
Received 14 June 2023, accepted 3 July 2023, date of publication 10 July 2023, date of current version 17 July 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3293825

Applying One-Class Algorithms for Data
Stream-Based Insider Threat Detection
RAFAEL BRUNO PECCATIELLO , JOÃO JOSÉ COSTA GONDIM ,
AND LUÍS PAULO FAINA GARCIA
Department of Computer Science, University of Brasília, Brasília 70910-900, Brazil

Corresponding author: Rafael Bruno Peccatiello (rafael.peccatiello@aluno.unb.br)

This work was supported in part by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brazil (CAPES)—Finance Code 001.

ABSTRACT An insider threat is anyone who has legitimate access to a particular organization’s network and
uses that access to harm that organization. Insider threats may act with or without intent, but when they have
an intention, they usually also have some specific motivation. This motivation can vary, including but not
limited to personal discontent, financial issues, and coercion. It is hard to face insider threats with traditional
security solutions because those solutions are limited to the signature detection paradigm. To overcome
this restriction, researchers have proposed using Machine Learning which can address Insider Threat issues
more comprehensively. Some of them have used batch learning, and others have used stream learning. Batch
approaches are simpler to implement, but the problem is how to apply them in the real world. That is
because real insider threat scenarios have complex characteristics to address by batch learning. Although
more complex, stream approaches are more comprehensive and feasible to implement. Some studies have
also used unsupervised and supervised Machine Learning techniques, but obtaining labeled samples makes
it hard to implement fully supervised solutions. This study proposes a framework that combines different
data science techniques to address insider threat detection. Among them are using semi-supervised and
supervised machine learning, data stream analysis, and periodic retraining procedures. The algorithms used
in the implementation were Isolation Forest, Elliptic Envelop, and Local Outlier Factor. This study evaluated
the results according to the values obtained by the precision, recall, and F1-Score metrics. The best results
were obtained by the ISOF algorithm, with 0.78 for the positive class (malign) recall and 0.80 for the negative
class (benign) recall.

INDEX TERMS Insider threat detection, data stream, machine learning, one-class classification.

I. INTRODUCTION
Insiders refer to anyone who has owned or provided access to
information from an organization (including personnel, facil-
ities, equipment, networks, and systems). Moreover, insider
threat is the potential that an insider has to use their authorized
access in a harmful way [1]. This harm can include malicious,
complacent, or unintentional acts that could weaken the orga-
nization’s integrity, confidentiality, and availability.

Insider threats raise the detection complexity because they
are individuals who have activated hostile activities, such as
information theft and sabotage, without the need to bypass the

The associate editor coordinating the review of this manuscript and

approving it for publication was R. K. Tripathy .

protections of the environments and systems [2]. These agents
are equally harmful compared to external malicious agents,
with the advantage that they do not need the same technical
capacity to perform their activities, making their attacks seem
like normal work activities [3].

According to the Cost of Insider Threat, Global Report [4],
the average time to contain an incident caused by insider
threats is 85 days, and 12% of the reported incidents were
contained in less than 30 days. In recent years, insider threat
incident frequency has increased. In 2018, 53% of the compa-
nies surveyed had this type of incident. In 2020, that number
rose to 60%, and in the current year, 67% of the companies
surveyed reported suffering damage related to international
threats [4]. Even with the increase in occurrences, insider

70560
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 11, 2023

https://orcid.org/0009-0001-9075-7028
https://orcid.org/0000-0002-5873-7502
https://orcid.org/0000-0003-0679-9143
https://orcid.org/0000-0003-2517-3103


R. B. Peccatiello et al.: Applying One-Class Algorithms for Data Stream-Based Insider Threat Detection

threats remain less common than external ones, but the dam-
age caused by an internal agent can have just as serious
effects. This is due to the high level of access the malicious
insider has to information and systems. As a result, insiders
often require less effort and technical knowledge to perform
malicious actions [5].

Insider threats differ from external threats in terms of
access to information terms, as internal users, who perform
malicious activities, usually have legitimate access to sys-
tems, network infrastructure, and information. They also
know the organization’s critical assets and security policy [6].
As the insider’s malicious activities will cause little or no
interference detectable by conventional network infrastruc-
ture security systems [7], the detection methods must be
better designed. Furthermore, the malicious activities per-
formed by an internal user are proportionally much smaller
than the sum of the benign activities performed by the
same user and the others. The perception of what would be
malicious or normal behavior within the network ends up
overshadowing due to the imbalance between the types of
behaviors [7].

According to Saxena et al. [8], internal malicious agents
can be classified into three types:

• Malicious:Apersonwho intentionally abuses his access
privileges to perform harmful actions to the organization
for personal gain. An example would be a disgruntled
employee who deliberately sells privileged information.

• Compromised: Someone who has been the target of
some malicious attack, the result of which is the com-
promise of personal information that provides access to
internal systems to third parties. For example, there are
cases of employees being a victim of social engineering,
bribery, or spear phishing.1

• Careless: They are people who are not concerned about
or are unaware of the security standards in force in
their organization, so they make mistakes that lead to
data exposure and, hence, damage to the organization.
For example, there are situations where employees write
down their credentials and do not save them properly,
and at some point, they end up falling into the third
party’s hands.

Conventional security solutions such as firewalls, Intru-
sion Prevention Systems (IPS), Intrusion Detection Systems
(IDS), and antivirus programs have restrictions when dealing
with insider threats. This happens because these solutions aim
to detect or prevent external malicious actors, implementing
a detection paradigm centered on signatures and rules [9].
Because of that, researchers are proposing Artificial Intelli-
gence (AI), and Machine Learning (ML) methods [10], [11],
[12], [13], [14] to respond to insider threat events as those
methods provide conditions for creating models capable of
learning, updating and adapting to ever-changing attack sce-
narios [15]. Among the proposals, researchers mention using

1https://www.enisa.europa.eu/topics/csirts-in-europe/glossary/phishing-
spear-phishing

supervised [7], [11], [12], [14], [16] and unsupervised ML
techniques [7], [14], [16], [17], varying between batch [9],
[11] and stream approaches [10], [14], [17].

In batch learning, all data is available for training the
algorithm, which generates a decision model after processing
the data [18]. The traditional batch learning process occurs
over a finite dataset with a stationary distribution [19]. This
characteristic may not be suitable for developing insider
threat detection methods that are scalable and effective [20].
That is because the behavior of the insider threat network
traffic continuously changes as new insider threat cases
emerge [4]. Data generated by insiders fits best into a data
type named stream,which is characterized by being generated
sequentially, indefinitely, presenting or not changes in its
distribution over time (concept drifts), and which may or may
not have a temporal relationship [21]. Due to these character-
istics, approaches that handle insider threat detection as a data
stream analysis [10], [13], [14] seem to be the most promising
for real-world implementations [22].

