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ABSTRACT Wood defect detection is a research hotspot in the field of forestry at present. However, existing
studies on wood defect detection mainly focus on detecting a single type of defect or common defects,
such as knots, insect pests, and cracks, which cannot meet the processing needs of high-quality wood.
Moreover, there are problems, such as low recognition rates of small-target defects and poor recognition
integrity of dense defects. To address these issues, we construct a large-scale dataset containing multiple
types of wood surface defects through data augmentation techniques. We also introduce the Coordinate
Attention module, Transformer Encoder module, and Swin Transformer module in the YOLOv5 network
structure. The backbone network CSP-Darknet53 is optimized, and BiFPN is introduced in the neck part to
achieve multi-scale weighted bidirectional feature fusion. In addition, we implement three new heads: Shead,
Mhead, and Lhead in the prediction part. Comparison experiments show that STC-YOLOv5 outperforms
some object detection algorithms. Ablation experiments show that each module effectively improves the
detection performance. Compared to YOLOv5, STC-YOLOv5 proposed in this paper improve the mAP
by 3.1%. All types and scales of wood surface defects are detected better, with great potential for application
in the forestry industry.

INDEX TERMS Object detection, transformer, wood defects, YOLOv5.

I. INTRODUCTION
Wood is a natural and renewable resource with a large accu-
mulation in nature. It has the advantages of easy processing,
good stability, and a large strength-to-weight ratio. In addi-
tion, wood also has unique material properties and excellent
environmental characteristics. So it is widely used in life and
production. However, there are many defects in wood due to
physiology, pathology, and human reasons. Common wood
defects include knots, decay, cracks, discoloration, deforma-
tion, insect pests, etc. The size, quantity, location, and type
of wood defects can affect the quality and appearance of
wood products. In addition, since different types of defects
need to be treated differently during wood processing, it can
also increase the difficulty of processing and reduce work
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efficiency. Therefore, it is of great significance to automat-
ically classify and detect wood defects.

Initially, wood defect detection mainly relied on manual
labor. However, this method is not only inefficient but also
easily affected by subjective factors. The accuracy of artificial
detecting wood defects is poor and can not meet the quality
grading requirements of industrial production. Early studies
show that wood defect detection causes 22% of waste materi-
als due to artificial errors. The total output of wood products
decreases from 63.5% to 47.4% [1]. With the development
of science and technology, researchers began to use rays,
ultrasonics, stress waves, and other methods to detect wood
defects. However, these methods are difficult to popularize
because of the high equipment cost and harsh environmental
requirements.

In recent years, with the development of artificial intelli-
gence, wood defect detection has gradually become intelli-
gent. However, wood defect detection methods using deep

71800
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 11, 2023

https://orcid.org/0009-0002-8075-0970
https://orcid.org/0009-0005-1980-1339
https://orcid.org/0000-0002-2471-6375


S. Han et al.: Improved YOLOv5 Algorithm for Wood Defect Detection Based on Attention

learning still have some problems. The existing data sets used
for wood defect detection are small. Moreover, most of the
existing wood defect detection studies are focused on a single
type of defect or are limited to common defects such as knots,
insect pests, and cracks, which cannot sufficiently cover the
types of defects to be processed in industrial production.
In addition, many complex, dense, and small-sized defects
need to be treated in the actual wood processing. There-
fore, although existing studies can achieve high recognition
rates for detecting certain defects, they are not practical.
In the study of this paper, a dataset collected during the
actual production process is chosen [2]. This dataset covers a
comprehensive range of wood defects, with a more detailed
classification of knots. To better meet the needs of the wood
industry production, we have adjusted the data set.

In addition to the limitations of the dataset, wood defect
detection also has the problems of low detection accuracy
of small targets and low recognition rate of dense tar-
gets.To solve these problems, we propose an improved model
STC-YOLOv5 based on YOLOv5. The backbone part uses
CSP-Darknet53. Several C3 modules in the backbone are
removed to optimize the network structure. Based on this,
the Transformer Encoder module is introduced to form a new
module C3TF, which improves the feature extraction capa-
bility of the backbone. In the neck part, we use the weighted
bidirectional feature fusion method of BiFPN. This refines
the multi-scale fusion of feature maps and feature enhance-
ment of the neck part. The prediction part introduces the Swin
Transformer module. Three new detection heads, Shead,
Mhead, and Lhead, are proposed to detect small, medium,
and large targets, respectively. We add the attention mecha-
nism to the backbone and neck of the new model. Attention
can help the network to grasp global information better and
coordinate information. In addition to the network struc-
ture, we use more practical strategies, including exponential
moving average, group convolution, and post-processing.
Compared with YOLOv5, our improved STC-YOLOv5
can detect wood defects better. Our contributions are as
follows:

(1) In order to optimize the network structure, we improve
the backbone of YOLOv5 by removing some C3modules and
adding some new modules called C3TF. The backbone of the
new model can better extract wood defect features.

