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ABSTRACT Reverse time migration (RTM) has been a popular method in industry duo to its ability of
imaging complex subsurface and no dip restriction. However, RTM based on full matric capture (FMC)
data is limited by the time cost of the calculation and cannot be widely used. In this study, a new strategy
of RTM using a plane wave is proposed. Plane wave reverse time migration (PWRTM) does not need to
stack the imaging results from multiple sources and directly uses the plane wave as a source function to
reconstruct the image domain, reducing the influence of numerical dispersion in PWRTM. Low-rank finite
difference (LRFD) is used in wavefield simulation, the core idea of LRFD is to use the quasi differential
operator to compensate the error of time steps in conventional finite difference. Mathematical derivation
proves that the algorithm can be considered as analytical in homogeneous background velocity. We use
the LRFD method to drive the elastic PWRTM in nondestructive testing, and the vector decomposition
method is used to ensure that the phase and amplitude characteristics of the P- and S-wave are not distorted.
In our simulation, compared with the scalar imaging algorithm based on the Helmholtz method, the proposed
imaging algorithm can more efficiently and accurately image large angle defects.

INDEX TERMS Reverse time migration (RTM), plane wave, nondestructive test, low-rank finite
difference (LRFD).

I. INTRODUCTION
Reverse time migration (RTM) was developed by White-
more [1], Basayl et al. [2], and McMechan [3] to image the
seismic data. Duo to its ability of imaging complex subsur-
face and no dip restriction, RTM has been widely applied in
medicine, industrial detection, and other fields. RTM is based
on two-way wave equation [4], which can image complex
velocity models. Theoretically, it can focus on any position
in the image domain, and there is no inclination limit of
crack comparing with any other methods. Multiple reflec-
tion and wave-mode conversion are also included in RTM
naturally. For the detection of scattering points, plane wave
imaging and delay stacking are good choices because of
their fast calculation speed. However, this method is insuf-
ficient for imaging crack defects with different angles. For
the multi-layer velocity model, conventional delay stacking
and plane wave imaging require additional correction. The
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calculation cost of these corrections is more than the imaging
calculation itself.

RTM has been developed in the field of nondestructive
testing (NDT) for several years. Fink [5] described the basic
principles of ultrasonic time reversal. Lin et al. [6] applied
pre-stack RTM to the scattered Lambwave issue. To solve the
emission problem, Saenger [7] used RTM to locate the emis-
sion source. Sabine Müller et al. [8] also showed the potential
of RTM in NDT.Wilcox [9] described the method for finding
the defects in the and showed good results. Park [10] adopted
the time reversal method faced to the Lamb wave using
circular piezoelectric transducers collocated on a thin plate.
Sutin et al. [11] applied the RTM of the single-channel data
in elastic solids.

In nondestructive testing, RTM is used as a technical
method in various scenarios. However, a number of core prob-
lems remain to solve in the RTM itself, such as the imaging
artifacts caused by backscattering, false frequency caused by
insufficient data acquisition, simulation accuracy of high-
frequency data, and wave-mode separation. In general, for
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the wavefield with dominant frequency above 1 MHz, It is
important to divide the smaller space grid and time sampling
interval to obtain an accurate simulation using the finite
difference method.

Whether in the field of geophysics, nondestructive testing,
or medical imaging, the finite difference method is the basis
of RTM. The principle of finite difference is simple, easy
to implement, and suitable for GPU acceleration. However,
the numerical dispersion caused by the finite difference has
always troubled the users of RTM. To solve this problem,
a finite difference algorithm based on low rank decomposi-
tion is proposed. This proposed method can provide accurate
compensation in the direction of time derivative, particu-
larly for the homogeneous isotropic background velocity.
We applied this algorithm to solve the decoupled elastic
wave equation [12]. The decoupled elastic wavefield did not
need to separate the total wavefield after modeling and hold
the phase and the anpliyude, and the P- and S-wave can
be imaged directly without phase and amplitude changed.
We used the plane wave function as the excitation source;
thus, the plane wave data could be directly migrated in
the imaging process, compared with the full matrix capture
(FMC), the plane wave data required less storage and had a
lower calculation cost. With the GPU acceleration algorithm,
we can obtain high-efficiency and accurate linear fracture
imaging results.

II. FINITE DIFFERENCE BASED ON LOW-RANK
DECOMPOSITION
The finite difference algorithm is widely used in various
fields because of its high efficiency. According to previous
scholars’ research, the wave field simulationmethod based on
low rank decomposition is more accurate than the traditional
finite difference algorithm [16]. In general, we used spatial
and time differences to discretize the differential equation.
The Lame equation describes the wave propagation in the
homogeneous isotropic model.