To support this research, version 4.2 of the Insider Threat
Dataset (ITD), published by the Insider Threat Center (ITC)
of the Computer Emergency Response Team (CERT) Divi-
sion of the Software Engineering Institute (SEI) at Carnegie
Mellon University, was selected. This research chose ITD due
to the lack of datasets with current data composed of real sce-
narios of incidents caused by insider threats [23]. The dataset
was generated by ITC using information from its database
about insider threats collected since it was created [24]. The
positive points of the dataset are the variety of scenarios, the
available attributes, the detailed documentation, the extensive
use by the community of researchers of the subject [23],
and the fact that it comes from one of the richer databases
of insider attacks [6]. Thus, according to the bibliographi-
cal [6], [9], [10], [11], [23], [25] research carried out and after
analyzing the dataset documentation, this work considered
that the ITD would be the best choice for providing a richer
range of information. The way that most of the cited authors
manipulate the dataset is similar, as they usually extract new
attributes from the original ones. The dataset shows a marked
imbalance between activities considered benign (negative
class) and malign (positive class), which is inherent to the
very nature of the problem.

This work applied a semi-supervised learning approach
through one-class classification algorithms to overcome the
ITD imbalance issues. The semi-supervised learning assumes
that for the classifier training, there are only samples of
one class. In the present study, the benign class is the well-
known one.While executing the classifier, a new class sample
different from the trained one may appear [26]. The trained
model must identify these samples by deriving a classifi-
cation boundary that may separate the known objects from
the unknown ones. Thus, semi-supervised learning can be
applied, for the binary classification of data streams or inno-
vative class identification, without knowing all other types
of samples (classes) [26]. Moreover, we do not need an
entire labeled dataset such as supervised learning, which is

VOLUME 11, 2023 70561



R. B. Peccatiello et al.: Applying One-Class Algorithms for Data Stream-Based Insider Threat Detection

very hard and costly to obtain. This characteristic limits the
application of supervised-based solutions in real life [27].

This article proposes a framework for a real-world insider
threat detection system. It implements a detection system
with the framework characteristics and tests it with a synthetic
dataset. The system uses one-class classification algorithms,
stream data processing, and periodic retraining to deal with
concept drift. This study treated insider threat detection
as an anomaly detection problem because the dataset con-
tains highly imbalanced classes, where the majoritarian one
corresponds to benign samples. The features used in the
research dataset derive from the original ITD, as observed
in the researched references. The research dataset simulates
a continuous data stream. This work uses supervised and
semi-supervised learning because getting enough labeled
anomaly samples is hard in the real world and deploys a
multi-class classification algorithm for comparison purposes.
The performance is analyzed through activity detection, sce-
nario detection, and malicious user detection. The results
show if the retraining procedure offers a real gain in themodel
performance.

This work intends to deepen the study of internal threat
detection because this problem does not have a definitive
solution in the academic community. The main contribu-
tions of this work are: (i) to gather techniques available in
the bibliographic review to propose a new framework to
detect insider threats in the scenarios of the analyzed dataset
(ITD); (ii) to test the proposed framework implementation
in a dataset designed for insider threat detection (ITD); and
(iii) to conclude on the viability of implanting a system based
on the proposed framework.

This document comprises five more sections. Section II
presents the related work with a more detailed view of the
nuances involving insider threat detection and the state of
art used in detecting these threats. Section III-A addresses
the proposed insider threat detection framework. Section IV
presents the carried-out experiment details. Section V shows
the results and their analysis. Finally, Section VI presents the
research conclusions and future works.

II. BACKGROUND
This section presents a review of some works related to
this study. AI and ML papers commonly address Insider
Threat Detection in two ways: batch approach (Section II-A)
and stream approach (Section II-B). Finally, Section II-C
discusses the related works.

A. BATCH APPROACH
Some studies [5], [7], [9], [11], [12], [16], [28] used batch
learning to address insider threat detection. The problemwith
batch implementations is that they do not correspond to real
scenarios. Although some of these studies have good results,
their implementations move away from the application in
real-world scenarios.

Gavai et al. [16] applied supervised and unsupervised
learning techniques in their study. The unsupervised one

used the Isolation Forest (IF) algorithm applied to a private
real-world dataset with artificially introduced insider threat
events. The real-world part of the dataset comes from an
endpoint audit and investigation software. The study obtained
an AUC metric value of 0.77. For supervised learning, they
applied the Random Forest (RF) algorithm, and the value
obtained for accuracy was 73.4%. The authors did not address
the treatment of imbalances in the dataset.

Kim et al. [28] used the properties of Markov Chains to
list the user behaviors over time and to classify to which state
they belong, malign or benign. The study used the original
ITD to generate sequential datasets corresponding to each
user’s activities. These datasets were generated according to
the influence of n occurrences of Markov attributes (states
created according to the user’s activities to compose the
Markov chain) and classified by ML algorithms. The study
makes a random selection of users present in the ITD to carry
out its experiments, using it partially. The algorithms used
were Naive Bayes (NB), Support Vector Machine (SVM),
Multilayer Perceptron (MLP), and RF. All the algorithms
obtained close results for the metrics Accuracy, False Positive
Rate (FPR), recall, and F1-Measure, with values ranging from
0.96 to 0.97. The only exception was the NB algorithm which
obtained inferior results.

Le and Zincir-Heywoo [7] used supervised and unsuper-
vised approaches. The unsupervised approach applied Self
Organizing Maps (SOM) and Hidden Markov Models algo-
rithms. The supervised one used the C4.5 Decision Tree
(DT). This study used ITD version 4.2 and summarized the
user’s activities by day and week. The metrics used were
Detection Rate (DR), False Positive Rate (FPR), and Accu-
racy, which obtained the following best results respectively
82.51, 0.01, and 99.93. These results were produced through
supervised learning using per-day summarized data and only
an extract from the dataset. The study disregarded all data
from the first twenty weeks as they contained only benign
activities.

Another study that used ITD version 4.2 was Chattopad-
hyay et al. [11] which performed an analysis based on the
scenarios provided by the ITD version 4.2. In this study, the
authors used an approach based on sliding windows applied
to a new dataset derived from the original, composed of
statistical attributes set. They established specific features for
each of the three insider threat scenarios implemented in the
dataset. Thus, they perform a scenario-based detection using
a specific set of features for each scenario detection. In this
study, the authors balanced training data by reducing the
majority class samples and used a deep autoencoder neural
network as a classification algorithm. The detection of the
scenario that concerns the user who steals organizational
information obtained the best results. For this scenario, the
experiment reached 92.88 for precision, 99.48 for recall,
and 96.06 for the F1-score. They applied a 40-day sliding
training window and balanced it using the Synthetic Minority
Oversampling Technique (SMOTE) to achieve these values.
In this specific detection, theminority class hadmore samples

70562 VOLUME 11, 2023



R. B. Peccatiello et al.: Applying One-Class Algorithms for Data Stream-Based Insider Threat Detection

in the training set than the majority class in the proportion
of 2:1.

Johannessen [9] used unsupervised learning in his study
by implementing an anomaly detection mechanism based
on the IF, Elliptic Envelope (EV), and Local Outlier Factor
(LOF) algorithms. He used the batch approach and treated the
imbalance through the configuration of the hyper-parameters
related to the imbalance rate of the algorithms used, except for
the LOF. The dataset was organized so that there were at least
five malign samples in the training data. He used version ITD
version 4.2. This study suggests using information from the
most diverse sources of organizational data, such as physical
access to locations and analysis of psychosocial components
described by the personality trait analysis method called
BIG FIVE. This method makes it possible to describe a
person’s personality by examining the following personality
traits: openness, conscientiousness, extraversion, agreeable-
ness, and neuroticism. Because this study explores different
nuances of insider threat detection, it did not examine the ML
results in depth. Nevertheless, this is a very informative and
comprehensive study that offers multiple perspectives on the
problem and focuses on developing a solution.

