slider, a slight scratching sound is emitted under
normal operation due to the metal base moving back and forth
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Roughness vs Amplified shimmer : cor = 0.906
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FIGURE 4. Correlation between roughness and amplified shimmer.

on the metal rail periodically. The sound is emphasized or
increased in its magnitude when the base stops at one edge of
the rail and moves away to the opposite edge. This sound is
expressed as a bar that separates the periodical sound area in
its spectrogram, as shown in Fig. 3 (a). During a malfunction,
a strong creaking or squealing sound is emitted due to the
increase in friction between the base and rail. This sound is
expressed as a uniform component or flat frequency spectrum
in red in the spectrogram, as shown in Fig. 3 (b), where red
means higher magnitude or amplitude than green or yellow.
This change can be heard as increasing roughness, sharpness,
and brightness and decreasing depth from the timbral per-
spective.

For the fan under normal operation, a slight booming sound
is caused by the blades rotating in the air and pushing them
forward as wind is emitted. The sound forms multiple hori-
zontal bars or spectral harmonics corresponding to the period
of rotating in the lower frequency area below 1, 000 Hz in
its spectrogram, as shown in Fig. 3 (c). There is also a slight
scratching sound caused by the rotation of the blade shaft.
During a malfunction, a strong squealing sound is emitted
due to eccentricity or an increase in friction. Therefore, high-
amplitude components appear in the upper-frequency area in
the spectrogram, as shown in Fig. 3 (d). This change can be
heard as an increase in roughness and brightness and a relative
decrease in booming and depth.

B. CORRELATION BETWEEN TIMBRE AND SHORT-TERM
FEATURES
We developed two types of short-term features to support
TMs for improving the time resolution of the timbral analysis.
Therefore, we verified how much the two features correlate
with the target timbre on the MIMII dataset.

We first examined the relation between AS and rough-
ness for normal operation sounds of a slider. As shown in
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TABLE 4. Classification performance evaluation of toy car.

. Accuracy F-measure MCC
Machine case
Type T™s TMs TMs TMs T™s TMs TMs TMs TMs TMs TMs TMs
+APF +AS |+AS+AP +APF +AS |[+AS+AP +APF +AS |[+AS+AP
Toy Car | 2 0.982 0.984 0.995 0.995 0.941 0.949 0.985 0.984 0.928 0.934 0.982 0.981

Boominess vs Amplified predominant frequency [Hz] : cor = -0.856
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FIGURE 5. Correlation between boominess and amplified predominant
frequency.

Fig.4, AS had a strong correlation with roughness, which
has a Pearson’s r of 0.906. AS increases as roughness also
increases. This relation matches the intention of introducing
AS as a supplemental feature of roughness, as described in
Section II1-C2.

We also investigated the relation between APF and boomi-
ness for normal operation sounds of a fan. As shown in
Fig.5, APF had a strong correlation with boominess, which
had an r of —0.856. When the predominant frequency
shifted to a higher region, perception of boominess tended
to weaken because boominess measures the concentration of
spectral power into lower frequency region below 280 Hz (see
Section II-C). Thus, this is why r is negative and APF can be
used to discover anomalous sounds with rotation-frequency
change.

C. EVALUATION USING A DATASET OF
MINIATURE-MACHINE SOUNDS

We also evaluated the other set of machine-like operating
sound data to verify the applicability of the proposed TF-ASD
method. Although the MIMII dataset we used for evaluation
in SectionIV contained the real industrial machine sound,
we used “ToyADMOS™; a dataset of miniature-machine
operating sounds because we could not find any other
adequate dataset except the MIMII dataset. ToyADMOS
contained both normal and anomalous operation sounds of
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3 kinds of miniature machines, those are toys, named Toy car,
Toy conveyor, and Toy train [42].

We selected operating sound data of the Toy car whose
anomalous sounds were generated by deformed gears and
bent shaft as deliberate damage. Since the Toy car dataset
had 4 combination types, we selected case 2 which equipped
a steel bearing with a torque-tuned motor. We consider
that similar damage and change of the sound in anomalous
operation would occur in rotating machinery with rotor unbal-
ance and sliding machinery with increasing friction and then
assigned five TMs and two short-term features for evaluation.