(2) In order to improve the multi-scale feature fusion,
we consider that the different input resolutions have different
effects on the output. Borrowing from BiFPN, we realize
multi-scale weighted bidirectional feature fusion.

(3) In order to solve the problem of poor detection in
regions with more dense defects, we introduce the Swin
Transformer module. The formed new detection heads
include Shead, Mhead, and Lead, which detect small,
medium, and large targets, respectively. The proposed detec-
tion heads are able to detect complex and dense defects on
the wood surface very well.

(4) In order to capture richer information, such as channel
information and location information, we add the attention

mechanism to the backbone, which enables the new model to
identify the target region more accurately.

II. RELATED WORK
To fully utilize forest resources and improve economic effi-
ciency, scholars have begun to use various techniques such as
X-ray [3], microwave [4], ultrasonic [5], stress wave [6] and
othermethods to detect wood defects. However, such physical
equipment-based defect detection methods are costly and
susceptible to environmental factors. Most importantly, the
detection results do not meet industrial quality standards.
With the development of computer technology, researchers
start to use feature-based computer vision algorithms for
wood defect detection, such as histogram [7], support vector
machine [8], [9], [10], gray level concurrencematrix [11], etc.
Data augmentation is performed by grayscale transformation,
spatial domain, and histogram processing of the original
image. Then image segmentation and feature extraction are
performed. Finally, the wood defects are identified by BP
neural network and SVM. Yang and Yu [12] used ultrasound
and principal component analysis to extract the defects fea-
tures of artificial wood holes drilled into 120 elm samples.
Qayyum et al. [13] used the PSO algorithm to classify and
detect three types of defects: live knots, dead knots, and
forked knots, with an accuracy of 78.26%. Kamal et al. [14]
used grayscale co-occurrence matrix and texture energy mea-
sure to extract texture features as input to the neural network.
The results showed that the overall classification accuracies
of wood knot defects were 84.3% and 90.5%, respectively.
Zhang et al. [15] used principal component analysis and
compressive sensing to detect three defects in Quercus wood:
live knots, dead knots, and cracks. The experimental results
showed that PCA feature fusion could improve the detection
speed. The detection accuracy of the SOM neural network
was improved from 87% to 92% after compressive sens-
ing. Chang et al. [16] used convex optimization with different
weights as a smoothing preprocessing method and used the
Otsu segmentation method to obtain the target defect region
images to complete the classification and segmentation of
four types of defects: pinholes, cracks, live knots, and dead
knots. Compared to earlier detection methods, feature-based
computer vision detection of wood defects is less costly, more
efficient and more accurate.

In recent years, deep learning technology has developed
rapidly. More and more scholars have applied deep learning
in the field of wood defect detection. The feature vectors
of the original images are automatically extracted by con-
volution and pooling. Finally, wood defects are detected in
the fully connected layer. Yang et al. [17] improved the SSD
model with ResNet instead of the original VGG to detect
live knots, dead knots, decay, mildew, cracks, and pinholes
samples of more than 5000 solid wood panels with an average
accuracy of 89.7% and an average detection time of 90 ms.
Chen et al. [18] used deep learning to detect an edge, corner,
joint defect of the wooden panels. The experimental results
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were 0.97, 0.90 and 0.92 for accuracy, recall and F1 score,
respectively. Lim et al. [19] used a lightweight object detec-
tion model based on YOLOv4-Tiny to detect four types of
wood defects: live knots, dead knots, ring cracks, and pinched
bark. The accuracy was improved to 88.32% by modifying
the loss function. Tu et al. [20] proposed an improved model
GC-YOLOv3 with CIoU loss instead of IoU loss to detect
defects in rubber wood and pine wood with the highest
mAP of 86.00% and 92.29%, respectively. Compared with
shallow neural network models such as BP neural network,
RBF neural network, support vector machine, and extreme
learning machine, deep neural network models can extract
more complex and rich features with higher accuracy. The
processing of wood and production of wood products requires
intelligent wood defect detection methods. Using deep learn-
ing for wood defect detection largely compensates for the lack
of manual detection and meets the requirements of industrial
production.