Kim et al. [5] proposed an insider threat detection frame-
work based on user behavior modeling. The study created
three sets of distinct data, based respectively on activities
carried out by users at their workstations, the email exchange
networks between users, and the content of emails exchanged
between users. This study used ITD version 6.2 and eval-
uated the Gauss, Parzen, K-Means, and PCA algorithms as
one-class classification algorithms. Thus, the study attempts
to mitigate the effects of class imbalance as such algorithms
could train with a substantial benign sample amount and then
classify data with malign ones. The authors used 90% of the
randomly selected benign data for the training set. The test
set consisted of 10% of the remaining benign data plus all
malign ones. Lastly, the authors created an anomaly ranking
for each dataset to classify each activity sample. Using the
proposed framework was possible to detect 53.67% of the
malign activities in the top 1% of the ranking of malign
activities and 90% in the top 30% of the malign activities.

A methodology for processing organizational log data was
presented by Hall et al. [12] in their study using ITD ver-
sion 6.2. The study addressed the problem with a supervised
approach and summarized the dataset according to criteria
related to time and users. They first aggregated user activity
data by day and after by users. After the dataset was ready,
they built a model to identify each malign scenario sepa-
rately. For compiling the training set, the study only used
data from one month and data from users with the potential
to run some of the attack scenarios available. In addition,
they undersampled the majority class until the imbalance
reached a ratio of 15:1. With these measures, the authors
aimed to reduce the disproportionality presented by the ITD
between malign and benign activities and between malign
and benign users. The study used the Neural Network(NN),
Naive Bayesian Network (NBN), SVM, RF, DT, and Logistic

Regression (LR) classifiers to compose single models and
compared the obtained results with the best Boosting version
of such classifiers (the study used the NBN Boosting version
in the comparison). The study concluded that the model that
used the composition of classifiers was superior, obtaining
an AUC of 0.988 against an AUC of 0.980 obtained by the
Boosting version of the NBN.

B. STREAM APPROACH
Insider Threat Detection has been treated as a stream prob-
lem by some authors [10], [14], [17], [29]. These authors
have used stream ML techniques to deal with possible devi-
ations from concepts and the scarcity of samples from the
malign class. Despite being more complex, this approach is
more realistic and enables the creation of models capable of
being applied in real scenarios once insider data is stream
generated.

Senator et al. [13] used private data from real enterprise
networks to research insider threat detection. They installed
specialized programs on the workstations of the partici-
pating companies to collect the study data. The malicious
scenario data was inserted synthetically by a team of spe-
cialists in offensive cybernetic actions. The study presents
an insider threat detection system using anomaly detection
algorithms based on: suspected scenarios of insider threat
behavior; unusual activity indicators; high-dimensional sta-
tistical patterns; temporal sequences; and evolution graphs.
As their best result, they mention an AUC of 0.979 and cite
studying the feasibility of applying their method in a real
scenario as future work. Unlike the present study, the work
by Senator et al. [13] focuses on specific scenarios discovery
and does not cite any presence or need for the treatment of
imbalanced datasets. Moreover, as their dataset is not public,
it is impossible to reproduce their study.

Parveen et al. [14] compared supervised and unsupervised
approaches for insider threat detection from a data stream
mining point of view, using the Lincoln Laboratory Intrusion
Detection dataset [30]. Their work demonstrated the superi-
ority of the supervised one. The study also points out that
ensemble algorithm implementations present better results
than non-ensemble ones. Although the supervised approach
performs best, Parveen et al. [14] report that it was hard to
implement real-world detection with supervised-based mech-
anisms. Because insider threat data is a stream of unbounded
length and constantly evolving, supervised deployments are
often inadequate. As an alternative, the study proposes using
unsupervised learning. To this, the authors implemented an
ensemble of graphic-based anomaly detection models. This
ensemble is kept up-to-date by an ensemble update process
which also aims to allow the model to be resilient to concept
drifts. This kind of implementation is more suitable in real-
world scenarios.

Krawczyk and Wozniak [26] proposed using one-class
classifiers with incremental learning and forgetting for data
streams with concept drift. Their study mentions three
approaches to deal with concept drift: the first is to retrain

VOLUME 11, 2023 70563



R. B. Peccatiello et al.: Applying One-Class Algorithms for Data Stream-Based Insider Threat Detection

the classifier every time new data is available; the second
is trying to detect concept drift occurrence and then retrain
the classifier; and the last is adopting incremental learning
techniques to, smoothly, adapt the model to the data stream
concept drifts. The third approach is noteworthy because it
can combine different forgetting mechanisms and retraining
procedures aiming to adjust the model to the data stream’s
natural changes. They presented a system that uses aweighted
sample mechanism to build the retraining dataset based on
an initial one and a forgetting sample mechanism to discard
old samples. The model analyses the data stream in chunks
of data. The study uses five datasets, two synthetic and
three real-life ones. Although not directly related to insider
threat detection, this work has contributed to data stream
analysis.

A real-time unsupervised system was created from a Deep
Learning-based model by Tuor et al. [17] to filter the system
log data from ITD version 6.2. As insider threat behavior
varies widely, they were concerned with modeling the recog-
nition of the characteristics of each user on the network using
Deep NN and Recurrent NN. Thus, they tried to determine
whether the behavior was habitual or anomalous. The results
obtained by the NN algorithms were compared with those
obtained by IF, SVM, and PCA algorithms and showed the
superiority of the NN ones. The study focused on creating and
analyzing profiles for each user based on their role within the
company.

The work presented by Bose et al. [10] proposes a system
called Real-Time Anomaly Detection in Heterogeneous Data
Streams (RADISH), which has two main components. The
first is the RADISH-L which is responsible for learning
behaviors by defining new models and thresholds for normal
behaviors based on the data stream analysis. The second is the
RADISH-A component which is responsible for comparing
the new streamswith the defined threshold. To do this, models
created by the RADISH-L are applied to the new streams,
generating alarms for those that exceed the previously defined
normality threshold. The recall achieves around 0.5 and a
precision of 0.08. The studymade a self-justifying calculation
between the losses experienced by companies that are victims
of insider threats and the number of false positives. The study
suggests that it could be financially advantageous to verify a
substantial number of false alarms than to spend resources to
respond to an incident not previously alarmed.

Finally, Zhang et al. [29] proposed a framework for resam-
pling unbalanced datasets. Resampling techniques were used
in sets from data streams, aiming to reduce the impact of
class imbalance and concept changes. Among the various
used techniques, they mention the creation of a minority class
buffer of samples, intending to insert them in the training
dataset due to their scarcity and periodic retraining procedure
to keep the model up to date. This technique will be repro-
duced in the present study but applied in the insider threat
detection context.