ρ
∂2u
∂t2

=
(
µ + λ

)
∇ (∇ · u) + µ∇

2u (1)

In equation 1, u = (ux , uy, uz) denotes the displacement
component,µ and λ denote the Lame parameter, ρ is density,
and ∇ denotes the derivative operator.
The Laplace operator can be expanded as follows:

∇
2u = ∇ (∇ · u) − ∇ × ∇ × u (2)

If we describe equation 1 using vp and vs, We can derive
equation 3, where vp =

√
2µ + λ

/
ρ and vs =

√
µ

/
ρ.

∂2u
∂t2

= v2p∇ (∇ · u) + v2s∇
2u (3)

The above equation can be expanded to a second-order
elastic wave equations, and its decoupled propagation form

is given by equation 4 [12].
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w (x, t) = wp (x, t) + ws (x, t)
∂2up (x, t)

∂t2
= v2p

(
∂2u (x, t)

∂x2
+

∂2w (x, t)
∂x∂z

)
∂2wp (x, t)

∂t2
= v2p

(
∂2u (x, t)

∂x∂z
+

∂2w (x, t)
∂z2

)
∂2us (x, t)

∂t2
= v2s

(
∂2u (x, t)

∂z2
+

∂2w (x, t)
∂x∂z

)
∂2ws (x, t)

∂t2
= v2s

(
∂2w (x, t)

∂x2
+
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(4)

In general, for spatial discretization, we use high order
finite difference or other optimized operators to simulate
wave propagation [13], [14]. However, for the discretization
of time steps, we use the second-order discretization to repre-
sent the recurrence of the time direction. To compensate the
numerical dispersion caused by finite difference. We define
the quasi differential operator as equation 4.

Q[u (x)] = 2π−n
∫
eiξ ·xq(x, ξ )u(ξ )dξ (5)

In equation 4, Q denotes the quasi differential operator,
q(x, ξ ) is the symbol of the quasi differential operator. u(ξ )
is an operator after the fast Fourier transform (FFT) of u (x).
n denotes the dimension.
When the main frequency of the source is extremely high,

the finite difference method leads to the instability of the
numerical solution owing to the large time sampling inter-
val. To overcome this phenomenon, the spectral correction
algorithm is used to modify the operator ikx and ikz using
the symbol operator in the wavenumber domain. For con-
stant background velocity, the compensation is accurate [15].
Based on symbolic theory, the quasi differential operator of
the compensation term can be expressed as follows.

Q+
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(6)

Equation 6 j denotes different wave modes (vp and vs).
If we use the symbolic operator to compensate the time dis-
creteness directly, the computational cost is O(Nx logNx), and
Nx is the sample number. To reduce the computational cost,
Fomel et al. [16] developed a so-called Low-rank method
in hybrid domain. To reduce the computational complexity,
this study used the hybrid domain low rank decomposition
algorithm. ForMs,x = kxsinc(∗), the low rank decomposition
form can be written as:

Ms,x =

∑I

i=1

∑J

j=1
ms,x(x, km) · rm∗n · ms,x(xn, k) (7)
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where ms,x(x, km) and ms,x(xn, k) are the submatrix of Ms,x
with m columns and n rows.
Quasi differential operator Q in equation 6 can also be

given using the low rank method. It is clear that ms,x(x, km)
only concerns the wavenumber; thus, we can derive
equation 8.

ms,x(xn, k) ≈

∑N

h=1
Cs,x(xn, h) · B(h, k) (8)

In equation 8, B(h, k) denotes a matrix of h × k , h is
the finite difference order, and k is the sample number in
wavenumber. It can be calculated by sin

(
(2h− 1) · k ·

1x
2

)
.

Here, we can define a new equation using the low rank
form:

Os,x(x, h) =

∑I

i=1

∑J

j=1
ms,x(x, km) · rm∗n · Cs,x(xn, h)

(9)

Based on equation 9, quasi differential operator Q can be
written as equation 10.

Q+
x,s (u) ≈

1
2

∑N

h=1
(x, h)F−1

×

{(
eikx ·1x·l − eikx ·1x·(l−1)

)
· F [u]

}
Os,x (10)

Using the FFT translation property, the above equation can
be written as equation 11, which is the final form of the low
rank finite difference operator.

