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ABSTRACT When drivers need to take over a vehicle during shared autonomy, the standard driving postures
based on their body size are the basis of non-driving posture (NDP)motion reconstruction. This study focused
on the prediction of standard driving postures using a deep learning neural network (DNN) method. Firstly,
the main factors influencing the standard driving posture were extracted through qualitative analysis, and
their weights were analyzed using an orthogonal test method. Based on this, the main parameters of the
standard driving posture predictionmodel were determined. Secondly, the point cloud data of typical vehicles
on the market were obtained through laser scanning. After extracting the key input and output parameters
required for the prediction model through point cloud data processing and feature matching, a dataset of
standard driving postures was established. Finally, a supervised learning model using a deep learning neural
network (DNN) was established to predict the standard driving postures of different drivers under different
vehicle package layouts. This method allows for the quick evaluation of corresponding standard driving
postures during non-driving activities, laying the foundation for risk-level assessment of non-driving postures
and motion reconstruction in vehicle takeover. The results show that the trained algorithm model can predict
standard driving postures with high accuracy and robustness.

INDEX TERMS Driving posture prediction, NDP, DNN, vehicle takeover.

I. INTRODUCTION
Due to the limitations of the current autonomous driving tech-
nology’s development, human beings would be in the model
of shared autonomy for a long time in the future. Increasing
numbers of drivers admit to using smartphones while driving
and engaging in increasingly complex and dangerous activi-
ties such as texting, taking photos, browsing the internet, and
using social networks. These non-driving tasks cause their
hands, feet, eyes, and minds to move further away from the
primary driving task in increasingly complex and hazardous
ways, resulting in physical, sensory, and cognitive distrac-
tions [1], [2], [3], [4]. Non-driving activities (NDRT) would
result in an increasing number of non-standard driving pos-
tures, which pose new challenges to traditional passive safety
protection and seriously threaten driving safety [5], [6], [7].
When confronted with abrupt and hazardous circumstances
that the system is incapable of handling, the successful
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takeover process within a specific timeframe necessitates
the driver’s cognitive, sensory, and motor reconfiguration.
To accurately reconstruct the non-standard driving posture,
it is imperative to acquire the current driver’s optimal takeover
state, also known as the standard driving posture, and mea-
sure the deviation between the current non-standard driving
posture and the standard driving posture. As such, precise
prediction of the current driver’s standard driving posture
is paramount for reconstructing non-standard driving pos-
tures(NDPs) and evaluating takeover ability.

The standard driving posture is the initial state of the
current driver which meets the requirements of safety and
comfort design. In the design of standard driving posture,
SAE has provided a reference line for the H-point, which
is used to determine the location of the H-point (the hip
point) for different percentile human models [8]. However,
this reference line is known to deviate from the actual driving
posture in China, of the huge difference in human body size
between China and the United States. Park et al. found that
there are significant differences in body size and proportions
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between Europeans and Asians, resulting in markedly differ-
ent driving postures [9]. Mehta and Tewari proposed a design
model for seats and postures based on biomechanics, which
includes medical, human factors engineering, psychology,
and physiology [10], but the size of the dataset is limited
and mainly to study the driving uncomfortable which can’t
support the quick response of driving takeover. Chai Chunlei
studied the factors influencing driving posture in his doctoral
dissertation through experimental research, including body
size, steering wheel, pedals, etc. The quantitative relationship
between some influencing factors and driving posture was
studied using statistical methods, and a prediction model for
driving posture was established [11]. However, the weight
of the influencing factors has not been fully investigated,
whichmeans the quantitative analysis is not enough, while the
motion reconstruction needs a detailed quantitative analysis
of standard driving posture.

In addition, some researchers have used machine learning
methods for driving posture prediction, such as linear regres-
sion prediction [12], support vector machine theory [13],
fuzzy theory [14], and neural networks [15]. However, due
to the quality and the sample size of the data set, the accuracy
of the prediction models still have some shortcomings, and
its model construction does not fully consider the influence
of factors such as the diversity of people and the differ-
ent arrangements of vehicles. Relatively speaking, neural
networks fit better in dealing with complex datasets withmul-
tiple input parameters. Among them, DNN has a better fitting
ability than BP neural network model and can accomplish the
same task with fewer data and use the data effectively.

