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ABSTRACT The objective of this paper is to formulate and analyze the benefits of a predictive non-linear
multi objective optimization method for a platoon of mild-hybrid line haul trucks. In this study a group of
three trucks with hybrid electric powertrain are considered in a platoon formation where each truck has a
predictive optimal control to save fuel with out any loss of trip time. While the controller on each truck uses
the look ahead knowledge of the entire route in terms of road grade, the overall platoon controller used amulti
agent method (Metropolis algorithm) to define coordination between the trucks. While the individual trucks,
showed significant improvement in fuel economy when running on predictive mode, the true savings came
from the entire platoon and showed promising results in terms of absolute fuel economy without trading off
on total trip time. The proposed algorithm also proved to be significantly emission efficient. A platoon of
3 trucks achieved an average of 10% fuel savings while cutting back 13% on engine out NOx emissions for
engine off coasting and 9.3% fuel saving with 8% emissions reduction for engine idle coast configuration
when compared to non-predictive non-platoon configuration.

INDEX TERMS Dynamic programming, energy optimization, multi-agent optimization, truck platoon.

I. INTRODUCTION
Due to the rapid explosion of automobile technology in the
trucking line haul segment, there has been a tremendous
need for making trucking sector more fuel efficient, safe
and clean. Platooning, predictive control, hybrid systems,
externally heated emission devices are a few such principle
areas of research. Studies of platooning trucks in literature are
largely experimental-based, and not simulation-based. Of the
simulation-based platooning truck studies, Siemon et al.
simulated Peterbilt 579 trucks in 4 truck platoons at spacing
of 30, 50 and 100 ft gaps at 24.6 m/s (55 MPH) with
different trailer configurations (box, shipping container, and
flatbed trailers) found fuel savings of 2.5% for the lead,
9.5% for the second, 11.5% for the third, and 13% for
the fourth truck [1]. The inter-vehicle dynamics, grade and
speed effect, and shifting are not considered as there is no
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true platooning controller used. Johansson et al. simulates
two platooning Class 8 Trucks on a 2 km stretch of flat
highway, initially traveling at 90 km/hr ultimately slowing
to 60 km/hr [2]. Experimental two-truck platooning results
have previously demonstrated platoon-averaged fuel savings
of 2.7-9.7% in Class 8 trucks traveling at highway speeds [3].
Platoons consisting of three Class 8 trucks operating at
steady-state, on flat ground, at 85 KPH (52.8 MPH), with
a gap of 6 m (19.7 feet), demonstrated 4-5% fuel savings
for the lead truck, 10% for the second following truck,
and 14% for the third following truck at an altitude of
1,800 m (6,000 ft) where the air density is 80% of that at
sea level [4]. Flat-ground test track experiments of three
platooning heavy trucks at 80 km/hr (49.7 MPH) with a
gap of 10 m (32.8 feet) showed fuel savings of 4% for
the lead truck, 19% for the second truck, and 17% for
the third truck. Fuel savings reduced to 1% (lead), 15%
(second), and 16% (third) when the gap was increased to
15 m (49.2 feet) [5]. Peloton Technology experimentally

93828

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.
For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

VOLUME 11, 2023

https://orcid.org/0000-0002-5380-0058
https://orcid.org/0000-0001-5245-6286
https://orcid.org/0000-0002-8605-2666


S. Pramanik, S. Anwar: Predictive Energy Management of Mild-Hybrid Truck Platoon

demonstrated that a production intent platooning controller is
capable of saving 7.25% on flat ground [6], [7]. A comparison
of predicted fuel savings from platooning in simulation is
made to this experimental data. Tsugawa et al. [8] showed
that an automated truck platoon of 3 fully-automated trucks
driving at 80km/h with a gap of 10m is capable of steady
state driving and lane changing. Fuel saving of 14 percent
can be achieved on a test track and along the expressway
using this feature. Traffic flow has important decision making
aspects in truck platooning as discussed by Calvert et al. [9].
As discussed by them truck platooning has significant effects
on traffic flow performance. [10], presents truck platooning
in autonomous heterogeneous trucks. As per the paper, every
autonomous truck should keep following the leader truck’s
way-points while maintaining a designated distance from the
truck ahead. Reference [11], presents a flexible agent-based
simulations model to serve as a matchmaking system for
truck platooning. In contrast to centralized systems, this
matchmaking is done locally among trucks using real-time
data. As per [12], platoon formation changes based on the
start and end destinations for each truck and is also affected
by other road users. This papers investigates how traffic may
affect a merging maneuver of two trucks trying to form a
platoon and observed that there could be amerge delay of over
10 percent when compared to the ideal case with the absence
of traffic. As per [13], the efficiency of platooning is not
only dependant on aerodynamic drag but also by the diffusion
of platooning technology, the maximum platoon length and
the tightness of time windows. The research in this paper
shows that these factors can considerably reduce the positive
effects of truck platooning. Guo and Wang [14], investigates
the problem of speed planning and tracking control of
a platoon of trucks on highways. The speed planning
algorithm uses average vehicle instead of platoon leader, thus
making speed profile more fuel-efficient for platoons with
vehicles if different weights and sizes. The vehicle controller
is designed considering road slope and heterogeneity of
vehicles. Reference [15] proposes a cooperative distributed
approach for forming/modifying platoons of trucks based
on real time consensus algorithm. This approach when
compared with a centralized optimization-based algorithm,
proved to be a more general scheme that is able to form
platoons even in cases with large initial separation of
trucks and is capable of handling complex situations using
its capability to form partial platoons. Zhang et al. [16]
discussed that most literature only provides scattered pieces
of information regarding fuel economy in truck platoons. This
paper summarizes the methodologies, the fuel consumption
contributing factors, methods to improve platooning rate,
and future control strategies to generate fuel-efficient speed
profiles for each vehicle driving in a platoon. Reference [17]
proposes a two-layer control architecture to safely and
fuel-efficiently coordinate the vehicles in the platoon. The
layers contain information on road topography and the
real-time control of the vehicles using dynamic programming

