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ABSTRACT The Number Theoretic Transform (NTT) is a powerful mathematical tool that has become
increasingly important in developing Post Quantum Cryptography (PQC) and Homomorphic Encryption
(HE). Its ability to efficiently calculate polynomial multiplication using the convolution theorem with a quasi-
linear complexity O(nlogn) when implemented with Fast Fourier Transform-style algorithms has made it
a key component in modern cryptography. FFT-style NTT algorithm or fast-NTT is particularly useful in
lattice-based cryptography, which relies on the hardness of certain mathematical problems to ensure security.
Its importance in these fields continues to grow as quantum computing technology advances and traditional
encryption methods become vulnerable. In this report, we discuss the mathematical concepts of polynomial
multiplications using NTT and provide a comprehensive review of the latest implementation and state-of-

the-art of NTT in both PQC and HE schemes.

INDEX TERMS Number theoretic transform, post quantum cryptography, homomorphic encryption.

I. INTRODUCTION

Most of the classical cryptosystems are based on the assump-
tion that the prime factorization of a large integer is a
computationally complex problem to solve [1]. However, the
assumption will no longer hold in the near future due to the
recent development of quantum computer research and devel-
opments. Quantum computers can factorize large integers
exponentially faster than classical computers [2]. This vulner-
ability has led to the need for quantum-resistant cryptosystem
developments. There are five different post-quantum cryp-
tosystems, which are lattice-based, hash-based, code-based,
multivariable-based, and isogeny-based schemes [3]. Lattice-
based cryptography is a promising and most researched
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scheme due to its balance of computing complexity, commu-
nication bandwidth, and security [4].

An effort has been initiated by the US National Institute
of Standards and Technology (NIST) to standardize crypto-
graphic algorithms that are resistant to attacks by quantum
computers, which was called Post-Quantum Cryptography
(PQC) Competition starting in 2016 and finalized in 2022 [5].
The lattice-based cryptography is the most proposed system,
making 26 of 64 in the first round [6], 12 of 16 in the
second round [7], 7 out of 15 in the third round [8], and
3 out of 4 final standardized schemes [9]. Those three lattice-
based standardized cryptosystems are Dilithium [10], [11],
Falcon [12], and Kyber [13], [14], [15], [16].

The bottleneck of the lattice-based cryptography imple-
mentation is its fundamental building block: modular
polynomial multiplication, which is a very time-consuming
operation [17]. Traditionally, it is computed by the
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schoolbook algorithm with a quadratic complexity of
O(nz). Howeyver, other alternatives exist, such as the Karat-
suba algorithm [18], [19], the Toom-Cook algorithm [20],
[21], and the Discrete Fourier Transform (DFT)-based
algorithm [22], [23], [24]. The Karatsuba algorithm applies
the divide and conquers principle to reduce the complexity
by dividing the original polynomial into two parts, resulting
in O(n'°223) or O(n'%) [25]. Toom-Cook algorithm gener-
alizes Karatsuba algorithm by dividing into k parts, giving
O(n'°2 k=D complexity [26].

Discrete Fourier Transform (DFT) and its variant in the
polynomial ring, Number Theoretic Transform (NTT) can be
utilized to multiply two polynomials via convolution theo-
rem [27], [28]. However, the classical algorithm to compute
DFT or NTT is also O(n?). The fundamental difference
between DFT and NTT is the ring they use to transform
the polynomial. DFT uses a complex ring with a twiddle
factor of e~2/" while NTT uses an integer polynomial ring
with a twiddle factor of its n-th root of unity. The only use
of integers makes NTT popular among researchers because
there is no need to implement complicated schemes such
as fixed-point or floating-point arithmetic architecture. This
advantage also eliminates the precision problem that may
arise from implementing such architectures [29].

Many optimized versions of DFT have been proposed in
the past few decades due to their prominent use in signal
and image processing. The most widely used fast algorithm
is Fast Fourier Transform (FFT) which Gauss first proposed
in 1805 [30]. It gained widespread attention in the 1960s
when Cooley-Tukey [23] and Gentleman-Sande [24] pub-
lished their works, giving their infamous name for the CT
and GS butterflies architecture for FFT. The FFT has a
quasilinear complexity of O(nlogn), which gives a massive
advantage over other methods, especially when calculating
higher-degree polynomial multiplications. NTT is also a
DFT version, so one can apply FFT algorithms to calculate
NTT [31].

However, using NTT also has limitations: it requires very
specific parameters. Implementing FFT algorithms requires
the array lengths 7 to be a power of two — in other words,
the polynomials need to have a 2 — 1 degree [32]. It also
only works on a specific prime modulus. Positive-wrapped
convolution (PWC)-based NTT requires the prime modulus ¢
to have a primitive n-th root of unity in the Z, ring. Moreover,
negative-wrapped convolution (NWC)-based NTT needs an
additional 2n-th root of unity [33].

The parameter requirements of NTT make it not always
available to use in lattice-based cryptosystems. Out of three
standardized PQC schemes, while Dilithium and Falcon can
apply PWC-based and NWC-based NTT, Kyber can only
use PWC-based NTT due to its chosen parameters. In the
other finalists’ schemes: NTRU and Saber, NTT can not be
used due to the power-of-two modulus and the chosen ring,
respectively [33]. However, many researchers are working
on making workarounds to implement NTT on such systems
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using various mathematical techniques, such as the Residue
Number Systems (RNS) and the Chinese Remainder Theo-
rem (CRT) [34], [35].

NTT is also important in Homomorphic Encryption (HE)
schemes such as Brakerski-Fan-Vercauteren (BFV) [36],
BGV (Brakerski-Gentry-Vaikuntanathan) [37], [38], and
CKKS (Cheon-Kim-Kim-Song) [39] based on the Ring
Learning With Errors (RLWE) problem. In the BFV and
BGYV schemes, NTT performs the modulus-switching oper-
ation to reduce the noise in the encrypted data. In the
CKKS homomorphic encryption scheme, NTT performs
the “‘relinearization” operation, which reduces the size of
the ciphertexts after multiplication operations [36], [37],
[38], [39]. Microsoft SEAL is one of the most prominent
libraries implementing the aforementioned schemes [40],
[41]. The noticeable difference between the PQC and HE
schemes is the modulus size. While PQC schemes usually
use a small number as their modulus, HE schemes use a large
number, which makes the implementation techniques vastly
different between the two schemes.

Most of the NTT implementation reports briefly introduce
NTT and recent literature reviews. However, those reports
focus on their implementation techniques of NTT in the
various platforms and do not provide a comprehensive under-
standing of the NTT concepts. This motivates us to briefly
introduce NTT concepts and summarize the state of the arts of
NTT implementations in the PQC and HE schemes. We sum-
marize the contribution of our works as follows:

1) We briefly introduce the basic concepts of linear,
cyclic, and negacyclic convolutions via traditional
schoolbook algorithms, traditional NTT, and FFT-like
versions of NTT. While other literature briefly intro-
duces the concepts, they are scattered everywhere.
They require significant effort to learn, especially for
those who begin researching the area and come from
the implementation side.

2) We provide consistent toy examples through differ-
ent concepts and algorithms to further enhance the
conceptual understanding of the NTT. However, the
focus of our report is the implementation of NTT.
For the mathematical understanding of NTT, [33] pro-
vides a comprehensive conceptual explanation of the
topic.

3) We summarize and provide a comprehensive review
of the recent research on the NTT implementations
for PQC schemes in various platforms such as FPGA,
ASIC, CPU, and GPU.

4) Similarly, we also summarize and provide a com-
prehensive review of NTT implementations for HE
schemes, which are usually a combination of RNS and
CRT.

We hope that our report provides researchers in relevant
fields with a general understanding of NTT from the imple-
mentation side of view and also shows the state-of-the-art of
NTT implementations in various architectures.
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The rest of the paper is organized as follows.
Section II discusses the fundamental mathematical defi-
nitions and basic concepts of convolutions in polynomial
rings. Section III explains convolutions based on the Number
Theoretic Transform. Section IV explains FFT-like algo-
rithms in calculating NTT. Section V reviews the current
research works of NTT implementations in Post Quantum
Cryptography (PQC) scheme. Section VI reviews the current
research works of NTT implementations in the Homomorphic
Encryption (HE) scheme. Finally, Section VII concludes the
paper and discusses possible future works.

Il. PRELIMINARIES: SCHOOLBOOK CONVOLUTIONS

This section briefly explains the definition of linear, cyclic,
and negacyclic convolutions between polynomials with inte-
ger coefficients to show their basic concepts and differences.
We also provide simple and consistent toy examples through-
out the section to clarify how different concepts work. In this
section, we assume the modulus, g, is large enough so that the
arithmetic calculations do not cause integer overflows.

A. POLYNOMIAL MULTIPLICATION AND
LINEAR CONVOLUTION

Definition 2.1: Suppose that G(x) and H (x) are polynomi-
als of degree n — 1 in the ring Z4|x] where q € Z and x is
the polynomial variable, a polynomial multiplication of G(x)
and H (x) is defined as:

Y(x) = G(x) - H(x)
2(n—1)

= > ¢))
k=0

where yi = Zf;o gihg—i mod g, g and h are the polynomial
coefficients of G(x) and H (x) respectively.

Polynomial multiplication is equivalent to a discrete linear
convolution between the coefficients’ vectors g and k [42].

k
ylkl = (g * h)[k] = D glilhlk — i] ©)
i=0

Example 2.1: Let G(x) = 14 2x 4 3x> + 4x3 and H(x) =
5 + 6x + 7x% + 8x3 or in vector notation g = [1,2,3,4]
and h = [5,6,7, 8]. The result of the linear convolution is
Y(x) = 5+ 16x + 34x2 + 60x3 4+ 61x* + 52x° + 32x° or
y =[5, 16, 34,60, 61, 52, 32].

Figure 1 shows the schoolbook method of how a typical
polynomial multiplication or linear convolution is done. This
traditional multiplication algorithm has a O(n?) complexity.

The algorithm can be implemented in many mathematical
programming libraries, such as MATLAB’s conv [43] and
Numpy’s convolve [44] with integer array inputs com-
bined with modular arithmetic operations.

B. CYCLIC CONVOLUTION
Definition 2.2: Suppose that G(x) and H (x) are polynomi-
als of degree n — 1 in the quotient ring Zy[x]/(x" — 1) where
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14+ 2x + 3x%4 4x3
54 6x + 7x%+ 8x3

8x3 + 16x* + 24x5 + 32x° 8
7x% + 14x3 + 21x* + 28x5
6x + 12x2 + 18x3 + 24x*
5+ 10x + 15x2 + 20x3

+

54 16x + 34x2% + 60x3 + 61x* + 52x5% + 32x°

FIGURE 1. Schoolbook method for polynomial multiplication or linear
convolution.

q € 7. A cyclic convolution or positive wrapped convolution,
PWC(x) is defined as:

n—1

PWC(x) = Z cpxk (3)
k=0

where ¢, = Yo 8ilk—i+ 2141 8iltkn—i mod q. If ¥ (x)
is the result of their linear convolution in the ring Zy[x],
it also can be defined as

PWC(x) = Y(x) mod (x" — 1) 4

Traditional and schoolbooks method to calculate a cyclic
convolution is through a polynomial multiplication, as shown
in Example 2.1, followed by a long division. The method has
O(n?) complexity.

Example 2.2: Let G(x) = 1+2x+ 3x2+4x3 and H(x) =
5 + 6x + 7x% + 8x3 or in vector notation g = [1,2,3,4]
and h = [5,6,7,8). The result of the cyclic convolution is
PWC(x) = 66 + 68x + 66x2 + 60x3 or [66, 68, 66, 60].

Figure 2 shows how schoolbook long division is used
to calculate a cyclic convolution with the dividend as the
linear convolution result of G(x) and H (x). The remainder of
the long division algorithm is the cyclic convolution result.
Notice that we present the result sorted in increasing power
in Example 2.2.

32x% +52x + 61
x* =1 /32x6 +52x5 + 61x* + 60x* + 34x2 + 16x + 5
32x%+ 0x5+ Ox*+ 0x%—32x?
52x5 + 61x* + 60x3 + 66x% + 16x + 5
52x%+ 0x*+ 0x3+ 0x?—52x
61x* + 60x3 + 66x2 + 68x + 5
61x* + 0x3+ 0x?+ 0x —61
60x3 + 66x2 + 68x + 66

FIGURE 2. Schoolbook method for positively wrapped modular
polynomial multiplication or cyclic convolution.

The MATLAB function cconv [45] can calculate a cyclic
convolution using integer array inputs and modular arithmetic
operations. Notice that the result of cyclic convolution, unlike
linear convolution, has a length of n instead of 2n — 1.
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C. NEGACYCLIC CONVOLUTION

Definition 2.3: Suppose that G(x) and H(x) are polyno-
mials of degree n — 1 in the quotient ring Z[x]/(x" + 1)
where q € Z.. A negacyclic convolution or negative wrapped
convolution, NWC(x) is defined as:

n—1
NWC(x) = Z cpxk (5)
k=0

where ¢k = 3 5_ gil—i — Z?;;JH gilk+n—i mod g. If Y (x)
is the result of their linear convolution in the ring Z[x], it also
can be defined as

NWC(x) = Y(x) mod (x" + 1) 6)
Example 2.3: Let G(x) = 14 2x+ 3x2+4x3 and H(x) =
54 6x + 7x% + 8x3 or in vector notationg = (1,2, 3, 4] and
h = [5,6,7, 8]. The result of the negacyclic convolution is
NWC(x) = —56 — 36x + 2x2 + 60x> or [—56, —36, 2, 60].
Figure 3 shows how schoolbook long division calculates a
negacyclic convolution, the remainder of the division.

