
Received 24 June 2023, accepted 3 July 2023, date of publication 11 July 2023, date of current version 19 July 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3294398

BestGC: An Automatic GC Selector
SANAZ TAVAKOLISOMEH 1, RODRIGO BRUNO2,
AND PAULO FERREIRA1, (Senior Member, IEEE)
1Department of Informatics, University of Oslo, 0373 Oslo, Norway
2INESC-ID/Técnico, ULisboa, 1000-029 Lisbon, Portugal

Corresponding author: Sanaz Tavakolisomeh (sanazt@ifi.uio.no)

ABSTRACT Garbage collection algorithms are widely used in programming languages like Java. However,
selecting the most suitable garbage collection (GC) algorithm for an application is a complex task since they
behave differently regarding crucial performance metrics such as garbage collection pause time, application
throughput, and memory usage. This challenge is particularly more complicated as there is currently no
available tool to assist users/developers in this critical decision-making process. In this paper, we address
this pressing need by conducting an extensive evaluation of four widely used GCs (G1, Parallel, Shenandoah,
and ZGC) in OpenJDK, considering application throughput, GC pause time, and various heap sizes. Building
upon this evaluation, we present BestGC, a novel system that suggests the most suitable GC solution based
on user-defined performance goals in terms of application throughput and GC pause time. Our evaluation of
BestGC using multiple workloads demonstrates its effectiveness in suggesting the most suitable GC category
(concurrent or generational/non-fully concurrent GC) in approximately 86% of the experiments on average.
Additionally, BestGC accurately identifies the best GC in approximately 52% of the cases on average. Even
in situations where BestGC failed to suggest the exact best GC or GC category, the suggested GC still
outperforms the default GC (G1) in the JDK, exhibiting an average improvement of 1.75%. Notably, BestGC
is designed to be easily extensible, facilitating its compatibility with other JDK versions, as well as new GCs
and heap sizes. By addressing the lack of a practical tool to aid in GC selection, our research makes a
significant contribution to the field of performance optimization in Java applications.

INDEX TERMS Garbage collection, java virtual machine GCs, pause time, throughput, memory
management, generational GC, concurrent GC.

I. INTRODUCTION
A significant portion of today’s applications use managed
runtime languages like Java, and therefore, take advantage
of automatic memory management, also commonly known
as Garbage Collection. It is a crucial component in man-
aged runtimes as it eliminates developers’ effort to manually
allocate and deallocate objects in memory, thus improving
developer productivity.

Several Garbage Collectors (GCs) are available in the
Java Virtual Machine (JVM), attempting to improve perfor-
mance metrics like application throughput, GC pause time
(the time application threads stop to let the GC execute),

The associate editor coordinating the review of this manuscript and

approving it for publication was P. Venkata Krishna .

and memory footprint. For example, Figures 1a and 1b show
the total application execution time and the 90th percentile
pause time (both normalized to G1) for the Philosopher
workload (from the Renaissance [1] benchmark suite) with
heap sizes of 256 MB and 4096 MB. Results show that
GCs behave differently regarding application execution time
and GC pause time. ZGC performs significantly better than
other GCs regarding pause time in both heap sizes, while it
sacrifices application execution time when the heap size is
reduced to 256 MB. G1 outperformed other GCs considering
application execution time with a 256 MB heap. However,
ZGC has the best execution time with 4096MB of heap. Note
that, as in the rest of the paper, we use the total execution
time of an application instead of the number of operations
being done per second (throughput) since the concept of

VOLUME 11, 2023 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 72357

https://orcid.org/0000-0002-7648-6188
https://orcid.org/0000-0001-8138-5878


S. Tavakolisomeh et al.: BestGC: An Automatic GC Selector

FIGURE 1. Normalized application execution time and 90th percentile of
GC pause time for Philosopher workload (from Renaissance benchmark
suite). Lower is better.

an operation is widely distinct for the workloads we use.
In addition, for GC pause time, the usual 90th percentile is
used.

Selecting the appropriate GC for an application is a chal-
lenging task due to the significant impact GCs can have on
application performance goals, specifically GC pause time
and application throughput. For applications handling large
data sets or experiencing high transaction rates, the choice
of GC algorithm becomes even more critical. However,
determining the optimal GC to meet specific performance
demands, such as minimizing GC pause time, poses a sig-
nificant difficulty for users and developers who may not
have expertise in GC optimization. Consequently, without a
dedicated tool to aid in GC selection, developers and users are
left to navigate this complex process with limited guidance,
to choose a suitable GC solution with trial and error. There-
fore, addressing the lack of a tool to assist in GC selection
is important to alleviate the burden on users and developers
and enable them to make well-informed decisions regarding
the selection of the most suitable GC algorithm for their
applications.

Thus, this work aims to propose a system, BestGC, that
automatically suggests a GC that best suits the users’ prefer-
ences regarding GC pause time and application throughput
and uses the GC right away to run the user’s application.
The two performancemetrics, application throughput andGC

pause time, are widely used by users due to the desire to
have more resources and time spent in the user’s application
and the maximum responsiveness possible. BestGC makes
it possible for the users to simply apply their requirements
to these performance metrics by defining a weight for each
while running BestGC (Figure 2 shows an example of sug-
gested GCs by BestGC for different weights of application
throughput and GC pause time). Given that memory footprint
is another important performance metric to evaluate GCs,
BestGC employs a strategy to include this metric in its GC
suggestion process. Since we evaluate GCs from two gen-
erational and non-generational categories, and each of them
follows different policies to pick the default maximum heap
size, we use several heap sizes to investigate GCs’ behavior.
Providing GCs with fixed heap size prevents them from using
their policy (which varies in GCs) to choose the maximum
heap size and make the comparison between GC fare by
working with the same memory budget.

We extensively evaluate four widely used GCs (G1, Par-
allel, Shenandoah, and ZGC) in OpenJDK version 15. This
evaluation considers application throughput (in fact, total
application execution time), GC pause time, and diverse heap
sizes. We do so while aiming at the following sub-goals:
• evaluating four well-known GCs (G1, Parallel, Shenan-
doah, and ZGC) in a production JVM implementation
(OpenJDK) considering application execution time and
GC pause time, with different amounts of memory avail-
able (256 MB, 512 MB, 1024 MB, 2048 MB, 4096 MB,
or 8192 MB);

• conducting the above mentioned experiments based on
a set of workloads from standard benchmark suites
(DaCapo [2] and Renaissance [1]) that represent existing
real-world applications to reveal the costs of the GCs;
and

• proposing an approach to suggest a suitable GC for a
user’s application while considering how the user cares
about the GC pause time and application throughput.

Regarding the requirements of the final system, BestGC,
the most fundamental is the impact that the system has on
the given applications. This should be minimized as much as
possible. In particular, the time it takes for BestGC to run
should be short when compared to the time interval taken
to run a user application. In addition, BestGC should have
some flexibility regarding this aspect. Also, BestGC should
be able to take into account the kind of performance the user
is interested in optimizing regarding her/his application.

We evaluate G1 [3], Parallel [4], Shenandoah [5], and
ZGC [6], the most relevant GC implementations available
in OpenJDK 15. We use workloads from two widely-used
benchmark suites, DaCapo [2] and Renaissance [1]. These
two benchmarks include diverse workloads that mostly need
CPU (CPU-intensive), which is also a critical resource for
GC. Using a forthcoming release of DaCapo, called DaCapo
Chopin,1 we have several latency-sensitive workloads.

1https://github.com/dacapobench/dacapobench/tree/dev-chopin

72358 VOLUME 11, 2023



S. Tavakolisomeh et al.: BestGC: An Automatic GC Selector

FIGURE 2. Suggested GCs by BestGC for varying user preferences in terms of application throughput and GC pause time, for the Compress
workload (included in SPECjvm2008 benchmark suite) and with a heap size of 512 MB. The suggested GC algorithm is Parallel when
prioritizing application throughput, whereas the suggestion changes to ZGC when GC pause time becomes a more crucial factor.

These workloads enqueue requests if they can not be pro-
cessed immediately; this causes requests to be served after
some time. This latency can be affected by a GC and results
in longer application execution times (i.e., less throughput).
Therefore, using these workloads, we can consider the con-
currency overhead of the GCs on our studied performance
metrics [7].

We measure application execution time (as a metric to
report application throughput) and GC pause time, due to
their undeniable importance, while providing different heap
sizes for the GCs. Modifying the heap size allows us to
investigate GCs’ behavior when they have to scan a large heap
area to find used objects; or when they are trying to manage a
small heap to deliver high throughput (minimum application
execution time) while imposing GC low pause times. Thus,
the contributions of this work are as follows:

• extensive measurement of four GCs (G1, Parallel,
Shenandoah, and ZGC) using two widely accepted
benchmarks suites (DaCapo and Renaissance);

• developing a system, BestGC (by using a set of matrices
we created from the results obtained from our extensive
measurements done in the previous step) that frees the
user from the complicated process of selecting a GC that
fits a user’s application performance goals; and

• validation of BestGC with the workloads from another
widely used benchmark (which is SPECjvm2008 [8]).

Due to the importance of the GCs, extensive research
analyzed, characterized, and proposed new GCs to either
improve GCs’ capabilities or fix current GC issues [9],
[10], [11], [12]. Several studies also compared GC solutions
regarding performance metrics like application throughput,
GC pause time, and memory usage [13], [14], [15], [16],
[17], [18], [19]. These performance metrics are the most
common, and we also consider them the most critical metrics
that highly affect users’ applications. However, we believe
that there is a lack of a system that suggests the best GC,
among those existing powerful and in-production GCs, that
matches a user’s application performance goals. We believe
BestGC is the first system that allows the user/developer
to overcome the challenges of selecting a suitable GC that
meets the application’s performance requirements. BestGC
is extendable to work with new JDK versions and new GCs.
Besides, the methodology used in BestGC could be used in
other runtimes in which there are GCs available to manage
the heap.