to compute fuel-optimal speed profile and a distributed
model predictive control framework for real-time control of
vehicles. Kaluva et al. [18] analyses the impact of platooning
in urban environments by studying the influence of inter
vehicle distance, platoon size and vehicle speed on the
drag coefficients of the vehicles in a platoon. This study
utilized two vehicle models, a minibus and a passenger
car are analysed to characterize the drag coefficients.
Muratori et al. [19] statistically analyses a large collection of
real-world US truck usage data to estimate the fraction of
total miles that are technically suitable for platooning. This
paper focuses on estimating ‘‘Platoonable’’ mileage based
on overall highway vehicle use and prolonged high-velocity
travelling and established that about 65 percent of the total
miles driven could be driven in a platoon formation, leading
to a 4 percent reduction in total truck fuel consumption.
Reference [20] assesses the impact of an eco-driving training
program on fuel savings and reduction of CO2 emissions
in a well-designed field trial. This methodology proposed
by Wang et al. includes different types of road sections
under various traffic conditions and a systematic method
to evaluate the overall and specific impacts of eco-driving.
this paper offers great insights for policymakers in road
transport planning and for drivers when applying eco-
driving techniques. Reference [21] explains how a truck
driver controls his vehicle with the motive of maintaining
a desired velocity while keeping the fuel consumption as
low as possible. This is achieved by estimating oncoming
operation points of the powertrain and optimal choice of
inputs.This information is used as an input in an algorithm
for the implementation of a predictive gearshift program
and predictive cruise controller. In the paper [22] a novel
predictive technology is used to incorporate the cruise
set speed along with a gear shift point. The numerical
based algorithm used a combination of nonlinear dynamics
constraint and objective cost. The mixed integer problem
due to the gear choice is solved partially by the outer
convexification process. Benefits are shown on real world
and artificial routes. Hellström [23] explores how information
about future road slopes can be used in a heavy truck with
an aim of reducing fuel consumption without increasing
total travel time. The longitudinal behavior of the vehicle
is controlled by determining accelerator and brake levels
and also which gear to engage. Paper [24] presents a novel
predictive control scheme is used for energy management in
hybrid trucks driving autonomously on the highway. This
scheme uses information from GPS together with speed
limits along the planned route to schedule charging and
discharging of the battery, the vehicle speed, the gear and
decision of when to turn off the engine and drive electrically.
Borek et al. [25] presents an optimal strategy for heavy-duty
trucks that minimizes fuel consumption in urban ares. This
strategy uses an online convex model predictive control
strategy that balances a trade-off between reducing braking
effort and tracking optimal velocity. Another implementable
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TABLE 1. Summary of literature and novel contribution.

but challenging solution is to use Model Predictive Control
approach. Liu et al. used a similar offline simulation and
then used the optimal cruise control speed target in a 2 truck
platoon [26]. They used a moving window based simple
model predictive control approach to solve the objective
cost. This problem is solved in real-time using a nonlinear
programming optimizer based on interior-point methods as
in [27] and is applied in real-time in the framework of MPC.
There are wide range of controls available and a variety
of vehicle models but none solved an energy management
strategy for a platoon using detailed optimal behavior for
multiple states and controls. The primary objective of this
work is to find the best strategy in terms of global optimality
with all levers interacting together. This kind of setup is
not studied so far to the best of the author’s knowledge.
There are no solution available for a predictive controller
trying to control more than 4 levers using a dynamical
system with more than 5 states for a 3 truck platoon. In this
work an attempt is made to design, implement, analyze
and understand the multi-objective optimization based, true
global behavior for a mild hybrid electric class-8 truck and
then extend the optimality to solve a problem for the 3 truck
platoon. While the single truck optimality help understand
the true optimal strategies than can be deployed on a mild
hybrid truck based on look ahead knowledge of the route, the
multi-agent based method will define the optimal strategy
for a platoon of 3 trucks when look ahead information is
available.