Q+
x,s (u) ≈

1
2

∑N

h=1
Os,x(x, h)

{
u

(
xright , t

)
− u

(
xleft , t

)}
(11)

In equation 11, xright = (x + h×1x, y), xleft =

(x−(h−1) × 1x, y), and h is the finite difference order.
Q−

x,j (·), Q
+

z,j (·), and Q
−

z,j (·) also have the same form.

III. SIMULATION OF ELASTIC WAVE AND
DECOMPOSITION
For elastic RTM, the conversion of the multi wave-mode can
affect the imaging work, and imaging of the uncorrelated
wave-mode introduces imaging artifacts. The conventional
Helmholtz method can separate the P- and S-wave in the
scalar field efficiently, but it changes the phase and amplitude
of the waveform. The Poynting method is also an efficient
procedure, however, it cannot handle the overleap events. For
small-scale inverse scattering problems, the change of phase
and amplitude adds difficulties to the location of scattering
source. In this study, the low rank decomposition algorithm
was used to solve the second-order elastic wave decoupled
equation. The advantage of this algorithm is that it ensures
the stability of the calculation. Moreover, the vector P- and
S-wave with accurate phase and amplitude can be obtained
without the additional derivation calculation.

To prove the effectiveness of the decoupled equation,
we performed a numerical simulation and compared the
decoupled propagation operator with the Helmholtz decom-
position. In this test, the Ricker wavelet with the center
frequency of 5 MHz was excited in the center of the model.

FIGURE 1. P-velocity model with three layers.

FIGURE 2. Original wavefield: (a) Elastic x-component; (b) Elastic
z-component.

Themesh size of the model space is 400×400, and the spatial
samping is 0.6mm, time samping is 1ms, and Figure 1 shows
the P-velocity model. The S-velocity is written as vp =

√
3vs,

and we used constant density. The P-velocity model includes
three layers with a velocity change from 2100 to 2,300 m/s.
Figure 2 shows the original wavefields with the x- and
z-component. In original wavefields, it is difficult to dis-
tinguish the P- and S-waves. Figure 3 shows the decoupled
propagation wavefields. In this case, we can obtain the vec-
tor P- and S-wavefields. Figure 4 shows the scaler P- and
S-wavefields calculated by the Helmholtz method. To com-
pare the phase and amplitude, we show the waveform in
Figures 5 and 6. We can clearly see that the P- and S-wave
calculated by the Helmholtz method not only destroy the
vector information of the original wavefield, but also affect
the amplitude and phase of the waveform. The wavefield
separation based on decoupled operator preserves the phase
and amplitude information of the original P- and S-wave well
and does not damage the structure of the vector, this decou-
pled equations give better separation results. The Helmholtz
decomposition for separating the P- and S-wave causes the
phase rotation for the S-wave. An additional method is
required to correct the phenomenon, And it also requires
additional time costs, such as the use of Hilbert transform.

IV. PLANE WAVE REVERSE TIME MIGRATION
In general, we used the wavenumber domain imaging
method, which was the fastest for plane wave data. This
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FIGURE 3. Decoupled propagation operator. (a) P-wave x-component; (b)
P-wave z-component; (c) S-wave x-component; (d) S-wave z-component.

FIGURE 4. Helmholtz method. (a) Scaler P-wavefield; (b) Scaler
S-wavefield.

FIGURE 5. P-waveform calculated by the decoupled operator and
Helmholtz method. (a) Original wavefield x-component; (b) original
wavefield z-component; (c) P-wave x-component using decoupled
operator; (d) P-wave z-component using decoupled operator; (e) P-wave
using the Helmholtz method.

algorithm is efficient and can realize real-time imaging in the
NDT field. However, for certain linear defects with different
angles, the wavenumber domain algorithm cannot accurately
work. The destructive behavior caused by linear defects is
often highly dangerous. To address this problem, the plane
wave reverse time migration (PWRTM) can complete the
imaging work.

The PWRTM sets the plane wave as the excitation
source; the source generates the forward propagation and

FIGURE 6. S-waveform calculated using the decoupled operator and
Helmholtz method. (a) Original wavefield x-component; (b) original
wavefield z-component; (c) S-wave x-component using decoupled
operator; (d) S-wave z-component using decoupled operator; (e) S-wave
using the Helmholtz method.

FIGURE 7. Workflow of plane wave reverse time migration (PWRTM).

cross-correlates with the received field at the same time of
reverse time propagation and finally obtains the imaging
result. It is different from RTM based on FMC data, because
PWRTM has less loops between different sources. Figure 7
shows the PWRTM workflow.