32x% + 52x + 61
/32x6 + 52x5 + 61x* + 6023 + 3422 + 16x + 5
32x°+ 0x°+ Ox*+ 0x3+32x?
52x5 + 61x* + 60x3 + 66x% + 16x + 5
52x5 4+ Ox*+ 0x3+ O0x2%+52x
61x* + 60x3 + 66x% + 68x + 5
61x* + 0x3+ 0x%2+ Ox+61
60x3 + 2x% — 36x — 56

FIGURE 3. Schoolbook method for negatively wrapped modular
polynomial multiplication or negacyclic convolution.

Note that the only difference between cyclic and nega-
cyclic convolution is the divisor. The cyclic convolution uses
x" — 1 while the negacyclic convolution uses x" + 1.

Those schoolbook algorithms have O(n?) complexity.
Many efforts have been tried to reduce their complexities
by dividing the multiplier and multiplicand into several
parts [18], [19], [20], [21] or by parallelizing the algorithm
on the implementation side [46]. However, those efforts are
not scalable as the polynomial degree grows higher.

Ill. NTT-BASED CONVOLUTIONS

In this section, we present the basic of NTT-based convolu-
tions. Many researchers do not differentiate the term NTT
and FFT-based algorithms to calculate NTT, which creates
confusion when understanding the topic. This report refers to
the transformation itself as NTT and the FFT-like algorithms
as fast-NTT, which are explained in Section IV. The classi-
cal NTT has quadratic complexity of O(n?) when computed
directly, while fast-NTT algorithms have a more efficient
quasi-linear complexity O(nlog n).
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A. PRIMITIVE n-TH ROOT OF UNITY

Definition 3.1: Let Z, be an integer ring modulo g, and
n — 1 is the polynomial degree of G(x) and H(x). Such
rings have a multiplicative identity (unity) of 1. Define w as
primitive n-th root of unity in Z, if and only if:

mod g 7)

o"=1
and
o #£1 modg )

fork < n.

One thing to note is that the primitive n—throot of unity in a
ring Z4 might not be unique. We show the following example
for g = 7681, used in Kyber in Rounds 1 and 2 of the NIST-
PQC Competition [13], [15], however, in our toy example we
show for n = 4 instead of n = 256.

Example 3.1: In a ring Zqe31 and n = 4, the 4-th root
of unity which satisfy the condition * = 1 mod 7681 are
{3383, 4298, 7680}. Out of three roots, 7680 is not a primitive
n-th root of unity, as there exist k = 2 < n that satisfy
w?> = 1 mod 7681. Therefore v = 3383 or w = 4298 are
the primitive 4-th root of unity in Z7631.

The value of w will be important in calculating NTT and
positive-wrapped convolution. Calculating the w of a ring
with a large number modulus ¢ is tricky and tedious. One
alternative library that provides a function to calculate w is
Sympy via the function nthroot_mod [47].

B. NTT-BASED POSITIVE-WRAPPED CONVOLUTION

This section explains the definition of Number Theoretic
Transform (NTT) and its inverse (INTT) based on n-th root
of unity, w. The NTT of a polynomial does not have any
physical meaning, unlike Discrete Fourier Transform (DFT)
which represents a signal in the frequency domain. However,
NTT preserves one of the important properties of DFT: the
convolution theorem, which is valuable in calculating poly-
nomial multiplication.

1) NUMBER THEORETIC TRANSFORM BASED ON o
Definition 3.2: The Number Theoretic Transform (NTT)

of a vector of polynomial coefficients a is defined as @ =
NTT(a), where:

n—1
a = Za)ijai mod ¢ )
i=0

andj=0,1,2,...,n—1
Example 3.2: Let G(x) = 14+ 2x + 3x2 +4x3 or in vector
notation g = [1, 2, 3, 4]. We can infer that n = 4. Suppose
we work in the ring 77631 and w is its primitive n-th root of
unity. The NTT of g, 8, can be calculated by the following

matrix multiplication:
0x0 , 0x1 0x2  0x3

w w w w 1
. wle wlxl w1><2 w]xB 2
8= W2X0 2x1 ,2x2 2x3 3
C03><0 w3><1 C03><2 w3><3 4
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Notice that the power of w is the multiplication between the
row and column numbers. As w is the n-root of unity, o* =
w® M4 for k > n. Thus:

[«=)
|
1
|

@ 0 W w 1
N o o' »? W3 2
£= @ »? ot 3
_wO a)3 w() 609_ _4_
[0? @° & 7 [17]
o o 0! v? W3 2
£= @ 0? 0 @? 3
¥ 0 w? ! | [ 4]

From Example 3.1 we obtained one of the n-th roots of unity
in 77681 is w = 3383. Substituting into the equation:

733830 33839 33830 338397 ['1
.| 33830 33831 33832 3383% | |2
£ 7= | 33830 33832 33830 33832 | | 3
| 33830 33833 33832 3383! | [ 4
11 1 1 1
.| 133837680 4298 | | 2
§=117680 1 76801 |3
| 14298 7680 3383 | | 4
10
.| 913
8= 17679
| 6764

Therefore, the NTT(g) = [10, 913, 7679, 6764] in Z7631.

Example 3.3: Let H(x) =54 6x + 7x2 + 8x3 or in vector
notationg =[5, 6,7, 8] in the ring Z7631 and w = 3383. The
NTT of h is:

1 1 1 1 5 26
i — 1338376804298 | | 6| | 913

17680 1 7680 (|7 7679

1 4298 7680 3383 | | 8 6764

Therefore, the NTT(h) = [26, 913, 7679, 6764] in Z763;.

Note that the NTT of a particular polynomial is not always
unique. It depends on the choice of w. The NTT result of
Example 3.2 and 3.3 will differ if one uses w = 4298 instead
of w = 3383.

2) INVERSE NUMBER THEORETIC TRANSFORM BASED ON w
Definition 3.3: The Inverse of Number Theoretic Trans-
form (INTT) of an NTT vector a is defined as a = INTT(a),
where:
n—1
ai=n"> 0 modgq (10)
j=0
andj=0,1,2,...,n—1
Note that the INTT has a very similar formula to NTT. The
only differences are w replaced by its inverse in Z, and a n!
scaling factor. It always holds that a = INTT(NTT(a)).

Example 3.4: Given NTT(g) = g = [10, 913, 7679, 6764]
in Zqe31 and w = 3383. We can calculate the inverse of
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w, ol =

4298 and the scaling factor n=! =

5761.

One can calculate the INTT(NTT(g)) by the following matrix

multiplication:
_a)f()XO 6()70)(] w70x2 w70X3 10
_q a)—le w—lxl w—1><2 w—l><3 913
g§=n @20 2xl ) =2x2 [ =2x3 7679
w73x0 w73x1 w73x2 w73><3 6764
[0? 0® @ @77 T 10 7]
. ol w? o3 913
g=n o 0wt w0 7679
0 w3 w0 0| | 6764
[0? @® @ @77 10 7]
o oo ?e3 913
g=1n o 02 w0 @2 7679
0w w2 0] | 6764
42989 42980 42980 42980 10 7]
_ 5761 4298° 4298! 42982 4298 | | 913
&= 42980 42982 42980 42982 | | 7679
| 42989 42983 42982 4298 | | 6764 |
1 1 1 10 17
_ 5761 | 14298 7680 3383 | | 913 2
§= 17680 1 7680 | | 7679 3
| 13383 7680 4298 | | 6764 4]

Therefore, the g = [1, 2, 3, 4], which is the initial polynomial
coefficients given in Example 3.2

Example 3.5: Given NTT(g) = h = [26,913, 7679, 6764]
in Zq681 and w = 3383. We can similarly calculate the INTT
to the previous example:

1111 26 5
1 4298 7680 3383 | | 913 6
h=57611 17680 1 7680|7679 | = |7
1 3383 7680 4298 | | 6764 8

Therefore, the h = [5, 6, 7, 8], which is the initial polynomial
coefficients given in Example 3.3

3) USING NTT TO CALCULATE POSITIVE-WRAPPED
CONVOLUTIONS

Because NTT is a variant of DFT in the polynomial ring. One
can apply DFT’s convolution theorem to calculate positive-
wrapped convolution [27], [28]:

Proposition 3.1: Leta and b are the multiplicands’ vectors
of polynomial coefficients. The positive-wrapped convolution
of a and b, ¢ can be calculated by:

¢ = INTT(NTT(a) o NTT(b)) a1
where o is an element-wise vector multiplication in Z,.

Example 3.6: Let g = [1,2,3,4] and h = [5,6,7,8].
From Example 3.2 and 3.3, we know that the NTT of them
in in Zieg1 are g = [10,913,7679,6764] and h =
[10,913, 7679, 6764] when «w = 3383. We can calculate
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their positive-wrapped convolution by:

10 [ 26
913 913
INTT(| 7679 | © | 7679 |
6764 | | 6764
260 ]
— INTT( 4(2121 )
3660 |
11 1 1 260 66
_ sqep | 14298 76803383 | | 4021 | _ |68
= 17680 1 7680 4 | T |66
1 3383 7680 4298 | | 3660 60

Therefore, their positive-wrapped convolution is [66, 68,
66, 601, the same result as calculated by schoolbook multi-
plication and long division in Example 2.2.

While positive-wrapped convolution, commonly known as
cyclic convolution, is useful, its implementation is primarily
outside the cryptography domain. One such example is the
implementation of Schonhage-Strassen algorithm [48] for
large integer multiplication. However, in the context of PQC
and HE, the chosen ring is mostly Z,[n]/(x" + 1) instead of
Zg[n]/(x* — 1). One must calculate the polynomial multipli-
cations via the negative-wrapped convolution in such rings.

C. PRIMITIVE 2n-TH ROOT OF UNITY
To calculate negative-wrapped convolution, one needs the
primitive 2n-th root of unity, ¥.

Definition 3.4: Let Z, be an integer ring modulo g, and
n — 1 is the polynomial degree of G(x) and H(x) and w is its
primitive n-th root of unity. Define W as the primitive 2n-th
root of unity if and only if:

v2=w modgq (12)
and

Y¥"=—-1 modq (13)

Example 3.7: In a ring Z7631 and n = 4, when v = 3383,

the value of W can be 1925 or 5756 as 1925% = 5756* =

3383 mod 7681 and 1925* = 5756* = 7680 = —1 mod

7681. Therefore, one can choose the value of ¥ = 1925 or
Y = 5756.

D. NTT-BASED NEGATIVE-WRAPPED CONVOLUTION

This section explains the definition of Number Theoretic
Transform (NTT) and its inverse (INTT) based on 2n-th root
of unity, ¥, and how to utilize them to calculate negative-
wrapped or negacyclic convolution.

1) NUMBER THEORETIC TRANSFORM BASED ON v
Definition 3.5: The Negative-Wrapped Number Theoretic
Transform (NTTY ) of a vector of polynomial coefficients a is
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defined as a = NTTV (a), where:

n—1
a = Z Viwla; mod g (14)
i=0

andj = 0,1,2,...,n — 1. As 1//2 = wmod g, we can
substitute w = 1//2 to equation (14):

n—1
aj =Y y*a; mod g (15)
i=0
Example 3.8: Letg =1[1,2,3,4, n =4 andy = 1925in

the ring Z7681. The NTTY (g) = g, can be calculated by the
following matrix multiplication:

—1/,2(0x0)+0 w2(0><])+] w2(0><2)+2 1/,2(0x3)+3 1
g _ 1)02(1><O)+0 1p2(1><1)+1 1//2(1><2)—&-2 1,02(1X3)+3 2
1)02(2><0)-|-0 1'//2(2><1)-i-1 1//'2(2X2)+2 1)02(2><3)-|-3 3
_WZOXOHO W2(3X1)+1 Ip2(3x2)+2 1ﬁ2(3x3)+3 4
(O yl w2 T Oyl w2y T
s w0yt sy 2] vty |2
8= OWS wlowls 3 1//01//5 WZW 3
_1/,() 1/}7 1//14 wZ] 4 _wo w7 w6 wS 4
719259 1925" 19252 192537 1
| 1925° 19253 19256 1925! | |2
&7 119250 19255 19252 19257 | | 3
| 19250 19257 19256 1925° | | 4
1 1925 3383 64687 ['1 (1467
.| 16468 4298 1925 | [ 2| | 2807
§= 1157563383 1213 | | 3| = | 3471
| 11213 4298 5756 | | 4 | 7621

Therefore, the NTT‘/’(g) = [1467, 2807, 3471, 7621] when
Y = 1925 in Z7631-

Example 3.9: Leth =[5, 6, Z, 8L, n=4and = 1925in
the ring Z7631. The NTTY (h) = h, can be calculated similarly
by the following matrix multiplication:

1 1925 3383 6468 | | 5 2489

i = 1 6468 4298 1925 | | 6| | 7489
T 1157563383 1213 | | 7| | 6478

1 1213 4298 5756 | | 8 6607

Therefore, the NTTV (h) = [2489, 7489, 6478, 6607].

2) INVERSE NUMBER THEORETIC TRANSFORM BASED ON v/

Definition 3.6: The Negative-Wrapped Inverse of Number
Theoretic Trclmsform (INTT) of an NTT vector a is defined as
a = INTTY™ (&), where:

n—1
aj=n" Z Y7o Vg mod ¢ (16)
j=0
andi=0,1,2,...,n— 1. Substituting w = wz yields:
n—1 -
aj=n" z Y~ %g; mod g (17)
j=0
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Note that the differences between NTTY and INTTY are the
scaling factor n~!, the replacement of ¥ by ¥ !, and the
transpose of the exponents of ¥y matrix.