Table 1 summarizes the novel contribution made through
this work. This research was done as part of bridging the gap
between existing literature and what the author thinks shall
help design predictive platooning system of class-8 trucks.

II. 1D LONGITUDINAL VEHICLE DYNAMICS
A 1-D longitudinal forward torque model for a 48V mild
hybrid configuration in a line haul application is used in this
work. Lumped losses are assumed for each components while
transferring torque. This is a fair assumption as the objective
is to prove the benefits of predictive control in coordinated
platooning and should be applicable to any configuration.
Subsections below discusses briefly each component.

A. INTERNAL COMBUSTION ENGINE
The engine is of a 15L diesel family which has a power rating
of 298-373 kW and a torque rating of 1966-2508 N.m. The
fuel map is made up manually to mimic an engine efficiency
47%, as shown in Figure 1. In the figure EM is electric

FIGURE 1. Powertrain design [28], [29].

machine, ICE is Internal Combustion Engine and TRN is
transmission. It is a 6 cylinder inline configured system [28].

B. ELECTRIFICATION SYSTEM
The electrification system in this configuration consists of
a motor generator and an energy storage device. Since the
chosen configuration is a mild 48V hybrid system the Motor
of choice is a Borgwarner P2 Off Axis motor which supports
a torque range up to 80 N.m. Figure 1 shows the torque and
power characteristics of the chosen motor as a function if its
speed in RPM. It is worth noting that beyond 4000 RPM
the torque starts decreasing and power is flattened. The
continuous power of the machine used is 15kW with peak
torque raging between 50-80Nm.

There are several choices for a 48V energy storage system.
In this work a simple configuration from A123 Systems
is selected [30]. The battery is moderately sized with 8Ah
capacity and a nominal operating temperature of 25C. At this
settings it can provide continuous power of 15kW. A simple
thermal model for the battery is designed to model the heat
loss by the battery. An active cooling system is also in place to
increase the rate of heat loss by the battery. Since the battery
is small and limited by power, proper heat management of
the battery is necessary to utilize its full range of power
capability. It is also worth mentioning that the battery is
considered to always provide continuous power.

The State of Charge (SOC) is estimated using coulomb
counting method [31], [32], [33] which is very efficient and
simple way to calculate SOC.

SOC(s) = SOC(s− 1) +
1
v(s)

Ic(s)
Qn

1s (1)

It is worth to note here that the SOC state is divided by
the vehicle speed. This is done to reformulate all vehicle
dynamics in distance domain. This change from time domain
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TABLE 2. Vehicle parameters [35].

is necessary to solve the problem for an independent time
solution. This fact will be discussed further in the problem
formulation section.

C. TRANSMISSION SYSTEM
The transmission system is a 12 speed overdrive system.
There are 12 forward ratios and 2 reverse ratios. Only the
top 4 gear ratios are used in this work since the velocity
profile used is taken from highway drive. The top 4 gear ratios
used are [0.776, 1, 1.3, 1.7] EATON
 [34]. It can support a
maximum Gross Vehicle Weight (GVW) of 49895 Kg and
supports a maximum torque of 2508 N.m. The shift points for
the transmission is made up using vehicle speed reference.
The way it is derived as a function of vehicle speed and
operator throttle so that at cruising speed the transmission
stays at top gear. It is also done in a way to keep the engine
speed within the best operable BTE region.

D. DRIVE LINE & CHASSIS
The chassis is from a typical line-haul application. A Gross
VehicleWeight (GVW) of 29485 kgs [35] is used in this study
which fits nicely into the component requirements as well
as a standard load carrying measure. The number of wheels
are 18.

A rear axle ratio of 2.64 is used which gives a lot of
low end torque propagation at startup and also does not
let the engine operating point go, too high at top gear.
The optimization result is strongly coupled to these chosen
components. Specifically the chassis components are key
players in deciding the vehicle dynamics and optimal fuel
numbers since they impact the vehicle speed directly. Table 2
shows the base vehicle parameters which are used in the
simulation.

E. FORCE BALANCE
The different forces at the wheel is summed up and then
divided by the equivalent vehicle mass to get the acceleration.
Finally the acceleration is integrated to get the velocity of the
vehicle which is used to feed back to the upstream controllers
for a full closed loop dynamics. Figure 2 shows the visual
of the different forces working on the vehicle on a grade.
It highlights the relation between road grade and how it
affects various force components in the vehicle along with
their direction. The gravitational force as a function of the

FIGURE 2. 1-D Longitudinal forces on a vehicle.

road grade is given by equation 2.