In this document, we put our focus on the user side,
assuming she/he has not enough knowledge to choose a GC
that fits the user application’s requirements. We selected
two generational (non-fully concurrent) and two (mostly)
concurrent GCs that have different main goals: i) providing
maximum throughput, i.e., minimum application execution
time (Parallel), ii) balancing the GC pause time and appli-
cation throughput (G1), and iii) keeping the GC pause times
to a minimum (Shenandoah and ZGC). We evaluated these
GCs regarding application throughput/execution time andGC
pause time. We added a third important performance metric
in our evaluations, memory usage, by changing the available
heap for the GCs; this way, we investigated its impact onGCs.
Then, we build up BestGC based on the results conducted in
our evaluations that suggests the most proper GC for a user’s
application.

The rest of this paper is organized as follows. The next
section presents some background important to understand
the GCs studied. Then, in Section III, we present some related
work. In Section IV and Section V we describe the BestGC
architecture and implementation, respectively. Finally, we
present evaluation results in Section VI, conclude the paper
in Section VII, and present some directions for the future in
Section VIII.

II. BACKGROUND
This section briefly presents GCs’ key terminology and algo-
rithms (for more detailed background, see Jones and Lins’s
book [13]). Then, we give an overview of the GCs evaluated
in this paper.

A. GARBAGE COLLECTION ALGORITHMS
The Java HotSpot VM [20] provides different GCs to
satisfy various performance requirements of Java applica-
tions. These GCs provide dynamic memory management
that facilitates allocating memory to objects, managing the
heap, and reclaiming unused memory for future use. There
are two types of garbage collection algorithms: reference
counting [21], and reference tracing [22].

A reference counting (RC) algorithm counts the number
of references (e.g., pointers) to an object, keeps that num-
ber updated, and removes the objects when their counter
falls to zero (providing immediate memory reuse). However,
it comes with the cost of counters’ space and updating over-
head, in addition to skipping cyclic structures with destroyed

VOLUME 11, 2023 72359



S. Tavakolisomeh et al.: BestGC: An Automatic GC Selector

references. Tracing collectors identify objects in use by the
running applications (also called live objects) by tracing the
object graph, starting from a set of roots (registers, stacks, and
global variables), and moving live objects to another space
or sweeping them [23]. Although it eliminates the additional
field in RC, it requires tracing the whole object graph and
needs mechanisms to deal with application threads’ (mutator)
activities. GCs we evaluate in this work follow the reference
tracing approach.

To optimize the collection, GCs divide the heap into gen-
erations or regions. Generational GCs divide the heap into
two age groups. Newly created objects are placed in the
young generation, and those that survive multiple collection
cycles are moved into the old generation. As the genera-
tional hypothesis [24] states, most objects die (i.e., become
unreferenced) after a short period of time. Therefore, the
young generation often fills up with dead objects (objects
that are not being referenced by the mutator threads); conse-
quently, minor collections occur more frequently and move
live objects to the old generation (and implicitly remove
unused objects). A major collection runs in the old generation
if it fills up. Conversely, some GCs maintain the heap as
a single generation. However, GCs may use mechanisms
to divide the heap into regions to make the collection and
improve their performance goals (for example, to evacuate
the regions with the most unused objects first [3]).

To monitor the object graph, keep track of references in
generations, and provide concurrency in the collectors, GCs
employ read and write barriers [15]. A read barrier (also
known as a load barrier) is executed when loading an object
reference from the heap [19]. In contrast, a write barrier’s
code snippet is invoked before any write operations in the
heap [19]. Stop-the-world (STW) collectors pause mutator
threads as long as the garbage collection runs, then use write
barriers to update pointers to the evacuated objects. However,
concurrent GCs do not pause the mutator as STW GCs.
Concurrent GCs use write barriers to mark live objects and
also may employ read barriers to do evacuation and reclama-
tion simultaneously with the running mutator threads. These
barriers impose performance costs on the GCs [25].

B. EVALUATED GCs
In this work, as already mentioned, we evaluate four
production GCs in OpenJDK 15:2 G1 [3], Parallel [26],
Shenandoah [5], and ZGC [6]. In this section, we highlight the
GCs’ key features that provide the background to understand
the results obtained in the evaluation (see Section VI) that are
used in BestGC (see Sections IV and V).
Parallel (also known as throughput collector [26]) is a

STW generational collector. It performs garbage collection
in its generations using multiple threads in parallel. So, it is
well suited for applications that can tolerate long application
pauses (as it is not a concurrent GC).

2https://openjdk.org/projects/jdk/15

Garbage First (G1) has become the default collector of
OpenJDK since version 9. It tries to keep a balance between
pause time and throughput [26]. G1 divides the heap into
fixed-size regions, and, as its name implies, it targets the
regions containing the most existing garbage (dead objects)
to start the collection from them. It is a generational GC that
uses a concurrent tracing mechanism to mark live objects, yet
it performs a STW collection to evacuate objects. It also uses
write barriers to make sure that all the live objects remain
alive during the concurrent tracing phase.

Moving from STW and generational to mostly-concurrent
collectors, GC pause times are significantly reduced. Con-
current collectors such as Shenandoah and ZGC, two of the
mostly-used production concurrent collectors, keep the pause
time to a minimum regardless of the heap size. Shenandoah
GC (available from JDK version 12) is a single-generation
(a generational version is available as an experimental GC)
and region-based collector that does both the tracing and
evacuation concurrently.

Z Garbage Collector, ZGC (available from JDK version
15), tries to keep the GC pause times below 10 ms. It is a
single-generation collector (a generational version is under
development) that divides the heap into regions of different
sizes. It uses part of an object’s reference (called colored
bits) to keepmarking and relocation-related information [19].
A read barrier checks on the colored bits once a reference is
loaded to take action for the object.

III. RELATED WORK
The importance of GCs in programming languages such as
Java led to extensive studies on GC performance. Many
studies compared existing GC algorithms, evaluated their
performance, combined the features of existing GCs, or intro-
duced new ones. In this section, we go over some of the
studies tightly related to our work.

A. NOVEL GC STRATEGIES
Many studies introduce new GCs created over existing
collection algorithms. Ossia et al. [9] designed a parallel,
incremental (which performs the collection in steps), and
mostly concurrent GC to meet the low GC pause time goal.
The collector is suitable for shared-memory and multiproces-
sor servers and supports highly multi-threaded applications.
Pizlo et al. [10] propose STOPLESS, which uses a trac-
ing collector and a compactor to control fragmentation
to support multi-threaded applications. Pizlo et al. [11] also
propose two other solutions for concurrent real-time GCs,
CLOVER, and CHICKEN, to reduce the complexity of
STOPLESS. Frampton et al. [12] designed an incremental,
young-generation STW GC for real-time systems. The col-
lector uses both read and write barriers to track remembered
set changes.

Tene et al. [27] propose C4, the Continuously Concurrent
Compacting Collector. It supports concurrent compaction,
and incremental update tracing through the use of a read
barrier. C4 enables simultaneous-generational concurrency

72360 VOLUME 11, 2023



S. Tavakolisomeh et al.: BestGC: An Automatic GC Selector

that allows different generations to be collected concurrently.
It continuously performs concurrent young generation col-
lections, even during long periods of concurrent full heap
collection, maintaining high allocation rates and efficiency
without sacrificing response times. Wu et al. [28] introduces
Platinum, a novel concurrent GC designed to reduce latency
in interactive services. Platinum creates an isolated execution
environment for concurrent mutators, improving application
latency without restricting GC thread execution. Addition-
ally, Platinum utilizes a new hardware feature to make access
control to different regions of memory more efficient and
therefore minimize software overhead present in previous
concurrent collectors.

However, the above mentioned GCs are not very popular
because they are not available in most mainstream JVMs.

Bruno et al. [29] described how objects created by BigData
applications are kept in memory and surveyed the existing
GCs for big data environments. They also addressed scal-
ability issues in classic garbage collection algorithms and
analyzed several relevant systems that try to solve these
scalability issues. Xu et al. [30] used the Apache Spark [31]
application to analyze GCs like G1 and Parallel. They pro-
posed strategies for designing GCs specified for Big Data.
Nguyen et al. [32] also propose a GCwith low pause time and
application high throughput based on the logical distinction
between the data path and the control path. The data path
consists of data manipulation functions, while the control
path is responsible for cluster management, setting commu-
nication channels between nodes, and interacting with users.
They believe these paths differ in heap usage and object
creation patterns. So, based on the previously mentioned
paths, they divide the heap into data and control spaces to
reduce the objects managed by the GC. Not many objects
are created in the control spaces, and they are subject to
generation-based collection, while the objects in the data
space, which creates the most objects, are subject to region-
based collections. However, the developer is responsible for
marking the beginning and end points of the data path in the
program. Broom [33] and NG2C [34] also propose two GCs
for Big Data systems. However, in Broom, the programmer
has to create the regions in the heap explicitly; in NG2C, the
programmer identifies the generation in which a new object
should be allocated. These GCs require developer efforts and
are prone to errors. Then, the authors of NG2C proposed
POLM2 [35], an offline profiler that automatically infers
generations for object allocation, and finally, ROLP [36],
an online profiler to select an object generation with no user
intervention.

B. GC COMPARATIVE ANALYSIS
Zhao et al. [15] introduce LXR to deliver low GC pause times
and high application throughput. Their approach includes
STW collections to increase responsiveness and an RCmech-
anism to deliver scalability and promptness. They evaluated
and compared barrier overhead and pause time for GCs like

G1, Shenandoah, and ZGC that we also used in this paper; yet,
note that RC-based GCs are not widely used in production
and, therefore, they are out of the scope of this document.
Zhao et al. [14] decomposed G1 into several key components
to evaluate the impact of different algorithmic elements of G1
on performance. Pufek et al. [19] analyzed several garbage
collectors like G1, Parallel, Serial (a GC that uses the same
thread as the mutator [37]), and CMS [38] (a generational GC
with a concurrent tracing in the old generation).3 They used
the DaCapo benchmark suite [2] to evaluate the GCs. They
compare the number of algorithm iterations and the total GC
pause time for applications running on top of JDK 8 and JDK
11. Also, they compared ZGC and Shenandoah, which were
experimental GCs by then, with G1. They concluded that G1
and Parallel operated better than Serial and CMS regarding
the overall duration of collections. They also showed that
those experimental GCs would contribute to overall system
optimizations. Their results also emphasize the importance
of evaluating ZGC and Shenandoah, as we do in this paper.