Normal and abnormal sounds were recorded as 11 s-long
sound files at 48 kHz sampling. To conform to the same
frequency range as the MIMII dataset evaluation, all files
are evaluated after being down-sampled to 16 kHz. Due to
selecting the condition in which steel bearings are used, the
total number of sound files is 2, 650 for normal conditions
and 528 for abnormal conditions respectively.

The evaluation results are shown in Table4. The results
demonstrate that the proposed TF-ASD method can pro-
vide an excellent classification performance with accuracy of
0.995, F-measure of 0.984, and MCC of 0.981. The abnormal
sound of the toy car increases in roughness due to abnormal
vibration generated by deformed gear and a bent shaft. This
tendency can be confirmed as the improvement of classifica-
tion performance by adding AS. On the contrary, dependency
on pitch tone seems very little compared with roughness.
Because APF addition to TMs can improve a little in the
classification performance while APF addition to a pair of
TMs and AS does not improve at all in the classification
performance.

D. EVALUATION USING ANOMALOUS SCORE

Since machines are well maintained regularly, they can keep
operating normally most of the time. From the data-analysis
perspective, this means that the amount of observation data of
anomalous situations is limited compared with normal ones.
Considering that the longer a machine is in operation the more
likely severe malfunction will occur suddenly and will inflict
severe damage to the business. Therefore, it is important to
detect incipient symptoms from very few indications.

To respond to this on-site issue, an ASD method that
can classify unknown anomalous sounds using prior knowl-
edge of normal sound distribution is required. To assess
the applicability of the proposed method, we verified how
much each TM and short-term feature has the capability for
anomalous-sound discrimination in their feature domain in
terms of a probability distribution.

70893



lEEEACC@SS Y. Ota, M. Unoki: ASD for Industrial Machines Using Acoustical Features Related to TMs

TABLE 5. AUC evaluation on anomalous score distribution.

Machine | ID | Boominess | Brightness Depth | Roughness | Sharpness AS APF
00 0.683 0.656 0.795 0.687 0.551 0.557 0.727
Fan 02 0.595 0.965 0.652 0.957 0.832 0.874 0.687
04 0.791 0.802 0.763 0.842 0.637 0.699 0.620
06 0.683 0.890 0.718 0.780 0.810 0.960 0.925
00 0.831 0.816 0.701 0.807 0.788 0.963 0.712
Pump 02 0.602 0.831 0.748 0.724 0.856 0.625 0.682
04 0.619 0.634 0.601 0.667 0.861 0.680 0.638
06 0.893 0.715 0.880 0.706 0.618 0.690 0.832
00 0.980 0.985 0.968 0.925 0.993 0.997 0.675
Slider 02 0.675 0.781 0.839 0.908 0.788 0.745 0.738
04 0.722 0.867 0.755 0.948 0.864 0.792 0.664
06 0.670 0.662 0.666 0.756 0.621 0.650 0.627
00 0.908 0.498 0.809 0.871 0.900 0.990 0.617
Valve 02 0.669 0.647 0.662 0.687 0.623 0.704 0.650
04 0.680 0.632 0.631 0.748 0.631 0.807 0.873
06 0.653 0.731 0.641 0.676 0.726 0.674 0.607
Average on each machine
Fan 0.688 0.828 0.732 0.817 0.707 0.773 0.740
Pump 0.736 0.749 0.733 0.726 0.781 0.739 0.716
Slider 0.762 0.824 0.807 0.884 0.817 0.796 0.676
Valve 0.727 0.627 0.686 0.745 0.720 0.794 0.687
Average in total 0.728 0.757 0.739 0.793 0.756 0.775 0.705

TABLE 6. Classification evaluation regarding the combination of timbral metrics for valve machine.

(;121;;:11]- Machine | ID E;?e(::l E;;i“ Depth R1$;gsh S;::f Accuracy | F-measure
00 1.000 1.000

. Valve 02 v Y v v v 0.956 0.819
#1 04 0.972 0.852
06 0.901 0.141

Average in all IDs 0.957 0.703

00 0.987 0.986

. Valve 02 v Y v v 0.924 0.737
#2 04 0.966 0.839
06 0.900 0.200

Average in all IDs 0.944 0.690

o Valve | 06 | v | v v | v 0.897 0.093
Average in all IDs 0.953 0.672

o valve | 06 | v | [ v [ v [ v 0.899 0.115
Average in all IDs 0.956 0.691

s vave | 06 | v | v | | v | v 0.892 0.000
Average in all IDs 0.946 0.611

6 vave |06 | v | v | v | v | 0.894 0.027
Average in all IDs 0.949 0.645

We use an anomalous score Agcore that can measure the able inferred from the distribution of normal sounds at
rareness of occurrence from the probability distribution of value x, where “Normal” means that the random variable
normal sounds [43]. Let p(x|Normal) be the random vari- is obtained from the timbral metric and short-term feature
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vectors extracted from ‘“normal’ sounds. The Agcore 1S then
defined at x’, which is the input value, as

Agcore(®”) = — In p(x’|Normal) (22)

The rarer the occurrence of x’, the higher the degree of
anomaly, so the higher the value of the anomalous score is
calculated.