Example 3.10: Let NTTV(g) = g = [1467, 2807, 3471,
7621] and v = 1925 in the ring Z7681. Note that w’l =
1213 and n=" = 5761. The vector g can be calculated by the

their negative-wrapped convolution by:

1467

2807
INTTQ 349y | ©

7621

2489
7489
6478 )
6607

following matrix multiplication:

I
P =

STeE R ST
'—‘O\wO\‘DO\WO

I
w o= O

TEESE &S

*$‘$

1467
2807
3471
7621

1467
2807
3471

| 7621 |

'$€$$I TS S S

1467
2807
3471

| 7621

12139 12139 12139 12130
12131 12133 1213° 12137
12132 1213° 12132 1213°
| 12133 1213! 12137 1213°

1 1 1 1 1467 1

g = 5761 1213 5756 6468 1925 | | 2807 _ 2
4298 3383 4298 3383 | | 3471 3

| 5756 1213 1925 6468 | | 7621 4
Therefore g = [1, 2, 3, 4].

Example 3.11: Let NTTV (h) = h = [2489, 7489, 6478,
6607] and = 1925 in the ring Z7681. The vector h can be
calculated by the following matrix multiplication:

g = 5761

1 1 1 1 2489 5

h = 5761 1213 5756 6468 1925 | | 7489 _ 6
4298 3383 4298 3383 | | 6478 7

5756 1213 1925 6468 | | 6607 8

Therefore, the h = [5, 6,7, 8].

3) USING NTTY TO CALCULATE NEGATIVE-WRAPPED
CONVOLUTIONS
Like its positive-wrapped version, the negative-wrapped NTT
can evaluate the negative-wrapped convolutions, commonly
referred to as negacyclic convolutions.

Proposition 3.2: Let a and b are the multiplicands’ vectors
of polynomial coefficients. The negative-wrapped convolu-
tion of a and b, ¢ can be calculated by:

¢ = INTTY " (NTT" (@) o NTTV (b)) (18)

where o is an element-wise vector multiplication in Z,.
Example 3.12: Letg = [1,2,3,4] and h = [5,6,7, 8].
From Example 3.8 and 3.9, we know that the NTTY of them
in in Zneg1 are § = [1467,2807,3471,7621] and h =
[2489, 7489, 6478, 6607] when 1 = 1925. We can calculate
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2888
6407
= INTT(| 5g5; |)

2992

1 1 1 1 2888
— 5761 1213 5756 6468 1925 | [ 6407 |
a 4298 3383 4298 3383 [ [ 2851 | | 2

5756 1213 1925 6468 | | 2992

Therefore, [7625,7645,2,60] — or when written with
negative numbers [—56, —36, 2, 60] is their negacyclic con-
volution, the same result as calculated by schoolbook multi-
plication and long division in Example 2.3

E. THE CHOICE OF MODULUS
To make NTT transformation available, the modulus ¢ has to
satisfy the following requirements:
1) The n-throot of unity w exists in ring Z,. The existence
of w enables one to utilize NTT to perform positive-
wrapped convolutions.
2) Furthermore, the 2n-th root of unity v exists in ring Z,
to make negative-wrapped convolutions work.
The modulus g has to satisfy the following theorem to
guarantee that w exists [27], [29], [49]:

Theorem 3.1: If q is prime, then n must divide g — 1. If q
is composite such that:
my

m3 my

a=q™ @™ 3" gk
then n must divide the greatest common divisor (GCD) of
@g-Lag—-—1Lg—1,....q.— D).

However, while Theorem 3.1 guarantees the existence of
o does not guarantee the existence of y. To guarantee the
existence of ¥ in Zg:

Theorem 3.2: If q is prime, then 2n must divide g — 1. If q
is composite such that:

m3 mjy

g=q"™ - @" - ¢3" .. .q
then 2n must divide the greatest common divisor (GCD) of
@ —-—lLeo-lg-1....q—1D.

Many researchers proposed various moduli that might sat-
isfy the requirements, such as Mersenne [27] and Fermat [50]
prime numbers. Here we define NTT-friendly modulus based
on its abilities to perform the type of convolutions:

Definition 3.7: A PWC-NTT friendly modulus q is defined
if and only if an n-th root of unity, w, exists in Zy.

Definition 3.8: An NWC-NTT friendly modulus q is
defined if and only if n-th root of unity, w, and 2n-th root of
unity, Vr,exists in Zq.

In the schemes proposed for the NIST-PQC competition,
the values of n and ¢ are standardized. Table 1 summarizes
the schemes and their NTT-friendliness.
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TABLE 1. The values of n and q of standardized NIST-PQC scheme.

Scheme n q PWC-NTT | NWC-NTT
Friendly Friendly
Dilithium [10] 256 | 8380417 v 4
Falcon [12] 512 12289 v 4
1024 12289 v 4
Kyber [15], [16] | 256 3329 v b 4

In the context of Post-Quantum Cryptography and Homo-
morphic Encryption, most of the time, the term “Number
Theoretic Transform” and “Convolutions” refer to their
negacyclic or negative-wrapped version. Therefore, for the
rest of the report, we refer to all the terms “NTT”, “INTT,”
and ““‘convolutions” for their negative-wrapped version.

IV. FAST NTT
To reduce the complexity and fasten the process of the matrix
multiplication needed for the NTT transformation, one can
use “divide and conquer” techniques by utilizing the period-
icity and symmetry property of ¥:
periodicity: k2" = yk (19)
symmetry: <" = —yk (20)
where k is a non-negative integer. The calculation of n point
NTT and INTT can be divided into two n/2 points. How-

ever, the dividing techniques for NTT and INTT are slightly
different.

A. COOLEY-TUKEY (CT) ALGORITHM FOR FAST-NTT
From equation (15), one can separate the summation into two
parts based on the summation index parity:

n—1

. piiti

a = E V2t mod g
i=0

nj2—1 nj2—1
— Z Iﬁ4l]+2’a21+ Z 1ﬁ4l]+2]+2l+1612i+1 modq
i=0 i=0
n/2—1 n/2—1
i 5t diieni
= > Y ay Pt T ey, mod g
i=0 i=0
2D
Based on the v’s symmetry properties:
n/2—1
R i
djnp = Y, Y ay,
i=0
n/2—1
2j+1 4ij42i
— YT iy, modg  (22)
i=0

LetA; = 3000 w4+ 2ay and B; = Y07 w4 iay
equations (21) and (22) become:

aj=Aj+y¥'B; mod ¢
@jinp = A — ¥¥T'B; mod ¢ (23)
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Notice that A; and B; can be obtained as n/2 points NTT.
If n is power-of-two, the process can be repeated for all the
coefficients. Figure 4 shows the visualization of Equation
(23), usually called CT butterfly as a reference to its proposer,
Cooley and Tukey [23].

A +

B -
l/)k

FIGURE 4. Cooley-Tukey (CT) butterfly unit for calculating NTT.

One can configure several butterfly units to calculate the
entire n length of NTT.

Example 4.1: From Example 3.8, one can calculate the
NTT by the matrix multiplication:

Oyl g2 y?
é _ 0 w3 wﬁ w9
wO wS 1)010 wlS
wO w7 w14 w.Zl
Based on the  periodicity:
vOyl g2 y?
e |V Vv
YOy gy’
yOy’ oyl
Based on the  symmetry:
O oyl oyt oyl
e | VOV vy
wO _wl w2 —I/f3
w() _¢3 _w2 wl
Breaking down for each element:
go=1y"+2y' +3y7 +4y°
g1=1y"+2y° -3y + 4y
fr=1y" =2y +3y? — 4y’
g =1y" =297 —3y? + 4y’

A WO = N

BN =

Factoring:

2o =v'(1+3yH +y'2+4y7)
g1 =y =3y +y 2 +4y7)
&=y +3yH) —y'2 -4y
& =901 -3y -y 2 —4y?) (24)
The idea is to calculate similar terms in the brackets once and
then distribute the results instead of calculating them multiple
times. Figure 5 shows the visualization of Equation 24.
The number of stages required is log,(n). For our case

here, as n = 4, two stages are required. For this example, the
result of stage 1 is [2469, 5853, 5214, 1832], and stage 2 is
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1 + 1 + :

2 i

3 1

R v |
Stage 1 Stage 2

FIGURE 5. Cooley-Tukey butterflies for n = 4 and [1, 2, 3, 4] as its input.

[1467, 3471, 2807, 7621]. By reordering the result of stage 2,
we can get the correct NTT result: [1467, 2807, 3471, 7621]

The order of the results of CT-Butterfly is called bit-
reversed order (BO), while the correct order of the NTT is
called normal order (NO). We will discuss the ordering in
more detail in Subsection I'V-C.

Example 4.2: Redoing Example 3.9, using the same but-
terfly configuration as Figure 5 with [5, 6,7, 8] as the input,
the result of stage 1 is [643, 4027, 7048, 3666], and stage 2 is
[2489, 6478, 7489, 6607]. Reorder it to normal order for the
NTT result: [2489, 7489, 6478, 6607].

However, to calculate INTT, one will need another but
similar “divide and conquer” approach.

B. GENTLEMAN-SANDE (GS) ALGORITHM FOR FAST-INTT
For the INTT, instead of dividing the summation by its index
parity, it is separated by the lower and upper half of the
summation. From equation (15) and ignoring n~! term:

n—1
a; = Z w_(2i+l)j21j mod g
j=0
5—1
Z v (21+1)/A + Zl/f Qi+1)(j+5 )a(/‘l' ny mod ¢
Jj=0 ]—2
5—1 5—1
=y mod g

S a4+ >y 2i(j+% Dagen
j=0 j=0

Based on the periodicity and symmetry of v~ !, for the even
term:

1o 1
ay =y % v e+ Dy Dag ) | mod g
j=0 j=0
ay =y [aj + a(,-+%)] =4 mod ¢ (25)
=0

Doing the same derivation for the odd term:
11

@iy =Y ZZZ[ —a(,+n)] M modg  (26)
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n
—4i -1
ajw iV and B; _Z] 0 H_mp

Equation (25) and (26) become:

LetA; = 2

ax = (A + By~ mod ¢

@ip1 = (A =By ~* mod ¢ @7
Notice that A; and B; can be obtained as n/2 points INTT.
If n is power-of-two, the process can be repeated for all the
coefficients. Figure 4 shows the visualization of Equation
(27), usually called GS butterfly as a reference to its proposer,
Gentleman and Sande [24].

A +

B -
l/)k

FIGURE 6. Gentleman-Sande (GS) butterfly unit for calculating INTT.

Because the separation is done differently, GS butterflies’
input is usually in bit-reversed order (BO) and the output is
in normal order (NO).

Example 4.3: Repeating example 3.10, let NTTV(g) =
g = [1467,2807, 3471, 7621], the INTT can be calculated
by using matrix multiplication:

Y00 =0 07 1467
|y TS T ] 2807
g§=n 1{,72 I/ffﬁ wflo 1//”4 3471
w—?) w—9 w—lS W_ZI 7621
Based on ~" periodicity
Y0 0 g0y =07 1467
_ |ty e T 2807
g=n ¢—2 w—é w—2 W_ﬁ 3471
Y3y by 3| ] 7621
Based on = symmetry:
vy g0 g0 467
gt [V g 2807
Y2y Y2 —y 2| | 3471
3oyl g3y | 7621

Breaking down for each element:

g0 = [1467y 7% + 2807y ~° + 3471y * + 7621y 10!
g1 = [1467y " +2807y > — 3471y ! = 7621y In”!
g = [1467y 2 — 2807y 2 4 3471y 2 — 7621 2
g3 = [1467y 7 + 2807y ~! — 3471y — 7621y~
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Factoring:

g0 = [(1467 + 3471y~ + (2807 + 762 1)y 1y ~On~!
g1 = [(1467 — 3471y~ 4 (2807 — 7621)y 1y On~!
g2 = [(1467 + 3471)y " — (2807 + 7621)y 1y ~2n~!
g3 = [(1467 — 3471y~ — (2807 — 7621)y 1y *n”!
(28)

Similar to NTT, the idea is to calculate the similar terms
in the brackets once, then distribute the results instead of
calculating them multiple times. By first reordering the input,
we can visualize Equation 28 as shown in Figure 7.

1467

3471

2807 .

7621 T = i 41
Sta.ge 1 Sta.ge 2

FIGURE 7. Gentleman-Sande butterflies for n = 4 and
[1467, 2807, 3471, 7621] reordered as bit-reversed order as its input.

The result of stage 1 is [4938, 4025, 2747, 3664], and
stage 2 is [4, 8, 12, 16]. After scaling with a 4~' = 5761 fac-
tor, we can get the INTT result of [1, 2, 3, 4].

Example 4.4: Redoing Example 3.11, using the same
butterfly configuration as Figure 7, reordering the input
from normal order [2489, 7489, 6478, 6607] to bit-reversed
order [2489, 6478, 7489, 6607]. The result of stage 1
is [1286,373,6415,7332], the result of stage 2 is
[20, 14, 28, 32], and the INTT vresult after scaling is
[5,6,7,8].

For polynomial multiplication, one can use CT butter-
flies to transform both inputs to the NTT domain, then
use element-wise multiplication for the NTT outputs. The
result is then transformed back using GS butterflies to
perform INTT. As the butterflies reduce the mathematical
operation in a quasilinear scale, the complexity of the poly-
nomial multiplication is reduced from 0(n?) to O(n log n).
The larger the polynomial degree, the larger the speed and
cost gain [51].

