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ABSTRACT Current technological advancement in computer systems has transformed the lives of humans
from real to virtual environments. Malware is unnecessary software that is often utilized to launch cyber-
attacks. Malware variants are still evolving by using advanced packing and obfuscation methods. These
approaches make malware classification and detection more challenging. New techniques that are different
from conventional systems should be utilized for effectively combating new malware variants. Machine
learning (ML) methods are ineffective in identifying all complex and new malware variants. The deep
learning (DL) method can be a promising solution to detect all malware variants. This paper presents an
Automated Android Malware Detection using Optimal Ensemble Learning Approach for Cybersecurity
(AAMD-OELAC) technique. The major aim of the AAMD-OELAC technique lies in the automated clas-
sification and identification of Android malware. To achieve this, the AAMD-OELAC technique performs
data preprocessing at the preliminary stage. For the Android malware detection process, the AAMD-OELAC
technique follows an ensemble learning process using threeMLmodels, namely Least Square Support Vector
Machine (LS-SVM), kernel extreme learning machine (KELM), and Regularized random vector functional
link neural network (RRVFLN). Finally, the hunter-prey optimization (HPO) approach is exploited for the
optimal parameter tuning of the three DL models, and it helps accomplish improved malware detection
results. To denote the supremacy of the AAMD-OELAC method, a comprehensive experimental analysis
is conducted. The simulation results portrayed the supremacy of the AAMD-OELAC technique over other
existing approaches.

INDEX TERMS Cybersecurity, malware detection, ensemble learning, hunter prey optimization, machine
learning.

I. INTRODUCTION
Cybersecurity is becoming a main area of immediate concern
to network engineers and computer scientists, so satisfying
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solutions to several problems are in order [1]. Consequently,
the fast technological developments and their inherent inte-
grations in every aspect of lifestyles, various malware
apps, and targets become well-identified and studied [2].
Android malware is the malware variety that gained sig-
nificant interest in the web world. One common operating
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system is Android, which dominates the operating system
market [3].

Malware invasive methods emerge for avoiding iden-
tification, as few malware applications have more than
50 parameters that make detection a difficult one [4]. Hence,
it is essential to devise techniques that deal with the con-
tinuous growth of Android malware to find it, deactivate or
remove it efficiently. All these difficulties engage scholars
in the area and urge them to continue more research to
find malware and manage it properly [5]. Thus, researchers
have developed three mechanisms to find Android mal-
ware such as dynamic, static, and hybrid analysis methods.
Static analysis extracts the features that assist in identi-
fying harmful performance for apps without a demanding
actual application deployment [6]. But this kind of analysis
suffered from code obfuscation methods which assist help
malware author to avoid static methods. Dynamic analy-
sis can be used for determining the malware of apps in
their runtime [7]. Commonly, the static analysis feature
offers the capability of locating the malware element using
source code, while the dynamic analysis feature offers the
capability of finding the location of malware in a runtime
environment. Android developers and users can be exposed
to unnecessary risks and dangers with malware [8]. This
study covers malware detection methods. The detection of
malware using the ML model includes Android Application
Packages (APKs) for deriving an appropriate set of features.
Deep learning (DL) and machine learning (ML) approaches
can be used for recognizing malicious APKs [9]. Like mal-
ware detection, vulnerability detection in software code has
two stages: training ML on derived attributes to find vul-
nerable code segments and feature generation utilizing code
analysis [10].

This paper presents an Automated Android Malware
Detection using Optimal Ensemble Learning Approach for
Cybersecurity (AAMD-OELAC) technique. The AAMD-
OELAC technique performs data preprocessing at the pre-
liminary stage. For the Android malware detection process,
the AAMD-OELAC technique follows an ensemble learning
process using threeMLmodels, namely Least Square Support
Vector Machine (LS-SVM), kernel extreme learning machine
(KELM), and Regularized random vector functional link neu-
ral network (RRVFLN). Finally, the hunter-prey optimization
(HPO) algorithm is exploited for the optimal parameter tun-
ing of the three DLmodels, and it helps accomplish improved
malware detection results. To indicate the supremacy of the
AAMD-OELAC approach, a comprehensive experimental
analysis is carried out. In short, the key contributions are
listed as follows.