In this study, we assume the probability distribution of
normal sounds as a normal distribution, N (x|u, o%).

A 1 1
NGlu,o®) & oo sperl-35 c—w) 23

The u and o2 can be obtained by maximum likelihood
estimation described below,

1 N
i=~ x™ (24)
n=1
1 N
A2 n) _ 732
o= E (x i) (25)

=1

3
|

Under the assumption of the probability distribution of
normal sounds as a normal distribution, the anomaly score
for x” is obtained by the following formula.

A

/
Aore) 2 (=P = 222 (26
o o

We verify the contribution of each TM and short-term
feature for anomalous classification by using Agcore-

For the validation with Agcore, the entire normal sound is
divided into a training set and a testing set, and the probability
density function (PDF) is obtained from a combination of
timbral metrics and short-term features extracted from the
training ‘“‘normal” sound set on each machine model (ID)
of each machine type. Then both “normal” and ‘““abnormal”
Agcores are then calculated using the “‘normal” testing set
and “‘abnormal” testing set based on the PDF using (26),
respectively.

It is ideal that both “normal” and “abnormal’ Ag.s are
sufficiently separated from each other in the Agqy domain.
To measure the discriminability between the two distributions
we used the area under the receiver operating characteristics
curve (AUC). If the two distributions are separated enough,
the AUC is evaluated as closer to 1.0. Therefore, we utilized
the AUC as a measure that represents the contribution of
classification on each TM and short-term feature.

Table 5 lists the AUC evaluation results for each TM and
short-term feature.

The results indicate that:

1) The AUC values of TMs were rather high from 0.728 to
0.793 on average. The dedicated timbre assignment for
each machine, which is shown in the yellow box, seems
to be suitable because the AUC values were also rather
high from 0.627 to 0.884 on average for each machine.

2) The contribution of AS seems to be relatively high on
average for all machines, as shown by the AUC values
from 0.739 to 0.796. These results indicate that the
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AS contribution for the slider and valve seemed to be
slightly higher than that for the fan and pump.

3) The AUC values of APF, from 0.676 to 0.740, are
slightly lower than those of the TMs and AS. However,
by comparing the results among the machine types, the
AUC average value of APF for the fan was higher than
that for the pump, slider, and valve. Moreover, the AUC
values of APF seem to be high for the models in which
those of boominess were insufficient. This indicates
that APF seems to work complementarily for the timbre
of boominess.

We discuss the valve ID 06 model, which has poor classi-
fication performance, and analysis the relation between the
performance and the combination of TMs. Table 6 lists five
TM combinations and the classification performances both
in accuracy and F-measure. In this table, #1 is identical to
our proposed method in which all five TMs are selected for
classification. As mentioned above, all models, except the
ID 06 ones, had good classification performance in terms of
F-measure of over 0.852.

From the AUC evaluation on A, distribution in Table 5,
the AUC value of roughness in the valve ID 06 (0.676) was
relatively low compared with the average value (0.745) and
with those of the other three models, e.g., ID00, ID 02,
and ID04. Therefore, we evaluated another combination
of TMs, signified as #2 in Table 6, in which roughness is
excluded. A slight improvement in F-measure, about 0.06,
was observed under the #2 combination. From this result,
we can infer that roughness does not contribute much to clas-
sification and that the exclusion of roughness might slightly
improve the F-measure. By focusing on the observation that
the AUC values of brightness (0.731) and sharpness (0.726)
are relatively high, and those of boominess (0.653) and
depth (0.641) are relatively low, as shown in Table5, the
timbre that relates to the high-frequency domain might be
superior against the lower-frequency domain. However, this
conjecture does not mean that boominess and depth cannot
contribute to classification because the exclusion of these
TMs will result in a drastic decrease in F-measure, as shown
in combinations #3 and #5 in Table 6. We assume that other
metrics such as ‘“Hardness” can be used for classifica-
tion, which can evaluate the change in the higher-frequency
domain while estimating the lower-frequency domain.