Example 4.5: From example 4.1, we get that the NTT
transformation of [1,2,3,4] in bit-reversed order is
[1467, 3471, 2807, 7621]. From example 4.2, we get the NTT
transformation of [5,6,7,8] is [2489, 6478, 7489, 6607]
in bit-reversed order. Using element-wise multiplication
for those two results, we get [2888, 2851, 6407, 2992] in
bit-reversed order. Transforming back the results using GS-
butterfly, we will get [1625, 7645, 2, 60] or [—56, —36, 2, 60]
when written using negative numbers. Which is the same
result as Example 3.12.
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TABLE 2. Normal and bit-reversed order for n = 4.

Index Index Bit-reversal Decimal
in binary of bit-reversal
0 00 00 0
1 01 10 2
2 10 01 1
3 11 11 3

TABLE 3. Normal and bit-reversed order for n = 8.

Index Index Bit-reversal Decimal
in binary of bit-reversal
0 000 000 0
1 001 100 4
2 010 010 2
3 011 110 6
4 100 001 1
5 101 101 5
6 110 011 3
7 111 111 7

C. NORMAL ORDER AND BIT-REVERSED ORDER
As encountered in Subsection IV-A and IV-B, typically,
the input of CT Butterfly is in Normal Order (NO), and
the output is in Bit-reversed Order (BO). Conversely, the
input of GS Butterfly is in BO, and the output is in NO.
This section clarifies the formal definition of Normal and
Bit-reversed Order and provides examples for n = 4
andn = 8.

Definition 4.1: Let n be a power of two, and b is a non-
negative integer with b < n. The bit-reversal of b is
defined as:

bVVn(blogn—lZlogn_1 + -+ b12 + bo)
= bOlegn_1 +- blogn—22 + blogn—l

where b; is the i-th bit of the binary expansion of b [33].

Example 4.6: Consider n = 4, the index of the array in the
normal order is [0, 1,2, 3]. Table 2 shows the index binary
representation in log, n = 2 bit, their bit-reversal in binary,
and their decimal representation.

From the table, we know that the index of the normal
order is [0, 1, 2, 3] and the index of the bit-reversed order is
[0,2,1,3]

Example 4.7: Similarly, when considering n = 8, we can
construct a similar table with log, n = 3 as the length of
binary representation.

We will get the NO index is [0, 1,2, 3,4,5,6,7], and the
BO index is [0,4,2,6,1,5,3,7].

Example 4.8: Redoing the previous examples for n =
16 and 4 as the length of binary representation.

Therefore the NO index is [0, 1,2,3,4,5,6,7,8,9, 10, 11
12, 13, 14, 15] and the BO index is [0, 8, 4, 12,2, 10, 6, 14, 1,
9,5,13,3,11,7, 15].

Typical NTT-CT Butterfly configuration has NO-input and
BO-output, while INTT-GS configuration usually has BO-
input and NO-output. However, one can reconfigure the CT
butterfly to have BO-input & NO-output and GS butterfly
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= gl7]

gl0] * + >Q§[O]
g1] — — gl
912] 0 *— 2
913] T — = gls]
g — + + it
o151 ——3 — — = gis)
gl6l — 0 — g0
o — —t — = g17)
Staée 1 Sta‘ge 2 Stége 3
(a) CT Butterfly for NTT with NO-input and BO-output
410] + — —+ — gl0]
g4 —— e = oli]
g12) + — e — gl2]
gl —— S ey — g3]
g1 + — I g14]
15— e g1s]
a1 - — :

w7
Stage 1 Stage 2 Sta‘gc 3
(¢) GS Butterfly for INTT with BO-input and NO-output

<

FIGURE 8. All possible CT and GS butterfly configurations for n = 8.

TABLE 4. Normal and bit-reversed order for n = 16.

Index Index Bit-reversal Decimal
in binary of bit-reversal
0 0000 0000 0
1 0001 1000 8
2 0010 0100 4
3 0011 1100 12
4 0100 0010 2
5 0101 1010 10
6 0110 0110 6
7 0111 1110 14
8 1000 0001 1
9 1001 1001 9
10 1010 0101 5
11 1011 1101 13
12 1100 0011 3
13 1101 1011 11
14 1110 0111 7
15 1111 1111 15

to have NO-input & BO-output. Figure 8 shows all pos-
sible configurations for NTT CT and INTT GS Butterfly
forn = 8.

Using normal order as NTT input is called decimation in
time, while bit-reversed order input is called decimation in
frequency [52]. Another thing to notice is that the power of
Y follows the bit-reversed order index. The set of all the
exponentiation of v is called twiddle factors.
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gl0] + + A g0
” . - - a1
9l6l— - — —— 03]
gl1] *— * :wl 54
e - —gls)
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Sta‘ge 1 Sta‘ge 2 Stége 3

(b) CT Butterfly for NTT with BO-input and NO-output
o] —= —t —t = 900)
411 + : + + el
412] 3 el 5 912l
. - . L : .
g3 . ‘ . ‘/’23 . 1/)“}8'1 gl6]
141 ey ‘ — 1l
41s] + e + + Traatl
416] W3 g g1 g[3]
o —-s= e o g o)

Sta‘ge 1 Sta‘ge 2 Stz‘lge 3

(d) GS Butterfly for INTT with NO-input and BO-output

D. MODULAR ARITHMETIC UNITS

One of the challenges of NTT-based multiplication is that
addition and multiplication have to be done in Z,. All the
CT and GS butterflies operators require modular arithmetic,
a non-standard feature for most implementation platforms.

1) MODULAR ADDER

To calculate modular addition, (A + B) mod ¢, we can simply
use a piece-wise function:

A+B A+B<gq

A+ B)mod g =
AtBImodd=1 1 p_y A+B>q

(29)
Equation (29) is relatively easy to implement using a set of
adders, subtractors, and multiplexers.

While modular adder is simple and easy to implement,
modular multipliers are trickier. The standard algorithm for
modular multiplication uses trial division, which is ineffi-
cient, not scalable, and difficult to implement in hardware
architecture. The most popular workaround for implementing
Barrett or Montgomery modular multiplication algorithm.

2) MODULAR REDUCTION: BARRETT METHOD

The main idea behind Barrett reduction is to approximate
the division by the modulus using pre-computed values,
which allows for faster modular multiplication [53], [54].
Algorithm 1 shows how to multiply two integers modulo ¢
using Barrett reduction. As the value of ¢ is usually fixed,
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Algorithm 1 Modular Multiplication by Barrett Reduction

Input: a,b,q € Z
Output: a x b mod ¢

// Pre-computation
1: k = [log, g // number of bits in g
2. r = 2k 5
3 n=17]

/I Multiplication
4: z=axb

// Barrett Reduction
5. mp = I_ﬂ
6: my =my; X |
7 m3 = L%J
8 t=z—m3 Xq
9: if r > g then
10: return f —gq
11: else
12:  return ¢
13: end if

we can pre-compute the value of k, r, and n while designing
the unit. The floor function of division by r, a power-of-two
integer, can be replaced by the right shift function that is easy,
cheap, and efficient to implement in hardware.

This method is suitable for modular multiplication between
unrelated numbers [55]. In the CT and GS Butterfly, this
type of multiplication is used to multiply the polynomial
coefficients with various twiddle factors. It is also used in the
element-wise multiplication between two NTT vectors.

Example 4.9: To calculate 1467 x 2489 mod 7681 (used
in Example 3.12) using Barrett reduction, one will get

a = 1467, b = 2489, and q = 7681.

k = [log, q] = [log, 76811 = 13
r=2F=283-38192

r2 81922
— = = 8736
i LqJ L7681J
z=ax b= 1467 x 2489 = 3651363
2 3651363
=3 = |22 =445
m == 1519

my =m x = 445 x 8736 = 3887520

my 3887520

my=|—) = || =474
8192

t =z—m3 x g=73651363 — 474 x 7681 = 10569
Ast > 7681, the result ist — g = 10569 — 7681 = 2888.

3) MODULAR REDUCTION: MONTGOMERY METHOD
Another alternative is to perform modular multiplication
by Montgomery reduction [56], [57], which is shown in
Algorithm 2. The main idea is that it avoids direct divisions by
the modulus by transforming the number to the Montgomery
representation.
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Algorithm 2 Modular Multiplication by Montgomery
Reduction
Input: a,b,q € Z
Output: a x b mod g
/I Pre-computation

1: k = [log, g // number of bits in g
2. r = 2k

3: Fipy = r~1 mod q

4 ¢ = —q "mod r

/I Convert to Montgomery representation
am =a x rmodgq
6: by, =b x rmodgq
/I Multiplication in Montgomery representation
7ot = am, X by,
8 u==1xqg modr
9 cp=0C+uxq)/r
/I Convert back to the standard representation
10: ¢ = ¢y X Fipy mod g
11: return c

W

The main drawback of Montgomery reduction is the
requirement to transform the numbers into Montgomery rep-
resentation in Z, in contrast to Barrett reduction, in which all
the calculation is done in Z. However, this drawback can also
be advantageous when calculating the same multiplication
multiple times. Hence, this method is suitable for modular
exponentiation [55]. In the case of NTT, it is useful to calcu-
late the exponentiation of v used in CT and GS butterflies as
twiddle factors.

Example 4.10: To calculate 1467 x 2489 mod 7681 (used
in Example 3.12) using Montgomery reduction, one will get
a = 1467, b = 2489, and q = 768]1.

Pre-computation:

k = [log, q] = [log, 768171 = 13
r=2k=213=8192

Tiny = r~! mod q= 81927 mod 7681 = 7200
¢ =—q ' mod r = —(76817") mod 8192 = 7679

Convert a and b to Montgomery representation:

am = a x r mod g = 1467 x 8192 mod 7681 = 4580
by, = b x r mod g = 2489 x 8192 mod 7681 = 4514

Multiplication in Montgomery representation:

t =apm X by, = 4580 x 4514 = 20674120
u=1x¢q modr = 20674120 x 7679 mod 8192 = 6584

Result in Montgomery representation:

cm =t +uxq)r
= (20674120 + 6584 x 7681)/8192
= 8697

70299



IEEE Access

A. Satriawan et al.: Conceptual Review on NTT and Comprehensive Review on Its Implementations

Transform back to standard representation:

¢ = cm X Iy mod ¢
= 8697 x 7200 mod 7681

= 2888

Transforming to and from Montgomery representation is
an expensive operation, which is usually done iteratively by
subtracting ¢ multiple times. One needs to minimize the num-
ber of transformations to use Montgomery modular reduction
efficiently.

Many researchers perform various workarounds and opti-
mizations for NTT/INTT implementation using previously
discussed concepts in various Post-Quantum Cryptogra-
phy applications, which we will discuss in the following
chapter.

V. NTT IN POST QUANTUM CRYPTOGRAPHY SCHEME
All the NIST-PQC competition winners: Dilithium [10], Fal-
con [12], and Kyber [15], [16] include NTT/INTT in their
specifications for modular polynomial multiplication. In this
section, we surveyed the implementation of NTT/INTT for
each scheme in various platforms based on their novelty
claims, algorithms, and implementation strategies. We also
present common optimizations implemented by various
researchers.

A. DILITHIUM, KYBER, AND FALCON OVERVIEW
Dilithium [10] is one of the standardized algorithms in the
NIST Post-Quantum Cryptography (PQC) competition. It is
a signature scheme based on the problem of finding short
lattice vectors, which is believed to be hard even for quantum
computers. The Dilithium algorithm is designed to provide
strong security while remaining efficient enough for practical
use in digital signature applications.

Kyber [15], [16] is a key encapsulation mechanism (KEM)
part of the NIST Post-Quantum Cryptography (PQC) project.
Kyber is one of the proposed algorithms in the NIST-PQC
competition. It is a lattice-based cryptosystem that relies
on the hardness of the Learning With Errors (LWE) prob-
lem and its variants, which are believed to resist quantum
attacks.

Falcon [12] is one of the candidate algorithms for digital
signature schemes In NIST-PQC (National Institute of Stan-
dards and Technology Post-Quantum Cryptography). Falcon
is a family of lattice-based signature schemes designed to be
secure against attacks by quantum computers. Falcon uses a
variation of the Ring Learning With Errors (RLWE) problem,
which is believed to be resistant to attacks by both classical
and quantum computers. The security of Falcon relies on the
hardness of the underlying mathematical problem of finding
the shortest vector in a lattice. Falcon provides efficient signa-
ture generation and verification, making it a practical option
for real-world applications. It is also designed to resist side-
channel attacks, which exploit weaknesses in the physical
implementation of a cryptographic system.
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TABLE 5. The values of n, g, », and ¢ of standardized NIST-PQC scheme.
Note that only Dilithium specifies the actual value of v, others do not.

| Scheme | n [ ¢ | w [ ¢ |
Dilithium [10] 256 | 8380417 | 3073009 | 1753
Falcon [12] 512 12289 3 1321
1024 12289 49 12282

Kyber [15], [16] | 256 3329 17 -

This report highlights the NTT/INTT specifications and
the Dilithium, Kyber, and Falcon scheme implementa-
tions. Optimizations and various implementations outside
the NTT/INTT in the scheme are out of the scope of
our work.

B. NTT IN FINALIZED PQC SCHEMES

NTT is a part of Dilithium specification, with the parameters
set as polynomials of degree n = 256 and the modulus
g = 2% — 213 411 = 8380417 is used in the extended
cyclotomic ring Z4[x]/ (x?% 4 1). Notice that the chosen ¢
is NWC-NTT friendly prime where v exists. Dilithium also
specifies the chosen 2n-th root of unity, ¥ = 1753. These
parameters were chosen based on a trade-off between security
and efficiency [10].