The imaging condition is the most important core tech-
nology of RTM or PWRTM. A cross-correlation imaging
condition is typically used in RTM, but for the decoupled
propagator, the inner product imaging condition can obtain
a more accurate imaging effect.

Ii,j (x, z) =

∑
t S⃗[t, x, z, i] · R⃗[t, x, z, j]∑

t

∥∥∥S⃗[t, x, z, i]∥∥∥2 (12)

which is similar to the cross-correlation imaging condi-
tions. The new imaging condition is also normalized by the
source wavefield, the so-called normalized source illumina-
tion. In equation 12, S⃗ denotes the vector source wavefields,
R⃗ denotes the vector received wavefields, and i and j denote
P-wave model and S-wave model.

In this study, we showed different wave-modes of the
PWRTM results using inner product and cross-correlation
imaging conditions. The ways we compared in this study are
listed below:
(1) Vector P-P image using the inner product imaging con-

dition
(2) Vector S-S image using the inner product imaging con-

dition
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FIGURE 8. P-velocity model.

FIGURE 9. Forward modeling in vector PWRTM; (a) P-wave z-component;
(b) P-wave x-component; (c) S-wave z-component; (d) S-wave
x-component.

(3) Scaler P-P image using cross-correlation imaging con-
ditions

(4) Scaler S-S image using cross-correlation imaging con-
ditions

In this simulation, the main frequency of the excitation
source is 5 MHz, the discrete grid point is 500 ∗ 500 with
a spatial samping of 0.6mm.The velocity model is shown in
Figure 8, and the background P-velocity was 6000 m/s. The
S-velocity is written as vp =

√
3vs, and we used a constant

density. The defect was located in the middle of the velocity
model and perpendicular to the front of the plane wave. The
linear array element was located at the center of the model
surface, and a total of 200 excitation sources were emitted at

FIGURE 10. Scaler PWRTM using the Helmholtz method. (a) P-P wave
model image; (b) S-S wave model image.

FIGURE 11. Vector PWRTM using the decoupled operator. (a) P-P wave
mode image; (b) S-S wave mode image.

FIGURE 12. PWRTM results within 0–60 dB. (a) P-P wave mode image
using decoupled operator; (b) S-S wave mode image using decoupled
operator; (c) P-P wave mode image using the Helmholtz method; (d) S-S
wave mode image using the Helmholtz method.

the same time. The front of the wave formed by the linear
array element is a plane wave, as shown in Figure 9. Figure 9
shows the wave-mode decomposition in the imaging process.
When the single-component vertical excitation source passes
through the scattering point, the waveform conversion occurs.
The decoupled operator can ensure the separation of wave
modes without losing vector information.

We used random boundary conditions to ensure the accu-
racy of wavefield back propagation and retain the total energy
of the wavefield. Figure 10 shows the scalar imaging results
obtained by the Helmholtz method and cross-correlation
imaging condition. Because the Helmholtz method requires
more derivative calculation and changes the phase and ampli-
tude information of the original wavefield, it is not difficult
to find from the imaging results that although the position of
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the vertical defect can be located by this method, the imaging
quality is satisfactory. Figure 11 shows the vector imaging
results based on the decoupled operator and inner product
imaging condition. Figure 12 shows the dynamic range of
imaging results from 0 to 60 dB. The decoupled propagator
can protect waveform and vector information without signif-
icantly increasing computation under the same conditions.
From the imaging results of this method, we can clearly see
that the defect description of the proposed algorithm was
significant. Compared with the scalar imaging algorithm, the
proposed imaging algorithm has an overwhelming advantage.
The proposed algorithm was accelerated by GPU high-
performance equipment, the calculation time of the imaging
process was 4.223 seconds, and the scaler imaging process
was 3.748 seconds.

V. CONCLUSION
For the imaging problem caused by linear defects, a plane
wave reverse time migration algorithm based on the decou-
pled wave equation is proposed. In this proposed algorithm,
the decoupled operator is used to retain the amplitude and
phase information of different wave modes, and the low
rank decomposition is used to ensure the accuracy of wave
propagation. We compared the imaging results based on the
vector wavefield with those based on the scalar wavefield and
proved that the image based on vector decomposition was
more accurate in detailed descriptions. Compared with the
reverse timemigration algorithm based on FMC data, the pro-
posed algorithm requires less computation, because it needs
no loop between different source wavefields, In summary, the
transform domain method [17] and reverse time migration
[16] algorithm have great potential for application in non-
destructive testing.
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