This exploratory study showed that this combination of
TMs is adequate for classifying valve machine sounds,
as shown in Table 6. We will explore other machine types and
model performances by considering the relation of Agcoye dis-
tribution and the machine faults from the timbre perspectives
as future work.

This study also indicates that the evaluation based on the
AUC on the Ay 1s useful to investigate what kind of timbre
can contribute the ASD. By feeding back to the association
between timbre and the noticeable difference in hearing, the
proposed method has the potential to express in measurable
form implicit knowledge for inspection.
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VI. CONCLUSION

We proposed a timbral-feature-based anomalous sound detec-
tion (TF-ASD) method for industrial machines, which used
a combination of five timbral metrics and newly developed
short-term features, in which the combination is designed
to follow human ‘“‘noticeable difference in hearing” from
the machine’s operating sound. We uniquely investigated the
association between machine faults and the noticeable dif-
ference in hearing with onomatopoeia as a mediator and then
selected five timbral metrics for four types of typical machin-
ery. We originally developed two types of short-term features
to improve the time resolution of the timbral analysis, which
estimate the fluctuation in sound waves to measure roughness
and change in pitch in terms of harmonics to measure tone
height such as boominess or sharpness. We incorporated a
support vector machine as a binary classifier to perform well
in high-dimensional space where the combination of TMs
and our two short-term features can determine whether an
observing sound is normal or anomalous.

We evaluated the proposed method using the MIMII
dataset, which contains recorded sounds from four types of
industrial machines and four models of each type under both
“normal” and ‘“abnormal” conditions, in terms of SVM
classification performance. The results indicated that the
proposed method with a tailored combination of timbral met-
rics for each machine type and complementary short-term
features was effective in classification performance with
an accuracy of 0.984 on average and the accuracy ranged
from 0.971 to 0.992 in each machine type. The result also
demonstrated that TF-ASD commonly provided an excellent
classification for four types of machine type, while the clas-
sification accuracies were comparable to that of the recent
ASD method dedicated to bearing faults detection, in which
the classification accuracies ranged from 97.0 to 99.7 %.

We further verified the contribution of the combination of
timbral metrics and short-term features to ASD by introduc-
ing an anomalous score. We employed AUC evaluation to
measure the discriminability of each metric and feature on the
anomalous score. The results indicated that the contribution
of the TMs and AS for ASD was relatively high on average for
almost all machine types. The results also indicated that the
contribution of APF was high for fan, and relatively low for
pump, slider, and valve. By introducing the anomalous score
and the AUC evaluation, the contribution degree could be rep-
resented in numerical form. We also conducted an exploratory
study for valve machines to adjust the SVM performance by
modifying the combination of TMs with reference to the AUC
value.

Through our unique analysis of causes of malfunction
in industrial machines and the emitting sounds, the rela-
tion between the noticeable difference in hearing and timbre
was newly derived. By developing a combination of timbral
metrics and short-term timbre-related features based on the
analysis, we demonstrated the effectiveness of the proposed
TF-ASD with excellent classification performance under a
real industrial machine’s sound dataset.
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The study in this paper suggests that timbre can be a
powerful interpreter which can link anomalous detection
with a human’s noticeable difference in hearing and that
a combination of five timbral metrics and our short-term
features can be the primal candidates of the keys for ASD
from the perspective of timbre. Through statistical analysis
of the timbre-related features, various practical applications
can be expected, such as an estimation of machines’ faults or
predictive anomalous detection from their emitting sounds.
Although extensive analysis is still required, the analysis
approach based on timbre has great potential to express in
some measurable form the implicit knowledge of inspectors.

There are three aspects that must be addressed for future
extension: 1) enhancement of the TF-ASD approach by pur-
suing additional features that fit human perceptual change;
2) expansion of the approach to anomalous change detection
with an analysis in time series for practical use; 3) further
study of the relation between the noticeable difference in
hearing and timbre for sharing the implicit knowledge of
inspectors.