NTT is also a part of Falcon and Kyber specifications.
Falcon [12] specifies that n = 512 or n = 1024 depends
on the desired security level and the modulus ¢ is chosen
to be 12289, which is an NWC-NTT friendly modulus for
both n. Kyber [16] also specifies n = 256 and ¢ = 3329 in
its finalized version. Table 5 shows the NTT parameters
summary for Dilithium, Falcon, and Kyber.

As we can see, the NTT specification in Kyber is unique
because the chosen modulus in the final version, g = 3329,
is not an NTT-NWC friendly modulus, which requires a
special trick called truncated NTT to calculate its negative-
wrapped convolution. Truncated NTT requires the calcula-
tions of NTT divided into two parts, as for Kyber n = 256,
it requires two NTT calculations with n = 128 by dividing
odd and even parts [58]. Notice that when n = 128 and
qg = 3329, it is an NWC-NTT friendly modulus with one
of the ¢y = 892. In the following toy example for truncated
NTT, we can calculate NTT/INTT with n = 8 by breaking it
down into two NTT/INTT calculations with n = 4.

Example 5.1: Let A = [0,1,2,3,4,5,6,7] and B =
[8,9,10, 11,12, 13, 14, 15] in the ring Zg with Q = T681.
We need to find the negacyclic convolution of A and B.

Calculating the results using previously explained meth-
ods in normal order: Using v = 7154, we can get:

NTTV (A) = [0, 7154, 2426, 2497, 1830, 4245, 3812, 4081]
NTTV (B) = [8, 2938, 4449, 4035, 5490, 3356, 3774, 1064]
Element-wise multiplication between the two yields:

NTTY(A) o NTTV (B)
= [3213, 7391, 1790, 5474, 5572, 2527, 2633, 7341]
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2423 + 6519x
4467 + 882x
1768x + 4370x?
1012 + 1702x

e - 4
1012 + 3470x + 4370x?

3273+ 603x

4956 + 2286x

784x + 3559x2
6397 + 559x

e e g
6397 + 1343x + 3559x?

1598 + 4270x

7612 + 2603x

4173x + 403x?
4953 + 4929x

e e 4
4953 + 1421x + 403x?

387 + 3974x
6040 + 1946x
364x + 6318x
2456 + 7516x

e 4
2456 + 199x + 6318x?

4370 3559 403 6318
x% —1925 /,’/4370;(2 +3470x + 1012 x? — 6468 3559x2 + 1343x + 6397 x? — 5756 ///403x2 + 1421x + 4953 x2—1213 / 6318x2 + 199x + 2456
4370x* +  Ox+6126 3559x+  Ox+ 345 403x* +  0x+7675 | 6318x%*+  0x+1904
3470x + 2567 1343x + 6052 1421x + 4959 199x + 552
- 2567 + 3470x - 6052 + 1343x - 4959 + 1421x - 552 +199x
FIGURE 9. Schoolbook multiplication instead of element-wise for Example 5.1.
X[0] * *xa0l | o] * 20l | xalo] * £ x2lo0] | x2l0] . F— ol0]
X[64] = = x164] | x1[16] 7 = x2(16] | x2[4] 7 = x24] |x2[1] 7" —— xo[1]
X[128] 7 - ut x1[128] | x1[32] 7 = * x2[32] | x2[8] 5 = s x2[8] |x2[2] g = * xo[2]
- - x2[48 - x2[12] |x2[3] = = = xo[3]
X[192] 7 7 x1[192] | x1[48] 7 7 [48] | x2[12] 7 7 7 v
15t [teration 2nd Jteration 3d lteration 4t Iteration

FIGURE 10. Calculating 256-element NTT Transformation using 4-element CT butterfly iteratively.

Taking INTT from the results yields in the negacyclic convo-
lution between A and B

INTTY " (NTTV (A4) o NTT" (B))
= [7373, 7369, 7391, 7441, 7521, 7633, 98, 280]
Therefore the negacyclic convolution between them is
[7373,7369, 7391, 7441, 7521, 7633, 98, 280].

Calculating the results by truncated NTT: Group A and B
into two:

A =10,1),(2,3),4,5),(6,7)]
B =[(8,9),(10, 11), (12, 13), (14, 15)]
Then, separate it into odd and even parts:
Aeven = (0,2, 4, 6]
Apaa =1[1,3,5,7]
B..., = [8, 10, 12, 14]
B,ia =9, 11, 13, 15]
Transform them into NTT with n
Y = 1925:
NTTV (A yen) = [2423, 3273, 1598, 387]
NTTY (Apqq) = (6519, 603, 4270, 3974]
NTTY (Beven) = [4467, 4956, 7612, 6040]
NTTY (Bogq) = [882, 2286, 2603, 1946]

4,q 7681, and

Note that we present the result here in normal order. We can
group them again:

NTTY (A) = [(2423, 6519), (3273, 603), (1598, 4270),
(387, 3974)]

NTTV (B) = [(4467, 882), (4956, 2286), (7612, 2603),
(6040, 1946)]

VOLUME 11, 2023

TABLE 6. Values of ¥2{*1, which is important to determine the modulus
of the schoolbooks multiplication.

Index, ¢ 0 1 2 3
20+ 1 1 3 5 7
P&l 1925 | 6468 | 5756 | 1213

In the usual NTT/INTT scheme, we multiply element-wise
in this step. However, in this scheme, we do a schoolbook
multiplication between each grouped element treated as poly-
nomial coefficients [59]. The schoolbook multiplication is
performed modulo X> — >+, where i is the index of grouped
elements. Figure 9 illustrates how our example case is per-
formed, while Table 10 shows the ¥ values.

From the calculations, we obtain the following:
C = NTTY(A) o NTTV (B)

= [(2567, 3470), (6052, 1343), (4959, 1421), (552, 199)]

Separating odd and even values of C:

A

Coven = [2567, 6052, 4959, 552]
Coaq = [3470, 1343, 1421, 199]

Transform them back using INTT:
INTT‘Vl(é'even) = [7373, 7391, 7521, 98]
INTwal(é'odd) = [7369, 7441, 7633, 280]
Grouping them:
C =[(7373,7369), (7391, 7441), (7521, 7633), (98, 280)]

Which is the same result as regular NTT/INTT negative
wrapped convolution performed previously.
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C. IMPLEMENTATION OPTIMIZATIONS

As the value of n and ¢ is relatively small in the finalized
PQC schemes, one can straightforwardly implement CT and
GS butterflies for NTT/INTT with 256 points. Nevertheless,
various optimizations on the implementation side exist. This
section discusses what other researchers do to achieve their
desired goals.

1) ITERATIVE CT/GS BUTTERFLIES

One may look to optimize the NTT/INTT for a smaller area
in the hardware implementation. This goal can be achieved
using an iterative approach, which involves performing the
butterflies repeatedly with a trade-off for longer clock cycles.

This means one can break it into smaller units instead of
doing a single 256-element CT/GS butterfly. For instance,
since 256 can be expressed as 16> = 4* = 28 one can
do a 16-element CT/GS butterfly twice (called radix-16), a
4-element four times (called radix-4), or a 2-element eight
times (called radix-2). This allows for a reduction in the area
required to implement the butterflies while still maintaining
the same transformation result.

Howeyver, the iterative method has another trade-off: the
need to generate a different set of twiddle factors for each
clock cycle. This means the twiddle factors must be recalcu-
lated for each iteration, adding to the processing time. This
trade-off is necessary to ensure that the correct results are
obtained at each stage of the iterative transformation.

Figure 10 illustrates how a 4-element CT butterfly can
be used to calculate 256-element NTT transformation. For
each clock cycle, the twiddle factors: ¢, wb, and ¢ are
changed according to the input elements. The order of the
four 4-elements inputted must also be managed carefully to
ensure the correct results. This scheme can also be applied
similarly to GS butterflies.

This optimization is common among researchers and used
in almost all papers we surveyed due to its effectiveness in
saving area and design flexibility.

2) BITWISE OPERATIONS FOR MODULAR REDUCTION
Another common optimization among researchers in this
scheme is utilizing the fact that the modulus ¢ is already
set and fixed for each scheme. This fact can be exploited to
design a custom modular reduction module specific to the
targeted modulus by only using hardware-friendly operations
such as add and shift.

For example, in Dilithium, the value of the modulus is
fixed at ¢ = 8380417. This number can also be written as
223 _ 213 4 1, then one can derive that 223 = 213 — 1 mod ¢.
Similar derivation can also be done for Falcon and Kyber
moduli. Instead of using Barrett or Montgomery reduction,
a series of bit-wise operations based on this fact are done to
perform modular multiplication.

The idea of designing a custom bit-wise operations modu-
lar reduction module is attributed to [60] by many researchers
we surveyed.
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3) HARDWARE SPECIFIC FEATURES UTILIZATION

Another common optimization among researchers is using
more efficient and ready-to-use platforms in their targeted
devices. Some platforms provide useful features, such as
ready-to-use multipliers in the DSP module of FPGA, vector
arithmetic, large register sets, specialized instruction sets, and
parallelization. However, this optimization is very specific to
the targeted device, and not all researchers can access the
specialized hardware.

D. IMPLEMENTATIONS COMPARISON

To close this section, Table 7 shows the summary of the
implementation comparisons between various researchers
based on their novelty claim on NTT/INTT implementa-
tions algorithm, target device or hardware, their presented
NTT/INTT implementations, and how they implement mod-
ular reduction algorithms.

VL. NTT IN HOMOMORPHIC ENCRYPTION
ARCHITECTURES

Another use case of NTT is its application in Homomorphic
Encryption (HE). This section explores the NTT implemen-
tations of HE schemes in various platforms, such as CPUs,
GPUs, and FPGAs. NTT is one of the key components
in Homomorphic Encryption (HE) algorithms that rely on
polynomial arithmetic (addition and multiplication). NTT is
an integer version of FFT, which is well-known to perform
O(nlog n) time complexity. Suppose we have two n-degrees
polynomial numbers, A and B. Theoretically, it can be mul-
tiplied in time O(nlogn) [118]. Moreover, they showed that
polynomials degree less than n € R, with g elements cost
O(nlog glog(nlog g)). One big question is how to implement
the O(nlog n) complexity in the platforms such as GPUs and
FPGAs. This section will answer it.

To have a comprehensive understanding of the architec-
tures, first, we explain how the CPU, GPU, and FPGA work.
Figures 11 and 12 show the CPU, GPU, and FPGA archi-
tecture, respectively. CPU is built on several modules such
as registers, arithmetic logic unit (ALU), control unit, and
instruction memory. The left side of Figure 11 shows a multi-
core CPU that supports the execution of multiple instructions
simultaneously. Typical multi-core CPUs are also supported
by caches that temporarily hold the data and instructions
to speed up the data movement rather than accessing the
DRAM. However, the CPUs are specialized for serial pro-
cessing with higher clock frequencies that may not be suitable
for the data format of polynomial operations in homomorphic
encryption.

GPU, or graphics processing unit, is a processor for han-
dling complex mathematical and graphical computations.
A GPU contains much more cores than the CPU e.g., hun-
dreds, thousands, even hundred thousands or million cores
that can work simultaneously in parallel. The right side of
Figure 11 shows the typical GPU architecture that consists
of streaming multiprocessors (SM) containing the cores.
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TABLE 7. Summary of Dilithium, Kyber, and Falcon’s NTT hardware implementations.

Ref. | Implemented | Novelty claim on NTT/INTT implementa- | Target device NTT/INTT algorithms Modular reduction
PQC scheme tions
[61] | Dilithium and | Unified polynomial multiplier for ASIC: Cadence Genus, Modified iterative CT and Bitwise add-shift
Kyber Dilithium and Kyber in one system to FPGA: Xilinx Zynq GS by unifying butterfly operations based on
minimize latency and implementation Ultrascale+ZCU102 unit of Dilithium (1 [60].
area. operation) and Kyber (2
operations).

[62] | Dilithium Applying parallelization to the NTT- NVIDIA Jetson AGX Iterative CT and GS with Parallelized Mont-
based polynomial multiplication utilizing | Xavier with 8-core ARM memory management gomery reduction
the ARMvS architectural features: large v8.2 64-bit CPU. optimization, such as [56].
register sets and NEON engine. merging and register

holding.

[63] | Dilithium Memory conflict management allows FPGA: Xilinx Artix-7 and Iterative CT and GS with Barrett reduction [53]
efficient memory access and avoids stalls Virtex Ultrascale memory management implemented using
while pipelining, but still limits logic and technique to allow parallel hardware-friendly
area consumption. in place NTT. operation: add and

shift.

[64] | Dilithium and | Implementing Radix-4 based NTT/INTT FPGA: Xilinx Zyng-7000 Modified CT and GS Bitwise add-shift

Kyber. with a pipelined and parallel data path. butterfly to have a radix- operations based on
4 instead of radix-2: a [60], [66].
butterfly structure takes
4 elements at a time. The
radix-4 implementation is
based on [65].
[59] | Dilithium and | Utilizing floating-point registers of STM32F4 Discovery board | Both NTT and INTT Modified Barrett
Kyber Cortex-M4 to reduce memory access with ARM Cortex-M4 calculations use CT reduction [53] to
time, using Fermat Number Transform (a butterflies instead of the utilize the hardware
special case of NTT with Fermat prime) usual CT-GS pairs. features of Cortex-
for Dilithium. M4.

[67] | Dilithium Combined hybrid system to calculate both | FPGA: Xilinx Zyng-7000 Combining CT and GS Custom bitwise add-
NTT and INTT to maintain speed-area XC7Z020-1 butterflies in one module shift operations.
trade-off by designing specialized

control logic and butterfly
computation unit.

[68] | Dilithium Small area NTT/INTT implementation FPGA: Xilinx Artix-7, Iterative CT and GS using Bitwise add-shift
using only a single dual-butterfly unit Zyng-7000, and Ultrascale+ | butterfly units that calculate | operations based on
attached to two 64 x 256 dual-port 128 operations at a time. [60].
memories.