C. RELATED WORK
This study gathered some techniques from the works men-
tioned in Section II to develop a framework applicable to
insider threat detection in real-network environments. This
study used the batch approach in the first steps of its insider
threat detection proposal. The batch implementation helped
to define the first parameters of our models. To that end, this
study implemented a Grid Search algorithm over a training
set. The data regarding insider activities must be analyzed
at its generation time, as in the case of the data stream,
aiming to produce timely alarms. The data streams have some
peculiarities such as the concept drifts, which the solutions
must handle. Analyzing data generated by insiders as a batch
or chunk could lead to delayed notifications.

Starting from batch works, Johannessen [9] sought to
make maximum use of the various sources of information
provided by the dataset for feature extraction. The study of
Chattopadhyay et al. [11] was the reference for some of the
features used in this work, mainly those considered relevant
to detect all the scenarios because in the mentioned study the
detections were individualized by scenarios. Kim et al. [5]
influenced the use of one-class algorithms. This type of
algorithm is able to perform its training with only one class
and detect the presence of samples that are different from
those trained. Thus, the high availability of samples from
the benign class in the ITD dataset will favor the one-
class algorithm’s training, which may increase malign class
detection.

From stream references, as applied in the study carried
out by Krawczyk & Wozniak [26], this work proposed some
techniques to adapt the model incrementally to the data
stream changes. Among them, we can mention procedures
to retrain the algorithm, build a retraining dataset, and dis-
card samples. Differently from Tuor et al. [17], the present
study focuses on the abnormal-behavior discovery, evalu-
ating the information contained in user sessions without
distinguishing them. As in the present study, Bose et al. [10]
and Senator et al. [13] address the insider threats problem
through a data stream analysis. Bose et al. [10] also used
the ITD but in version 2, Senator et al. [13] used a private
one. However, they did not address the dataset imbalance
issue in their studies. Bose et al. [10] updated their mod-
els training them with a training set composed of recent
benign samples and a buffer that stored old and new malign
samples. The present study also does that, but instead of
maligns saves the benign ones. Parveen et al. [14] concluded
that their supervised experiment would not occur in the real
world. Their experiments demonstrate that applications based
on data streams are more suitable for real-world applica-
tions. Finally, Zhang et al. [29] used new arriving instances
to update their models dynamically as proposed by this
study. The following Section will present how this study
used cited techniques to build a framework for insider threat
detection.

70564 VOLUME 11, 2023



R. B. Peccatiello et al.: Applying One-Class Algorithms for Data Stream-Based Insider Threat Detection

III. METHOD
This section will present the proposed framework, with
details about its offline and online phases. The main objective
is to show the framework and its implementation details to
clarify how it works.

A. INSIDER THREAT DETECTION FRAMEWORK
The framework proposed in this study comes from the com-
bination of approaches used in previous studies and aims
to allow the detection system deployment in a real-world
environment [5], [10], [11], [13], [26], [29]. This environ-
ment requires the handling of the premises imposed by
the problem. The most significant are the following [31]:
(i) process one example at a time and inspect only once;
(ii) use a limited amount of memory; (iii) analyze a limited
period; and (iv) be ready to predict at any time. As well as
these premises, there are some obstacles also imposed by the
insider threat detection problem such as the extreme imbal-
ance of class distribution [32] having the malign class as the
minor one, the need to accurately identify this class, the possi-
bility of concept drift occurrence, and the similarity between
the data generated by malign and benign insiders [14].

The present study set up a hybrid analysis approach to sat-
isfy these premises, with an offline batch phase for algorithm
first training and an online stream phase for retraining and
sample classification. It also implements some incremental
learning aspects. To perform its retraining tasks, the model
must be able to select new samples, implement a forgetting
mechanism to discard the old ones, and adapt algorithms
parameters. Figure 1 illustrates the framework overview.

The pre-processing module represents the first stage of
the system that deals with feature extraction from the data
sources. In real-life implementations, each data source must
have its parser. In this work, handling the dataset log files
abstracted the feature extraction step.

The model evaluation module sequentially classifies the
samples as they arrive and perform the periodic retraining
of the classifier. During this step, the model chooses which
samples will be part of the training set. At each new training
sample insertion, the model removes the oldest one. This
work performs periodic retraining tasks to keep the model
resilient to concept changes that may occur during data gen-
eration. The samples included in the retraining use the labels
predicted by the model after its classification.

The first batch training of the model evaluation module
takes place offline with known benign samples and with a
deliberately inserted contamination. This work inserted the
contamination because it is unlikely that samples originat-
ing from real-network communications do not contain any
malign activity. It is a consequence of the similarity of actions
performed by malign and benign insiders [14]. The objective
of the offline phase is to establish the initial hyperparameters
of the algorithms that the model will use.

In the online phase, the model predicts each stream sample
as soon as received. To conduct the evaluation, the model
uses one-class classification algorithms. The model saves the

FIGURE 1. Framework overview.

predictions and their scores to support the retraining process.
Still, in the online phase, the retraining takes place. Themodel
implements a retraining mechanism for constantly adapting
the model to possible concept drift. The model compiles the
retraining sets using the first training set as a starting point.
The retraining set is formed by replacing old samples from
the first training set with new ones from the data stream ana-
lyzed by the model. During its execution, the model evaluates
sample scores and labels and chooses those that will be part
of the retraining set. The sample scores and labels are those
provided by the algorithms during the stream analysis.

After the algorithms classify a sample and the model
evaluates its pertinence to compose the training set, it is
discarded or reused. The model will discard samples in two
situations: (i) every time the algorithms classify it as benign,
and the model does not select it to compose the retraining set,
or (ii) every time it is replaced by a new sample in the
retraining set. The model will reuse samples whenever they
are considered benign or malign, and the model selects them
to compose the retraining set. Every time the algorithm clas-
sifies a sample as malign, the model will use it to generate an
alert.

B. MODEL EVALUATION
The next Sections will present details about the offline and
online phases of the framework represented in Figure 2.
This figure shows a flowchart of the model evaluation
where the offline phase provides the initial hyperparameters
of the algorithms and the initial training dataset as inputs for
the online one. The online phase depends on the results of the
offline phase to start its execution. The offline phase executes
once and the online one executes indefinitely.

1) OFFLINE PHASE
The offline phase’s main objective is to provide the values
of the initial hyperparameters to be used by the algorithms
in the model. To this, the present study performs a Grid
Search algorithm implementation over a labeled training set.

VOLUME 11, 2023 70565



R. B. Peccatiello et al.: Applying One-Class Algorithms for Data Stream-Based Insider Threat Detection

FIGURE 2. Model evaluation overview.

The Grid algorithm searches for the best combination of
a hyperparameter subset [33]. Each algorithm has its own
hyperparameters subset. The Grid Search relies on the score
obtained by a metric to choose the best hyperparameter set.
In this article, the reference metric was the average recall
between malign and benign classes. The algorithm calculates
the metric values for each label and the mean between them.
The higher the average between the recall values of the
malign and benign classes, the higher the individual value of
each recall metric. We have used the contamination samples
labels to perform the RF tests with Grid Search, as RF is a
multi-class algorithm.

2) ONLINE PHASE
After defining the initial hyperparameters of the algorithms
and having the algorithms trained, starts the online phase.
This phase executes the selection of the samples for the build
of the retraining set, the sample predictions, and the retraining
procedures of the model.