REFERENCES

[1] High Pressure Gas Safety: Smart Industrial Safety Action Plan, Public-
Private Sector Council on Smart Industrial Safety High Pressure Gas
Safety Committee, Ministry of Economy, Trade and Industry Japan,
Tokyo, Japan. 2020. Accessed on: Mar. 16, 2023. [Online]. Available:
https://www.meti.go.jp/english/press/2020/pdf/0710_007a.pdf

[2] Y. Koizumi, Y. Kawaguchi, K. Imoto, T. Nakamura, Y. Nikaido, R. Tanabe,
H. Purohit, K. Suefusa, T. Endo, M. Yasuda, and N. Harada, ““Description
and discussion on DCASE2020 challenge task 2: Unsupervised anomalous
sound detection for machine condition monitoring,” in Proc. Detection
Classification Acoustic Scenes Events Workshop, Nov. 2020, pp. 1-5.

[3] Y. Kawaguchi, K. Imoto, Y. Koizumi, N. Harada, D. Niizumi, K. Dohi,

R. Tanabe, H. Purohit, and T. Endo, “Description and discussion on

DCASE 2021 challenge task 2: Unsupervised anomalous sound detection

for machine condition monitoring under domain shifted conditions,” 2021,

arXiv.2106.04492.

S. Zhao, “Acoustic anomaly detection based on similarity analysis,” in

Proc. Detection Classification Acoustic Scenes Events Challenge, 2020,

pp. 1-3. Accessed: Mar. 16, 2023. [Online]. Available: https://dcase.

community/documents/challenge2020/technical_reports/DCASE2020_

Zhao_2_t2.pdf

[5] Y. Kawaguchi and T. Endo, “How can we detect anomalies from sub-

sampled audio signals?” in Proc. IEEE 27th Int. Workshop Mach. Learn.

Signal Process. (MLSP), Sep. 2017, pp. 1-6.

Y. Kawachi, Y. Koizumi, and N. Harada, “Complementary set variational

autoencoder for supervised anomaly detection,” in Proc. IEEE Int. Conf.

Acoust., Speech Signal Process. (ICASSP), Apr. 2018, pp. 2366-2370.

[7] Y. Koizumi, S. Saito, H. Uematsu, Y. Kawachi, and N. Harada, “Unsu-
pervised detection of anomalous sound based on deep learning and the
Neyman—Pearson lemma,” IEEE/ACM Trans. Audio, Speech, Language
Process., vol. 27, no. 1, pp. 212-224, Jan. 2019.

[8] K. Li, Q. H. Nguyen, Y. Ota, and M. Unoki, “Unsupervised anomalous
sound detection for machine condition monitoring using temporal mod-
ulation features on gammatone auditory filterbank,” in Proc. Detection
Classification Acoustic Scenes Events Challenge, Nov. 2022, pp. 1-5.

[91 M. Hu, Z. Ji, K. Yan, Y. Guo, X. Feng, J. Gong, X. Zhao, and
L. Dong, “Detecting anomalies in time series data via a meta-feature based
approach,” IEEE Access, vol. 6, pp. 27760-27776, 2018.

[10] Z. Ji, Y. Wang, K. Yan, X. Xie, Y. Xiang, and J. Huang, “A space-
embedding strategy for anomaly detection in multivariate time series,”
Expert Syst. Appl., vol. 206, Nov. 2022, Art. no. 117892.

[11] D. Goyal, A. Choudhary, B. S. Pabla, and S. S. Dhami, ‘““‘Support vector
machines based non-contact fault diagnosis system for bearings,” J. Intell.
Manuf., vol. 31, no. 5, pp. 1275-1289, Jun. 2020.

[4

=

[6

—

VOLUME 11, 2023



Y. Ota, M. Unoki: ASD for Industrial Machines Using Acoustical Features Related to TMs

IEEE Access

[12]

[13]

[14]

[15]

[16]

[17]
[18]
[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]
[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

R. K. Mishra, A. Choudhary, A. R. Mohanty, and S. Fatima, “Multi-
domain bearing fault diagnosis using support vector machine,” in Proc.
IEEE 4th Int. Conf. Comput., Power Commun. Technol. (GUCON),
Sep. 2021, pp. 1-6.

K. Minemura, T. Ogawa, and T. Kobayashi, “Acoustic feature represen-
tation based on timbre for fault detection of rotary machines,” in Proc.
Int. Conf. Sensing, Diagnostics, Prognostics, Control (SDPC), Aug. 2018,
pp. 302-305.

T. Mian, A. Choudhary, and S. Fatima, “An efficient diagnosis approach
for bearing faults using sound quality metrics,” Appl. Acoust., vol. 195,
Jun. 2022, Art. no. 108839.