[69] | Dilithium Parallelization and optimization Raspberry Pi 4B (RPi 4 Modifying CT/GS algo- Not explained in the
NTT/INTT for low-power Internet- Model B) with ARMv8-A rithm to fully utilize the fact | reference.
of-Things (IoT) applications using the instruction sets, Cortex-A72 | that the operands are much
ARMVB0A Neon SIMD Instructions. (1.8 GHz) CPU, and 4GB smaller than the modulus, q.

RAM

[70] | Dilithium Adopting an FFT technique called the FPGA: Xilinx Artix-7 CT/GS butterflies optimized | Bitwise operations
Radix-2 Multipath Delay Commutator with R2MDC in one using Canonical
(R2MDC) [71] that requires fewer module. Signed Digit (CSD)
memory access into NTT. representation [72].

[73] | Dilithium and | Optimization of NTT/INTT for an optimal | FPGA: Xilinx Artix-7 Modified CT and GS Bitwise add-shift

Kyber Look-Up Table (LUT) and Flip-Flop (FF) butterflies based on [66]. operations based on
utilization by efficient use of special- For INTT, the scaling factor | [66]
purpose Digital Signal Processors (DSPs) n is incorporated into the
twiddle factors.

[74] | Dilithium Compact hardware architecture that can FPGA: Altera DE2-115 and | Iterative CT for NTT and Karatsuba mul-
complete NTT/INTT in a short clock Xilinx Zyng-7020 GS for INTT, with pipeline | tiplication [18]
period. and customized twiddle with Montgomery

factor generators to allow reduction [56].
more flexible scheduling.

[75] | Dilithium and | Design an architecture that can be FPGA: Xilinx Zynq Pipelined iterative CT and Bitwise add-shift

Falcon efficiently implemented using High- UltraScale+ GS, with 2 x 2 butterfly unit, | operations, named K-
Level Synthesis (HLS) by memory processing 4 coefficients RED based on [76].
management. simultaneously.

[77] | Dilithium Processing two layers of NTT/INTT at FPGA: Xilinx Virtex Pipelined iterative CT and Barrett reduction [53]
once by implementing 2 x 2 butterfly units | Ultrascale+, Artix-7, and GS, with 2 x 2 butterfly unit | with only add-shift
combined with coefficient rearrangement Kintex-7 based on [75], processing 4 | operations.
to reduce stall while pipelining. coefficients at a time.

[78] | Dilithium Naive CT and GS NTT/INTT implemen- NXP FRDM-K64F Naive CT and GS NTT and | Not explained in the
tation without their iterative version is Development Platform INTT pairs. article.
possible on the targeted device.
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TABLE 7. (Continued.) Summary of Dilithium, Kyber, and Falcon’s NTT hardware implementations.

Ref. | Implemented | Novelty claim on NTT/INTT implementa- | Target device NTT/INTT algorithms Modular reduction
PQC scheme tions

[79] | Dilithium Designing and optimizing essential FPGA: Xilinx Virtex-7 Iterative CT and GS Montgomery
NTT/INTT functions in VHDL for Ultrascale+ NTT/INTT using 2 x 2 but- | reduction [56].
hardware environments. terfly units to calculate two

iterations simultaneously.

[80] | Dilithium Implementation of NTT/INTT using Neon | Raspberry Pi 4 Model B Iterative CT and GS Combination of
instruction set and improving Barrett and with Broadcom BCM2711, | specifically designed Barrett [53] and
Montgomery reduction, making it suitable | Quad-core Cortex-A72 to utilize the ARMVS Montgomery
for the target device. (ARM v8) instruction set. [56] reduction,

specifically designed
to utilize Neon SIMD
instructions from
ARMVS.

[81] | Dilithium Unifying butterfly unit module, making FPGA: Xilinx Kintex-7 Iterative CT and GS Customized bitwise
it able to function as CT butterfly, GS Sakura-X algorithm with controller add-shift operations.
butterfly, and element-wise multiplier to logic to select the function
reduce the area consumption. of butterfly unit.

[82] | Dilithium Precomputing twiddle factors in Mont- STM32F4 Discovery board | Iterative CT and GS, which | Montgomery
gomery domain, the use of signed with ARM Cortex-M4 the butterflies implement reduction designed
representation to prevent integer overflow. using the ARM Cortex- specifically for utiliz-

M4’s instruction set. ing the ARM Cortex-
M4 instruction set.

[83] | Kyber Performs truncated NTT/INTT tricks FPGA: Xilinx Artix-7 and Iterative CT and GS with Optimized Barrett
[33] with Karatsuba multiplication [18] Zynq UltraScale+ customized 2 x 2 butterflies | reduction [53] based
to obtain the resulting polynomial. that can function as CT on [84]

butterfly, GS butterfly, and
element-wise multiplier. For
INTT, the scaling factor

is incorporated into the
butterfly unit instead of the
end.

[85] | Kyber Matrix-based NTT/INTT with 4 x 8 but- FPGA: Xilinx Artix-7 Iterative CT and GS, Not explained in the
terfly units utilizing RISC-V Instruction AC701 performed with 4 x 8 article.
Set Architecture butterfly units.

[86] | Kyber Optimizing the modular reduction part FPGA: Zynq UltraScale+ Iterative CT/GS with a Barrett reduction
of NTT/INTT by implementing look-up ZCU1104 singular butterfly unit. optimized with look-
tables. up tables.

[87] | Kyber Matrix-based NTT/INTT utilizing NVIDIA GeForce RTX Iterative CT and GS, Naive modular lazy
Tensor Core, a feature to calculate matrix | 3080 parallelized as matrices reduction utilizing
multiplication, part of NVIDIA Al to accommodate faster the fact that the
Accelerator. computation using Tensor results will not

Core. cause overflow
in 32-bit integer
representation.

[58] | Kyber NTT/INTT coefficients are divided into FPGA: Xilinx Virtex-7 Parallelization called Dual- Barrett and Mont-
two parts processed simultaneously. path delay feedback (DDF) | gomery reduction for

to implement CT and GS different parts of the
butterfly. architecture.

[88] | Kyber Low complexity butterfly unit and FPGA: Intel Cyclone V CT/GS butterflies with 2 x 2 | Bitwise add-shift
optimization of modular reduction based S5CSXFC6D6F31C6 configuration operations, based on
on K-RED [76] K-RED [76]

[89] | Kyber Optimized NTT/INTT operation specif- Google Pixel 3 Android Naive CT/GS using matrix Montgomery and
ically for the ARMvS using NEON smartphone with 4 cores multiplication utilizing Barrett reduction for
instruction set by vectorization. of ARM Cortex-A53 and 4 NEON instruction sets from | different parts of the

cores of ARM Cortex-A57 the targeted device. design.

[90] | Kyber Running Kyber on an IoT device using Orange Pi with ARM Naive CT/GS butterflies Montgomery and
NEON-Optimized NTT proposed on [89]. | Cortex-AS53 utilizing matrix operations Barrett reduction for

Raspberry Pi 4 with ARM provided by NEON different usage, both
Cortex-A72 instruction sets, based on implemented using
[89]. NEON Engine from
ARMVS architecture.

[91] | Kyber Enabling lazy reduction (modular STM32F4 Discovery board | Naive CT/GS butterflies Optimization of Bar-
reduction in the end, instead of during with ARM Cortex-M4 using matrix operations rett and Montgomery
calculation) by implementing Plantard provided by the target reduction based on
arithmetic in the NTT/INTT calculation. device instruction sets. Plantard arithmetic

[92].
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TABLE 7. (Continued.) Summary of Dilithium, Kyber, and Falcon’s NTT hardware implementations.

Ref. | Implemented | Novelty claim on NTT/INTT implementa- | Target device NTT/INTT algorithms Modular reduction
PQC scheme tions

[93] | Kyber Designed a pipelined NTT/INTT with the | FPGA: Xilinx Virtex-7 Pipelined iterative CT/GS Bitwise add-shift
flexibility of input parameters, such as butterflies with flexible operations, named K-
using modulus ¢ as input, not as a fixed input parameters. For RED based on [76].
parameter. INTT, the scaling factors

are incorporated into the
twiddle factors.

[94] | Kyber Designed a 2 x 2 butterfly block called FPGA: Xilinx Artix-7 Iterative CT/GS using 2 x 2 | Barrett reduction
Bi-core that can act as CT or GS butterfly butterfly configuration. implemented with
and element-wise multiplier. bitwise operations

specifically for 24-bit
input.

[95] | Kyber Adopting R2ZMDC [71] and improved FPGA: Xilinx UltraScale+ Iterative CT/GS with radix- | Barrett reduction,
the design into R22MDC while also 2, later optimized with modified with
implementing pipelined architecture. radix-4. only add and shift

operation.

[96] | Kyber Configurable butterfly that supports both 65-nm TSMC cell library. Iterative CT/GS with two Barrett reduction.
CT and GS. butterfly cores employed in

parallel.

[97] | Kyber Compact scheduling and sampling of FPGA: Xilinx Artix-7 Iterative CT/GS with the Barrett reduction
NTT process and also unified butterfly scaling factor of INTT implemented with
for CT, GS, and point-wise multiplication incorporated into twiddle bitwise operations.

factors.

[98] | Kyber Designed Instruction Set Extension for FPGA: Xilinx ZCU106 Iterative CT/GS will be Barrett and Mont-
RISC-V specifically for NTT/INTT. evaluation board. used in RISC-V instruction | gomery reduction for

set extension. different design parts.

[99] | Kyber Reconfigurable datapath that can perform | FPGA: Xilinx Artix-7 Iterative CT/GS with four Bitwise operations
CT/GS butterflies and pointwise multipli- butterfly units. specifically designed
cation. for ¢ = 3329

[100] | Kyber Designed the Kyber implementation Raspberry Pi 3 with ARM Iterative CT/GS butterflies Barrett and Mont-
efficiently for mobile devices using Cortex-AS53 processor. with the number of input gomery reduction
NEON instruction sets. n = 16 utilizing NEON optimized for the use

instruction sets. of NEON instruction
sets.

[101] | Kyber Designed various polynomial multiplica- Raspberry Pi 4 with ARM Iterative CT/GS with seven | Barrett reduction.
tions for PQC schemes, including Kyber, Cortex-A72 processor layers with detailed storage
utilizing NEON instruction sets from management for each layer.

ARMVS processor.

[102] | Kyber Designed an 8-point butterfly unit that FPGA: Xilinx Artix-7 Iterative CT/GS manipu- Bitwise operations
uses CT configuration in the first half lated so that CT is used in based on [103].
while using GS configuration in the the first half, while GS is
second half. used in the second half to

reduce hardware resources.

[104] | Kyber Reconfigurable butterfly unit that can act FPGA: Xilinx Artix-7 Iterative CT/GS with 2 x 2 | Bitwise operations

as CT or GS butterfly. butterfly unit. based on K-RED
[76].

[105] | Kyber Reconfigurable butterfly unit that can be FPGA: Xilinx Artix-7 Iterative CT/GS butterflies Barrett reduction
used for CT butterfly, GS butterfly, and while optimizing the implemented with
pointwise multiplication. storage management. bitwise operations.

[106] | Kyber Parallelizing CT/GS butterflies using 8 FPGA: details not refer- Iterative CT/GS with 8 Barrett reduction
butterfly units. enced in the article butterfly units. implemented with

bitwise operations.

[107] | Kyber Pipelined GS-only butterflies structure for | FPGA: Xilinx Kintex-7 Iterative GS butterflies for Barrett reduction
reducing the area consumption. both NTT and INTT. based on [103]

[108] | Kyber Pipelined butterfly arithmetic unit and FPGA: Xilinx Artix-7 Iterative CT/GS with opti- Bitwise add-
optimized modular reduction XCTA35TFTG256-1 mized storage management | shift operations

(called ping-pong) in them. | complemented with
look-up tables.

[109] | Kyber Efficient parallel and pipelined FPGA: Xilinx Artix-7 Iterative CT/GS with 4 Montgomery
NTT/INTT module computation. XC7A200T and Virtex-7 coefficients processed reduction.

XCT7VX485T simultaneously

[110] | Kyber Implemented and optimized GS butterflies | FPGA: Xilinx Artix-7 Iterative GS only butterflies | Barrett reduction.
for both NTT and INTT with dual column | XC7A200T and Virtex-7 for NTT/INTT with 4
sequential storage management XC7VX485T coefficients processed at

the same time.
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TABLE 7. (Continued.) Summary of Dilithium, Kyber, and Falcon’s NTT hardware implementations.

Ref. | Implemented | Novelty claim on NTT/INTT implementa- | Target device NTT/INTT algorithms Modular reduction
PQC scheme | tions

[111] | Kyber Precomputing twiddle factors in Mont- STM32F4 Discovery board | Iterative CT and GS using Montgomery
gomery domain, the use of signed with ARM Cortex-M4 2 x 2 configuration. reduction.
representation to prevent integer overflow.

[112] | Falcon Utilizing NEON engine in ARMvS by Jetson Xavier board Iterative CT/GS butterflies Montgomery
parallelizing the overall process and (ARMVS.2 8-cores CPU) utilizing vector operations reduction.
optimizing memory access management. by NEON engine.

[113] | Falcon Parallelization of the operations in Falcon | Platform 1: Intel i9019899K | Iterative CT/GS parallelized | Montgomery
using GPU, including NTT/INTT parts. CPU (3.70 GHz clock) with | using 128 GPU threads. reduction.