Grgic et al. [17] analyzed Serial, G1, Parallel, and CMS
using the DaCapo benchmark suite in JDK version 9. They
concluded that G1 is a better choice regarding the total
number of garbage collections and CPU utilization for
multi-threaded environments (but not for single-threaded
environments).

Lengauer et al. [39] describes commonly used bench-
marks, including DaCapo, DaCapo Scala [40], and
SPECjvm2008 [8] in terms of memory and garbage collec-
tion behavior. They compared G1 and Parallel Old (parallel
collection in the old generation) regarding the number of
full collections (GC counts), the GC time relative to the
total execution time of the application, and GC pause time.
They concluded that G1 performs better than the Parallel Old
concerning GC pause time by selecting different regions to
collect.

Beronić et al. [18] investigated and compared memory
issues, heap allocation, CPU usage, and duration of collection
in three GCs: G1, ZGC, and Shenandoah. They found that
GCs are sensitive to the heap size and that G1 uses less heap
than the two other GCs. However, G1 is more CPU intensive
since it occupies more OS threads necessary for scanning the
live objects in a heap.

Cai et al. [7] introduced a new methodology that defines
a practical lower bound on the costs of GCs for any given
cost metric. They showed that GCs are sensitive to heap size
and indicated that low GC pauses achieved by concurrent
GCs do not translate into low application latency. To achieve
the conclusions, the authors used latency-sensitive workloads
from the DaCapo Chopin benchmark suite. These latency-
sensitive workloads serve requests arriving at a determined
rate, and if they are not able to process a request instantly, they
enqueue the request. Therefore, they used a metric, called
metered latency, to show the delay both for the executing and

3CMS is deprecated in JDK version 15, so we do not evaluate it in our
study.

VOLUME 11, 2023 72361



S. Tavakolisomeh et al.: BestGC: An Automatic GC Selector

FIGURE 3. Overall architecture of BestGC. Solid arrows for mandatory inputs and dotted arrows for optional inputs.

the enqueued requests. Using this metric (metered latency),
the authors show that the GCs, especially concurrent ones,
cause delays for both executing and enqueued requests and
therefore affect the latency. In this document, we do not mea-
sure such metric, but we include latency-sensitive workloads
in our evaluations; in fact, we do so because it impacts the
application’s total execution time, the metric we use to report
the throughput.

Differently from previous works, in this study, we evaluate
four widely used G1, Parallel, Shenandoah, and ZGC for
application throughput/execution time and GC pause time
using a broad collection of workloads from DaCapo-Chopin
(in the rest of the paper, when we refer to DaCapo-Chopin,
we will use the simpler term DaCapo) and Renaissance
benchmark suites (more details in Sections IV and V). These
workloads simulate real-world applications to show GCs’
overhead on the performance metrics mentioned above (i.e.,
application throughput/execution time and GC pause time).
We use the results from such experiments in BestGC. BestGC
is a system that runs any Java application with the best GC,
from the four above-mentioned GCs, and a recommended
heap size while considering the user’s preferences regarding
application throughput and GC pause time. To the best of our
knowledge, BestGC is the first system to automate GC selec-
tion, while it would be easily extensible to work with a new
JDK version, new heap sizes, and new GCs. Furthermore,
although we developed BestGC for the JVM, its algorithm
is totally agnostic (regarding the JVM), as it could be used
for other runtimes and languages.

IV. BestGC
This section addresses the architecture of BestGC, which
aims to suggest the most suitable GC for a user’s application.
As Figure 3 illustrates, there are four phases to consider:
Matrices Generation, Monitoring, Calculation, and Running.
First, in the matrices generation phase, matrices are created
based on the extensive measurement of the four GCs under
consideration (this is done only once, i.e., when building
BestGC). These matrices will be used in the calculation
phase (see Section IV-D). When using BestGC, a user needs

to pass a set of input arguments to BestGC and run it
(see Section IV-B). The monitoring phase (see Section IV-C)
consists of running BestGC to find an application’s maxi-
mum heap size and CPU usage. In the calculation phase (see
Section IV-D), GCs are scored based on the matrices gener-
ated in the first phase. The running phase (see Section IV-E)
corresponds to the running of the Java application with the
suggested GC available immediately after the monitoring and
calculation phases. Thus, regarding the four phases men-
tioned above, the first one runs only once; the others run
whenever BestGC is executed.

A. MATRICES GENERATION PHASE
A set of matrices for different heap sizes is included in
BestGC. They hold the manually evaluated application exe-
cution time and pause time for four GCs (G1, Parallel,
Shenandoah, and ZGC). Such evaluated results are obtained
by measuring the average application execution time and GC
pause time (with different heap sizes) of the workloads in
DaCapo [2] and Renaissance [1] in OpenJDK version 15
(more details in Section VI). These matrices are generated
only once and inserted as constants in BestGC. BestGC
fetches the matrix corresponding to the measured heap size to
score GCs, suggests the best of the GCs (see Section IV-D),
and runs the user/developer application with it.

Note that the workloads from the DaCapo and Renaissance
benchmark suites report application execution time for a fixed
input size, i.e., a fixed amount of work done by the work-
loads. So, we do not report the throughput with its common
definition (number of requests per time unit), yet we report
application execution time as a metric for throughput.

In short, we extensively evaluate G1, Parallel, Shenandoah,
and ZGC, regarding the application execution time and
GC pause time for distinct heap configurations (256 MB,
512 MB, 1024 MB, 2048 MB, 4096 MB, and 8192 MB).
Based on our evaluations, the heap sizes set includes those
that are big enough to give headroom for the application to
workwith no limitation. Also, small heap sizes put GCs under
pressure to provide the heap needed by the application.

72362 VOLUME 11, 2023



S. Tavakolisomeh et al.: BestGC: An Automatic GC Selector

FIGURE 4. Example of a matrix for the heap size of 8192 MB.

TABLE 1. Available switches for BestGC.

Figure 4 shows such a matrix (as an example). As can be
seen, the matrix shows the application execution time and
GC pause time when the heap size is 8192 MB normalized
to G1. For each evaluated GC and heap size, the first col-
umn contains the average application execution time of all
the workloads; the second column contains the average 90th

percentile of the GC pause times (values are normalized to
G1) also for all workloads. This is detailed in Section IV-D.

B. INPUT OPTIONS FOR BestGC
BestGC requires a few simple inputs to run.4 The user (who
is defined as she/he who wants to run a Java application with
the best performance possible) needs to pass two inputs (see
Table 1): first, the mandatory absolute path to the applica-
tion’s jar file, plus all the application-specific input arguments
(if the user’s application is already running, the user must
pass its process id to BestGC using the pid command option);
second, a mandatory weight (between 0 and 1) for application
execution time (we) and/or GC pause time (wp) to show how
the user cares for these two performance metrics (1 for the
highest importance) in such a way that wp + we = 1. Users
have to specify at least one of these weights to run BestGC.

4A simple command to run BestGC with, in this case, 40 seconds of
monitoring-time:
java -jar BestGC.jar --user-app=’’path to the user’s application’s jar file +
its input options’’ --monitoring-time=40 --wp=’’weight for pause time.’’

Algorithm 1 Calculation of Maximum Heap Usage
1: t ← 0
2: pid ← user_app_pid
3: while t ≤ monitoringTime do
4: heap← 0
5: jstat ← jstat(pid)
6: heap← jstat.s1u+ jstat.eu+ jstat.ou+ jstat.ccsu
7: heap_usage_list.add(heap)
8: t ++
9: end while
10: max_heap← heap_usage_list.max()

There are also several optional switches to set different
parameters in BestGC (as shown in Table 1). For example,
when using monitoring-time, the user determines the mon-
itoring time interval during which BestGC captures heap
and CPU usage of the user’s application (more details in
the upcoming section). BestGC runs the user’s application
with the suggested GC in its final phase (see Section IV-E);
however, the user can deactivate the auto-execution feature
by setting run-best-gc to false.

C. MONITORING PHASE
During this phase, BestGC runs a user’s Java application with
the default GC (G1) of the available default JDK installed
on the user’s machine. Also, both the application’s maxi-
mum heap memory and CPU usage are obtained by BestGC.
BestGC measures heap and CPU usage during a time interval
called monitoring-time. As previously mentioned, this time
interval, by default, is set to 30 seconds in BestGC. Based
on our evaluations, the 30 seconds monitoring-time is long
enough to measure the heap and CPU usage. However, the
user can change it by specifying the desired value; for exam-
ple, a longer monitoring-time is recommended if there is an
initialization phase in the application. Also, if the user’s appli-
cation execution time is really short, obviously, 30 seconds
should be reduced as needed. In other words, using BestGC
may not be practical for an application with a short execution
time that runs only once.