• An intelligent AAMD-OELAC technique comprising
data preprocessing, ensemble learning, and HPO-based
hyperparameter tuning is presented for Android mal-
ware detection. To the best of our knowledge,
the AAMD-OELAC technique never existed in the
literature.

• Perform ensemble learning-based classification pro-
cess comprising LS-SVM, KELM, and RRVFLNmod-
els for Android malware detection.

• The combination of the HPO algorithm and ensem-
ble learning process improves the detection accuracy
of Android malware. By utilizing multiple classifiers
and optimization strategies, the model can effectively
identify malicious patterns and behaviours in Android
applications.

II. RELATED WORKS
Shaukat et al. [11] devise a new DL-related method for
detecting malware. It delivered superior outcomes to classical
methods by merging dynamic and static analysis bene-
fits. Firstly, it visualizes a portable executable (PE) file
as coloured images. Secondly, it extracted deep features
from colour images utilizing fine-tuned DL method. Thirdly,
it finds malware related to the deep features of SVM.
Geremias et al. [12] presented a method using image-based
DL called novel multi-view Android malware identification,
applied threefold. Firstly, as per the many feature sets in
multi-view settings, apps were assessed, thereby raising the
data presented for the classification. Secondly, the derived
feature set is transformed into image formats while preserv-
ing the essential elements of data distribution, keeping the
data for the classifier task. Thirdly, built images are collec-
tively depicted in one shot, all in a predefined image channel,
allowing the implementation of DL structure.

Kim et al. [13] modelled a malware detection system
calledMAPAS that attains higher precision and adaptable use
of computational resources. MAPAS examined the perfor-
mances of malicious apps based on API call graphs of them
through CNN. However, the presented MAPAS technique
does not utilize a classifier method produced by CNN, it uses
CNN to find typical attributes of the API call graph of mal-
ware. Fallah and Bidgoly [14] developed a technique related
to LSTM for detecting malware-having the capability of dif-
ferentiating benign and malware samples and identifying and
detecting unseen and new types of malware. In this study,
the author has executed many studies to show the abilities
of the presented technique, including new malware family
detection, malware identification, malware family identifica-
tion, as well as assessing the minimal time needed to find
malware.

Sihag et al. [15] introduced DL-based Android malware
identification with the use of DYnamic features (De-LADY),
a resilient obfuscation method. It has used behavioural fea-
tures from dynamic analysis of an application performed
in the emulated setting. Wang et al. [16] present a hybrid
method related to DAE and CNN. Firstly, to enhance the
precision of malware detection, the author reconstructed the
high-dimensional feature of apps and used many CNN to find
Android malware. Secondly, to diminish the training period,
the author used DAE as a pre-training approach for CNN.
With the consolidation, DAE and CNN method (DAE-CNN)
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can study flexible patterns quickly. Yadav et al. [17] pre-
sented a performance comparison of 26 existing pretrained
CNN methods in Android malware detection. Depending on
the outcomes, to find Android malware, an EfficientNet-B4
CNN-based approach was devised with the use of an
image-based malware representation of the Android DEX
file. From the malware images, EfficientNet-B4 extracted
relevant attributes. Masum and Shahriar [18] devised a DL
structure named Droid-NNet, for classifying malware. But
this technique Droid-NNet, is a deep learner that surpasses
existing cutting-edge ML approaches.

Idrees et al. [19] examine PIndroid – a new Permission and
Intents-based structure to detect Android malware applica-
tions. As we know, PIndroid is the primary solution, which
utilizes a group of permissions and purposes supplemented
with Ensemble approaches for correct malware detection.
In [20], the authors establish that once the concept drift
was discussed, permissions create long-lasting and effectual
malware detectionmethods. Taha and Barukab [21] introduce
a mechanism for Android malware classification utilizing
optimizer ensemble learning depending on GA. The GA
was utilized for optimizing the parameter settings from the
RF technique for obtaining the maximum Android malware
classifier accuracy. Sabanci et al. [22] intended to catego-
rize pepper seeds belonging to distinct cultivars with CNN
techniques. Two methods are presented for classification.
Initially, the CNN approaches (ResNet50 and ResNet18) are
trained for pepper seeds. Secondary, diverse in the first, the
features of pre-training CNN approaches are fused, and fea-
ture selection has been executed to the fused features. In [23],
the authors examine recent algorithms utilized for Android
Malware Detection. As a result, an outline of the Android
system exposed the underlying processes and the problems
facing its security structure.