Fdrag = m ∗ g ∗ sin(θ ) (2)

where, θ is the road grade in radians
The aerodynamic drag is a direct function of vehicle speed

and is given by equation 3

Faero =
1
2
ρ ∗ Af ∗ Cd ∗ ν2 (3)

where, Af is the vehicle frontal area, Cd is the Drag
Coefficient & ρ is the air density.
The road normal force is a function of road grade and is

given by equation 4

Fnorm = m ∗ g ∗ cos(θ ) (4)

where, θ is the road grade in radians
Hence, using the force balance principle and rearranging,

the vehicle speed is given by equation 5

ν =

∫
1
m
[Ftractive − Fdrag − Faero − Fnorm]dt (5)

The optimal problem is solved in distance domain since
the time in this solution is not fixed. Depending on the speed
modulation the time for the entire route will change and hence
the problem is changed from a fixed time problem to a fixed
distance problem. Hence we convert equation 5 as

ν =

√
(2 ∗

∫
1

m ∗ ν(s)
[Ftractive − Fdrag − Faero − Fnorm]ds)

(6)

where, the initial condition of the integration is Equation 6

v0s =
1
2
v0t2 (7)

The initial condition too has to be converted to distance
domain since the problem is being solved with time as an
independent variable. This is due to the fact that modulating
speed will change the time taken to complete the trip and
hence total trip time is considered as a factor in the cost
objective. The problem is also solved when the truck is active
cruise mode at highway speed. Hence an initial condition for
the speed is needed. Thus this speed is converted to distance
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domain using the same analogy as the original force balance
equation. It is worth noting here that equation 6makes vehicle
speed a state of the system dynamics. The assumptions made
throughout this section while designing the system dynamics
are

• Rotational Compliance & Coupling Dynamics between
components are not considered for the purpose of this
research.

• Losses are considered constant instead of a function of
any dependent variables.

• Map based logic is used in every calculation possible to
eliminate the need of complex analytical design.

Since the research is based on energy level analysis the above
considerations are justified.

Hence the 5 continuous states are Vehicle Speed, Vehicle
Position, Engine Fuel Quantity, Battery SOC & Battery
Temperature. There is also another state which is the gear
number but this is a discrete integer type state hence making
the problem suitable for a mixed integer type non-linear
problem. The control inputs are Engine Throttle, Clutch
Command, Brake Command, & Gear Shift Request.

Power split between the Internal Combustion Engine
and Electrical Energy Storage is decided by a supervisory
controller. The controller processes the driver demand torque
request and uses a state machine to select a power mode out
of 4 different modes, namely power split mode, generator
mode, engine only mode, and electric only mode. Due to the
small form factor for the hybrid system electric only mode
is very rarely encountered. The supervisory controller uses
full battery power and then commands the remaining power
from the engine, in response to driver’s demand. Similarly
in generator mode, during regeneration the battery absorbs
energy to its SOC based limits and the rest is used as motoring
torque which slows the vehicle by engine braking.

III. PROBLEM FORMULATION & APPROACH
The problem is complex enough to be solved in a straight
forward way. Hence the problem is solved in a two step
method. First the predictive problem for the mixed integer
non-linearmulti-objective problem is solved for a single truck
using the look ahead road grade knowledge. We call this the
offline solver which is designed to solve the optimal problem
for the single vehicle. This solver can run either in a cloud or
at a high performing edge device in the vehicle. The optimal
output of this controller is fed to the agent based controller
which we call teh online controller to distributively control
the 3 trucks in the platoon. The offline controller is solved
by the author’s and is published separately [36]. Equation 8,
shows the cost function for the offline controller.

min
∀u∗∈U

∑
[

α

ωfc
(
ṁf (u)
Vs(u)

) +
1 − α

ωtt
(

1
Vs(u)

) +
β

ωbt
(
Ṫbatt (u)
Vs(u)

)]1x

(8)

where, ṁf is the fuel rate, Vs is the vehicle speed, α is the
tuning coefficients for fuel consumed and trip time, ωfc & ωtt
are normalizing weights to transform the units in the same

FIGURE 3. Overview of the 2 stage problem hierarchy - single vehicle and
platoon.

domain and 1x is the integration step in distance domain.
Ṫbatt is the rate of change of battery internal temperature and
β is the independent tuning weight.

The dynamics in time domain is converted to distance
domain by dividing the differential equations by Vehicle
Speed (v(s)). Inclusion of time in the cost function is a
measure of drivability. It is not acceptable to achieve a fuel
efficient solution if the time constraints are not met. In other
words the vehicle cannot take more time to cover the route,
to save fuel and emissions.