Based on the recorded maximum heap usage in this phase,
BestGC offers a reasonable heap configuration for future exe-
cutions of the user’s application. As already mentioned, such
maximum heap values can be 256 MB, 512 MB, 1024 MB,
2048 MB, 4096 MB, or 8192 MB. We now describe how a
Java application’s heap usage is obtained by BestGC. The
pseudocode in Algorithm 1 shows how BestGC measures
the heap usage of a Java application. To capture the maxi-
mum heap usage, every second, BestGC invokes the jstat5

command with the gc option for the user’s application using
its Process ID (line 5). This option displays statistics about
the heap behavior. BestGC considers all the metrics that
report the capacity of the different parts of the whole heap
(line 6). Considering G1, which BestGC uses to run a user’s

5https://docs.oracle.com/en/java/javase/15/docs/specs/man/jstat.html

VOLUME 11, 2023 72363



S. Tavakolisomeh et al.: BestGC: An Automatic GC Selector

Algorithm 2 Calculating Number of Total Engaged Cores
1: t ← 0
2: pid ← user_app_pid
3: engaged_cores← 0
4: while t ≤ monitoringTime do
5: cpu_by_core_list.add(read(/proc/stat))
6: for all core_usage in cpu_by_core_list do
7: new_core_cpu_usage←
core_usage.all_usage_values

8: new_core_cpu_idle← core_usage.idle_value
9: delta_core_cpu_usage←
new_core_cpu_usage− last_core_cpu_usage

10: delta_core_cpu_idle←
last_core_cpu_idle− last_core_cpu_idle

11: core_cpu_usage←
100× (delta_core_cpu_usage−
delta_core_cpu_idle)/delta_core_cpu_usage

12: if core_cpu_usage ≥ 50 then
13: engaged_cores_per_second ++
14: end if
15: end for
16: engaged_core_list.add(engaged_cores)
17: t ++
18: end while
19: engaged_cores← engaged_core_list.average()

Algorithm 3 Calculating Average CPU Usage per Engaged
Core
1: t ← 0
2: pid ← user_app_pid
3: while t ≤ monitoringTime do
4: cpu_usage← top(pid)
5: cpu_usage_list.add(cpu_usage)
6: t ++
7: end while
8: average_cpu← cpu_usage_list.average()
9: average_cpu_per_core←

average_cpu/engaged_cores

application in this phase, these metrics are: S1U (survivor
space 1 utilization), EU (Eden space utilization), OU (old
space utilization), and CCSC (compressed class space used).
Finally, the maximum heap usage is detected by BestGC at
the end of the monitoring-time (line 10).
BestGC also reports if a user’s application is CPU-intensive

or not. BestGC obtains a Java application’s CPU usage
through two steps; first, it calculates the number of engaged
cores while running the Java application (Algorithm 2), and
then the average CPU usage per engaged core (Algorithm 3).
When running a CPU-intensive application, the choice of GC
is even more important (than running a non-CPU-intensive
application) given that the CPU is a shared resource between
the application and the GC. This feature is also included
in BestGC for adding future GC selection factors in the

system. For best results, BestGC should run alone on the
user’s machine to avoid interference from other applications
that may impact CPU measurements during the monitoring
phase. BestGC captures the amount of CPU the user’s appli-
cation uses every second during the monitoring-time interval
(Algorithm 2, line 4). Moreover, since not all the applications
utilize all the CPU cores in the machine, there is a function
(pseudocode presented in Algorithm 2) to calculate the num-
ber of engaged CPU cores for the user’s application. The
proc/stat6 command reports different metrics for each CPU
core in Linux. BestGC sums all consumed values (line 6)
and the CPU idle time (line 7) for each CPU core. Then,
to calculate the core CPU usage at the current second relative
to the last second, BestGC calculates the difference between
the new and last CPU usage (also the CPU idle time) for the
selected core. Finally, it computes the CPU usage for the core
at the current second (lines 8-10). Should the value be above
50% for a core, BestGC increases the number of engaged
CPU cores per second by one. Then, the average number
of engaged cores is calculated at the end of the monitoring-
time. Also, the average total CPU utilization (Algorithm 3)
is computed by averaging the recorded total CPU usage
every second using the top7 command and dividing it by the
average number of engaged CPU cores. Should the results be
over 90%,8 the application is CPU-intensive; otherwise, it is
considered non-CPU-intensive (Algorithm 3, lines 4-8).

Thus, recording the CPU usage for the engaged CPU cores
reports the CPU consumption intensity of the user applica-
tion, whichmay affect the GC performance (see Section VI-C
for more details). Note that in the monitoring phase, the
length of which is specified bymonitoring-time, BestGC runs
the user’s application with the user inputs using the default
GC of the default JDK available on his/her machine while it
sets no other limitations. Then, in the calculation phase (see
Section IV-D), BestGC uses the weights (we or wp), provided
by the user, in addition to the pre-calculated application
execution time and GC pause time results obtained from the
various evaluations, to score G1, Parallel GC, Shenandoah,
and ZGC.

D. CALCULATION PHASE
BestGC uses the matrices previously created (described in
Section IV-A) to score each GC for the user application. The
GC with the lowest score is the winner, i.e., it will be the
GC solution that will be used to run the user’s application in
the running phase of BestGC. For example, the matrix shown
in Figure 4 illustrates the application execution time and GC
pause time results when the heap size is 8192 MB.

BestGC selects the suitable matrix among the matrices
available for all six heap sizes depending on the maximum
heap size used by the user’s application (see Section IV-C).

6https://manpages.ubuntu.com/manpages/xenial/man5/proc.5.html
7https://manpages.ubuntu.com/manpages/xenial/man1/top.1.html
8We used the considerations in the Linux command atop, which assumes

the CPU usage to be critical when the total CPU usage percentage is 90% and
above; https://manpages.ubuntu.com/manpages/bionic/man1/atop.1.html

72364 VOLUME 11, 2023



S. Tavakolisomeh et al.: BestGC: An Automatic GC Selector

BestGC considers 20% headroom for the application (i.e.,
max_heap × 1.2) and picks the closest bigger heap con-
figuration’s matrix available. Due to our evaluation, 20%
additional heap space is big enough to let GCs manage
the heap. For example, during a 30-second monitoring-time,
BestGC reports that the maximum heap memory used by
Tomcat is 308.1 MB. It simply computes the required heap,
308.1 × 1.2 = 369.72, and looks for the closest next heap
size in its heap sizes set, which is 512 MB. Then, it uses
matrix_512 for further calculations.

Furthermore, BestGC needs to know the user’s perfor-
mance goals regarding the application’s throughput and the
GC pause time. Accordingly, as stated in Section IV-B, the
user needs to pass a weight for the application throughput
(we) or GC pause time (wp) to execute BestGC ([wp+we = 1]
with wp ∈ [0, 1],we ∈ [0, 1]). Having wp (or we), and
the most appropriate matrix (for the detected maximum used
heap size), BestGC calculates a formula (Equation 1) to score
each GC:

scoregc = we × matrix[heap]<gc,ExecutionTime>
+ wp × matrix[heap]<gc,PauseTime>

gc ∈ {G1,Parallel, Shenandoah,ZGC}

heap ∈ {256, 512, 1024, 2048, 4096, 8192} (1)

Consequently, using the formula above, BestGC scores the
GCs. Finally, it selects the minimum-scored GC along with
the recommended heap size and passes it to the last phase.

E. RUNNING PHASE
In this phase, BestGC utilizes the maximum heap size and
the most suitable GC suggested, both from the previous
phase. It executes the user’s application with the following
command:

java -Xmx <max_heap>*1.2m -XX:+Use_<best_gc>
-jar path_to_run_user_application

However, if the user has previously deactivated the
auto-execution feature (run-best-gc=false), BestGC will
simply print out the command above.

V. IMPLEMENTATION
This section describes the implementation steps we took to
develop BestGC. The system is available for download and
testing at https://github.com/SaTaSo/BestGC-Software.

A. BestGC
We implemented BestGC using Java and OpenJDK version
15 on a machine running GNU/Linux, Ubuntu 16.04.4 LTS,
with a x86_64 Intel(R) Xeon(R) 4-core CPU E5506
@2.13GHz. Running BestGC is quite straightforward since
it only asks the user to pass a few simple inputs (input
options are available in Table 1). In the monitoring phase,
BestGC looks for the JAVA_HOME environment variable on
the local machine and executes the given application on a
new JVM instance while setting no heap limitations. The user

should not run any other application on the machine to let the
application run in isolation for best results, as interference
might impact CPU and memory utilization tracking.

JDK provides tools like jcmd9 and jstat to measure
the heap usage. Using jcmd to monitor heap usage
requires enabling the Native Memory Tracking fea-
ture (-XX:NativeMemoryTracking=[summary |
detail]) when starting the JVM. However, Native Mem-
ory Tracking will cause a 5-10% performance overhead
to JVM [41] which is not the case with jstat. Therefore,
we decided to use jstat in BestGC. Jstat provides differ-
ent output options to display various statistics. We use the
gc option, which represents the behavior of the garbage-
collected heap. Computing the utilized capacities reported
for separated parts of the heap reveals the heap consumption
at the moment in which jstat is invoked. Since BestGC
sets no JVM options while executing the user’s application,
it employs the JVM default GC (G1 since JDK version 9).
Therefore, jstat reports heap consumption, including both
young and old generations statistics. Recording the total heap
usage every second lets BestGC find the adequate heap size
to decide on the most suitable GC for the application.

B. HEAP SIZE VARIETY
GCs are sensitive to the heap size [2]. The way GCs manage
the heap is one of their critical performance features. Large
heap memory size shows GCs’ behavior when there exists
much memory to assign the new objects and GCs have to
manage a large memory area. However, small heap memory
causes frequent garbage collections to free more memory;
this has obvious impacts on the GCs’ pause time andmay lead
to GCs’ failure in the worst case. This research also involved
heap size in GC evaluations to monitor its impact on the other
performance metrics, such as application execution time and
GC pause time. As already mentioned, we set the heap size in
our evaluations to 256, 512, 1024, 2048, 4096, and 8192 MB.
First, heap sizes in powers of two are commonly used by the
users [42], also, these include the required heap sizes to run
all workloads in our evaluations. If the maximum heap usage
by the application is higher than 8192 MB, BestGC runs the
application with the actual maximum heap usage (plus extra
headroom for running); however, it chooses the GC based on
the GC scores for 8192 MB heap size (conversely, the same
process applies for heap usage bellow 256 MB).

VI. EVALUATION
First, we describe some details regarding the benchmark
suites we use: DaCapo and Renaissance. Then, we present
the application execution time and GC pause time results
(per each heap size) for the selected workloads. As already
mentioned, these benchmark workloads are representative of
real-world applications. Finally, we validate BestGC using
workloads from a third benchmark suite, SPECjvm2008 [8];
BestGC runs the workloads from SPECjvm2008 as any other

9https://docs.oracle.com/en/java/javase/15/docs/specs/man/jcmd.html

VOLUME 11, 2023 72365



S. Tavakolisomeh et al.: BestGC: An Automatic GC Selector

TABLE 2. Workloads from DaCapo and Renaissance benchmark suites
used in the experiments.

application a user may run. All the results were obtained on a
server running GNU/Linux, Ubuntu 16.04.4 LTS, with eight
Intel(R) Xeon(R) E5506 @ 2.13GHz CPUs and 16 GB of
RAM.

A. BENCHMARKS
For both benchmark suites DaCapo and Renaissance, we var-
ied the number of iterations for each workload to achieve
stable execution times then we used the reported results for
the last iteration.