III. THE PROPOSED MODEL
In this study, we have focused on designing the AAMD-
OELAC technique for accurate and automated Android
malware detection. The intention of the AAMD-OELAC
method focused on the automatic recognition and clas-
sification of Android malware. To achieve this, the
AAMD-OELAC technique encompasses data preprocessing,
ensemble classification, and HPO-based parameter tuning.
Fig. 1 exhibits the workflow of the AAMD-OELAC system.

A. DATA PREPROCESSING
At the initial stage, data preprocessing is performed to
improve the quality of the actual data. As regards classifi-
cation, it is vital for choosing features to signify the class the
new record would concern [24]. Based on this, the permission
and API calls can be eradicated in all Android applications,
and both are features from the database. Androguard refers to
a complete package tool planned for interacting with Android
files and limited only to Python platforms. It could be utilized
as a tool to reverse engineer single Android applications.

FIGURE 1. Workflow of AAMD-OELAC system.

The Androguard tool can be utilized for analyzing APK files
by individually removing the DEX file permissions to all
APK files. Hence, it is generated a data frame comprising
applications (rows) and features (columns), whereas all the
columns signify certain permission or API-call with binary
values, but rows denote either malware or benign APK files.

B. ENSEMBLE LEARNING-BASED MALWARE
CLASSIFICATION
For Android malware detection, the AAMD-OELAC tech-
nique follows an ensemble learning process using three ML
models, namely LS-SVM, KELM, and RRVFLN.

1) LS-SVM MODEL
The LS-SVM is a revised edition of the SVM method. Also,
it simplifies the computational procedure and minimizes
computation costs [25]. Different from the SVM model,
the LS-SVM model uses a sequence of linear equations for
training:

Z = αTϕ (x) + b+ et (1)

In Eq. (1): Z denotes the dependent parameter, x is the
input, α indicates the weight coefficient, b shows the bias
value, and ϕ(x) indicates a non-linear mapping function.
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Based on the optimization problem, the function estimation
is defined as follows.

Minimize:
1
2
αTα +

1
2
γ

M∑
t=1

e2t (2)

subjected (to) (f (x)) = αTϕ (x) + b+ et (3)

where e denotes the error variable, (f (x)) shows the value
of the dependent parameter and, γ shows the regulative con-
stant,M symbolizes the number of datasets, T is a transpose.
The Lagrange Multiplier removes the weight coefficient and
the error variable. Afterwards resolving Eq. (3), we attain the
subsequent matrix:[

01×n 11×n
0n×1 P+

1
γ

](
b
β

)
=

(
0
z

)
(4)

In Eq. (4), P indicates the kernel function, z represents the
dependent variable, and β denotes the Lagrange multiplier:

f (x) =

M∑
t=1

βtK (x, xt) + b (5)

2) KELM MODEL
ELM refers to a Feed Forward Neural Network (FWNN) that
includes a single hidden layer. Compared to NN, in ELM,
some variables are needed to train the model [26]. The
weights and biases are not modified, whereas the hidden layer
is required to be attuned. Based on these ELM characteristics,
it has a faster convergence rate and better learning.