In summary, a quick prediction of the current driver’s stan-
dard driving posture forms the benchmark for reconstructing
the NDP. Current prediction methods are not adequate for fast
and personalized prediction of standard driving postures, and
new prediction methods need to be constructed. Considering
the actual demand for a supervised prediction model in this
paper, the DNN neural network was selected.

Besides, this paper focuses on the kinematic reconstruc-
tion of the standard driving posture, therefore, the influence
of the driver’s psychology and driving behavior habits on
the standard driving posture is not within the scope of this
article.

The contribution of this paper can be summarized as
follows:

1) Little research has been done on motion reconstruction
in vehicle takeover because it is difficult to personally
quantify the amount of motion reconstruction for indi-
viduals, which is the difference between the current
driving stance and its corresponding standard driving
stance, and translate it into the amount of motion
of the driving components. In this paper, we pro-
vide a DNN-based prediction method for personalized
standard driving posture considering human diversity,
which offers the possibility of motion reconstruction
for NDP and can be used as a benchmark for current
driver’s motion reconstruction.

2) Compared with other simulation analysis methods, the
prediction method in this paper can achieve real-time
prediction of standard driving posture, thus supporting
the motion reconstruction of NDP to meet the applica-
tion requirements.

3) A dataset containing multimodal truth value is con-
structed formodel training of standard driving postures.
Using laser scanning and model simulation technology,
the vehicle, and ergonomic parameters of more than
43 cars were collected, and the high weights influence
factors of the standard driving posture design were
fully considered. This dataset has important applica-
tions as a study of the standard driving posture of
drivers.

4) The weights of each influencing factor of the stan-
dard driving posture were analyzed, and the data-driven
forward design of the standard driving posture was
constructed based on DNN.

II. STANDARD DRIVING POSTURE DESIGN
In this section, the main influence parameters of standard
driving posture were extracted through qualitative analy-
sis, the weights of important parameters were analyzed
by the orthogonal test method, and the prediction model
of standard driving posture could be constructed consider-
ing the convenience of parameters measurement and their
influence weights. In my previous study, a detailed analy-
sis was presented, we highlight the significant influence of
diverse human body dimensions on the design of the stan-
dard driving posture and provide corresponding corrective
measurements [16].

A. FACTORS CONSIDERATION OF POSTURE DESIGN
The standard driving posture design of a vehicle is related to
many factors [17], like the vehicle size, manikin size, steering
wheel position, pedal position, seat backrest angle, vision
ability, and room ability, etc.

The first part is the vehicle’s target user. Drivers from areas
around the world have different body sizes, which in turn
require different driving postures. Many vehicles designed
by foreign companies have complained in China about their
driving posture, such as Mercedes-Benz GLA, which has
poor headroom performance. So, the dummy size would be
a considered reason.

The second part is the dimension of the vehicles. Different
sizes and types of vehicles would have a huge impact on
the driving posture design. The length would influence the
X position of the driver inside the vehicle and the dimension
of L99, the distance of X-direction between the SgRP(seat
reference point) and BOF(ball of the foot), which is the
key point for the package of pedal and seat. The width
would change the driver’s side room ability. Besides, height
is the most important part of posture design, for the different
heights would result in little choice of seat height(H30),
which is the first confirm size of posture design.
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The third part is the package layout of the vehicle and
ergonomics demand. To start with, for the driver’s posture, the
package of the steering wheel is an important consideration,
which determines the driver’s leg room and chest impact
room. Thus, we select the size of the distance between the
steering wheel and the AHP (heel point) as the important
factor. Secondly, the convenience of the driver’s entry and
exit would be affected greatly by the rocker, which is related
accordingly to the height of the driver’s seat. In this experi-
ment, the height of the rocker (H130-1) could be chosen as
an important factor.

Furthermore, the driver’s vision would prompt the driver
to adjust the seat height, and in turn, impact the headroom.
As we all know, many female drivers like to sit highly to
obtain a better vision of the forward road, and the driver
would have a sense of local crowding and depression, if head-
room is not enough. Based on them, we select the front under
vision(A124-1-L) and headroom (H61-1) as the important
influence factors.