The model uses the initial training set for building the
retraining one. Before doing this, it separates the initial set
into two sets according to the labels of your samples, benign
and malign (contamination). The model constructs a sample
score distribution of both sets to identify in what quartile
the samples malign and benign likely are. After that, two
thresholds are defined by the model, the higher and the lower
one. When the algorithm starts to receive and classify the
samples, the model compares each score obtained by each
sample with the higher and lower thresholds in the following
manner:

1) If the algorithm predicts a sample as benign and its
score is higher than the higher threshold, it is inserted
in the training set, and the model discards the oldest
sample in the training set.

2) If the algorithm predicts a sample as malign and its
score is higher than the lower threshold, it is inserted

in the training set, and the model discards the oldest
sample in the training set.

3) In any other case, the model does not reuse the classi-
fied sample.

The model will retrain the algorithm using the set resulting
from the operation above. The idea is to take likely benign
samples and the malign ones whose score is high, to compose
the contamination in the retraining set. Both thresholds will
always be positive due to the high imbalance of the dataset in
favor of the benign class.

To retrain, the model checks whether the retraining interval
has been reached. The retraining interval can be defined
by time or the number of analyzed samples. This arti-
cle calculates a time interval using the number of samples
as a reference, 1,200 samples are equivalent to approxi-
mately 1 day in the ITD.Whenever the retrain interval checks
return positively, the model redefines the higher and lower
thresholds and retrains the algorithm using the new retraining
set. The model redefines the thresholds using the same pro-
cedure explained in the second paragraph of this Subsection.
The contamination is the only algorithm hyperparameter that
may change in the retraining process. This happens according
to the distribution of scores obtained by the training/retraining
set samples. By using the training/retraining set score distri-
bution of the malign (contamination) sample, the following
comparison is made: If the 75 percentile value of the malign
sample distribution of the training set is positive, the contam-
ination hyperparameter value of the algorithm remains the
same as predicted by grid search. Otherwise, the hyperparam-
eter is set as automatic or with the default value, depending
on the classifier.

It should be noted that although the model selects benign
and malignant samples with their respective labels and scores
to compose the retraining set, such a set is given to the
algorithms to train without labels, as this work used one-class
classifiers. Despite not using labels for training/retraining,
the model saves them for building the distribution of scores
for benign and malignant classes. Only in tests with the
RF algorithm was it necessary to use labels.

IV. METHODOLOGY
Section IV will present the methodology followed to run the
experiment. It will introduce the dataset, the way of feature
extraction, and the execution of the experiments based on the
framework presented in Section III-A.

A. THE DATASET
The dataset used in this study was the Insider Threat Dataset
(ITD) [24], published by the Insider Threat Center (ITC)
at Carnegie Mellon University.2 This research selected the
dataset by analyzing the researched bibliography on the sub-
ject. The selection criteria were the widespread presence of
the dataset in research related to insider threat detection, the

2https://kilthub.cmu.edu/articles/dataset/Insider_Threat_Test_Dataset/
12841247/1

70566 VOLUME 11, 2023



R. B. Peccatiello et al.: Applying One-Class Algorithms for Data Stream-Based Insider Threat Detection

diversity of informational domains present in the dataset, and
the quality of the documentation provided with the dataset.
The dataset consists of six files and one folder. All files have
in common the fields id (event id), date (event date-time
group), user (user id), and pc (personal computer id).

• LDAP: Folder with Lightweight Directory Access Pro-
tocol log files (18 files).

• device.csv: Removable device log file (405,380 lines).
Particular field: activity.

• email.csv: Email log file (2,629,979 lines). Particular
fields: cc; bcc; from; size; attachment_count; content.

• http.csv: Web browsing log file (28,434,423 lines). Par-
ticular fields: URL and content.

• logon.csv: Users logon/logoff log file (854,859 lines).
Particular field: activity.

• file.csv: File handling log file (445,581 lines). Particular
fields: filename and content.

• psychometric.csv: User personality trait information file
(1000 lines, not used).

The only folder provided by the dataset refers to the
LDAP data. Inside this folder are files with monthly updated
data about the employees. Each employee has the follow-
ing attributes: employee_name, user_id, email, role, busi-
ness_unit, functional_unit, department, team, and supervisor.
The dataset implements three scenarios of malign activi-

ties. The dataset documentation describes each scenario as
shown below:

1) Scenario 1:Userwho did not previously use removable
drives or work after hours begins logging in after hours,
using a removable drive, and uploading data to wik-
ileaks.org. Leaves the organization shortly thereafter.

2) Scenario 2:User begins surfing job websites and solic-
iting employment from a competitor. Before leaving
the company, they use a thumb drive (at markedly
higher rates than their previous activity) to steal data.

3) Scenario 3: The system administrator becomes dis-
gruntled. Downloads a keylogger and uses a thumb
drive to transfer it to his/her supervisor’s machine. The
next day, he/she uses the collected key logs to log in
as his/her supervisor and sends out an alarming mass
email, causing panic in the organization. He leaves the
organization immediately.

The information in the files/directories simulates activities
on a corporate network with 1,000 users over approxi-
mately 16 and a half months. Of the 1,000 users in the
dataset, only 70 are responsible for some malicious activity.
The malicious users are distributed across the scenarios as
follows, 30 distinctive malicious users perform Scenario 1,
30 more perform Scenario 2, and 10 perform Scenario 3.

B. FEATURE EXTRACTION
The dataset has its information divided into days, but for
the execution of the research, the features were extracted
and organized by the user session. A session is considered
the period between logon and logoff performed by a user.

The ITD has some logon events without their respective
logoffs. Therefore, it was necessary to insert implicit logoffs
every time a user registered consecutive logon events on
the same workstation without a logoff event interspersing
these logon events. Another definition in the study, aiming
for feature extraction, was the beginning and end time for
work hours. This work defined these times by analyzing the
behavior of logons and logoffs recorded in the dataset. Thus,
it can be stated that, for the analysis carried out in the present
study, the beginning work time is at 7:00 am, and its end
time is at 5:00 pm. Below are the extracted features and their
respective definitions.

• diff_begin_first: Difference between beginning work-
ing time and first login.

• device_count_out: The number of removable storage
devices used out of work time.

• device_count: The number of removable storage devices
used.

• count_dwn_exe_file: The number of .exe files
downloaded.

• url_blocklist: The number of blocklisted URLs
accessed.

• unit_code: User functional unit code.
• tfidf_jobsites: TF-IDF comparison of job web pages
corpus and web pages accessed by the users.

The dataset obtained after extracting the features has the
following characteristics: 470,608 rows, 1,460 of which cor-
respond to the malign class and 469,148 to the benign one.
These values generate an imbalance ratio of around 1:321.
This imbalance rate reflects how the problem presents itself
in real life.

C. EXPERIMENTS
This paper performed two types of experiments, with and
without retraining. The experiments without retraining were
performed to state if the retraining procedures could improve
insider threat detection. The non-retraining experiments also
used the Grid Search algorithm and other characteristics
addressed in this study less the retraining.

Given the characteristics of the model, for the execution
of the experiments, some methodological parameters need
to be defined. As the training occurs offline and after the
model evolves continuously, it was required to configure the
training set length and the interval in which the retraining will
occur. The training/retraining set size does not vary during
model execution. In this work, handling the dataset log files
abstracted the feature extraction step.