RTX 3080 GPU and 32 GB
RAM;
Platform 2: ARDC Nectar
Research Cloud system
[114] with A100, T4, and
V1000 GPUs
[115] | Falcon and Hardware and Software co-design for both | Pulpino Microcontroller Iterative CT/GS butterflies. Not explained in the
Dilithium Dilithium and Falcon in one module with [116] article.
an NTT/INTT accelerator.

[117] | Falcon Designed a RISC-V architecture extension | FPGA: Xilinx Virtex-7 Iterative CT/GS butterflies Montgomery

to support NTT/INTT operation. XC7VX690tffg1761-2 using 2 X 2 configuration. reduction.

TABLE 8. CPU, GPU, and FPGA comparison.

waysAs
Buissasold

Wvya

[ Characteristic | CPU [ GPU [ FPGA |
Definition Central Processing Unit | Graphics Processing Unit | Field Programmable Gate Array
Cores Several Cores Huge Amount of Cores Based on The Architecture
Clocks Low Latency High Throughput High Throughput
Specialization Serial Processing Parallel Processing Both
Power High Very High Low
Programming Low Medium Sophisticated
Cache Cache R o SM__ | __SM__ _SM__ Interconnect Wires Switch Matrix
Reg. | ALU Reg. | ALU Cache
T C C '= Ci
Inst. | Con. 2 Inst. | Con. 1 1 1 1 Logic Blocks Logic Blocks Logic Blocks
i 1 1 [ T |
Cache ® Cache 1 1 1 1
L 1 L 1
—SM__ | SM__ —SM__
Reg. | ALU Reg. | ALU Control
— - - (o] Config (o]
Inst. | Con. Inst. | Con. Cache Logic Blocks Logic Blocks Logic Blocks
DRAM DRAM
Multi-Core CPU GPU
Ci i C '= Ci
. Logic Blocks Logic Blocks Logic Blocks
FIGURE 11. CPU vs. GPU architecture.

The feature of the GPU is very suitable for processing the
homomorphic encryption that requires polynomial operations
with high degrees.

A field programmable gate array (FPGA) is a re-
configurable device that can perform specific functions or
tasks. The biggest advantage of an FPGA is the ability to be
reprogrammed with higher flexibility than CPUs and GPUs.
As shown in Figure 12, the FPGA consists of configurable
logic blocks and interconnects that can be changed by loading
a bit stream onto the FPGA. An FPGA is suitable for apply-
ing high-performance cryptography, such as homomorphic
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Programmable Logic

FIGURE 12. FPGA architecture.

encryption, because of its ability to perform computations in
parallel and greater flexibility in embedding special functions
on the hardware. Moreover, it also allows us to add some
interfaces such as memory, Ethernet, video, and audio inter-
faces. Finally, the comparisons of CPU, GPU, and FPGA are
shown in Table 8.
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computation: [Fa] @ [F2] @ [
ctlo) < ® [o] @ bomres
e <l @ 5] @ [ =
e < ] @ [ @

FIGURE 13. Computation pattern [46].

A. OVERVIEW OF HOMOMORPHIC ENCRYPTION

First, we explain the basic properties used in homomorphic
encryption. Z[x] is a polynomial usually represented in inte-
gers. Thus, Z,4[x] is a set of integers [0, g) where g is the
coefficient modulus. Second, we have a ring of polynomial
modulus is R, = Zy[x]/¢m(x), where ¢, (x) is a cyclotomic
polynomial in the form of (x" 4 1) with n as the polynomial
degree.

1) ENCRYPTION IN HE

Definition 6.1: The following represents the encryption of
FHE [46]:

(co,c) = (A -m+po-u+ely [p1-u+tely) (30)

where co and cy are the ciphertexts with errors ey, ex < ¥,
po and py are the public keys, m € R, is the message, u < R’}
is the sparse random polynomial, and A = q/t is the ratio
between the ciphertext coefficient modulus and the plaintext
coefficient modulus.

2) DECRYPTION IN HE
Definition 6.2: The following represents the decryption of

FHE [46]:
|| leo+c1-5slq
"= H; A —Hz Gh

where cq and ¢ are the ciphertexts, s is the secret key, q is the
ciphertext coefficient modulus, t is the plaintext coefficient
modulus, and the ratio between the ciphertext coefficient
modulus and the plaintext coefficient modulus is A = q/t.

3) COMPUTATIONAL PATTERN AND ARCHITECTURE OF HE
In Equations (30) and (31), polynomial multiplications are
performed in the [-] operator while polynomial additions
are performed in the [4] operator. Figure 13 shows a com-
putational pattern proposed in [46]. We can see that the
polynomial multiplication operations are used for public keys
(pk[0], pk[1]) in the encryption and ciphertext (ct[1]) in the
decryption.

Figure 14 shows an architecture of BFV homomorphic
encryption. Note that the polynomial multiplication is per-
formed in the ring polymult core while the adder module
performs the polynomial addition after the polymult core.
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FIGURE 14. BFV accelerator architecture [46].

Moreover, a random number generator to generate sparse
random polynomials and errors e; and e, is proposed as a
Gaussian PRNG module.

Some polynomial operations are also used in homomor-
phic encryption, such as public key generation, relineariza-
tion, and bootstrapping. Some of them are computationally
expensive, especially bootstrapping, which refreshes the
noise in the ciphertext after homomorphic operations are per-
formed. Bootstrapping includes evaluation and re-encryption
of the ciphertext. They require polynomial multiplication and
addition. Finally, the NTT module is implemented in the
polynomial arithmetic cores to speed up the computation
efficiently.

B. RLWE HOMOMORPHIC ENCRYPTION SCHEMES

In this subsection, we review some ring learning with
errors (RLWE) based homomorphic encryption schemes i.e.,
FHEW [119], CKKS [39], BFV [36], BGV [37], [38],
and TFHE [120]. One of the pioneers of HE is the Fully
Homomorphic Encryption over the Weil Descent (FHEW),
RLWE-based homomorphic encryption founded by Gen-
try and Halevi, which combines RLWE and Weil descent
techniques to achieve homomorphic operations on cipher-
texts. FHEW is designed to be efficient in computation and
memory usage, making it suitable for resource-constrained
environments.

The CKKS (Cheon-Kim-Kim-Song) scheme [39] is a
Leveled Homomorphic Encryption scheme designed to sup-
port real-valued data in complex numbers. It is well-suited
for data with a large dynamic range and is sensitive to
numerical errors, such as the data from machine learning
models. CKKS uses a polynomial ring to represent encrypted
data and employs the relinearization technique to reduce
computational complexity. It is known for its fast perfor-
mance on real-world applications, such as machine learning
inference.
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The BFV (Brakerski-Gentry-Vaikuntanathan) scheme [36]
is a type of FHE with integer representations. Next, the BGV
(Brakerski-Gentry-Vaikuntanathan) scheme [37], [38] is a
type of FHE designed to work with integers and binary data.
It is also well-suited for modular arithmetic and logical oper-
ations applications, such as privacy-preserving data analysis.
BGYV uses a polynomial ring to represent encrypted data and
employs bootstrapping to reduce computational complexity.
Bootstrapping enables the FHE scheme to evaluate complex
functions on encrypted data by recursively re-encrypting
ciphertexts. BGV is known for its ability to handle more
complex computations than BFV.

The TFHE (Fully Homomorphic Encryption from Torus)
scheme [120] is a somewhat homomorphic encryption (SHE)
scheme that is based on the GSW scheme [121] and the
ring-learning with errors (RLWE) problem. It is designed
to be efficient in computation and memory usage. TFHE
is a single-key scheme, meaning the same key is used for
encryption, decryption, and homomorphic operations. It is
also designed to be fully compatible with standard Boolean
circuits, making it suitable for various applications.

C. HOMOMORPHIC ENCRYPTION IMPLEMENTATIONS

IN VARIOUS PLATFORMS

1) HE IMPLEMENTATIONS IN CLASSICAL CPU

Some software for homomorphic encryption is HELib [122],
SEAL [41], OpenFHE [123], and LATTIGO [124]. First,
HELib [122] implements a lattice polynomial ring using
a C++4 library that consists of BGV and CKKS schemes.
It supports high-performance computing environments with
parallelization, optimized arithmetic operations, and mem-
ory management. Second, Microsoft SEAL [41] implements
BFV, BGV, and CKKS. It is a well-known software that
efficiently improved by implementing the residue number
system (RNS) FV. SEAL also supports various parameters.
Next, PALISADE (Privacy-Enhancing Technologies: Algo-
rithms, Implementations, and Development Environments),
now called OpenFHE [123], is a modular C+4++ library
for FHE that supports multiple schemes, including CKKS,
BGYV, and the Fan-Vercauteren (FV) scheme. It is designed
to be extensible and includes various features like multi-
threading, GPU acceleration, and network communication.
Finally, LATTIGO [124] supports CKKS and BGV imple-
mented in the Golang library. It is fast and designed for ease
of use. It includes features like automatic parameter selection,
key management, and ciphertext packing and provides an
interface for easy integration with machine learning frame-
works like TensorFlow.

Next, we explore various NTT implementations in GPUs
and FPGAs as hardware accelerators. As explained before,
the advantages of GPU and FPGA over CPU are in the flexi-
bility, configurability, and performance due to massive cores
and specific functions. We will see how parallel architecture
is applied in fast large integer arithmetics by the residual
number system and the transformer, in this case, butterfly
operations in NTT.
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2) HE IMPLEMENTATIONS IN GPUs
Some works in GPUs for homomorphic encryption are
presented in [125], [126], [127], [128], [129], and [130].
The optimizations implemented in GPUs can be classified
into 3 major optimizations. The first is the parallel imple-
mentation of butterfly modules in the NTT since GPU is
capable of massively parallel computing [125], [126], [130],
[131]. The second is optimizing the kernel and memory
management [125], [126], [130], [131]. And the last is the
optimization of modular arithmetic operations, such as the
Barret multiplication, the Montgomery multiplication, and
the Residual Number System (RNS) based on the Chi-
nese Remainder Theorem (CRT) [125], [126], [128], [129],
[130], [131].

Figure 15 depicts the implementation of HE-Booster.
It consists of 5 phases to do the homomorphic encryption
operations [125]. The first phase is CRT which decomposes
ciphertext into multiple independent sub-space. The coefti-
cient reduction operation provides a higher utilization of GPU
parallel architecture. Second, NTT is performed by using the
CT butterfly. It uses inter-thread local synchronization for
optimization. Next, element-wise modular operations are per-
formed in the third phase, dyadic computation. Fourth, using
the GS butterfly, the INTT phase is the same mechanism
as the second NTT phase. Finally, the inverse CRT phase
reconstructs multiple residue polynomials in an independent
sub-space into a single polynomial in ciphertext space.

Figure 16 shows the GPU thread strategy for executing the
butterflies in the NTT [131]. In this case, the NTT operation
uses 4 iterations with 16 inputs. In each iteration, there are
8 butterfly operations. Thus, we have the following:

Lemma 6.1: Suppose that we have n-input NTT/INTT. The
serial implementation of NTT/INTT complexity is

0(2 logn).

Proof: It is clear that to achieve the last butterfly opera-
tion between input with index i and i + 1, it requires logn
iterations where there are n/2 butterfly operations in each
iteration. g

Moreover, if we analyze the complexity of polynomial
multiplication using NTT/INTT, we have the following:

Lemma 6.2: A polynomial multiplication of A and B using
NTT/INTT that has n coefficients or inputs using serial com-
putation takes at least:

O(n + 2nlogn).
Proof: A polynomial multiplication requires an NTT,
a component-wise product, and an INTT for each A and
B polynomial. An NTT/INTT takes O(5logn) while an
element-wise operation takes O(n). Thus, we have the
lemma. ]
Now, we define a quota of parallelization in the GPU as:
Definition 6.3: Suppose that C is the number of GPU
cores, and h is the number of parallel polynomial operations
executed in the GPU. The quota in executing a polynomial
operation in a GPU is C /h cores.
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FIGURE 15. HE-Booster GPU Implementation [125].
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FIGURE 16. GPU thread assignment for n = 16 [131].

Theorem 6.3: For encryption and decryption, the com-
plexities for processing h plaintexts in parallel with C cores
GPU are:

6nh
O (1 + log n)).
C
and
2nh
O(?(l + logn)),

respectively, where n is the number of inputs or coefficients
in NTT/INTT.

Proof: As Lemmas 6.1 and 6.2, encryption requires at
most 3 polynomial multiplications and 3 polynomial addi-
tions, while decryption requires a polynomial multiplication
and a polynomial addition. With C-core GPU and h parallel
processes, we have the theorem. O

By targeting high utilization of a GPU, if 6nh is less
than C, we will have a very fast O(logn) execution time.
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FIGURE 17. Parallel NTT-INTT architecture implementation [135].

Thus, n, h, and C determine the system’s scalability. The
calculation is also applied for FPGA implementations with
parallel processing elements.

3) HE IMPLEMENTATIONS IN FPGAs

On the other hand, FPGAs also offer efficient area and speed
implementation for homomorphic encryption (HE) presented
in[117],[127], [132], [133], [134], [135], [136], [137], [138],
and [139]. The implementation of HE in FPGA also consists
of 3 approaches. First, pre/post-processing is usually required
in the NTT/INTT by using the RNS-CRT method and mod-
ular multipliers such as Barrett, Montgomery, or LUT-based
reduction [127], [132], [133], [134], [137], [139]. The sec-
ond is the parallel implementation of processing elements
(PEs) or butterfly units (BUs), in serial or pipeline par-
allelization [127], [132], [133], [134], [135], [138], [139].
And the last, the optimization is done by reconfigurable
designs by implementing custom PEs or instructions using
RISC-V [117], [132], [138], [139].