Assume training feature ξ∗
∈FV (V ) and ξ∗

∈ {(fi, yj),i, j = 1, 2, 3, . . .N where fi∈pi1, f2l, . . . ,fN ] char-
acterize input feature vector and yj∈ [yj1, yj2, . . ., yjN ] signify
the corresponding labels:

8(f ) = h(f )b = h (f )HT
(
II
C

+ HHT
)−1

Ô, (6)

where H denotes an output matrix, Ô shows targeted output,
II
c denotes the kernel parameter, II represents the identity
matrix, and C indicates the penalty parameter. Next, the
kernel function of ELM is determined below:

˜KELM = HHT , (7)
˜KELM = h (fi) h

(
fj
)

= K
(
fi, fj

)
, (8)

g (f ) =


K (f , fi)

·

·

K (f , fN )


((

II
C

+ ˜KELM
)−1

Ô

)
, (9)

Now g(f ) denotes the model function of ELM, and K(f , fi)
represents the kernel function of KELM. The kernel function
can be determined by K (f , fi) = f ·fi + b̃. At last, the target
labels Y∈y and the error between the output Ô are evaluated
as follows.

N∑
j=1

∥(Ô− yj)∥ = 0. (10)

Now, the testing video is passed to the presented method,
and in the output, labelled outcomes are produced (carrying
a bag, normal walking, and wearing a coat). We obtain this
image in the testing stage, where all the labels are allotted per
the model training.

3) RRVFLN MODEL
As a kind of single-hidden layer neural network, RRVFLN
integrates hidden and input layers to impact the output
layer [27]. For a data sample with N input, the i − th input
sample is xi = [xi1, xi2, . . . . . . ,xin]T∈Rn, and the i − th
output sample is yi = [yi1, yi2, . . . . . . ,yim]T∈Rm. The RVFL
network, the hidden layer node is L, is formulated as follows:

L∑
j=1

βjg
(
wjxi + bj

)
+

L+d∑
j=L+1

βjxij = 0i, i = 1, 2, . . . . . . ,N

(11)

where wj = [wj1,wj2, . . . . . . ,wjn] indicates the input
weight, g(x) denotes the activation function, bj signifies
the hidden layer enhancement node’s bias, and βj =

[βj1, βj2, . . . . . . ,βjm]T denotes the outcome weight. wj and
bj are commonly defined stochastically:

Hβ = O (12)

where H signifies the hidden layer enhancement node’s out-
put, β characterizes the output weight, and O is the output
result that can be extended below:

H =

 g(w1x1 + b1) . . . g(wLx1 + bL) x11 . . . x1n
...

. . .
...

...
. . .

...

g(w1xN + b1) . . . g(wLxN + bL) xN1 . . . xNn



(13)

β =



βT1
...

βTL

βTL+1
...

βTL+n


(14)

O =

 o1
...

oN

 (15)

In contrast with the traditional RRVFLN network, the
standardized RRVFLN can effectively prevent overfitting
problems and improve the network’s normalisation capacity.
Mostly, finds the output weights and the least training error:

LRVFL =
1
2
CE2

2 +
1
2
β2
2 , (16)

In Eq. (16), the output error E = O − Y ,C shows the
regularization factor that can be utilized to trade off the effects
between model complexity and training error. To ascertain
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the minimal value of LRVFL , the closed-form solution of β is
attained by fitting the grad of RRVFLN concerning β to 0:

β =


(
HTH +

I
C

)−1

HTT if N > L + n

HT
(
I
C

+ HTH
)−1

T if N < L + n′

(17)

In Eq. (17), I denote an identity matrix of dimension L+n.

C. PARAMETER TUNING USING HPO ALGORITHM
In this work, the HPO approach is exploited for the parameter
tuning of the ML models. The HPO method is a recent opti-
mization approach to resolving optimization problems [28].
Thismethod is stimulated by the hunting strategy of a few car-
nivores, namely leopards, lions, and tigers, along with prey,
including antelopes and deer. In the presented technique, the
hunter generally gives importance to the prey distant from
their group. The hunter modifies his location toward the
prey distant from their group whereas the prey modifies their
location towards the group. The position of the search agent
can be regarded as a safer location using the optimal fitness
function value. The hunter-prey optimizer steps are given
below:

Like other optimization algorithms, in every iteration, the
location of every prey and hunter is updated based on the
rules, and the newest location of everymember is re-evaluated
through the main function. The location of all the members
in the initial group can be generated randomly in the search
space as follows:

xj = rand (1,d) × (ub− lb) + lb, (18)