As stated in Section III-A, the first training set (offline
phase), whichwill be the base of the retraining sets generation
in the online phase, was predominantly composed of benign
samples and a little contamination of malign ones. Table 1
shows the contamination ratio of each initial training set size
used in the experiments.

As previously mentioned, contamination simulates a
common problem in real-life environments. In these

VOLUME 11, 2023 70567



R. B. Peccatiello et al.: Applying One-Class Algorithms for Data Stream-Based Insider Threat Detection

TABLE 1. Contamination ratio of the initial training sets.

environments, it can be hard to state that logs come from
activities completely free of malign actions. Besides that,
the contamination is pertinent for the supervised multi-class
implementation of the RF classifier. Methodologically,
it is advisable to have a training dataset with samples
from all classes when multi-class supervised classifiers are
employed. The simulated contamination is possible because
the one-class classifiers do not need labeled training sets.

The algorithms used in the experiment were ISOF [34],
ELV [35], LOF [36], and RF [37]. The first three are one-
class algorithms, and their main feature is that they can
train with samples of only one of the classes present in the
problem domain. After their training, in any situation, these
algorithms can identify, among the tested samples, those that
differ from the trained ones [38]. This study also used the
RF implementation to compare the results of a supervised
multi-class algorithm with those obtained by the one-class
algorithms.

Before performing the algorithm’s first training (offline
phase), this experiment used the Grid Search algorithm to
establish the initial hyperparameters for the algorithms. To do
this, it applied the Grid Search algorithm to the initial training
set, which contains samples of both classes due to contami-
nation. The metric used as a benchmark was the macro recall.
Having chosen this, the model tried to obtain the highest
possible average value between the recall of the malign and
benign classes. The objective is to find parameters that reach
the highest rate of true positives for each one of the classes.
The first training of the algorithm is performed only after
defining its initial hyperparameters.

The Grid Search algorithm indicated the values below as
the best for the hyperparameters of the classifiers. The other
hyperparameters not cited remained with the default value.

• ISOF: 0.3 for the contamination; 40 for the n_estimators;
bootstrap activate; and 3 for the max_features.

• EV: 0.5 for the contamination; and 1 for the sup-
port_fraction.

• LOF: 0.3 for the contamination; 20 for the leaf_size;
novelty activate; mahathan for the metric; and 18 for the
n_neighbors.

• RF: 200 for the n_estimators; entropy for the criterion;
and 6 for the min_samples_leaf.

After the initial training (offline phase), the model starts
receiving the sample lines of the test dataset one by one
(online phase). By doing this, in addition to simulating a
stream of information, it was possible to evaluate the perfor-
mance of each of the classifiers. The speed of data analysis

is a crucial factor in an environment with data generated and
analyzed continuously. This study varied the training dataset
size and the retraining intervals as part of the experiments.
All these changes aim to establish ideal values for these
methodological parameters and to make conclusions about
the system application in a real-world scenario. To do this,
the importance of these parameters to the model performance
should be known, and thus decide whether or not to update
them during the execution of the model.

During its execution, the experiments varied the train-
ing/retraining window size values to 15, 30, 60, and 150 days
and the retraining interval to 15, 60, and 120 days. The size of
the training/retraining set is informative to know how many
samples are needed for this set to become representative of the
stream data. The length of the retraining interval is crucial to
know if the model can adapt to concept changes that may be
present in the data stream. The experiments that did not apply
the retraining only had the first offline training, initializing
sample predictions immediately afterward.

The metrics analyzed were precision, recall, and F1-score
because they would be the best when dealing with highly
unbalanced datasets whose classification is binary [11]. The
precisionmetric seeks to identify among everything classified
as positive by themodel, which oneswere classified correctly.
The recall indicates, among the number of true positives,
how many of them were predicted by the algorithm. The
F1-score is the harmonic mean between precision and recall,
this metric provides a unified representation of them [39].
Beyond those, this article analyzed the kappa and geomet-
ric mean (gmean) metrics. The former minimizes the class
imbalance problem as it considers the class distribution in
its calculation [40] and the latter is independent of class
distribution and suitable for assessing classifier performance
in imbalanced data sets [41].

This study also analyzed the true positive rate (TPR),
intending to know the proportions of malicious class correct
predictions. The TPRs were analyzed by scenario and in a
general way.

V. RESULTS
To perform the experiments this study defined the size of the
training/retraining set and the interval in which the retraining
will occur. The experiments without retraining needed only
the definition of a training set length. Training/retraining set
sizes range from approximately 15, 30, 60, and 150 sam-
ple days. The retraining intervals vary between 15, 60, and
120 days. The best results are those in which the values
between the recall of positive and negative classes are high
and balanced with each other. That is because we want to
avoid excessive wrong predictions for both classes. Given the
imbalance of the data set, we found that in all situations where
the recall of the positive class is high, the false negative results
are also high. This fact in real life ends up camouflaging the
positive results among a large amount of false positive results.
The opposite can also be stated, because every time we have
many correct predictions of the negative class, we drastically

70568 VOLUME 11, 2023



R. B. Peccatiello et al.: Applying One-Class Algorithms for Data Stream-Based Insider Threat Detection

increase the false negative results, in this case, the model
misses the prediction of the positive class. The gmean metric
is also important to be checked because it gives a unified
vision about the recall and the true negative rate (TNR), the
higher the value, the better performance of the classifier.

Tables 2, 3, 4 and 5 show the results obtained by the
algorithms used in the experiments. Table 2 shows the results
obtained without performing the online retraining procedure.
In this specific table, the columns labeled 15, 30, 60, and
150 represent only the length of the dataset used in the
application of the Grid Search and the first training of the
algorithm. Table 3 shows the results with the methodological
metric, retraining period, configured to occur every 15 days.
Next, Table 4 shows the results with the retraining period
set to every 60 days. Finally, Table 5 shows the values with
the retraining period set to every 120 days. The table’s first
column represents the algorithm used in the experiments, the
second shows the metric names, and the other columns show
the values. The columns labeled 15, 30, 60, and 150 represent
the length of the training/retraining dataset. The retraining
intervals and training/retraining set length are expressed in
days and are approximations based on one day number of
samples. The results in bold represent the best recall results
obtained by each algorithm. In some cases, the algorithms
can have two of their results marked in bold. This is due to
the proximity between two results obtained by an algorithm
in different situations.

Table 2 shows the results using a similar approach men-
tioned in Section IV, but without applying the retraining
procedure. The main difference between this and the results
using retraining is the drastic reduction of false positives,
even with an increase in malign class detection. This reduc-
tion is relevant in the context of security and is related to
working with a noisy solution. Excessive false alarms may
delay the identification of insider threats or, in the worst case,
result in their non-identification. True alarms can disappear
among the false ones, making it even harder to identify
insider threats. This problem is recurrent in the domains
of information security and has already been described by
Gheyas et al. [3] in the context of insider threat detection.
As the benign class represents 287,860 of 289,230 samples,
its proportionality reduction is much more significant than
the malign class. For example, in absolute numbers, 10%
of benign samples represent 28,923 samples, and the same
percentage of the malign class represents 142 samples. For
the best results of all scenarios, the retraining procedure
reduced the difference between the recalls of malign and
benign classes. As an example, taking the number of false
positive alarms of the best results, with and without retrain-
ing, produced by the three algorithms, it can be observed that
ISOF generates 57,770 of this kind of alarm executing the
retraining against 157,352 without it. The difference is near
one hundred thousand samples and reaches more than double
those presented in the best case with retraining.