Object detection is a research hotspot in the field of
computer vision. The task is to locate and classify tar-
gets from images. Early object detection algorithms use
sliding windows or selective searches to select regions of
interest, followed by feature extraction. Finally, detection is
performed with classifiers. However, these object detection
algorithms, especially the sliding windows selection of the
regions of interest, have redundant selection frames, high
time complexity, low accuracy, poor real-time performance,
and lousy robustness.With the development of artificial intel-
ligence, more and more scholars use deep learning for object
detection. By training a large amount of data, the accuracy
and performance of object detection can be significantly
improved. This approach is a good remedy for the shortcom-
ings of earlier object detection algorithms.

At present, there are two most representative object detec-
tion algorithms. One is the regression-based one-stage detec-
tion algorithms, such as YOLO series, SSD [21], DETR [22],
EfficientDet [23], etc. The other is the two stage detection
algorithms based on candidate bounding boxes, such as Fast
R-CNN [24], Faster R-CNN [25], Cascade R-CNN [26],
Trident-Net [27], etc. Object detection algorithms can also be
divided into anchor-based detection algorithms (e.g. ScaledY-
OLOv4 [28] and YOLOv5 [29]) and anchor-free detection
algorithms (e.g. CenterNet [30], YOLOX [31], and Rep-
Points [32]). Some detection algorithms are used to process
UAV images, such as RRNet [33] and PENet [34]. Among
these object detection algorithms, the YOLO series algo-
rithms, as classical one-stage detection algorithms, have a
faster detection speed compared to the two-stage detection
algorithms. YOLOv5 is lightweight with a small pre-trained
model, nearly 90% smaller than YOLOv4. YOLOv5 is also
easy to deploy. Therefore it is very suitable for industrial
application scenarios that require online real time processing.
In this paper, an improved YOLOv5 algorithm called STC-
YOLOv5 is provided to address the problems in the field of
wood defect detection, which can better detect wood surface
defects.

III. MATERIALS AND METHODS
A. DATA SET AND PRE-PROCESSING
We use a large-scale image dataset of wood surface defects
as the experimental data set. After selection, we retain
3606 images containing wood defects with seven types of
defects, including live knots, dead knots, knots with cracks,
knots missing, resin, marrow, and cracks. We convert the
YOLO format labeled TXT files into VOC format labeled
XML files and use the data labeling tool Labeling to correct
the converted rectangular label boxes. Finally, we obtain
a large-scale image dataset of wood surface defects in
VOC format. The various types of wood defects are shown
in Figure 1.

FIGURE 1. Typical samples of wood defects within the dataset: (a) Live
knot, (b) Resin, (c) Knot with crack, (d) Knot missing, (e) Dead knot,
(f) Crack, and (g) Marrow.

FIGURE 2. The number of labels of each category.

Data augmentationmakes themodel have better robustness
and generalization ability. In addition to several methods such
as cropping, mirroring, panning, rotating, masking, adding
noise, and changing brightness, we also use Mosaic and
Copy-Pasting for data augmentation. Mosaic data augmenta-
tion stitches the targets and the labeled boxes in four images to
obtain a new image, which greatly enriches the background of
targets. Copy-Pasting is a data augmentationmethod for small
targets. Its main idea is to paste a small target to any position
in the image to form a new annotation. And the pasted small
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targets can be scaled, folded, rotated, and other random trans-
formations. This approach improves the contribution of small
targets to the loss calculation during training by increasing the
number of small targets in each image and anchor boxes that
match them. The number of labels in each category of the data
set is shown in Figure 2.