Figure 3, shows the high level architecture of the problem.
The look ahead road grade is fetched from the corridor
information module, where it is assumed that the full route
information is available. The problem has 4 states x(.) =

[Vehicle Speed, Transmission Gear Number, Clutch State
and Battery SOC], 4 controls u(s) = [Throttle, Clutch
Command, Gear Shift Command, Power Split Ratio]. Engine
Speed is another derived state which is not explicitly
needed by dynamic programming. Position in the route is
another exogenous state which is used in the optimal model.
Constraints that are modelled in this work are both soft and
hard. Vehicle speed is limited between an absolute maximum
andminimum threshold as a hard constraint. A soft root mean
square type, second order norm constraint is also used which
is based on the difference between baseline speed profile and
the optimal speed profile. Additional constraints for coast
problem is the duration and frequency of coast events. Since
the predictive behavior can increase or decrease the vehicle
speed from the cruise set speed, it is required to appropriately
set the constraints on vehicle speed. Similarly the engine
off coast can also increase speed beyond reasonable limits
if not monitored correctly. Hence, there are vehicle and
engine speed limits set up accordingly while solving the
problem. The offline structure and process flow is shown in
figure 4

A. ONLINE PLATOON CONTROLLER
The next stage is when the platooning trucks use the optimal
control profile. The problem can be solved in multiple ways.
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FIGURE 4. Dynamic programming based offline controller structure.

One simple way is to let the lead truck follow the optimal
trajectories and the follower trucks passively follow the lead
trucks ensuring that the critical distance is maintained. This
is typically done using a proportional-integral feed forward
controller that tracks the separation distance and adjust brake
and throttle power as needed. The other gear and the coast
control levers can be applied as it is ensuring dynamical
requirements. This is typical to the reactive based control
strategy where the lead vehicle drives the entire the platoon
mostly. The follower vehicles plays in the throttle and brake
space to maintain follow separation distance. while this
strategy can be easy to implement it does not guarantee
(without validation) whether the results are truly optimal.
Later in the section we analyze whether implementing such a
strategy is the best tradeoff among all the requirements.

Moving one step further the platoon problem can be
solved using traditional optimal control methods such as
model predictive control, Mixed integer non-linear program
methods, pseudo spectral collocation methods and even
Pontryagin’s minimum principle. While some of them are
used widely in industry for various application and also
provides true optimality but it is often challenging if
not impossible to implement such algorithms in real time
controllers. This led to the requirement of analyzing the
global optimal behavior using different methods in this
research and understand the over all behavior in terms of
optimal results, challenges in implementation, ability to scale
up the problem and involving vehicle dynamics.

In this work a simple multi-agent based method is used
where each node (trucks) in this case need to be aware of
its neighbor’s state. The trucks share information about their
state variable and are fed with the same global optimal control
signals as obtained from the offline problem. The lead and
the last truck in the platoon have 1 neighbor each while the
middle truck has 2 neighbors. The trucks use a shorter horizon
to iterate on the state update values and minimize the cost
while meeting the constraints. The state update in this case
is for the vehicle speed only and is given by Equation 9 as
studied by Boyd et al. [37], [38], where each truck needs to
know the separation distance between the trucks from it and

then applies the formula to get is updated value.

xi(t + 1) = (1 −

∑
j∈Ni

1
(1 + max(di, dj))

)xi(t)

+

∑
j∈Ni

1
(1 + max(di, dj))

xj(t) (9)

where, Ni is the nodes in the network, d ′s are the separation
distance and x ′s are the respective states. There are other
potential state parameters than can be used for modelling
the problem. Battery SOC and battery temperature are two
such key parameters. We did not use these two states in
modelling the proposed online controller due to the fact that
the hybrid system is substantially small compared to the
total power requirement of the class 8 application. We have
used these states in modelling the reduced order model of
the vehicle dynamics but have not used them in the optimal
controller. The problem is not solved for optimal SOC points
instead the hybrid system is used to provide its maximum
power whenever demanded and absorbs all power during
regeneration within its motor and battery limit curves.

Figure 5 shows the high level structure of the detailed
solution. It has two distinct part running in tandem. The
first step is identifying the optimal solution for the single
vehicle given the predictive knowledge of the look ahead
road grade. This step is achieved by running offline, multi-
objective nonlinear mixed integer optimization problem for
the single vehicle using dynamic programming [36]. The
second step which is the crux of this paper is using the
information from the offline controller and run the online
version of the real time solver using coordinated consensus
algorithm as discussed in teh later sections.

B. DISTRIBUTED AVERAGING BASED CONSENSUS
Multi-agent systems (MASs) have gained wide attention in
recent years due to its multi-faceted practical applications,
especially in wireless sensor networks, formation control
in robots, transportation network optimization, vehicle
ecosystem development, etc. In networks of agents (or
dynamic systems), ‘‘consensus’’means to reach an agreement
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FIGURE 5. High level overview of the full control formulation and
hierarchy of the process. The full horizon is used to conclude the
optimality for the single vehicle. A short horizon is used to achieve
cooperative consensus among the platooning trucks.