In Eq. (18), d indicates the number of parameters of the
problem. xi denotes the position of hunter, lb, and ub denotes
the minimum and the maximum value for the problem
variable

Next, the search module of the hunters usually includes
two steps: exploitation and exploration. In exploration, the
hunters tend to search the region of potential prey. Exploita-
tion is employed afterwards a promising region is found, that
is hunter must minimize the random behaviour to find prey
around a potential region:

x (t + 1) = x (t)+
[(2CZPpos−x(t))+(2(1−C)Zµ − x(t)]

2
,

(19)

In Eq. (19), x(t) and x(t+1) denote the existing and
the next location of the hunter, Ppos shows the location of
prey, µ represents the mean of each position, C denotes the
balance variable between exploitation and exploration, its
value declining from 1 to 0.02, and Z denotes the adaptive
parameter:

C = 1−it
(
1 − 0.98
MaxIt

)
, (20)

Z = R⃗1⊗idx + R⃗2 ⊗ (∼ idx) , (21)

FIGURE 2. Flowchart of HPO algorithm.

where it andMaxIt denote the exiting and maximum amount
of iterations. R⃗1 and R⃗2 show random vectors within [0, 1],
and idx indicates the vectors index number that fulfils the
condition R⃗1 < C . Next, based on the hunting scenario, once
the hunter has taken the prey, it dies, and then, the hunter
moves toward the position of the dead prey. The iteration
continues with the location of prey being the newest hunter
location. Furthermore, assuming that the safer position was
the optimal global position, as it provides the prey with
greater opportunities for survival, the hunter might select
another prey, as follows:

x (t + 1) = Tpos + CZcos (2πR3) ×
(
Tpos − x (t)

)
, (22)

In Eq. (22), x (t) and x(t+1) shows the existing and next
location of the hunter, Tpos denotes the global optimum loca-
tion that includes the better fitness from the initial iteration
to the existing iteration, and R3 represent the random integer.
Fig. 2 illustrates the flowchart of the HPO technique.
Lastly, it is significant how the hunter and prey are selected

as follows:

x (t + 1)

=


x(t) + 0.5[(2CZPpos − x(t))+ (2 (1 − C)Zµ − x (t)]

R4 < β

Tpos + CZ cos (2πR3) ×
(
Tpos − x (t)

)
R4 ≥ β

(23)

In Eq. (23), R4 shows the random integer within [0, 1], and
β denotes the adjusting parameter.
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TABLE 1. Details of database.

FIGURE 3. Confusion matrices of AAMD-OELAC system (a-f) Epochs
500-3000.

TABLE 2. Malware classifier outcome of AAMD-OELAC system with
distinct epochs.

The HPO method has derived a fitness function (FF) to
get better classifier outcomes. It determined a positive value
that represented the candidate solutions’ superior outcome.
The minimal classifier error rate can be the FF, as shown

FIGURE 4. The average outcome of the AAMD-OELAC system with distinct
epochs.

FIGURE 5. Accuracy curve of AAMD-OELAC system on epoch 1500.

in Eq. (24).

fitness (xi) = ClassifierErrorRate (xi)

=
number of misclassified samples

Total number of samples
∗ 100

(24)

IV. PERFORMANCE VALIDATION
In this study, the malware detection outcomes of the
AAMD-OELAC technique are examined on the Andro-
AutoPsy Dataset [29], [30]. It holds 7500 samples with two
classes, as given in Table 1.

The confusion matrices of the AAMD-OELAC method
on the malware detection process are demonstrated in Fig. 3.
The figure states that the AAMD-OELAC technique properly
categorized the benign and malware samples.

The malware classification results of the AAMD-OELAC
technique are investigated under several epochs in Table 2
and Fig. 4. The result identified that the AAMD-OELAC
technique properly categorized benign and malware samples
under all epochs. For example, with 500 epochs, the
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FIGURE 6. Loss curve of AAMD-OELAC system on epoch 1500.

FIGURE 7. PR curve of AAMD-OELAC system on epoch 1500.