Finally, other factors, such as the grasping position of the
steeringwheel and the arm length, also influence the design of
the standard driving posture, but considering the settings and
limitations of the simulation software, the grasping position
could be definite to the symmetrical position and the arm
length could be automatically changed together with the body
height.

B. FACTORS INFLUENCE WEIGHTS
The driving posture is simulated by constructing the human
model and the elements of the vehicle ergonomics based on
the software of RAMSIS. The weights of the influencing
factors of standard driving posture aremeasured by an orthog-
onal experiment. The environmental data of the simulation
analysis is shown in Figure 1.

FIGURE 1. Simulation data of RAMSIS.

Considering the setting requirements of RAMSIS, seven
key influence factors are selected respectively, such as human
body size, vision-forward down, the adjustment range of the

steering wheel, A40, H30, and L99. After 18 groups of tests
using the orthogonal test method, the weight coefficient R can
be sorted in the order: L99 (R = 3.72), human model (R =

1.92), steering wheel height adjustment (R = 1.17), vision-
forward down (R = 0.85), steering wheel axial adjustment
(R = 0.68), H30 (R = 0.6), seat back angle A40 (R = 0.23),
as shown in figure 2.

FIGURE 2. Factors influence weights.

Through the weight analysis, we make the following con-
siderations in the parameter selection of the standard driving
posture prediction model.

1) The influence weights of L99 and human body size are
the highest, and the L99 is related to the 95th quartile
male’s thigh length and the X-direction dimension of
the vehicle. Here, we use themanikin height andwheel-
base(L101) as prediction model inputs.

2) The position of the steering wheel has a great influence
on the standard driving posture. considering the differ-
ence between the convenience of actual measurement
and the software simulation, we select the size distance
between the steering wheel and the foot (L11/H17) as
the inputs.

3) The forward-down vision is a key factor, so the vision-
forward down(A124-1) can be chosen as the input.

4) H30 and L99 reflect the room ability of the vehicle,
have a great influence on the design of the standard
driving posture, and are closely related to the height
of the vehicle and seat from the ground in the forward
design. Based on the above information, we select the
headroom (H61-1), the height of the rocker (H130-
1), and the height of the vehicle(H101) as the inputs.
The width of the vehicle could change the driver’s
side room ability, we use the size of width(W103)
as input.

5) The influence weight of the A40 is low in the design
of the standard driving posture, so it always can be set
using a default value in the forward design (such as
25 degrees).
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C. FACTORS SELECTION OF THE PREDICTION MODEL
The diver’s posture is commonly characterized using three
dimensions, H30,W20, and L53 [18], [19], [20], [21]. Among
them, the distance of Z-direction between the driver’s seat
reference point (SgRP) and the heel point (AHP) is signed
as H30. The distance of X-direction between the SgRP and
AHP is characterized as L53. The distance of the Y-direction
between SgRP and the longitudinal symmetry plane (Y0
plane) of the vehicle is signed as W20. These three dimen-
sions are defined as the three output parameters of the model,
which are denoted as Rx, Rz, and W20-1, as shown in
FIGURE 3.

FIGURE 3. Factors selection of the prediction model.

FIGURE 4. Prediction model of standard driving posture.

As we defined, the input and output parameters of the
predicted model can be determined as follows. The input
layer contains 9 parameters: Manikin height, W103, L101,
H101, H103-1, H17, L11, H61-1, and A124-1-L. The out-
put layer contains 3 parameters: Rx, W20-1, and Rz. The
relationship between the model’s input and output is shown
in FIGURE 4.

III. STANDARD DRIVING POSTURE DATA SET
In this section, we collect the point cloud of the most pop-
ular vehicles using laser scanning. The key points of the
vehicles can be extracted through processing and feature
reconstruction.

The driving posture data set was constructed based on
the selection of model factors, which take into the physi-
cal factors related to the human body, the position of the
steering wheel, the driver’s room ability, and so on. Besides,
we believed that humans even don’t know which posture is
the most standard one, so human’s subjective behavior is not
the scope of this article.