B. YOLOv5
YOLOv5 has several different serialized network structures,
including YOLOv5s, YOLOv5m, YOLOv5l, and YOLOv5x.
In these four network structures, model size and the number
of parameters increase sequentially. YOLOv5x has the largest
network depth and feature map width. In addition, YOLOv5
has other network structures for detecting larger resolu-
tion images, such as YOLOv5n6, YOLOv5s6, YOLOv5m6,
YOLOv5l6, and YOLOv5×6. YOLOv5 (6.0) uses CSP-
Darknet53 as the backbone, replacing the Focus module of
the original network with a 6 × 6 sized convolutional layer.
SPP is replaced with SPPF, and CSP is added to PAN to form
CSP-PAN. The neck is a combined structure of FPN andCSP-
PAN. The prediction part uses the same detection heads as
YOLOv3 andYOLOv4, including a small, medium, and large
target detection head. The overall structure of YOLOv5 is
shown in Figure 3.

FIGURE 3. The overall structure of the YOLOv5 network.

The input side of YOLOv5 consists of three parts. The first
part is the same as YOLOv4, using Mosaic data augmen-
tation. Its main idea is to read four images simultaneously
and combine them to form a new image through random
cropping, random scaling, and random arrangement. Then
calculate the target information of the new image to extend
the training set. The second part is the adaptive anchor box
calculation. The YOLO series sets initial anchor boxes for
the dataset, compares the predicted boxes with the real boxes,
calculates the loss, and continuously iterates to update the
parameters. YOLOv3 and YOLOv4 set initial anchor boxes
separately. But YOLOv5 embeds this function into the code,
using adaptive anchor box calculation, that is, automatically
selecting the most appropriate anchor box. The third part
is adaptive image scaling. Since the datasets have different

heights and widths, the input images are scaled to a uniform
size for training convenience and then fed to the network.
After scaling the image to 640 × 640, YOLOv5 adaptively
adds the least black edges to the image, reducing redundant
information and improving the inference speed.

C. PROPOSED METHOD
Our proposed STC-YOLOv5 is an improved attention based
YOLOv5. First, perform adaptive image scaling, adaptive
anchor box calculation, and data enhancement at the input
side. Then use a neural network to extract and enhance
wood defect features. Finally, complete the detection of wood
defects. Compared with the baseline, STC-YOLOv5 can
better detect wood defects and identify wood defect types,
especially small target wood defects and dense wood defects.
It helps to reasonably deal with wood defects and judge the
grade of the boards by identifying the size, type, and quantity
of defects. The overview of working pipeline using STC-
YOLOv5 is shown in Figure 4.

FIGURE 4. The overview of working pipeline using STC-YOLOv5.

YOLOv5 uses a combined structure of FPN and PAN as
the neck. The top-down structure of FPN with lateral connec-
tions does not consider the problem of different input feature
resolutions, that is, feature fusion is insufficient. Therefore,
we use the weighted bidirectional feature fusion approach of
BiFPN as the neck. This achieves a top-down and bottom-up
differentiated bidirectional fusion of deep and shallow fea-
tures, which enhances the transmission of feature information
between different network layers.

STC-YOLOv5 network mainly consists of backbone part,
neck part, and prediction part: (1) Backbone part is based
on CSP-Darknet53 with some improvements, including
Conv, C3, C3TF, CABlock, and SPPF; (2) Neck part uses
BiFPN to achieve bidirectional fusion of multi-scale features;
(3) Prediction part uses the Swin Transformer encoder mod-
ule to form new prediction heads SHead, MHead and LHead,
which can capture global information and rich contextual
information. The overall structure of STC-YOLOv5 is shown
in Figure 5.

1) BACKBONE OF STC-YOLOv5 MODEL
The backbone network is responsible for extracting wood
defect features. The backbone network of YOLOv5 is
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CSP-Darknet53, which mainly consists of C3 (CSP), Conv,
and SPPF. The structure of its components is shown in
Figure 6. To simplify the network structure while improving
the feature extraction capability of the model, we remove
some C3 modules and introduce the Transformer encoder
module and coordinate attention module (CAmodule), which
will be described in detail in the neck.

FIGURE 5. The overall structure of the STC-YOLOv5 network.

FIGURE 6. C3(CSP)module, C3TF and SPPF in CSP-Darknet53.

Transformer is a deep learning model based entirely on
attention mechanisms, consisting of Encoders and Decoders,
which are responsible for encoding and decoding, respec-
tively. We only integrate the Encoder module. It consists of
multiple identical layers stacked on top of each other, mainly
including a multi-head self-attention block and a position-
wise feed-forward network. Both sub-layers are stitched
together using residual connections. The structure of Trans-
former Encoder is shown in Figure 7.