AAMD-OELAC method gains average accuy of 94.42%,
precn of 98.91%, recal of 98.42%, Fscore of 98.66%, and
MCC of 97.33%. In the meantime, with 1500 epochs, the
AAMD-OELAC approach gains average accuy of 98.93%,
precn of 99.15%, recal of 98.93%, Fscore of 99.04%,
and MCC of 98.08%. Finally, with 2000 epochs, the
AAMD-OELAC method gains average accuy of 98.39%,
precn of 98.88%, recal of 98.39%, Fscore of 98.63%,
and MCC of 97.27%. At last, with 3000 epochs, the
AAMD-OELAC approach gains average accuy of 98.97%,
precn of 99.13%, recal of 98.97%, Fscore of 99.05%, and
MCC of 98.11%.

Fig. 5 exhibits the accuracy of the AAMD-OELAC
approach in the process of the training and validation on
epoch 1500. The figure specified that the AAMD-OELAC
technique attained greater accuracy values over increasing
epochs. Also, the higher validation accuracy over training
accuracy depicted that the AAMD-OELAC approach learns
productively on epoch 1500.

The loss analysis of the AAMD-OELAC method in the
training and validation is shown on epoch 1500 in Fig. 6.
The figure pointed out that the AAMD-OELAC method
reached closer values of training and validation loss. The
AAMD-OELAC method learns productively on epoch 1500.

FIGURE 8. ROC curve of AAMD-OELAC system on epoch 1500.

FIGURE 9. Comparative outcome of AAMD-OELAC approach with other
methods.

TABLE 3. Comparative result of the AAMD-OELAC method with other
approaches.

A brief precision-recall (PR) curve of the AAMD-OELAC
method is given on epoch 1500 in Fig. 7. The results pointed
out that the AAMD-OELAC technique results in higher val-
ues of PR. Further, the AAMD-OELAC technique can reach
higher PR values in all classes.
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TABLE 4. CT outcome of AAMD-OELAC approach with other methods.

In Fig. 8, a ROC study of the AAMD-OELAC technique
is revealed on epoch 1500. The figure described that the
AAMD-OELAC algorithm resulted in improved ROC val-
ues. Furthermore, the AAMD-OELAC method can extend
enhanced ROC values on all classes.

Table 3 and Fig. 9 compare the overall outcomes of
the AAMD-OELAC method with other models. The out-
comes identified that the NB approach has poor performance,
whereas the AdaBoostM1 model gains slightly enhanced
results. Alongwith that, the J48, RF, DT,MLP, SMO, logistic,
and IBk models accomplish moderately closer performance.
However, the AAMD-OELAC technique offers better results
with increased accu_y of 98.93%, prec_n of 99.15%, reca_l
of 98.93%, and F_score of 99.04%.

Finally, the computational time (CT) analysis of
the AAMD-OELAC technique is compared with recent
approaches in Table 4. The outcomes exhibited that the
AAMD-OELAC technique reaches the least CT value of 8s.
At the same time, the existing models have reached increased
CT values. These results highlighted that theAAMD-OELAC
technique shows maximum performance over other models
on malware classification.

V. CONCLUSION
In this study, we have developed the design of the
AAMD-OELAC technique for an accurate and automated
Android malware detection process. The intention of the
AAMD-OELAC approach focused on the automatic recogni-
tion and classification of Android malware. To achieve this,
the AAMD-OELAC technique encompasses data prepro-
cessing, ensemble classification, and HPO-based parameter
tuning. For the Android malware detection process, the
AAMD-OELAC technique follows an ensemble learning pro-
cess using three ML models namely LS-SVM, KELM, and
RRVFLN. Finally, the HPO algorithm is exploited for the
optimal parameter tuning of the three DL models and it
helps in accomplishing improved malware detection results.
To portray the supremacy of the AAMD-OELAC method,
a wide-ranging experimental analysis is conducted. The
simulation results portrayed the supremacy of the AAMD-
OELAC technique over other existing approaches. Future

work could focus on developing more advanced techniques to
capture and analyze fine-grained behaviours, enabling better
detection of sophisticated malware. In addition, future work
could explore privacy-preserving approaches such as secure
multi-party computation or federated learning, which enable
collaborative malware detection without compromising user
privacy.
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