A. VEHICLE INFORMATION OF THE EXPERIMENTS
Currently, vehicles sold in the market of China are from
all over the world. Based on the height of the vehicles,
they can be categorized as different types from A00-level
to D-level referring to the general vehicle classification
of Germany. According to our statistics, the typical cars
on the current market, from A0 to D, were selected for
the experiments. Specifically, there are 3 A0-class sedans,
9 A-class sedans, 2 B-class sedans, 16 A-class SUVs, 2 C-
class sedans, 10 C-class SUVs, and 1 D-class sedan. The
detailed information about vehicles in our tests is shown
in Table 1.

TABLE 1. Typical vehicles of China.

It is worth pointing out that due to China’s huge vehi-
cle market, we cannot collect all the hot-selling vehicle’
data. However, the 43 vehicle models selected above have
contained typical cars of different types, which are suffi-
cient to support our research work. After the vehicle models
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were determined, point cloud technology is involved to obtain
the hard points related to the driving posture prediction.

FIGURE 5. Flow chart of point cloud data processing.

B. PROCESSING FLOW OF POINT CLOUD
The point cloud data from the previous work were used
for this study. The total data set size exceeds 285.2G.
We can see the overview of the point cloud processing flow
in FIGURE 5. Here, we just briefly review the point cloud
data processing flow, the details can be seen frommy previous
work [22].

Compared with traditional scanning methods, laser scan-
ning can quickly obtain three-dimensional dense point clouds
of the vehicle. The target vehicle’s point cloud big data is
collected by equipment from a Canadian company named
CREAFORM. The laser scanning equipment can be divided
into three parts: the hand-held scanning probe, the controller,
and the receiver. Through the link of the data line between
the hand-held scanning probe and the receiver, the demand
data of the point cloud can be obtained by using the specific
built-in software. Using laser scanning, the big data of the
point cloud can be obtained in terms of the contour of the
target vehicle and driver’s seat in different extreme states.
Thus, the vehicle dimensions for driving posture prediction

can be obtained, such as length, width, height, wheelbase, the
coordinates of the H point, and so on.

Normally, the initial point cloud obtained is disordered, the
preprocessing would go through three steps which are noise
removal, data filtering, cleaning, and feature reconstruction to
extract the valuable data hidden in the initial database [23].

Firstly, the noise of the point should be removed, otherwise,
the data processing will be greatly interfered with by the
mixed noise [24]. We need to remove the redundant and
non-characteristic information as soon as possible. Secondly,
the data of the point cloud should be filtered and cleaned on
the premise of satisfying the feature extraction, to reduce the
subsequent calculation [25]. Finally, the acquired point cloud
data is integrated and aligned based on typical feature align-
ment and other methods. It is necessary to adjust multiple
point cloud data to appropriate coordinates [26], [27], which
conform to the normal observation angle.

After the point cloud data cleaning, the feature reconstruc-
tion would be conducted. We use the software of CATIA
to build the three-dimensional (3D) key point models of the
vehicles [28], [29]. Using the triangle grid get the information
related to driving posture, and the missing holes and features
are filled in, the boundary effect is optimized, and the corre-
sponding curved surfaces and lines needed are fit. The hard
point of the vehicle can be obtained, and the key points can
be accessed quickly by feature reconstruction and stored in a
more lightweight and visualized form.

C. DATA SET
Each curve represents the seat position of a typical human
body. The group curve can represent the seat position of all
human bodies [21]. In the engineering practice of automobile
design, this curve is often used to determine the H-point area
of the seat in the design stage, as shown in FIGURE 6.

FIGURE 6. Reference line of H point.

Based on this curve, the scope of use range is expanded,
it is range from P5 female of China to P99 SAEmale. We can
select the seat travel box of the hot-selling cars based on the
SAE seat position reference curve and take the intersection
of the midline of the stroke and the SAE seat reference
curve. Each intersection represents a driving position corre-
sponding to human size. The distances of X and Z directions
between the intersection and the heel point are the required
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TABLE 2. Training data for the neural network.

output parameters. Based on this method, 15 sets of parame-
ters can be obtained in the above pattern example.

After the definition of factors, we can construct the data set
of standard driving posture, which can support the work of

the next step, as shown in Table 2.

IV. DNN-BASED PREDICTION OF DRIVING POSTURE
This section will introduce the use of DNN to predict standard
driving posture and give a detailed design of the DNN model
structure [30], [31], [32].