Existing research results [35] show that Transformer
can extract contextual information well and can also cap-
ture global information effectively. To simplify the network
model, some C3 modules of the original backbone are
removed. A new module C3TF with an integrated Trans-
former Encoder is added. The backbone of the new model
with C3TF can do feature extraction better than the baseline.

FIGURE 7. Structure diagram of Transformer Encoder.

2) NECK OF STC-YOLOv5 MODEL
To capture richer global information for better perfor-
mance, coordinate attention mechanisms are introduced in
the backbone and neck. The coordinate attention module
(CA module) compensates for the disadvantage that other
attention modules ignore location information [36]. The input
features in vertical and horizontal directions are aggregated
into two independent direction-aware feature maps using
two one-dimensional global pooling operations, respectively.
These two feature maps embedded with specific orientation
information are encoded as two attention maps, each cap-
turing the long-range dependence of the input feature maps
along a spatial direction. Thus, the location information is
stored in the generated attention maps. The working principle
of the coordinate attention module is shown in Figure 8.
The CA module can be divided into two steps: coordinate

information embedding and coordinate attention generation.
Given the input X, two spatial pooling kernels (H , 1) or
(1, W) are used to encode each channel along the horizontal
and vertical coordinates, respectively. The aggregated fea-
ture maps zhc(h) and z

w
c (w) are obtained by Equation (1) and

Equation (2). They are concatenated and sent to a shared
1× 1 convolutional transformation function F1 to get f. Here
r is the reduction rate for controlling block size. Then f is
splitted along the spatial dimension into two separate tensors,
fh ∈RC/r×H , fw ∈RC/r×W . Another two 1 × 1 convolutional
transformations, Fh and Fw are used to separately transform
fh and fw to tensors with the same number of channels to
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the input X. The obtained outputs gh and gw are expanded
and used as attention weights, respectively. In summary, the
equations for the coordinate attention module are as follows:

zhc(h) =
1
W

∑
0≤i<W

xc(h, i) (1)

zwc (w) =
1
H

∑
0≤j<H

xc(j,w) (2)

f = δ(F1([zh, zw])) (3)

gh = σ (Fh(fh)) (4)

gw = σ (Fh(fw)) (5)

yc(i, j) = xc(i, j) × Ághc(i) × Ágwc (j) (6)

where [·, ·] denotes the concatenation operation along the
spatial dimension. δ is the non-linear activation function.
f ∈ RC/r×(H+W ) is the intermediate feature map that encodes
spatial information in the horizontal and vertical directions.

FIGURE 8. Schematic diagram of the coordinate attention module.

FIGURE 9. Schematic diagram of the neck network.

The neck utilizes multi-scale training. Instead of using the
FPN-PAN structure, we borrow BiFPN proposed in Efficient-
Det, as shown in Figure 9. The neck part combines a weighted
bidirectional feature fusion approach, as shown in Figure 5.
The 13th, 17th, and 25th layers each realize weighted bidirec-
tional feature fusion of two-layer feature maps with different
resolutions. The 21st layer realizes weighted bidirectional
feature fusion of three-layer feature maps with different reso-
lutions. The neck is more powerful after adding the attention
mechanism and weighted bidirectional feature fusion.

3) HEAD OF STC-YOLOv5 MODEL
The head of our proposed STC-YOLOv5 introduces the Swin
Transformer module, which consists of LayerNorm, Multi-
head Self-Attention module, MLP, and residual connections,
similar to connecting two consecutive Transformers in series.
Swin Transformer replaces the standardMulti-head Attention
module (MSA) in Transformer with a shift window-based
Multi-head Self-Attention module (W-MSA / SW-MSA),
usingW-MAS for the former and SW-MSA for the latter, with
the other layers remaining unchanged, as shown in Figure 10.
These two structures are used in pairs, so the number of Swin
Transformer blocks is even.

FIGURE 10. Structure diagram of Swin Transformer block.

Swin Transformer abandons the computation of attention
from the global window in ViT and proposes to compute
attention in the local window, which reduces the amount of
computation. Assuming that each window contains M×M
patches, the computation complexity of the globalMSAmod-
ule and the window based on h×w patches images can be
calculated as follows:

�(MSA) = 4hwC2
+ 2(hw)2C (7)

�(W − MSA) = 4hwC2
+ 2M2hwC (8)

where h and w are the height and width of the image, respec-
tively. C is the number of channels. M is the size of the
window.