We used the latest version of the DaCapo benchmark suite,
the Chopin branch.10 DaCapo is a widely used benchmark
suite composed of Java CPU-intensive along with, in the
Chopin version, latency-sensitive workloads. Since there are
different sizes available for the workloads’ inputs in DaCapo,
we use large if available (to increase the number of live
objects in the heap and make GCs work frequently); oth-
erwise, we set the input size (using switch -s) to default
(for Zxing, Fop, and Luindex workloads). Using the switch
-no-pre-iteration-gc, we disable explicit GC calls
in the workload’s code.

We also use the Renaissance benchmark suite (version
gpl-0.11.0). It includes several Java-based workloads repre-
senting a large collection of existing applications such as
big data, machine learning, and functional programming.
As with DaCapo, we set the input size to large, if available,
otherwisewe set it to default. Also, disabling explicit GC calls
(System.gc()) existing in the source code is done using the
switch -no-forced-gc while running the workloads.
Table 2 shows the workloads in DaCapo and Renaissance

benchmark suites we used in this work. Some of the work-
loads in DaCapo and Renaissance benchmark suites fail due
to incompatibility with JDK version 15 (e.g., Cassandra in
DaCapo or Db Shootout in Renaissance) or other errors like
database connection failures (in Tradesoap and Tradebeans
workloads). Also, the strategy we employ to evaluate GCs
provides GCs with the same fixed heap sizes and eliminates
the dependence of the GCs on the available heap memory on
the machine; also, it prevents GCs from freely choosing heap
sizes by their different policies. Since they have tomanage the
same heap size, it makes their abilities comparable. This heap
selection strategy in BestGC results in facing failures while
running someworkloads due to anOut ofMemory error. Thus,

10https://github.com/dacapobench/dacapobench/tree/dev-chopin

we omit all the non-running workloads from the evaluations
with all the heap sizes. This narrows our set of workloads
down but allows us to make the GC comparison fair since
they are working on the same workloads with the same heap
availability.

Tables 3.a and 3.b show the number of workloads for
which the GCs could do the garbage collection for the two
benchmark suites (maximum is 24 for DaCapo and 16 for
Renaissance). For workloads in the DaCapo benchmark suite
(Table 3.a), all four GCs manage the heap with 4096 and
8192 MB heap sizes. Parallel and ZGC fail to execute when
the heap size is decreased to 2048 MB. As the table shows,
by reducing the heap size, GCs start to fail, and with the
smallest heap size (256 MB), Parallel could pass 12 out of
24 workloads, while G1 and Shenandoah outperformed the
other two GCs and performed well in 14 workloads. With
2048, 4096, and 8192 MB of the heap, all the GCs perform
well while running workloads from the Renaissance bench-
mark suite (Table 3.b). Although Parallel still manages the
heap for all the workloads, G1, Shenandoah, and ZGC fail in
one workload with a 1024 MB heap size. GCs fail in more
workloads when the heap size is set to 512 MB. ZGC is the
GC with the worst performance with a 256 MB heap.

B. APPLICATION EXECUTION TIME AND GC PAUSE TIME
This section shows the results obtained regarding application
execution time and GC pause time when running a workload
from benchmarks DaCapo and Renaissance, with each one
of the GCs (G1, Parallel, Shenandoah, and ZGC) for various
heap sizes (256, 512, 1024, 2048, 4096, and 8192 MB).
As previously mentioned, these results are embedded into
BestGC in the form of matrices (as detailed in Section IV-A).

1) APPLICATION EXECUTION TIME
Table 4 shows the arithmetic mean of the DaCapo and Renais-
sance workloads’ application execution time with different
heap sizes. Since all the execution times are normalized to
G1, the values for G1 are all 1 (so, we do not show these
values in the table). Also, since we use application execution
time to report throughput, a lower value is better. The table
shows that Parallel outperforms other GCs in DaCapo and
Renaissance benchmark suites for all the heap sizes. The
results clearly confirm that Parallel GC is optimized for high
throughput. It is, on average, about 5% better than G1 (value
1) and almost 7% and 6% better than Shenandoah and ZGC
in DaCapo. Moreover, there is no considerable difference
between the results when the heap size decreases for Parallel.
After Parallel, G1 (value 1) has a better execution time than
Shenandoah and ZGC with most of the heap sizes.

In the Renaissance, Parallel outperforms G1 (value 1),
Shenandoah, and ZGC, respectively, by about 8%, 40%,
and 60% on average. Parallel can keep the workloads’ exe-
cution time almost the same for all the heap sizes, while
application execution time in Shenandoah and ZGC worsens
when decreasing the heap size. For example, with a 256 MB
heap size, the application execution time of the workloads

72366 VOLUME 11, 2023



S. Tavakolisomeh et al.: BestGC: An Automatic GC Selector

TABLE 3. Number of garbage-collected workloads per GC with different heap configurations for: a) 24 workloads in DaCapo benchmark suite, and b)
16 workloads in Renaissance benchmark suite.

TABLE 4. Average (the arithmetic mean is calculated for the set of all the workloads in each benchmark suite) of the application execution time for the
GCs with different heap sizes. Values are normalized to G1. Lower is better. The line highlighted in green (light gray) is the one with the best results.

TABLE 5. Average (the arithmetic mean is calculated for the set of all the workloads in each benchmark suite) of the 90th percentile of GC pause times for
the GCs with different heap sizes. Values are normalized to G1. Lower is better. The line highlighted in green (light gray) is the one with the best results.

is 2.5× and 1.8× better with Parallel compared to ZGC and
Shenandoah, respectively. This shows that the workloads in
Renaissance are more aggressive regarding memory usage
than DaCapo; in fact, using concurrent GCs, which work con-
currently with the application threads, significantly affects
the application execution time of these workloads. This dif-
ference is not happening in G1 (value 1), even with a 256MB
heap size. Unlike ZGC and Shenandoah, G1 is a gener-
ational collector that keeps a balance between throughput
(application execution time in our case) and GC pause time.
Also, since the minor collection happens more frequently,
G1 is able to manage the heap and, consequently, the overall
application execution time better.

2) GC PAUSE TIME
To extract GC pause times, we use the JVM log files
corresponding to executing each workload for each GC.
As previously mentioned, for each workload, after achieving
stable results from several iterations, we use the results of the
last iteration. To obtain the relevant GC pause times of the last
iteration, we use the records of the JVM logfile from the
exact time at which warm ups finish to the time the last
iteration ends; then, we calculate the 90th percentile of the

GC pause times (as it is used in most SLAs) that happened in
the chunked log.

The average 90th percentile of GC pause times for both
DaCapo and Renaissance are shown in Table 5. For each GC,
the 90th percentile of the GC pause times obtained from the
workload’s last iteration is normalized to G1. Since all the GC
pause times are normalized to G1, the values for G1 are all 1
(so we do not show these values in the table). The arithmetic
mean is calculated for the set of all the workloads’ results
(the results highlighted in green/light gray are the best). ZGC
achieved the best results for all the heap sizes in DaCapo and
Renaissance. On average, in DaCapo, ZGC has 7.5×, 14×,
and 4× lower GC pause time than G1 (value 1), Parallel,
and Shenandoah, respectively. Also, in Renaissance, ZGC
outperformed G1 (value 1), Parallel, and Shenandoah by hav-
ing the results 19.5×, 28×, and 3× lower than G1, Parallel,
and Shenandoah on average. The workloads in Renaissance
are memory demanding and sensitive to changing the heap
size; so, with larger heap sizes, there is enough room for the
concurrent GCs, especially ZGC, to spend less time in the col-
lection process than Parallel and G1. By decreasing the heap
size, concurrent GCs need more time to manage the heap.
Parallel is the worst choice considering GC pause time due
to the STW pauses and lack of concurrency. G1 (value 1),

VOLUME 11, 2023 72367



S. Tavakolisomeh et al.: BestGC: An Automatic GC Selector

FIGURE 5. Normalized (to G1) average application execution time and the
normalized average of 90th percentile of GC pause time for all the
DaCapo and Renaissance workloads.

using its concurrent evacuation phase, performs better than
Parallel. After ZGC, Shenandoahmanages the GC pause time
better than G1 (value 1) and Parallel; it obtained results closer
to ZGC than G1 (value 1) and Parallel. However, because of
the overheads of the different barriers [5] it uses to provide
concurrent collection, it manages the GC pause time worse
than ZGC.

3) DISCUSSION
Figures 5a and 5b show application execution time and GC
pause times over all the workloads from both benchmark
suites (values are normalized against G1, also shown). First,
we provide each workload with a large heap size (letting GCs
freely assign memory to new objects). Then, we gradually
decrease the heap size and make the GCs do their best to
manage the heap.

As Figure 5 shows, Parallel outperforms other GCs for
all heap sizes. It keeps application execution times almost
the same while changing the heap size. Parallel, which is
a throughput-oriented GC, adjusts the generations’ sizes to
reach the best throughput (application execution time in our
case). G1 comes after Parallel regarding the time it takes to

run a workload. Shenandoah and ZGC have worse results
and show different behavior with different heap sizes. Even
with an 8192MB heap size, they both have higher application
execution times than G1 and Parallel. These two GCs’ appli-
cation execution times (Shenandoah and ZGC) are almost
the same for 8192 MB; their execution times worsen when
the heap size gets smaller. In fact, reducing the heap size
from 1024 MB to 512 MB results in a significant application
execution time degradation in Shenandoah and especially in
ZGC. With a 256 MB heap, ZGC shows the worst appli-
cation execution time among the other GCs. Compared to
Shenandoah, which is also a concurrent GC, ZGC sacrifices
more of the workloads’ application execution time to pro-
vide concurrency since it requires more room in the heap
to allow object allocations while the GC is running [43].
Parallel and G1 are generational collectors. As already men-
tioned, since newly created objects tend to die in a short time
(generational hypothesis), garbage collection happens most
frequently in the young generation. So, in each collection,
a GC detects a noticeable amount of dead objects by trac-
ing a portion of the heap (not the entire heap). Therefore,
as Figure 5 shows, these two GCs (Parallel and G1) deliver
better application execution time, in our study, than ZGC and
Shenandoah.