Figures 17 and 18 show the NTT/INTT architecture
implemented in FPGAs. In [135], the butterfly unit array
is constructed with 8 x 4 arrays as shown in Figure 17.
The architecture is capable of transforming 16 coefficients
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TABLE 9. Each modulus calculation of NWC via NTT/INTT.

[ ¢ | [ A | B | NTTV(A) | NTTY(B) | € = NTT¥(A) o NTT¥(B) [ INTTV ' (€)
6841 | 3095 | [318,3338,5017,1115] | [4054,152,6672,2770] | [389, 5541, 3394, 5630] | [2098, 3348, 4040, 6730] | [2043, 5317, 2396, 4442] [129, 1912, 6335, 3594]
7681 | 1925 | [560,2624,6099,5678] | [5257,4836,1995,1574] | [1856, 3599, 2766, 1700] | [5978, 5942, 7189, 1919] | [3804, 1354, 6346, 5556] [4265, 7029, 1887, 2848]
8681 | 4219 | [1922,8663,8461,4040] | [8300,3879,6719,2298] | [712,771, 1130,5075] | [6470, 7581,2693, 7775] | [5710, 2638, 4740, 2980] [4017, 8106, 6657, 2055]

—
\
ZEEER"

—> Memory Banks

Y ---¥
BN 7
V-

Processing Element Array
> PE| |PE| |PE ==sPE

FIGURE 18. NTT-INTT architecture implementation with a Custom RISC-V
Instructions [138].

uun j013u09

in the pipeline. The work is targeted for the RNS-CKKS
scheme.

In [138], NTT/INTT architecture is proposed with custom
instructions of Linux-ready RISC-V core. The number of
processing elements (PE) is varied. The BRAMs have three
parameters i.e., depth, width, and number of PEs. Increasing
the number of PEs reduces the depth of the memories. How-
ever, more memories require to be initiated. The architecture
in Figure 18 uses one-dimensional PE, while the architec-
ture in Figure 17 uses two-dimensional PEs in the form of
butterfly units (BUs). Regarding the speed of execution, the
architecture in [135] is better, while in terms of programma-
bility and area, the architecture in [138] is better. Another
work [117] also proposes a RISC-V architecture extension
for NTT without additional hardware modification.

Figure 19 shows a unified dynamic reconfigurable that can
be flexible into several modes i.e., a butterfly unit for NTT
(CT-form), a butterfly unit for INTT (GS-form), and a mod-
ular multiplication. The work implements a BFV algorithm
with NTT/INTT pre/post-processing with RNS.

From Subsection III-E we know that we can choose a
composite modulus instead of a prime. A large composite
modulus can be factored into a product of small primes g;
such that Hﬁ;é gi, where [ is the number of small primes.
An example implementation of RNS based on CRT is pro-
posed in [136] as depicted in Figure 20. It reconstructs
modulo p; and p; into a larger modulo pip;. Note that
for reconstructing a modulo from two smaller modulos,
it requires 3 pipeline stages.
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INTT Output
n"! mod P2 n"! mod P1
P2 P1
; Y Y ;
Modulus Modulus
Multiplication Multiplication

t=c;mo pr‘ l—+s=ci mod p4

Pipeline Stage 1

16,
Modulus 2+
Substraction
v (t - s) mod py
Pipeline Stage 2

Concat. i B
0

Substraction

¢ mod p4p2

Pipeline Stage 3

Addition

v

ICRT Output

FIGURE 20. ICRT architecture implementation [136].

The biggest advantage of breaking down into RNS rep-
resentations is each NTT/INTT modulus can be calculated
independently without any dependency on one another. This
advantage makes it easy to parallelize NTT/INTT with a
composite modulus. We provide a toy example of using NTT,
RNS, and CRT combinations in Example 9.
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TABLE 10. Summary of NTT hardware implementations for homomorphic encryption.

Ref. | Implemented | Novelty claim on NTT/INTT implementa- | Target device NTT/INTT algorithms Modular reduction
HE scheme tions

[126] | Only focused | Breaking down NTT/INTT using RNS- NVIDIA GPU with CUDA | Iterative CT/GS butterflies Montgomery
on the CRT, then parallelizing them using several | programming model. with 4096-point along with | reduction.
polynomial GPU kernels. parallelization in GPU.
multiplication
part.

[127] | NTRU- Breaking down NTT/INTT using RNS- FPGA: Virtex-7 Iterative CT/GS butterflies Barrett reduction
based FHE CRT and optimizing the modular reduc- XC7VX690T with 4 x 4 butterfly units. using hardware-
schemes. tion into hardware-friendly operations. friendly operations.

[131] | BFV Ho- Modifying NTT/INTT and RNS-CRT NVIDIA Tesla V100 GPU Iterative CT/GS modified to | Barrett reduction.
momorphic algorithm structure to make it parallel- consist of three for loops
Encryption friendly to be implemented in GPU. without dependencies

between them.

[129] | NTRU- Building a GPU library to facilitate FHE. NVIDIA GeForce GTX 690 | Iterative CT/GS butterflies Not explained in the
based Ho- On the NTT/INTT part: breaking it down GPU with four steps. article.
momorphic using RNS-CRT.

Encryption

[125] | Five phases in | Breaking down NTT/INTT using RNS- NVIDIA GeForce Iterative CT/GS butterflies Barrett reduction.
typical FHE CRT and parallelizing them using single RTX3070 GPU parallelized in GPU.
schemes. and multiple GPUs.

[130] | BFV Scheme | Breaking down NTT/INTT using RNS- NVIDIA GPU with CUDA | Iterative CT/GS butterflies Barrett reduction.

CRT and parallelization using GPU. programming model parallelized in GPU with
memory management.
[140] | BFV Scheme | Breaking down NTT/INTT using RNS- NVIDIA Tesla K80 and Iterative CT/GS butterflies Barrett reduction.
CRT, implemented using multithreading V100 with loop parallelization.
by OpenMP in CPU and parallelization in
GPU.

[141] | CNT FHE Low Hamming weight and parallelized FPGA: Xilinx Virtex-7 Tterative CT/GS butterflies Bitwise operations

scheme NTT/INTT architecture with concerns to with low hamming weight utilizing the chosen
minimize latency and hardware resource parameters. modulus property.
usage.

[132] | Only focused | Multi-core NTT/INTT architecture with FPGA: Xilinx Virtex-7 Tterative CT/GS butterflies Barrett reduction.
on the reconfigurable processing elements and with the scaling factor
polynomial memory access management. distributed evenly to each
multiplication layer of twiddle factors for
part. INTT.

[133] | Gentry- Implementing all GH FHE primitives, ASIC: No further details Iterative CT/GS with 12 x Barrett reduction.
Halevi (GH) including NTT and INTT. 12 butterfly units.

FHE scheme

[136] | Focused on Factoring their composite modulus ¢ into | FPGA: Altera Stratix-V Tterative GS for both NTT Bitwise add-shift
large integer two other moduli and merging the results 5SGXEA4HIF35C2 and INTT with radix-16 operations based on
multiplica- using CRT. butterfly. their chosen moduli.
tion.

[142] | FV Homo- Breaking down NTT/INTT using RNS- FPGA: Xilinx Zynq Tterative CT/GS parallelized | Sliding window and
morphic CRT and process them in parallel with UltraScale+ MPSoC into two cores with memory | lookup tables.
Encryption a designed unit called Residue Parallel ZCU102 Evaluation Kit access management during

Arithmetic Unit (RPAU) parallelization.

[137] | Focused on Comparing NTT/INTT multiplication FPGA: Xilinx Virtex-7 Tterative CT/GS butterflies. | Bitwise operations
large integer with other schemes, such as Karatsuba, based on the chosen
multiplica- Comba, and their combinations. modulus.
tion.

[139] | BFV Ho- Breaking down NTT/INTT using RNS- FPGA: Xilinx Virtex-7 Iterative CT/GS butterflies Barrett reduction.
momorphic CRT; designed reconfigurable butterfly with parallelization and
Encryption. unit that can be used as CT/GS butterfly. memory access manage-

ment.

[134] | Focused on Comparing various hardware design FPGA: Xilinx Virtex-7 Iterative CT/GS with mem- | Montgomery
the imple- methods: parametric hardware design, ory access management. reduction.
mentations of | high-level synthesis, and hardware-

NTT/INTT software co-design for NTT/INTT.
only.

[138] | Focused Extending RISC-V Instruction Set FPGA: Xilinx Ultrascale+ Tterative CT/GS butterflies Montgomery
on the Architecture with modular arithmetics breaking down using RNS- | reduction.
NTT/INTT to support NTT/INTT implementation. CRT.
architecture.

[135] | CKKS HE Area-efficient NTT/INTT architecture FPGA: Xilinx Zynq Tterative CT/GS butterfly Barrett reduction.
scheme. with twiddle factors generated on the fly. UltraScale+ ZCU102 with 8 x 4 butterfly units.
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Example 6.1: Let A = [123456,7891011, 121314,
151617] and B = [181920, 212223, 232425, 262728] in the
ring Zg with Q = 456149404001. We need to find the
negacyclic convolution of A and B.

Calculating the results using previously explained meth-
ods in normal order: Using v = 12967992388, we can get:

NTTY (A) = [164909637252, 371837718802,
52022178059, 323529767713]

NTTV (B) = [94256621661, 54777633553,
418495999451, 344769281017]

Element-wise multiplication between the two yields:

NTTV(A) o NTTV (B) = [164909637252, 371837718802,
52022178059, 323529767713]

Taking INTT from the results yields in the negacyclic convo-
lution between A and B

INTTY " (NTTV (A) o NTTV (B))
— 169643576476, 26172545988, 317135487954,
95233749301]

Therefore the negacyclic convolution between them is
[169643576476, 26172545988, 317135487954,
95233749301].

Calculating the results using RNS and CRT: Notice that
the modulus Q is a composite number that can be factored
into three primes Q = q1 X q2 X q3, where q1 = 6841, q» =
7681, and q3 = 8681. We can use the modulus factors as
moduli set for a residue number system: {6841, 7681, 8681}.
We can represent each element in A and B in the RNS repre-
sentation. Take the element 123456 as an example:

123456 = 318 mod 6841,
123456 = 560 mod 7681,
123456 = 1922 mod 8681

Therefore 123456 can be represented as (318, 560, 1922) in
the RNS representation based on our chosen moduli. Hence,
transforming A and B in the RNS representation in our chosen
moduli:

A =[(318, 560, 1922), (3338, 2624, 8663),
(5017, 6099, 8461), (1115, 5678, 4040)]
B = [(4054, 5257, 8300), (152, 4836, 3879),
(6672, 1995, 6719), (2770, 1574, 2289)]
NTT-INTT can calculate the negacyclic convolution for each
modulus in the set. Table 9 shows the calculation details.

From the last column, we got the RNS representation of the
negacyclic convolution between A and B:

C = [(129, 4265, 4017), (1912, 7029, 8106),
(6335, 1887, 6657), (3594, 2848, 2055)]

70312

Converting each element back to normal representation can
be done using the Chinese Reminder Theorem. Take the ele-
ment (129, 4265, 4017) as an example, we need to find x from
the following system of equations:

x = 129 mod 6841,
x = 4265 mod 7681,
x = 4017 mod 8681

This is a classical textbook problem for CRT. Solving it,
we can obtain x = 169643576476. Transforming back all
C to normal representation yields:

C =[169643576476, 26172545988, 317135487954,
95233749301]

Which is the same result as the negacyclic convolution when
calculated directly.

D. IMPLEMENTATION COMPARISON

Finally, to close this section, Table 10 summarizes the imple-
mentation comparisons between various researchers in the
HE schemes based on their novelty claim on NTT/INTT
implementations algorithm, target device or hardware, their
presented NTT/INTT implementations, and how they imple-
ment the modular reduction.

VIl. CONCLUSION AND FUTURE WORKS

A. CONCLUSION

We reviewed the concepts of Number Theoretic Transform
(NTT) and its inverse (INTT). We also provided a compre-
hensive survey about their implementation in the standardized
Post-Quantum Cryptographic (PQC) scheme by the NIST
and in Homomorphic Encryption (HE). In summary, we con-
clude that:

1) We comprehensively introduced the concepts of
NTT/INTT and the other concepts surrounding it.
Many other pieces of literature briefly introduce the
concepts, but they are scattered everywhere, requiring
significant effort to learn. Our report should be helpful,
especially for those who begin researching the area and
come from the engineering or implementation side.

2) We provided consistent, small, and understandable toy
examples through different concepts and algorithms to
further enhance the conceptual understanding of the
NTT/INTT, which hopefully helps in understanding the
concepts.

3) We summarized and provided a comprehensive review
of the recent research on the NTT/INTT implementa-
tions for Post Quantum Cryptography (PQC) schemes
in various platforms such as FPGAs, GPUs, and various
embedded systems.

4) Similarly, we also summarize and provide a com-
prehensive review of another use case of NTT/INTT
implementations for Homomorphic Encryption (HE)
schemes, including its optimizations, such as the com-
binations of NTT-RNS-CRT for its parallelizations.
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B. FUTURE WORKS

While NTT/INTT is useful for many applications in Post-
Quantum Cryptography and Homomorphic Encryption, most
researchers currently do not consider the secure implemen-
tation of NTT/INTT. Side-channel attacks have increasingly
become a concern because they can use leaked information
to recover some secrets of cryptographic schemes.

One research suggests that all operations should be under
the strategy of constant implementation to avoid timing
attacks [57]. There are also known types of attacks in
NTT/INTT implementation, including single trace attacks,
simple power analysis, and fault attacks [4], [143], [144].

Therefore, we suggest in the future, researchers also need
to consider the secure implementation of NTT/INTT.
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