A. DEEP NEURAL NETWROK
The DNN model was divided into an input layer, two hidden
layers, and an output layer. After the model training, it can
be convenient to confirm the corresponding RgRP based on
the initial given conditions, which is the predicted driving
posture. As shown in FIGURE 7.

We use nine parameters like human body size, vehicle
wheelbase, vehicle width, vehicle height, L11, H17, driver
headspace, A124-1-L, and H130-1 as the input of the DNN
network, and denote them with X = {x1, x2, . . . , x9}. At the
same time, we use Rx, W20-1, and Rz as the model output,
and denote them with Y = {y1, y2, y3}.

In addition, in order to ensure that the DNN network has
a good performance, we expand the number of neurons in
each hidden layer to M = 50 Therefore, we can express the
DNNmodel as a mapping function from the input layer to the
output layer, which is expressed as follows:

Ŷ (k) = f (X (k)) (1)

where k is the number of training iterations, and Ŷ (k) repre-
sents the actual output of the DNN. Using em (k) to represent

FIGURE 7. The designed DNN of the driving posture prediction model.

the signal error of the m – th iteration of the k – th neuron in
the output layer, we have:

em (k) = Y (k) − Ŷ (k) (2)

Therefore, the error energy of the DNN can be defined as:

e (k) =
1
2

(∑M

m=1
e2m (k)

)
(3)

Since our inputs are distributed in a wide range and have
different physical meanings, it would be easy to cause some
small or different dimension physical inputs to be obliterated
in the DNN. To solve this problem, we would normalize all
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inputs and outputs, the normalization rules are as follows:

x̄n =
xn − xmin
xmax − xmin

(4)

The n – th sample value is xn. The maximum and minimum
values of the input layer are xmax and xmin, respectively.
In addition, in order to prevent the hidden layer and the output
layer from saturating the output of the neuron that is caused
by the excessively large absolute value of the neurons’ input,
which will lead to the weight adjustment falling into the flat
area of the error surface, we would check the hidden layer
and the output layer’s input of the neuron. In detail, we use
the ReLU function to process the input of the hidden layer
neurons, and the Sigmoid function to process the input of the
output layer neurons. Thus, we can express the output of the
j – th neuron of the i – th hidden layer as:

ui,j = f
(∑

l
wij,lui−1,l + eij

)
(5)

where wij,l represents the weight from the l – th neuron of the
i− 1 – th hidden layer to the j – th neuron of the i – th hidden
layer, and eij represents the output error of the j – th neuron of
the i – th hidden layer.

B. MODEL TRAINING
During the DNN model training process, the directional
propagation algorithm was used to modify the weights, and
the random gradient method adjusted the weights in batches
to improve the training speed. The momentum method was
introduced to modify the weight, for the gradient method
would make the DNN model fall into the local minimum.
in our training process. The weight correction scheme of the
j – th neuron in the i – th layer to the l − th neuron in the
i− 1 – th layer is as follows:

1wij,l (k) = η
∑

s
δi−1
s x i−1

s + α1wij,l (k − 1) (6)

where η is the learning rate, δi−1
s is the local gradient on the s

– th neuron of the i−1 – th layer, x i−1
s is the output of the s – th

neuron of the i− 1 – th layer, and α is the momentum factor.
In the above parameters, the momentum factor α generally
takes the value between 0 and 1. The learning rate η and the
value of the local gradient δi−1

s will be discussed next.
In the momentum gradient method, the learning rate is

generally used to accelerate the convergence of the algorithm.
By adjusting the learning rate, a relatively larger gradient far
from the optimal point can be achieved, thereby reducing
the number of iterations. On the contrary, by adjusting the
learning rate, the momentummethodwill ensure convergence
with a smaller gradient in the optimal point. To prevent the
algorithm from oscillating, in our algorithm, we use iterative
error to adjust the learning rate. When the error energy of
the DNN decreases, it means that our algorithm is converg-
ing in the correct direction. Currently, we need to reduce
the gradient, otherwise, we need to increase the gradient.