As Figure 5b shows, unlike the application execution time
results, Parallel performs poorly regarding theGC pause time.
Parallel tries to change one generation size at a time (the
generation with the more significant GC pause time [26]).
With a 2048 MB heap capacity, it experiences the highest
GC pause time to meet its throughput (application execu-
tion time) goal. While more heap capacity is available for
Parallel, it may increase the young generation size; also, the
objects created by the workloads fill this capacity, resulting
in longer GC pause times for the frequent collections in
the young generation with 2048 MB heap. For heap sizes
above 2048MB, generation sizes created by Parallel are large
enough not to invoke a collection repeatedly. GC pause times
for concurrent GCs, especially ZGC, are shorter than genera-
tional G1 and Parallel, as Figure 5b illustrates. In other words,
utilizing concurrent tracing and copying mechanisms, ZGC
and Shenandoah results are significantly better than G1 and
Parallel regarding the GC pause time. Although Shenandoah
keeps the GC pause time very small, it shows no predictable
pattern for different heap sizes. However, ZGC maintains
almost a steady average GC pause time for all the heap
sizes because its main goal is keeping GC pause times small,
regardless of the heap size [6].

C. CPU USAGE AND GC
This section addresses the correlation between CPU usage
and GCs. CPU is a resource shared between GC and appli-
cation threads. So, the amount of CPU an application use
affects GC performance and vice versa. We evaluated several
workloads from DaCapo and Renaissance benchmark suites
to investigate the correlation between CPU usage and GC.

72368 VOLUME 11, 2023



S. Tavakolisomeh et al.: BestGC: An Automatic GC Selector

These benchmark suites mostly contain workloads with high
CPU consumption, yet, we selected someworkloads with low
and very high CPU usage per engaged cores (as discussed in
Section IV-C).

We run each workload with one GC (G1, Parallel,
Shenandoah, ZGC) at a time with different heap sizes. Then,
we empirically (i.e., manually) scored eachGC,with different
weights for application throughput/execution time (wp) and
GC pause time (we), using the same formula we used to score
the GCs in BestGC (see Section IV-D).
Next, we normalized the scores for each GC (G1, Parallel,

Shenandoah, ZGC) to G1 and selected the GC with the
minimum score. Then, for each pair of wp and we, we cal-
culated the performance benefit of the selected GC (i.e., the
difference between the score of the best GC and G1). This
metric shows how the selected GC is superior to G1 (when the
application runs with the default GC). Finally, we computed
the average of these differences in every heap size.

Table 6 shows an example of the average performance
benefit of the selected GCs, when compared to the default
GC (G1), for two highly CPU-intensive and two non-CPU-
intensive workloads. In CPU-intensive workloads, we can see
that changing the heap size affects the performance benefit of
the selected GC. In particular, for both Finagle-Chirper and
Xalan, with the 256 MB heap, the performance benefit drops
compared to larger heap sizes. In non-CPU-intensive work-
loads, Avrora and Jme, the results show that the performance
benefit of the selected GC does not fluctuate with different
heap sizes. In both workloads, the maximum and minimum
performance benefits differ by approximately 4% in different
heap sizes.

Based on the results obtained, we can conclude that chang-
ing the default GC (G1) has a positive performance effect.
However, with different heap sizes available for the appli-
cation, the performance benefit is lower in CPU-intensive
applications compared to non-CPU-intensive applications.
In fact, in applications with high CPU demands, GCs are
restricted by available CPU resources, and their performance
is affected consequently; this is depicted in Table 6 that the
performance benefit of the selected GC decreases as the heap
size decreases. Due to this, in our system, BestGC, we report
if a user’s application is CPU-intensive (in the BestGC’s
output log) to inform the user that the performance benefit of
the suggested GC by BestGC may be affected and restricted
by the CPU usage of the application.

D. VALIDATION OF BestGC RESULTS
As already mentioned, BestGC suggests a GC based on
the results obtained from the evaluation of workloads in
DaCapo and Renaissance benchmark suites (in the form
of matrices as described in Section IV-A). In this section,
we validate BestGC with workloads from the SPECjvm2008
benchmark suite. Our objective is to verify the degree of
correspondence between the GC suggested by BestGC and
the empirically determined GC for various applications.
For this purpose, we empirically (i.e., manually) do all the

steps and measurements we performed in BestGC (regarding
the workload’s execution time and GC pause time) for the
SPECjvm2008 workloads. Thus, we have the following three
phases to consider: 1) empirically (i.e., manually) finding
the most proper GC by measuring the application execution
time and GC pause time for SPECjvm2008 workloads, 2)
running BestGC to get the suggested GC for the workloads
in SPECjvm2008, and 3) comparing the results of the pre-
vious two steps. In other words, we validate BestGC using
workloads from SPECjvm2008 as if these were any other
application a user may have. For the first step:
• We use the Lagom switch (available in SPECjvm2008)
to run each workload. Lagom provides a fixed-size
workload for the benchmarks, i.e., it does a fixed num-
ber of operations in each benchmark (just like DaCapo
and Renaissance benchmark suites). Then, we use the
corresponding application execution time as a metric for
throughput.

• We select eleven workloads (see Table 7) from
SPECjvm2008. We excluded the Startup workload since
it has a very short execution time (less than one sec-
ond), as well as the Compiler workload since it is not
compatible with JDK version 15.

• Just as with the workloads from DaCapo and Renais-
sance benchmark suites shown in the previous sections,
we invoke all the workloads of the SPECjvm2088 sev-
eral times to the point the execution times remain stable,
employing one of four GCs (G1, Parallel, Shenandoah,
ZGC) at a time. Then, we use the application execution
time and GC pause times of the last iteration.

To empirically obtain the application execution time and
GC pause time, and consequently, to find the GC that fits best
a SPECjvm2008 workload, we applied the following:
• We record the output of the jstat -gc command every
second while running each workload; at the end of
its execution, we find the maximum heap used by
it. We increase the maximum heap usage by 20%
(maximum-used-heap×1.2), the sameway as we did for
BestGC, and select the next available heap size from the
heap sizes set (256, 512, 1024, 2048, 4096, 8192 MB).

• We calculate the average application execution time,
and the 90th GC pause time normalized to G1 for the
selected heap size, for each SPECjvm2008 workload.
Then, we use the same formula as we used for BestGC
to score the GCs (see Section IV-D).

• Finally, we mark the GC with the minimum score for
different application execution time and GC pause time
weights as the most proper GC.

In the second step, we follow the same approach as BestGC
to obtain the max heap used by the application and find the
most proper GC. Then, in the last step, we compare the results
from what we have previously obtained empirically to those
obtained with BestGC.

The heap sizes obtained from the empirical maximum
heap size measurement and the one obtained with BestGC
are shown in Table 8. In the second column, the real max

VOLUME 11, 2023 72369



S. Tavakolisomeh et al.: BestGC: An Automatic GC Selector

TABLE 6. Average performance benefit of the selected GC for each workload with different heap sizes.

TABLE 7. Workloads from SPECjvm2008 benchmark suite used in the
validation.

TABLE 8. Heap size selected with empirical measurements for each one
of the SPECjvm2008 workloads and the heap size suggested by BestGC
(for all the we and wp).

heap size utilized by each SPECjvm2008’s workload is mul-
tiplied by 1.2. We consider 20% extra headroom for GC
(see Section V) as we did with BestGC. In the third and
fourth columns, it can be seen that the measurement of the
heap in BestGC is consistent with the measurements we took
empirically.

Table 9 shows the most appropriate heap size (empirically
obtained), the suggested GC by BestGC (for different we and
wp values), and the most proper GC, all for the Compress
workload. Note that the last row is the GC with the minimum
score obtained empirically (for the Compress workload) cor-
responding to the heap used. As the table shows, for all the
wp larger than 0.3, the suggested GC by BestGC and the GC
obtained empirically are exactly the same.Withwp = 0.3 and
we = 0.7, although the GC suggested by BestGC and the
GC empirically obtained are not exactly the same, they are
both in the fully-concurrent GC category. For other values
of wp and we, the suggested GC by BestGC and the GC
empirically obtained are neither the same nor of the same
category. In these cases, we think that such a mismatch may
happen because BestGC did not use even more workloads.

In the future, as mentioned in Section VIII, we plan to include
further evaluations of other classes of workloads that rely
on resources other than CPU, such as I/O. This will allow
BestGC to have even better results.

By using a similar evaluation (like Compress) for other
workloads in SPECjvm2008, we evaluate the accuracy of
the suggested GC (by BestGC) for different we/wp while
wt + wp = 1 (see Table 10):
• Exact GC: indicates the percentage of cases in which
BestGC suggests a GC that exactly matches the GC
empirically chosen for the workload.

• Exact Category: indicates the percentage of cases in
which BestGC successfully suggests a GCwith the same
category (concurrent or generational (non-fully concur-
rent)) as the GC empirically chosen. Note that BestGC
is not offering the exact GC in this case.

• Worst-case Performance Benefit (comparing to G1):
in the cases in which BestGC fails to offer both the
exact GC and the exact category, this metric shows the
difference between the score of the GC suggested by
BestGC and the default GC, which is G1 (when BestGC
is not used and the JVM runs with the default GC).

• Overall Performance Benefit (comparing to G1):
shows the average difference between the scores of
suggested GC by BestGC and G1 with respect to all
the BestGC’s failures and successes. In other words,
it shows how the suggested GC performs compared to
the default GC (G1) overall.

Table 10 shows the BestGC’s results in terms of the
metrics defined above for the eleven SPECjvm2088 work-
loads (shown in Table 7). For each workload, there is a
percentage for exact GC, exact category detection byBestGC,
in addition to the average worst-case performance benefit
(comparing to G1) and average overall performance benefit
(comparing to G1).

The table indicates, for instance, that BestGC’s exact GC
suggestion percentage is 63.64% for the Compress workload.
At the same time, it offers a GC with the exact category
in 81.82% of the cases. BestGC failed to suggest the exact
GC category in 18.18% of the cases (worst-cases) in Com-
press; however, the suggested GC by BestGC still causes
a 4.18% improvement (worst-case performance benefit) in
GC score compared to running the user application with the
default GC (G1). In addition, for this workload, it is shown
in the table that using the suggested GC (with respect to

72370 VOLUME 11, 2023



S. Tavakolisomeh et al.: BestGC: An Automatic GC Selector

TABLE 9. Comparing the GCs suggested by BestGC and the GC with the minimum score (empirically obtained) for the Compress workload.