M. Takada, K. Tanaka, and S.-I. Iwamiya, ‘‘Relationships between audi-
tory impressions and onomatopoeic features for environmental sounds,”
Acoust. Sci. Technol., vol. 27, no. 2, pp. 67-79, 2006.

Y. Ota, S. Kura, and M. Unoki, “Anomalous sound detection using
objective metrics related to timbral attributes,” in Proc. 24th Int. Congr.
Acoustics (ICA), Koria, Oct. 2022, pp. 1-7.

C. I. Plack, The Sense of Hearing. Evanston, IL, USA: Routledge,
Jun. 2018.

H. Fastl and E. Zwicker, Psycho-Acoustics: Facts and Models, 3rd ed.
Berlin, Germany: Springer, 2007.

K. Jensen, “The timbre model,” J. Acoust. Soc. Amer., vol. 112, no. 5,
p. 2238, Nov. 2002.

A. Pearce, T. Brookes, and R. Mason, “Timbral attributes for sound
effect library searching,” in Proc. AES Int. Conf. Semantic Audio,
Jun. 2017, pp. 1-8. Accessed: Mar. 16, 2023. [Online]. Available:
https://www.aes.org/e-lib/browse.cfm?elib=18754

B. C. J. Moore, Introduction to the Psychology of Hearing. Boston, MA,
USA: Brill, 2013.

P. Daniel and R. Weber, ‘“Psychoacoustical roughness: Implementation
of an optimized model,” Acta Acustica United Acustica, vol. 83, no. 1,
pp. 113-123, Jan./Feb. 1997.

P. N. Vassilakis, “SRA: A web-based research tool for spectral and rough-
ness analysis of sound signals,” in Proc. 4th Sound Music Comput. Conf.
(SMC), Jan. 2007, pp. 319-325.

A. Pearce, T. Brookes, and R. Mason, Deliverable D5.2: First Prototype of
Timbral Characterisation Tools for Semantically Annotating Non-Musical
Content, Audio Commons, document D5.2, Apr. 2017.

S. Hatano and T. Hashimoto, “Booming index as a measure for evalu-
ating booming sensation,” in Proc. 29th Int. Congr. Exhib. Noise Eng.,
Aug. 2000, pp. 1-5.

A. Pearce, T. Brookes, and R. Mason, Deliverable D5.8: Release of
Timbral Characterisation Tools for Semantically Annotating Non-Musical
Content, Audio Commons, document D5.8, Jan. 2019.

E. Schubert and J. Wolfe, “Does timbral brightness scale with fre-
quency and spectral centroid,” in Acta Acustica United Acustica, vol. 92,
pp. 820-825, Jun. 2006.

M. Sakamoto, “System to quantify the impression of sounds expressed by
onomatopoeias,” Acoust. Sci. Technol., vol. 41, no. 1, pp. 229-232, 2020.
A. Muszynska, “Vibrational diagnostics of rotating machinery malfunc-
tions,” Int. J. Rotating Machinery, vol. 1, nos. 3—4, pp. 266-327, 1995.
(Oct. 2019). Bearing Failure RCA: Flaking. Worldwide Bearing Industry
News. Accessed: Mar. 16, 2023. [Online]. Available: https://www.bearing-
news.com/bearing-failure-rcaflaking/

Biirkert Fluid Control Systems GmbH & Co KG. What is a Solenoid Valve
and How Does It Work? Accessed: Mar. 16, 2023. [Online]. Available:
https://www.burkert-usa.com/en/Company-Career/What-s-New/Press/
Media/Technical-Reports/Technical-Reports-additional-topics/What-is-a-
solenoid-valve-and-how-does-it-work/

(Feb. 2020). Four Common Causes of Pump Failure. Capability Guide, in
Pump Industry Magazine. Accessed: Mar. 16, 2023. [Online]. Available:
https://www.pumpindustry.com.au/four-common-causes-of-pump-failure/
R. M. Warren, C. J. Obusek, R. M. Farmer, and R. P. Warren, ““Auditory
sequence: Confusion of patterns other than speech or music,” Science,
vol. 164, no. 3879, pp. 586-587, May 1969.