The tables show that the ISOF algorithm obtained the best
recall result among the algorithms used, reaching 0.80 for

TABLE 2. Metrics obtained without retraining.

the benign class and 0.78 for the malign one. This study
considered that ISOF was the best because it obtained the
best balance between benign and malign class recall metrics,
reaching the highest value for gmean metric 0.79. IOSF also
was the only one that identified all malicious users with at
least one on alert for each one. Moreover, ISOF was the less
noisy algorithm.

The best result obtained by the ISOF used the retraining
interval corresponding to approximately two months of activ-
ities (72,000 samples). In this case, the training/retraining
set length was approximately two months of activities
(72,000 samples). These are the best configuration of
methodological parameters for this algorithm.

For the EV algorithm, the best methodological values were
five months for the training/retraining set length and two
months for the retraining interval. The values for class 0
and class 1 recall were 0.76 and 0.71, respectively. The EV
algorithmwas the fastest. It was, on average, nine times faster
than ISOF and slightly faster than LOF.

The LOF algorithm had its best value using five months
for training/retraining set length and five months for retrain-
ing interval. The recall values with this configuration were
0.76 for the benign class and 0.58 for the malign class.

This study used the RF algorithm to find out how a
multi-class algorithm would behave when subjected to the
difficulties that involve the problem of detecting insider
threats, mainly concerning the imbalance of the dataset.

VOLUME 11, 2023 70569



R. B. Peccatiello et al.: Applying One-Class Algorithms for Data Stream-Based Insider Threat Detection

TABLE 3. Metrics obtained by running the retraining every 15 days.

The best values obtained by RF for the recall metric
were 0.98 for class 0 and 0.23 for class 1. To achieve these
results, RF has used fifteen days for the training/retraining
set length and fifteen days for the retraining interval. After
verifying the RF results, this work concluded that the RF
algorithm does not fit well when applied to the insider threat
detection environment. The highly unbalanced dataset may
be the crucial cause of the poor RF performance. Due to the
shortage of positive class samples, RFmay not have been able
to identify this class.

Another significant analysis is to understand how the per-
formance of algorithms varies over time. Figures 3, 4, and 5
show the precision, recall, and F1-score metrics behavior
during the model execution. The y-axis represents the metrics
values, and the x-axis represents the number of analyzed
samples (sessions). The yellow line corresponds to ISOF
results, the blue line corresponds to EV results, and the red
line corresponds to the LOF results.

The figures show that whenever the recall curve stabilizes
the precision curve tends to decline. In the same situation,
the F1-score curve also decreases slightly, influenced by
precision results. The likely cause for this is an increase in
false negatives. The probable reason for this is that true and
false results grow at proportionally different rates. This fact
stems from twomain factors, the high imbalance rate imposed
by the problem and the fact that malign and benign activities
are similar in the case of insider threats. After analyzing

TABLE 4. Metrics obtained by running the retraining every 60 days.

FIGURE 3. Malign class precision evolution.

FIGURE 4. Malign class recall evolution.

about 50000 samples, the lines of the graphics stop drastically
oscillating and become smoother.

70570 VOLUME 11, 2023



R. B. Peccatiello et al.: Applying One-Class Algorithms for Data Stream-Based Insider Threat Detection

TABLE 5. Metrics obtained by running the retraining every 120 days.

FIGURE 5. Malign class F1-score evolution.

In addition, this study carried out a malicious scenario
analysis, as shown in Table 7. The first column represents
the scenario analyzed, the second shows the metrics, and
the other the algorithms, except the last which shows the
total. The Total column represents the sum of all positive
samples in each scenario, and the last line is the sum of
negative ones. The last line is not divided by scenario because
it represents only the negative class. In this table, the detection
performance by scenario can be observed. The results come
from the best model performance for each algorithm. The first
scenario has 189 malicious activities executed by 30 users,
the second one has 1110 malicious activities executed by
30 users, and the third one has 121 malicious activities exe-
cuted by 10. The ISOF algorithm was the least noisy, having
57,770 false positive alarms.

TABLE 6. Confusion matrix by scenario.

TABLE 7. True positive rate by scenario.

The first and second scenarios have 30 malicious users,
and the third has 10. Using the ISOF algorithm, the model
detected all malicious users issuing at least one alert for
each, and in most cases, an alarm was sounded for the first
malicious activity. For the second and third scenarios, only
three first malicious activities were not alerted, and for the
first scenario, eight were also not. With the EV algorithm,
the model did not detect only two malicious users from the
first scenario. Concerning the first malicious activity, the EV
algorithm did not identify seven from the first scenario, five
from the second, and one from the third. Finally, when using
the LOF algorithm, the model did not detect only seven mali-
cious users from the first scenario and did not alert twenty
first malicious activities from the first scenario, nine from the
second, and seven from the third.

Observing the TPR, it can be stated that the first scenario
was the most challenging to identify. The EV algorithm
performed better in this scenario, but at the cost of a high
generation of PF results, and even so, it failed to identify two
of the thirty malicious users of the scenario. Despite a slightly
worse performance for the first scenario, the ISOF algorithm
identified all malicious users involved.

When analyzing the results, it can be noted that the
one-class algorithms better adapt to the insider threat sce-
narios presented in the ITD. The insufficient labeled samples
penalized the RF algorithm, which suffered from the highly
unbalanced dataset.

VI. CONCLUSION
Insider Threat Detection Systems based on batch-supervised
learning may not be suitable for real detect scenarios. It is
because it is difficult to obtain real-time labeled datasets,
and insider threat behaviors continually change over time [4].
There is no signature to identify insider threats and the
more sophisticated the attack the more it looks like a benign
activity. Considering the semi-supervised machine learning
approach is focused on data flow, a model capable of dealing
with the detection of insider threats can be built more prac-
tically. This approach eliminates labeled sample dependence

VOLUME 11, 2023 70571



R. B. Peccatiello et al.: Applying One-Class Algorithms for Data Stream-Based Insider Threat Detection

which became a system based on this approach more feasible
to implement in the real world.

The results demonstrated the effectiveness of the frame-
work and its feasibility of being implemented in a real-world
scenario. The retraining procedures helped to improve the
model’s adaptability to concept drifts. The retraining also
made a relevant contribution to the feasibility of the proposed
framework as it made the marked reduction of false positive
results possible. The one-class algorithms seem to be a better
option to compound a solution for insider threat detection.
The possibility of training the model with only one of the
classes in a semi-supervised way allowed us not to rely on
using labeled samples. In the present case, ISOF was the
algorithm that best adapted to the problem. This algorithm
achieved a relative balance between the recall metrics of the
benign (0.80) and malign (0.78) classes adapting better to
the accentuated imbalance present in the dataset. Although
the implemented model did not detect all malicious samples,
it did detect malicious activities from all scenarios imple-
mented in the dataset using the ISOF algorithm. The model
also generated alarms for all malicious users in the data
stream. In most cases, the model identified the malicious
users in their first malicious activity.