The shift window in Swin Transformer restricts the self
attention calculation to non-overlapping local windows while
also allowing cross-window connections for window-to-
window communication. In this way, the network model not
only grasps rich contextual information but also improves
detection efficiency to a great extent. The resulting new
detection heads Shead, Mhead, and Lhead have good effects
on the detection of complex and dense defects on wood
surfaces.

D. TRAINING STRATEGIES
1) EMA
The exponential moving average uses exponential decay to
calculate the moving average of the training parameters. Pre-
serving the moving average of the parameters is beneficial for
training the model. For each variable v, a shadow variable V
is obtained, which is calculated as follows:

V = λV + (1 − λ)v (9)

where λ is the decay rate.
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2) GROUP CONVOLUTION
Group convolution is used only in the backbone, as shown
in Figure 11(b). Group convolution groups the input feature
maps and convolution kernels. Then convolution is performed
within the group. When the number of groups is one, it is the
standard convolution, as shown in Figure 11(a). Compared
with the standard convolution, group convolution can reduce
parameters and amount of operations.

FIGURE 11. Schematic diagram of standard convolution and group
convolution.

3) MATRIX NMS
The purpose of NMS is to remove redundant predicted boxes.
Soft NMS is easier to realize than traditional NMS because
it does not require additional training. Matrix NMS [37] is
an improvement on Soft-NMS [38], which makes up for the
drawback that Soft-NMS cannot be implemented in parallel.
It is faster than the previous NMS because all operations
can be implemented simultaneously. In the post processing
part, we use Matrix NMS. The decay factor of predicted
mask mj is affected by two aspects. One is the penalty of
each prediction mi on mj (si > sj), where si and sj are the
confidence scores. The other is the probability that mi is
suppressed. The calculation formulas are as follows:

f (iou., i) = f (iouk , i) (10)

The final decay factor is:

decayj =
f (ioui,j)
f (iou., i)

(11)

Updated score is computed by si = sj· decayj. Consider
two decremented functions, linear and Gaussian, with the
following equations:

f (ioui.j) = 1 − ioui,j (12)

f (ioui,j) = exp(1 −
iou2i,j

σ
) (13)

IV. EXPERIMENTAL RESULTS AND DISCUSSION
A. EXPERIMENTAL ENVIRONMENT AND DETAILS
The experiments in this paper are all implemented on
Pytorch 1.10 deep learning framework. The specific param-
eters are shown in Table 1. We carry out multiple data
augmentation methods described in III on the wood defect
dataset. All experiments are performed on the large scale
image dataset of wood surface defects. Different optimization
methods are applied to the weights, bias layer, and BN layer
of the model, respectively. The learning rate initially set to
0.01 is updated by the one-dimensional linear interpolation
and cosine annealing algorithm. The batch size is set to 16.
Finally, the detection of seven types of defects in wood is
achieved.

TABLE 1. Software and hardware information.

B. EVALUATION INDICTOR
Several indicators are needed to evaluate the performance
of the model after its training is completed. The results can
be classified as true positive (TP), false positive (FP), false
negative (FN), and true negative (TN) according to the simi-
larities and differences between the predicted and true values.
Intersection over Union (IoU) is the ratio of the intersection
to union of the predicted boxes and the labeled boxes. AP can
be calculated by the area under the P-R curve (with Precision
as the vertical axis and Recall as the horizontal axis). mAP is
the averageAP of all categories. The formulates for Precision,
Recall, AP, and mAP are as follows:

Precision =
TP

TP+ FP
(14)

Recall =
TP

TP+ FN
(15)

AP =

∫ 1

0
P(r)dr (16)

mAP =
1
N

N∑
i=1

APi (17)

C. COMPARISON EXPERIMENTS
To acquire the best research baseline for wood defect
detection, we do comparison experiments on several serial-
ized network structures of YOLOv5, as shown in Table 2.
By comparing and considering the wood industry production
requirements, we select YOLOv5s with the highest mAP
and the lowest number of parameters as the study baseline.
Based on this, we make improvements to pursue the best
performance.
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TABLE 2. The performance of different models of YOLOv5.