TABLE 10. Validation of BestGC using SPECjvm2008 workloads. N/A when the fail percentage is 0. The average (arithmetic mean) is calculated for each
metric.

all failures and successes of BestGC for all the we and wp)
makes, on average, a 37.53% improvement compared to
default GC (G1) when the user does not use BestGC. The
worst-case performance benefit for MPEGaudio and XML
workloads are 0. It shows that for these two workloads,
BestGC suggested G1, where it failed to detect both the
exact GC and the exact category; thus, there is 0% improve-
ment between the suggested GC and the default GC (G1).
Also, according to the table, BestGC suggests the exact GC
for all the application execution time and GC pause time
weights in the Serial workload. For Sunflow and Crypto.aes
workloads, although the exact GC metric for BestGC is not
100%, it could suggest a GC with the correct GC category
(Figures 5a and 5b demonstrates that most of the time, GCs
with the same category have close scores). In Scimark.large
and Derby workloads, the worst-case performance benefit is
0.55% and 4.97%, respectively. For these workloads, using
BestGC still results in significant overall performance ben-
efits compared to G1. The average of all the worst-case
performance benefits for the workloads in SPECjvm2008 is
1.75%. It shows that using the suggested GC by BestGC has a
1.75% performance benefit compared to the default GC (G1).
BestGC suggests the exact GC for the workloads in 51.24%,
while it suggests the best GC category in 85.95%, on average.
BestGC’s average overall performance benefit is reported in
the last column in Table 10. It indicates that using BestGC’s
suggested GC results in an average improvement of 36.75%
(including all the failures and successes of BestGC) compared
to the situation in which applications are run with the default
GC (G1).

VII. CONCLUSION
In this paper, we proposed BestGC, a system that auto-
matically runs a user application with the suggested GC,
considering user preferences regarding application through-
put and GC pause time. Although GCs used in production
may have different objectives, the end-user may not be famil-
iar with their specific characteristics. Users may prioritize
throughput to a certain extent or may have the primary
concern of achieving an acceptable level of GC pause time
for their application, as deviations from this may negatively
impact their goals.

To do that, we evaluated four widely used production GCs
(G1, Parallel, Shenandoah, and ZGC) available in OpenJDK
version 15 regarding their most critical performance metrics:
application throughput/execution time and GC pause time,
while changing the available heap sizes. BestGC respects
all the requirements we set at the beginning of this work
(see Section I). It provides a flexible monitoring-time and
allows a user/developer to indicate what performance metrics
of her/his application (application throughput or GC pause
time) should be considered.

The results show that G1 and Parallel perform better
than (mostly) concurrent GCs regarding application execu-
tion time, especially when decreasing the heap size. With
an 8192 MB heap size, the application execution time for
concurrent GCs is about 15% more than Parallel GC; how-
ever, it rises about 43% for Shenandoah and about 84% for
ZGCwhen the heap size is decreased to 256MB. Considering
GC pause time, ZGC outperforms all the GCs, followed by
Shenandoah, while there is a huge difference between these

VOLUME 11, 2023 72371



S. Tavakolisomeh et al.: BestGC: An Automatic GC Selector

two (mostly) concurrent GCs and G1 and Parallel. In the
worst case, for Parallel with 2048 MB heap, ZGC achieves
about 16× smaller GC pause times than Parallel.
We also evaluated BestGC using SPECjvm2008workloads

in which each workload is used as any user application.
On average, BestGC suggests the most proper GC for about
51.24% of the time; also, it suggests a GC with the best cate-
gory (concurrent/non-concurrent) on average about 85.95%
of the time. When BestGC fails, still using the suggested
GC by BestGC results in about a 1.75% improvement in
GC score compared to using the default OpenJDK GC (G1).
This improvement for a highly optimized environment like
OpenJDK would greatly affect the performance of the users’
applications, especially for big data and cloud applications.
Using BestGC results in having a GC with an average
of 36.75% overall performance benefit, considering both
BestGC’s failures and successes, compared to running the
user’s application with the default GC (when not using the
BestGC).

We also investigated the correlation between CPU usage
and the suggested GC by BestGC. The user should be aware
that although the suggested GC by BestGC improves per-
formance compared to default GC (G1), this performance
benefit in CPU-intensive applications may be lower with
different heap sizes.

VIII. FUTURE WORK
The extensibility of BestGC is not limited to the scope of
this specific work but has broader applicability. By leveraging
the underlying principles and methodologies utilized in the
development of BestGC, it becomes feasible to adapt and
integrate the tool with other JDK versions, GCs, and heap
configurations. Therefore, the next version of BestGC will
be able to re-run all benchmarks and re-generate all the per-
formance matrices to accommodate new JDK versions and/or
new GCs.

We will also include further evaluations of other classes of
workloads that rely on resources other than CPU, such as I/O.
This will depict how the GCs impact this class of applications
and leads to expanding the BestGC data set.

While we focused on three crucial performance metrics,
memory usage, application throughput, and GC pause time,
it is worth noting that other metrics, such as latency, could
potentially be added to our scoring formula. There are some
latency-sensitive workloads available in DaCapo; however,
limitations existed in our evaluation set due to the chosen
heap sizes, resulting in excluding certain latency-sensitive
workloads (Section VI-A). Additionally, there are issues with
CPU utilization in some of these latency-sensitive workloads
(noted by the DaCapo maintainers11), e.g. Jme, Kafka, and
Lusearch, that will directly affect the latency results and
make them unreliable. So, future work also can encompass
evaluating a sufficient number of latency-sensitive workloads
to better score the GCs.

11https://github.com/dacapobench/dacapobench/blob/dev-
chopin/benchmarks/status.md

Furthermore, in our future work, we also plan on exploring
Machine Learning techniques [44] to achieve a more accurate
model and replace the formula we used in BestGC. It has
the potential to enhance the accuracy of the GC offered by
BestGC.

REFERENCES
[1] A. Prokopec, A. Rosà, D. Leopoldseder, G. Duboscq, P. Tu̇ma,

M. Studener, L. Bulej, Y. Zheng, A. Villazón, D. Simon, T. Würthinger,
andW. Binder, ‘‘Renaissance: Benchmarking suite for parallel applications
on the JVM,’’ in Proc. 40th ACM SIGPLAN Conf. Program. Lang. Design
Implement., Jun. 2019, pp. 31–47.

[2] S. M. Blackburn, R. Garner, C. Hoffmann, A. M. Khang, K. S. McKinley,
R. Bentzur, and A. Diwan, ‘‘The dacapo benchmarks: Java benchmarking
development and analysis,’’ in Proc. 21st Annu. ACM SIGPLAN Conf.
Object-Oriented Program. Syst., Lang., Appl., 2006, pp. 169–190.

[3] D. Detlefs, C. Flood, S. Heller, and T. Printezis, ‘‘Garbage-first garbage
collection,’’ in Proc. 4th Int. Symp. Memory Manage., Oct. 2004,
pp. 37–48.

[4] Oracle. (2020). The Parallel Collector. [Online]. Available: https://docs.
oracle.com/en/java/javase/15/gctuning/parallel-collector1.html#GUID-
74BE3BC9-C7ED-4AF8-A202-793255C864C4

[5] C. H. Flood, R. Kennke, A. Dinn, A. Haley, and R. Westrelin, ‘‘Shenan-
doah: An open-source concurrent compacting garbage collector for
OpenJDK,’’ in Proc. 13th Int. Conf. Princ. Practices Program. Java Plat-
form, Virtual Mach., Lang., Tools, Aug. 2016, pp. 1–9.

[6] Liden and Karlsson. (2018). ZGC: A Scalable Low-Latency Garbage
Collector. [Online]. Available: https://openjdk.java.net/jeps/333

[7] Z. Cai, S. M. Blackburn, M. D. Bond, and M. Maas, ‘‘Distilling the real
cost of production garbage collectors,’’ in Proc. IEEE Int. Symp. Perform.
Anal. Syst. Softw. (ISPASS), May 2022, pp. 46–57.

[8] (2008). SPECjvm2008. [Online]. Available: http://www.spec.org/
jvm2008/index.html

[9] Y. Ossia, O. Ben-Yitzhak, I. Goft, E. K. Kolodner, V. Leikehman, and
A. Owshanko, ‘‘A parallel, incremental and concurrent GC for servers,’’ in
Proc. ACMSIGPLANConf. Program. Lang. design Implement., May 2002,
pp. 129–140.

[10] F. Pizlo, D. Frampton, E. Petrank, and B. Steensgaard, ‘‘Stopless:
A real-time garbage collector for multiprocessors,’’ in Proc. 6th Int. Symp.
Memory Manage., Oct. 2007, pp. 159–172.

[11] F. Pizlo, E. Petrank, and B. Steensgaard, ‘‘A study of concurrent real-time
garbage collectors,’’ ACM SIGPLAN Notices, vol. 43, no. 6, pp. 33–44,
May 2008.

[12] D. Frampton, D. F. Bacon, P. Cheng, and D. Grove, ‘‘Generational real-
time garbage collection,’’ in Proc. Eur. Conf. Object-Oriented Program.
Cham, Switzerland: Springer, 2007, pp. 101–125.

[13] R. Jones, A. Hosking, and E. Moss, The Garbage Collection Handbook:
The Art of Automatic Memory Management. Boca Raton, FL, USA:
CRC Press, 2016.

[14] W. Zhao and S. M. Blackburn, ‘‘Deconstructing the garbage-first collec-
tor,’’ in Proc. 16th ACM SIGPLAN/SIGOPS Int. Conf. Virtual Execution
Environ., Mar. 2020, pp. 15–29.

[15] W. Zhao, S. M. Blackburn, and K. S. McKinley, ‘‘Low-latency, high-
throughput garbage collection,’’ in Proc. 43rd ACM SIGPLAN Int. Conf.
Program. Lang. Design Implement., Jun. 2022, pp. 76–91.