P. Fraisse, “Perception and estimation of time,”
vol. 35, no. 1, pp. 1-37, Jan. 1984.

Aalto University. Introduction to Speech Processing: Jitter and Shim-
mer 2 Edition. Accessed: Mar. 16, 2023. [Online]. Available: https://
speechprocessingbook.aalto.fi/Representations/Jitter_and_shimmer.html
M. Hirano, S. Hibi, R. Terasawa, and M. Fujiu, “Relationship between
aerodynamic, vibratory, acoustic and psychoacoustic correlates in dyspho-
nia,” J. Phonetics, vol. 14, nos. 3-4, pp. 445-456, Oct. 1986.

Annu. Rev. Psychol.,

VOLUME 11, 2023

[37] S. Vaz Freitas, P. Melo Pestana, V. Almeida, and A. Ferreira, “Integrat-
ing voice evaluation: Correlation between acoustic and audio-perceptual
measures,” J. Voice, vol. 29, no. 3, pp. 390.e1-390.e7, May 2015.

[38] E. Terhardt, “Pitch, consonance, and harmony,” J. Acoust. Soc. Amer.,
vol. 55, no. 5, pp. 1061-1069, May 1974.

[39] E. Terhardt, “Calculating virtual pitch,” Hearing Res., vol.
pp. 155-182, Mar. 1979.

[40] D. J. Hermes, ‘“Measurement of pitch by subharmonic summation,”
J. Acoust. Soc. Amer., vol. 83, no. 1, pp. 257-264, Jan. 1988.

[41] H. Purohit, R. Tanabe, K. Ichige, T. Endo, Y. Nikaido, K. Suefusa, and
Y. Kawaguchi, “MIMII dataset: Sound dataset for malfunctioning indus-
trial machine investigation and inspection,” 2019, arXiv:1909.09347.

[42] Y.Koizumi, S. Saito, H. Uematsu, N. Harada, and K. Imoto, “ToyADMOS:
A dataset of miniature-machine operating sounds for anomalous sound
detection,” in Proc. IEEE Workshop Appl. Signal Process. Audio Acoust.
(WASPAA), Oct. 2019, pp. 313-317.

[43] S. Ntalampiras, I. Potamitis, and N. Fakotakis, ‘““Probabilistic novelty
detection for acoustic surveillance under real-world conditions,” IEEE
Trans. Multimedia, vol. 13, no. 4, pp. 713-719, Aug. 2011.

1, no. 2,

YASUJI OTA (Member, IEEE) received the B.S.
degree in electrical engineering from Niigata Uni-
versity, Japan, in 1987. He is currently pursuing
the Ph.D. degree with the Japan Advanced Insti-
tute of Science and Technology (JAIST), Japan.
His professional carrier started from 1987 as
a Signal-Processing Researcher at Fujitsu Lab-
oratories Ltd., and he has been an in charge
of research and development engineering since
2010 for emerging industrial businesses such as
mobile phones VoIP, and the IoT with Fujitsu Ltd. He is currently a
Researcher with JAIST. His current research interests include acoustic
perception-related signal processing and its application development. He is
a member of the Institute of Electronics, Information and Communication
Engineers (IEICE) of Japan, and the Acoustical Society of Japan (ASJ).
He received the Young Researcher’s Award from IEICE, in 1995.

MASASHI UNOKI (Member, IEEE) received the
M.S. and Ph.D. degrees in information science
from the Japan Advanced Institute of Science and
Technology (JAIST), in 1996 and 1999, respec-
tively. He was a Visiting Researcher with the
ATR Human Information Processing Laboratories,
from 1999 to 2000, and the Centre for the Neural
Basis of Hearing (CNBH), Department of Physiol-
ogy, University of Cambridge, from 2000 to 2001.

: He has been with the faculty of the School of Infor-
mation Science, JAIST, since 2001, where he is currently a Full Professor.
His main research interests include auditory motivated signal processing and
the modeling of auditory systems. He was a Japan Society for the Promotion
of Science (JSPS) Research Fellow, from 1998 to 2001. He is a member of the
Research Institute of Signal Processing (RISP), the Institute of Electronics,
Information and Communication Engineers (IEICE) of Japan, the Acoustical
Society of America (ASA), the Acoustical Society of Japan (ASJ), and the
International Speech Communication Association (ISCA). He received the
Sato Prize from ASJ, in 1999, 2010, and 2013, for an outstanding paper;
and the Yamashita Taro *“Young Researcher” Prize from the Yamashita Taro
Research Foundation, in 2005.

70897