FIGURE 6. Flowchart of the multi-agent based consensus algorithm used
in the current problem with 3 vehicles running in platoon.

regarding a certain quantity of interest that depends on the
state of all agents. A ‘‘consensus algorithm’’ (or protocol) is
an interaction rule that specifies the information exchange
between an agent and all of its neighbors on the network.
Distributed computation over networks has a tradition in
systems and control theory. References [39] and [40] also
discusses the distributed computing structure using multi
agent modes. Flowchart for the online multi-agent based
controller is shown in figure 6

The details of the process are defined in the next section
where the problem is mathematically formulated. Once the
online objective function is derived the 3 vehicle platoon
system is simulated as per the flowchart to select and apply
the optimal control for the system.

C. PROBLEM FORMULATION
The objective for the online controller running distributed
mode calculations is formulated in Equation 10

u∗

1:N (s) = argmin
u1:N∈R

N∑
n=1

∫ s

0
{

Wf αṁfn
vsn

+
Wt (1 − α)vtn

vsn

+ τbraken}ds (10)

subject to,

ẋ(s) = f (x(s), u(s),w(s)) (11)

y(s) = g(x(s), u(s),w(s)) (12)

ḋn(s) = vn(s) − vn−1(s) (13)

and, non-linear constraints

vmin ≤ v(s) ≤ vmax (14)

τbrk,min ≤ τbrk (s) ≤ τbrk,max (15)

dmin ≤ d(s) ≤ dmax (16)

The cost objective is a summation of fuel consumed and total
trip time. Trip time is added to compensate for the excessive
slow down of the vehicle in order to save fuel. The other
component in the cost function is the braking work. The
vehicle will try to brake in order to maintain the safe distance
between the trucks. The addition of braking work will make
sure that the trucks are not utilizing excessive braking.

The problem is solved by considering each truck as an
agent with the other trucks being it’s neighbor. Hence the
lead truck and the last truck in the platoon has 1 neighbor
each while the middle truck has two neighbors. Hence
the middle truck has two edges. Only the vehicle speed
state in this case is updated using a generalized Metropolis
Algorithm [38], [41] and the other control levers are applied
as they are from the offline optimal results. If the optimal
control violates the constraints then the constraints gets the
priority and the truck comes out of the optimal profile. As,
an example if the truck cannot be in coast mode in the platoon
due to a constraint violation then it comes of coast mode
and runs normal operation. In general a consensus process
recursively evolves with respect to a discrete time scale.
In general for a consensus algorithm, agent i sets the value of
its own agreement variable at time t+1 based on the average
of its current value and the neighbor’s value,

xi(t + 1) =
1

(1 + di)
(xi(t) +

∑
j∈Ni

xj(t)) (17)

where, Ni is the set of indices of agents of i′s neighbors
and di is the number of indices in Ni. Boyd et al. [37], [38]
[41] provided a better algorithm called Metropolis Algorithm
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FIGURE 7. Drag coefficient as a function of inter vehicular separation.

where each agent needs to know the number of neighbors of
each of its neighbors, The state update is given as,

xi(t + 1) = (1 −

∑
j∈Ni

1
(1 + max(di, dj))

)xi(t)

+

∑
j∈Ni

1
(1 + max(di, dj))

xj(t) (18)

We used this algorithm with the vehicle as the state variable
which is updated at each time step for the short horizon in real
time following the minimum objective cost and constraints.
d for the lead and the last truck is 1 and the middle truck
is 2 depending on number of edges. The other control levers
are not updated based on this algorithm as it will make the
problem challenging and it is not expected to get much benefit
by doing so.

The optimal speed trajectory for the single vehicle in
this route is captured from global offline optimal solution
and is fed as the cruise target speed for the individual
vehicles in the platoon. The job of the online multi-agent
controller [39], [40] is to coordinate with each vehicle in
the platoon to follow the set reference speed and maintain a
safe inter-vehicular separation using the proposedMetropolis
Algorithm. This control is needed because simply feeding the
speed target will make the trailing vehicles run faster than the
lead vehicles and collide with each other since the trailing
vehicles will have less aerodynamic drag and will speed up
more. Figure 7 shows the relative change in drag coefficient
as a function of vehicle separation [42], [43]
The reduction in Aerodynamic drag coefficient is given in

Equation 19 which is the fraction by which the aerodynamic
drag coefficient will change based on the separation distance.
The constants CD,1 and CD,2 are adjusted based on polyno-
mial fit from open literature data.

8(di) = (1 −
CD,1

CD,2 + di
) (19)

It is worth noting here that the multi-agent controller will run
discrete control optimizer in each truck knowing the grade

FIGURE 8. % Fuel Economy radar for the 3 platooning trucks - Lead,
Follower 1 and Follower 2. The fuel economy radar shows the numbers
for both engine coast condition as well as engine off coast conditions.

information and complete optimal optimal profile for each
truck in the platoon. Each individual agent will try to solve
the cost for its own which there by in conjunction with the
global optimal input target will achieve best fuel economy
for the entire fleet. Additional control levers in this case is
the braking effort and the inter vehicular dynamics are also
included.