The specific adjustment scheme is as follows:

η(k + 1) =



min
{
exp

[
emax−e (k + 1)
emax − emin

]
, θup

}
η(k), e(k + 1) < e(k),

max
{
e(k + 1)−emin

emax − emin
, θlow

}
η(k), e(k + 1) > e(k),

(7)

Among them, θup and θlow are the up-increment factors
and the down-increment factor, respectively, usually we have,
θup ∈ [1.2, 10] and θlow ∈ [0.2, 0.8]

The local gradient characterizes the changing trend of the
weights of a certain neuron and its adjacent layer of it. Thus,
the local gradient is the indicator of the changes that the
weight parameters need tomake and is an important reference
for weight adjustment. In this paper, the local gradient on the
s – th neuron of the i + 1 – th layer to i – th layer is defined
as:

δis = f ′

(
x is

) ∑
j
δi+1
j wi+1

j,s (8)

where x is is the input of the s – th neuron of the i – th layer, and
wi+1
j,s is the weight between the j – th neuron of the i− 1 – th

layer and the s – th neuron of the i – th layer. Therefore, we can
train the neural network using the above momentum scheme.

V. DISCUSSION
In this section, the performance results of the prediction
model are first presented. Then, we evaluate the performance
of the prediction model and finally give a forward design
method of standard driving posture based on the prediction
model.

A. SIMULATION RESULTS
The performance of the DNN used in our design is presented
in FIGURE 8. Obviously, we can obtain the prediction results
quickly, even less than 50 epochs. Moreover, the training
accuracy and prediction accuracy are as high as 97% and
88%, respectively, which shows that the test accuracy of the
proposed prediction scheme meets the performance require-
ments and has good robustness.

FIGURE 9 shows the 3D surface of parameters related
to driving posture. It is obvious that the 3D surface of the
predicted driving posture almost matches that of the actual
driving experience. Thus, it illustrates the feasibility of our
designed driving posture prediction scheme.

B. PERFORMANCE EVALUATION
In addition, using the driving posture analysis module of
RAMSIS [33], about 94 analysis models were built, as shown
in FIGURE 10.

Comparing the model output results and the current design
from the market, we can see that the convergence of the SgRP
predicted by the model is better than the comparison data,
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FIGURE 8. The performance of the DNN-based prediction model.

FIGURE 9. 3D surface of standard driving posture.

FIGURE 10. Driving posture analysis model of RAMSIS.

which means the robustness of the model is good, as shown
in FIGURE 11.

C. FORWARD DESIGN OF DRIVING POSTURE
After defining the RgRP point, we need to set the seat travel
box, which is the H point area. We used the intelligent

FIGURE 11. Comparison of RgRP.

FIGURE 12. Comparison of the driver’s travel box.

prediction model of this article to guide the forward design
of a certain SUV based on the Chinese human body. The
design results show that it is significantly different from the
common cars of the same level in the market. The red area is
the travel box based on the Chinese human body, and the gray
ones are the actual travel box of the most sold market product
of the same level. FIGURE 12 shows that the variations in
standard driving posture among individuals are significant.
Therefore, it is crucial tomake personalized predictions based
on the human body to provide better active and passive safety
protection to the driver during the motion reconstruction of a
vehicle takeover.

VI. LIMITATION
Due to the limitations of data acquisition conditions, experi-
mental costs, model complexity, and point cloud processing
methods, the sample size of the data set is small, which
ultimately would affect the model’s accuracy.

Besides, considering the research workload and the con-
venience of parameter selection, only the body height
dimension was selected in the model input, while the body
proportions and fatness were not considered, which would
lead to bias in the personalized prediction of the model.
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In future research, a new dataset would construct based
on the current dataset to enrich the dimensionality of human
parameters. The synthetic dataset would be considered and
the real vehicle dataset as the supplement, so that to further
expand the sample size of the dataset, which would further
improve the accuracy of the algorithm model, and realize
data-driven personalized standard driving posture prediction.

VII. CONCLUSION
In this study, a substantial number of vehicle driving posture
parameters were obtained through laser scanning technology.
A standard driving posture dataset was then constructed based
on a weight analysis of the influencing factors. Utilizing
this dataset, an intelligent standard driving posture prediction
model was developed, laying a solid foundation for the recon-
struction of non-standard driving postures.
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