[16] S. Tavakolisomeh, ‘‘Selecting a JVM garbage collector for big data and
cloud services,’’ in Proc. 21st Int. Middleware Conf. Doctoral Symp.,
Dec. 2020, pp. 22–25.

[17] H. Grgic, B. Mihaljevic, and A. Radovan, ‘‘Comparison of garbage collec-
tors in Java programming language,’’ in Proc. 41st Int. Conv. Inf. Commun.
Technol., Electron. Microelectron. (MIPRO), May 2018, pp. 1539–1544.

[18] D. Beronic, N. Novosel, B. Mihaljevic, and A. Radovan, ‘‘Assess-
ing contemporary automated memory management in Java—Garbage
first, shenandoah, and Z garbage collectors comparison,’’ in Proc. 45th
Jubilee Int. Conv. Inf., Commun. Electron. Technol. (MIPRO), May 2022,
pp. 1495–1500.

[19] P. Pufek, H. Grgic, and B. Mihaljevic, ‘‘Analysis of garbage collection
algorithms and memory management in Java,’’ in Proc. 42nd Int. Conv.
Inf. Commun. Technol., Electron. Microelectron. (MIPRO), May 2019,
pp. 1677–1682.

[20] (2020). Java Hotspot VM. [Online]. Available: https://docs.oracle.
com/javase/specs/jvms/se15/html/

72372 VOLUME 11, 2023



S. Tavakolisomeh et al.: BestGC: An Automatic GC Selector

[21] G. E. Collins, ‘‘A method for overlapping and erasure of lists,’’ Commun.
ACM, vol. 3, no. 12, pp. 655–657, Dec. 1960.

[22] (2019). Concurrent Mark Sweep (CMS) Collector. [Online]. Available:
https://docs.oracle.com/en/java/javase/13/gctuning/concurrent-mark-
sweep-cms-collector.html

[23] S. M. Blackburn, P. Cheng, and K. S. McKinley, ‘‘Myths and realities:
The performance impact of garbage collection,’’ ACM SIGMETRICS Per-
form. Eval. Rev., vol. 32, no. 1, pp. 25–36, Jun. 2004.

[24] H. Lieberman and C. Hewitt, ‘‘A real-time garbage collector based on
the lifetimes of objects,’’ Commun. ACM, vol. 26, no. 6, pp. 419–429,
Jun. 1983.

[25] X. Yang, S. M. Blackburn, D. Frampton, and A. L. Hosking, ‘‘Barriers
reconsidered, friendlier still!’’ ACM SIGPLAN Notices, vol. 47, no. 11,
pp. 37–48, Jan. 2013.

[26] Oracle. (2020). Hotspot Virtual Machine Garbage Collection
Tuning Guide, JDK15. [Online]. Available: https://docs.oracle.com/
en/java/javase/15/gctuning/hotspot-virtual-machine-garbage-collection-
tuning-guide.pdf

[27] G. Tene, B. Iyengar, and M. Wolf, ‘‘C4: The continuously concurrent
compacting collector,’’ in Proc. Int. Symp. Memory Manage., Jun. 2011,
pp. 1–11.

[28] M. Wu, Z. Zhao, Y. Yang, H. Li, H. Chen, B. Zang, H. Guan, S. Li, C. Lu,
and T. Zhang, ‘‘Platinum: A cpu-efficient concurrent garbage collector for
tail-reduction of interactive services,’’ in Proc. USENIX Annu. Tech. Conf.,
2020, pp. 1–10.

[29] R. Bruno and P. Ferreira, ‘‘A study on garbage collection algorithms for
big data environments,’’ ACM Comput. Surv., vol. 51, no. 1, pp. 1–35,
Jan. 2019.

[30] L. Xu, T. Guo, W. Dou, W.Wang, and J. Wei, ‘‘An experimental evaluation
of garbage collectors on big data applications,’’ Proc. VLDB Endowment,
vol. 12, no. 5, pp. 570–583, Jan. 2019.

[31] The Apache Software Foundation. (2018). Apache SparkT—Unified
Engine for Large-Scale Data Analytics. [Online]. Available:
https://spark.apache.org/

[32] K. Nguyen, L. Fang, G. Xu, B. Demsky, S. Lu, S. Alamian, and
O. Mutlu, ‘‘YAK: A high-performance big-data-friendly garbage collec-
tor,’’ in Proc. 12th USENIX Symp. Operating Syst. Design Implement.,
2016, pp. 349–365.

[33] I. Gog, J. Giceva, M. Schwarzkopf, K. Vaswani, D. Vytiniotis, G. Rama-
lingam,M. Costa, D. G.Murray, S. Hand, andM. Isard, ‘‘Broom: Sweeping
out garbage collection from big data systems,’’ in Proc. 15th Workshop Hot
Topics Operating Syst., 2015, pp. 1–5.

[34] R. Bruno, L. P. Oliveira, and P. Ferreira, ‘‘NG2C: Pretenuring garbage
collection with dynamic generations for HotSpot big data applications,’’ in
Proc. ACM SIGPLAN Int. Symp. Memory Manage., Jun. 2017, pp. 2–13.

[35] R. Bruno and P. Ferreira, ‘‘POLM2: Automatic profiling for object
lifetime-aware memory management for hotspot big data applica-
tions,’’ in Proc. 18th ACM/IFIP/USENIX Middleware Conf., Dec. 2017,
pp. 147–160.

[36] R. Bruno, D. Patricio, J. Simão, L. Veiga, and P. Ferreira, ‘‘Runtime object
lifetime profiler for latency sensitive big data applications,’’ in Proc. 14th
EuroSys Conf. 2019, 2019, pp. 1–16.

[37] Oracle. (2020). Available Collectors in JDK 15. [Online]. Avail-
able: https://docs.oracle.com/en/java/javase/15/gctuning/available-collec
tors.html#GUID-45794DA6-AB96-4856-A96D-FDE5F7DEE498

[38] T. Printezis and D. Detlefs, ‘‘A generational mostly-concurrent garbage
collector,’’ in Proc. 2nd Int. Symp. Memory Manage., Oct. 2000,
pp. 143–154.

[39] P. Lengauer, V. Bitto, H. Mössenböck, and M. Weninger, ‘‘A comprehen-
sive Java benchmark study on memory and garbage collection behavior of
DaCapo, DaCapo scala, and SPECjvm2008,’’ in Proc. 8th ACM/SPEC Int.
Conf. Perform. Eng., Apr. 2017, pp. 3–14.

[40] A. Sewe, M. Mezini, A. Sarimbekov, and W. Binder, ‘‘Da capo con
scala: Design and analysis of a scala benchmark suite for the Java virtual
machine,’’ in Proc. ACM Int. Conf. Object Oriented Program. Syst. Lang.
Appl., 2011, pp. 657–676.

[41] Oracle. (2001). Native Memory Tracking. [Online]. Available:
https://docs.oracle.com/en/java/javase/15/vm/native-memory-
tracking.html

[42] B. Evans. (Mar. 2020). What Tens of Millions of VMS Reveal About
the State of Java. [Online]. Available: https://thenewstack.io/what-tens-of-
millions-of-vms-reveal-about-the-state-of-java/

[43] P. Liden. (2022). The Z Garbage Collector. [Online]. Available:
https://wiki.openjdk.org/display/zgc/Main

[44] J. Singer, G. Brown, I. Watson, and J. Cavazos, ‘‘Intelligent selection of
application-specific garbage collectors,’’ in Proc. 6th Int. Symp. Memory
Manag., 2007, pp. 91–102.

SANAZ TAVAKOLISOMEH received the B.S. and
M.S. degrees in information technology in Iran.
She is currently pursuing the Ph.D. degree with the
University of Oslo.

During the master’s studies, her research
focused on network function virtualization (NFV),
which involves virtualizing network services. Her
work in this area has contributed to the devel-
opment of new techniques for optimizing NFV.
Following the master’s studies, she continued to

build her expertise through several years of experience in java application
development. She is also continuing her research on the JVM. Specifically,
she is investigating java virtual machine garbage collectors, which are essen-
tial components of the automatic manage memory.

RODRIGO BRUNO received the Ph.D. degree
in CS from Técnico, University of Lisbon. He is
currently an Assistant Professor with Técnico,
University of Lisbon, and a Senior Researcher
with INESC-ID, Lisbon. Before, he was a Senior
Researcher with the Oracle Laboratories, Zurich
(working on GraalVM project). He joined the Ora-
cle Laboratories after spending two years as a
Postdoctoral Researcher with the Systems Group,
ETH Zurich. His current research interests include

the intersection between systems and programming languages and optimiz-
ing language runtimes for cloud environments, such as microservices and
serverless. Besides language runtimes, he works on operating systems and
parallel and distributed systems.

PAULO FERREIRA (Senior Member, IEEE)
received the B.Sc. and M.Sc. degrees in elec-
trotechnical engineering from Instituto Superior
Tcnico, University of Lisbon, in 1988 and 1992,
respectively, and the Ph.D. degree in computer
science from the University of Pierre et Marie
Curie, in 1996. He is currently pursuing theAgrega
degree with the University of Lisbon.

He collaborates with INESC ID, where he did
research for several years with the Distributed

Systems Group. He has published, as the author or coauthor, more than
120 articles in international journals and conferences, one scientific book,
11 book chapters, and a pedagogical book (with three editions, being one in
Brazil), serves on various program committees (e.g., Middleware, ICDCS,
and DAIS), served as an expert to the European union for assessment of
projects proposals under the Seventh Framework Program, led more than
15 research projects, and was one of the founders and board officer of
EuroSys (ACM—European Chapter of the Special Interest Group on Oper-
ating Systems) being currently a member of the Steering Committee.

Dr. Ferreira is also a member of the Steering Committee of the ACM/I-
FIP/Usenix Middleware and ACM/IFIP/Usenix Adaptive and Reflective
Middleware (ARM). He is also a member of the editorial board of the
Journal of Internet Services and Applications (Springer). He is a Senior
Member of ACM, was awarded two best paper awards at international events
(ACM/IFIP/Usenix Middleware Conference, level A in both CORE and
RADIST rankings), One Recognition of Service Award from ACM, and his
Ph.D. thesis was top ranked from Université Pierre et Marie Curie.

VOLUME 11, 2023 72373