IV. SIMULATION RESULT ANALYSIS
The problem as described above is solved for the 3 trucks
in platoon. The separation distance between the trucks are
dynamically modified with the intention of spending the
least amount of energy as well as maintaining the separation
distance. The braking effort is part of the objective function
to make sure that the system will not have to brake too often
to loose kinetic energy which is a loss at the expense of
the fuel energy. In this section the benefits are analyzed and
studied. The first Figure 8 is the radar plot of the adjusted
Fuel economy of the 3 trucks. There are 2 sets of data in
the plot. One is for the coast events when engine is idle
and the other for the case with engine off. On an average
the 3 truck platoon achieved 9.42% better fuel economy
over baseline simulation results. This result is for the engine
idle coast event. Similarly for the engine off coast scenario
the average went up to 10.65%. The trend in improvement
is similar though for both the scenario. The engine off
scenario made the lead truck do more better in terms of fuel
economy.

Figure 9 shows the key metrics related to fuel consumption
and the associated parameters affecting it. It is observed that
an average of 9.5% fuel benefit is achieved in the engine
idle scenario for the platoon. The engine off case shows an
average of 10.7% for the platoon. The plot show 6 sets of bar
plots. Each set comprises of 5 key metrics (Green - Adjusted
Fuel Economy % Change, Red - Absolute Fuel Economy
% Change, Orange - Absolute Trip Time % Change,
Yellow - Engine Cycle Work % Reduction, Purple - BTE %
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FIGURE 9. Key metrics showing the comparison of benefits along with Cycle work and BTE for the 3 class 8 truck in Platoon with the two distinct cases
of engine idle coast and engine off coast.

Change). The 3 sets of bar plots are for engine idle case while
the last 3 sets are for the engine off case. The lead vehicles
in both the cases shows almost similar behavior to the single
vehicle optimality. The associated benefit is a result of cycle
work reduction and aerodynamic work reduction. There is
almost near similar improvement in brake thermal efficiency
in all the cases.

Figure 10 shows the comparison of different negative
work reduction metrics. The bar plots in green shows the
reduction in aerodynamic drag work. The reduction of the
lead trucks in both the Engine Idle as well as the Engine
Off case is negligible compared to baseline results. This is
considering the fact that the lead trucks follow the optimal
speed profile almost perfectly. The follower trucks shows
more reduction due to the reduction in aerodynamic drag in
the following trucks. The reduction is more in the second
following truck than the first as expected due to more
reduction in aerodynamic drag in the second follower than
the first. Engine off case shows a bit more reduction in
aerodynamic work loss. Blue bars show the reduction in
negative work which includes motoring loss, engine braking
along with service braking. The follower trucks in both
engine idle as well engine off scenario shows less reduction
due to the application of more service brakes in order to
maintain safe operable distance between the trucks. Engine
idle scenario shows less reduction in negative work than the
engine off case. Figure 11 shows the detailed time series plots
of the 3 trucks in platoon as a function of vehicle position
in x-axis. The trucks show dynamically varying separation
distance with the trailing truck almost going 120m during
heavy hills. This can pose challenge with cut-ins. This was
because of a coast event before a hill. This large separation
distance also reduce the benefits associatedwith aerodynamic
drag reduction. This is an anomaly observed in the solution
space. This can be better tuned by making the separation
constraint more stringent. The battery SOC is pretty much
dependent on the reactive grade profile. It is also observed

that the wheel braking increased a lot. This is also shown in
Figure 10. The blue bar plots in this figure shows significant
less reduction in the negative work which is due to the fact
that wheel braking has increased. Figure 12 shows the data
for the coast events and % time in coast for the system of
trucks in platoon. The plot depicts 2 sets of data one with
the engine idle coast scenario and the other for the engine
off coast. It is noted that for the following trucks the total
number as well as the total time in coast is significantly
lower than the lead truck. This behavior is similar to both
the engine idle and engine off coast case. This is analytically
because of the speed modulation in the follower trucks which
made the trucks go out of coast in most of the cases or not
get into coast at all. In both the case it is observed that the
BTE improves progressively with increase in Fuel Economy.
In the Engine Idle case the BTE change reduced a bit for
the last truck in the platoon but still it shows better fuel
economy. The benefits associated here is more contributed
by the reduction in aerodynamic drag reduction. The BTE
did not improve a lot because of more gear shifts with
the predictive knowledge as well as to maintain separation
distance.

Figure 13 is another nice metrics to analyze and look
at. This indicates the fuel benefits associated with overall
aerodynamic drag work reduction. The major fuel benefits
are definitely due to the reduction in drag coefficients in the
following trucks. The work reduction is definitely affecting
fuel economy but there are other contributors as well in the
benefit such as negative work reduction.