FIGURE 12. P-R curves of YOLOv5 and STC-YOLOv5.

P-R curves obtained from experiments are shown in
Figure 12. It can be seen intuitively that the detection of
cracks is the worst and the detection of dead knots defects
is the best. Both Table 3 and Figure 12 show that the detec-
tion accuracy of STC-YOLOv5 for each type of defects is
higher than that of the YOLOv5s, improving the overall
performance.

The heat map is shown in Figure 13. We can see that
STC-YOLOv5 covers the target object regions better than
YOLOv5. That is, adding attention can learn and use the
information in the target object regions very well and aggre-
gate features from them.

FIGURE 13. Heat map visualization results.

FIGURE 14. Confusion matrix.

D. ABLATION EXPERIMENTS
To evaluate effectiveness and feasibility of the proposed
method, we perform ablation experiments to verify the per-
formance of different components and their influence on the
detection of different defects. For the accuracy of the ablation
experiments, the operating environment and hyperparameters
of the model are the same.

Table 3 shows the results of the ablation experiments for
different modules. TF denotes Transformer encoder block,
ST denotes Swin Transformer module, and CA denotes coor-
dinate attention module. A, B, D, E, F, G, H denote marrow,
live knot, resin, dead knot, knot with crack, knot missing,
crack, respectively. The results show that the modifications
of the model backbone, neck, and head have positive effects
on the model. Overall the CAmodule has the greatest impact,
with a 2.6% improvement in mAP. The Swin Transformer
module, the Transformer encoder module, and the coordinate
attention module perform best for detection of resin, knot
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TABLE 3. Ablation studies for different modules.

TABLE 4. The performance of different models.

FIGURE 15. Some visualization results from STC-YOLOv5 on the large-scale image dataset of wood surface
defects.

missing, and marrow, respectively. However, their combined
improvement is more suitable for multi-class wood defect
detection, increasing the mAP of the model to an optimal
value of 84.2%.

E. DISCUSSION
As shown in Figure 14, a confusion matrix is used to provide
accuracy rates reflecting the correct category. The highest
prediction accuracy is A(marrow) and the worst is H(crack).
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FIGURE 16. Examples of wood defect detection results using YOLOv5 and STC-YOLOv5.

The visualization results of our proposed method on the
test set are shown in Figure 15. The results in Figure 15
show that our proposed method effectively detects all types
of wood defects and is able to accurately identify and locate
small-target and dense-target wood defects.

To demonstrate the performance of the proposed method,
we compare the proposed method with several mainstream
object detection algorithms in the same experimental setting,
as shown in Table 4. Our STC-YOLOv5 has a great advantage
with the least parameters and the highest mAP. Although the
recent YOLOv7 and YOLOv8 algorithms perform well on
public datasets, they are not suitable for the dataset of wood
surface defects.

Figure 16 shows the different detection results of the wood
surface defects data set using YOLOv5 and STC-YOLOv5.
It can be seen that YOLOv5 has the problem of wrong detec-
tion and missed detection due to insufficient feature learning
and confusion between some defects and wood grain. All
experiments demonstrate the effectiveness of the improve-
ments to YOLOv5 in this paper.

Although the overall detection accuracy is improved,
it does not performwell for cracks and knots with cracks. This
is due to the fact that some fine cracks on the wood surface are
very shallow and even resemble the marks at the splices of the
boards. Therefore our proposed method needs further opti-
mization subsequently. In the future, we will consider using
model compression to lighten YOLO series networks, reduce
memory overhead andmodel file size to balance performance
and inference speed. These efforts benefit intelligent wood
industrial production and are worthy directions for research.

V. CONCLUSION
To develop smart forestry, a wood defect detection algorithm
based on improved YOLOv5 is proposed. Our proposed

algorithm adds Transformer Encoder block, coordinate atten-
tion module, Swin Transformer, and BiFPN to YOLOv5
to enhance the feature extraction capability and multi-scale
feature fusion capability of the model. Experimental results
show that STC-YOLOv5 can improve the detection accuracy
of multiple categories of wood defects, which has certain
advantages compared with other algorithms. And it effec-
tively solves the problems of low detection rate of small-sized
defects and incomplete recognition of complex and dense
defects on wood surface. Therefore, our proposed algorithm
provides a good reference for wood defect detection in
forestry.
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