Table3 shows the improvement in Fuel Economy when
predictive control is used as compared to non-predictive
controls. It shows that on an average for the 3 truck platoon
there is an overall net fuel economy improvement of 2.94%
for the predictive controls with Engine Idle scenario and
3.99% for the Engine off scenario. Table 4 captures the
detailed metrics of the multi-agent based optimal result for
the 3 truck in platoon. The results are from the problem
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FIGURE 10. Reduction in aerodynamic work along with associated EONOx reduction. The last bar plot shows the reduction in negative work which
includes engine braking, motoring losses and service braking.

FIGURE 11. Subplot 1 is the Vehicle Speed Trajectory of two trucks in platoon. Subplot 2 is the following distance of the second truck in the platoon.
Subplot 3 is the engine out NOx for the lead as well as the follower truck which shows no improvement in NOx reduction by the follower truck.

TABLE 3. Comparison of key metrics between predictive look ahead based optimal control vs. non-predictive controls in the 3 truck platoon system.

with Engine Idle Coast condition. The detailed metrics show
the absolute numbers and how they change with different
scenarios for the lead and follower trucks.

Table 5 captures the detailed metrics of the multi-agent
based optimal result for the 3 truck in platoon. The results
are from the Engine Off Coast condition. Results show
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FIGURE 12. Coast metrics for the 3 trucks in platoon - the engine idle and engine off metrics shows clear difference in optimal
behavior.

FIGURE 13. % Aerodynamic drag work reduction as function of % Fuel Economy. The % reduction in aerodynamic drag work is
calculated based on baseline simulation results.

TABLE 4. 3 Truck platoon metrics running optimal control. All the vehicles have knowledge of the offline optimal control trajectory. The individual trucks
are running consensus agent based algorithm to calculate the final optimal path. The metrics shown are with engine idle coast scenario.
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TABLE 5. 3 Truck platoon metrics running optimal control. All the vehicles have knowledge of the offline optimal control trajectory. The individual trucks
are running consensus agent based algorithm to calculate the final optimal path. The metrics shown are with engine idle coast scenario.

that applying predictive road grade knowledge to a set of
platooning trucks,

• Adaptive speed modulation can provide additional fuel
benefits in platooning trucks on top of savings due to
aero drag reduction alone,

• Follower trucks shall not need predictive gear shifts,
• Follower trucks shall save electric energy during heavy
grade and use it to supplement longer coast events in the
flat section,

• Dynamic separation shall be limited to 20 to 120 meters,

V. CONCLUSION
Amulti-objective non-linear mixed integer problem is solved
in this paper for a distributive system using a multi-agent
based optimal controller. The problem is setup in two stages,
one offline and then the results of the offline solution is
used in the online multi-agent based controller. The offline
controller used a dynamic method based predictive control
scheme to find the most optimal operating point of a vehicle
given the road grade angle of the entire route is known a-
priori. The optimality of the vehicle was attributed to the
global optimum of the 4 major control levers in the vehicle
which are cruise set speed, coasting, gear shift and power split
between the electric machine and the combustion engine.
The next online phase of the controller is to use the optimality
condition from the single vehicle and apply it to a platoon
of 3 vehicles using a distributed consensus algorithm for
multi-agent based systems. The objective was to safely follow
the lead vehicle by each vehicle and modulate the offline
control inputs so that the platoon system achieves global
optimality in terms of saving fuel. Since speed is the key
vehicle state parameter is impacted vastly by the reduction
of aero-dynamic drag in a platoon, cruise set speed and
braking are used as state parameters in the online optimal
controller. Other control levers from the offline controller are
fed to online controller as it is and those are restricted in
operation by the vehicle optimal operating zone. Recalling
from the offline global optimal rationale, the coasting, gear
shift and power split zone are decided based on optimal
engine operating conditions. Hence, in the online controller if
the optimal engine operating condition is met then the control
levers will not get triggered even if the offline controller has
a trigger active. Thus even though the online controller only

uses cruise speed as the primary state for optimal cost but the
other 3 control levers are implicitly applied to reach global
optimality. These control levers can be included in the online
optimal solver but the benefits achieved in comparison to
computational cost to implement it in a real time controller
is not significant. The findings of this study show significant
potential for fuel savings along with emissions reduction
when predictive knowledge is applied to individual vehicles
in a platoon. Though in this work a set of 3 vehicles are
used but this methodology can easily be extended to multiple
trucks in a platoon system. Future work shall explore the
extent of benefits and any potential drawback with platoon
network consisting of multiple trucks. This should be done
in a sequence by adding more control levers and objectives
to the problem. Uncertainty in vehicle operation is also a
potential candidate to explore. Adding all these constraints
to the problem will help achieve true global optimality of the
system but will also challenge the computational limitations
to solve the problem real time.
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