In the case of insider threat detection, the problem is
how to obey contamination-free samples. One option may
be only using data considered benign by network security
solutions. However, even in these cases, we would not be
protected against exploiting zero-day vulnerabilities. This
fact motivated the deliberate inclusion of contamination in the
experiments carried out in this article. This study simulates a
data stream with the ITD to supply a limitation of generating
a data stream that makes sense for insider threat detection.
In other domains may be easy to create aleatory test datasets,
but this situation does not fit in this study context. Having
said that, there is still room for improvement, such as using
other types of algorithms and discovering new attributes that
can increase the representativeness of the dataset, thereby
reducing the occurrence of false positive results. Although,
if we compare the estimated values for losses related to
attacks performed by insider threats and the cost of checking
for false results, we will see that checking for false results
turns out to be worth it [11]. The next step is to test the model
with real-life and actual data.

REFERENCES

[1] Cybersecurity e Infrastructure Security Agency. (Nov. 2020). Insider
Threat Mitigation. [Online]. Available: https://www.cisa.gov/insider-
threat-mitigation

[2] C. Soh, S. Yu, A. Narayanan, S. Duraisamy, and L. Chen, ‘‘Employee
profiling via aspect-based sentiment and network for insider threats
detection,’’ Exp. Syst. Appl., vol. 135, pp. 351–361, Nov. 2019, doi:
10.1016/j.eswa.2019.05.043.

[3] I. A. Gheyas and A. E. Abdallah, ‘‘Detection and prediction of insider
threats to cyber security: A systematic literature review and meta-
analysis,’’ Big Data Analytics, vol. 1, no. 1, p. 6, 2016.

[4] Proofpoint Institute. (2022). Cost of Insider Treat, Global Report.
[Online]. Available: https://www.proofpoint.com/us/resources/threat-
reports/cost-of-insider-threats

[5] J. Kim, M. Park, H. Kim, S. Cho, and P. Kang, ‘‘Insider threat detection
based on user behavior modeling and anomaly detection algorithms,’’
Ph.D. dissertation, School Ind. Manag. Eng., Korea Univ., Seoul, South
Korea, 2019.

[6] I. Homoliak, F. Toffalini, J. Guarnizo, and Y. Elovici, ‘‘Insight into insiders
and IT: A survey of insider threat taxonomies, analysis, modeling, and
countermeasures,’’ ACM Comput. Surveys, vol. 99, no. 99, pp. 1–40, 2017.

[7] D. C. Le and A. N. Zincir-Heywood, ‘‘Machine learning based insider
threat modelling and detection,’’ in Proc. IFIP/IEEE Symp. Integr. Netw.
Service Manage. (IM), Apr. 2019, pp. 1–6.

[8] N. Saxena, E. Hayes, E. Bertino, P. Ojo, K. K. R. Choo, and P. Burnap,
‘‘Impact and key challenges of insider threats on organizations and critical
businesses,’’ Electronics, vol. 9, no. 9, pp. 1–29, 2020.

[9] S. J. Berdal, ‘‘A holistic approach to insider threat detection,’’ M.S. thesis,
Dept. Inform., Fac. Math. Natural Sci., Univ. Oslo, Oslo, Norway, 2018.

[10] B. Böse, B. Avasarala, S. Tirthapura, Y. Chung, and D. Steiner, ‘‘Detecting
insider threats using RADISH: A system for real-time anomaly detection
in heterogeneous data streams,’’ IEEE Syst. J., vol. 11, no. 2, pp. 471–482,
Jun. 2017.

[11] P. Chattopadhyay, L. Wang, and Y. Tan, ‘‘Scenario-based insider threat
detection from cyber activities,’’ IEEE Trans. Computat. Social Syst.,
vol. 5, no. 3, pp. 660–675, Sep. 2018.

[12] A. J. Hall, N. Pitropakis, W. J. Buchanan, and N. Moradpoor, ‘‘Predicting
malicious insider threat scenarios using organizational data and a hetero-
geneous stack-classifier,’’ in Proc. IEEE Int. Conf. Big Data (Big Data),
Dec. 2018, pp. 5034–5039.

[13] T. E. Senator, H. G. Goldberg, A.Memory,W. T. Young, B. Rees, R. Pierce,
D. Huang, M. Reardon, D. A. Bader, E. Chow, I. Essa, and J. Jones,
‘‘Detecting insider threats in a real corporate database of computer usage
activity,’’ in Proc. 19th ACM SIGKDD Int. Conf. Knowl. Discovery Data
Mining, Aug. 2013, pp. 1393–1401.

[14] P. Parveen, N. McDaniel, Z. Weger, J. Evans, B. Thuraisingham,
K. Hamlen, and L. Khan, ‘‘Evolving insider threat detection streammining
perspective,’’ Int. J. Artif. Intell. Tools, vol. 22, no. 5, pp. 1–24, 2013.

[15] J. Noble and N. Adams, ‘‘Real-time dynamic network anomaly detection,’’
IEEE Intell. Syst., vol. 33, no. 2, pp. 5–18, Mar. 2018.

[16] G. Gavai, K. Sricharan, D. Gunning, J. Hanley, M. Singhal, and
R. Rolleston, ‘‘Supervised and unsupervised methods to detect insider
threat from enterprise social and online activity data,’’ J. Wireless Mobile
Netw., Ubiquitous Comput., Dependable Appl., vol. 6, no. 4, pp. 47–63,
2015.

[17] A. Tuor, S. Kaplan, B. Hutchinson, N. Nichols, and S. Robinson, ‘‘Deep
learning for unsupervised insider threat detection in structured cybersecu-
rity data streams,’’ in Proc. AAAIWorkshop Tech. Rep., 2017, pp. 224–234.

[18] J. Gama, Knowledge Discovery from Data Streams, 1st ed., V. Kumar, Ed.
Boca Raton, FL, USA: Chapman & Hall/CRC, 2010.

[19] H. M. Gomes, J. P. Barddal, F. Enembreck, and A. Bifet, ‘‘A survey on
ensemble learning for data stream classification,’’ ACM Comput. Surveys,
vol. 50, no. 2, pp. 1–36, Mar. 2018.

[20] G. H. Ribeiro, ‘‘Detecção de botnets utilizando classificação de fluxos
contínuos de dados,’’ M.S thesis, Faculdade Computação, Universidade
Federal de Uberlândia, Brazil, 2020.

[21] J. M. C. de Sá, A. L. Rossi, G. E. Batista, and L. P. Garcia, ‘‘Algorithm rec-
ommendation for data streams,’’ in Proc. 25th Int. Conf. Pattern Recognit.
(ICPR), Jan. 2021, pp. 6073–6080.

[22] G. Silowash, D. Cappelli, A. Moore, R. Trzeciak, T. Shimeall, and
L. Flynn, ‘‘Common sense guide to mitigating insider threats, 4th edition,’’
Carnegie Mellon Univ., Softw. Eng. Inst., Pittsburgh, PA, USA, Tech.
Rep. CMU/SEI-2018-TR-010, Dec. 2012.

[23] M. N. Al-Mhiqani, R. Ahmad, Z. Z. Abidin, and W. Yassin, ‘‘A review
of insider threat detection: Classification, machine learning techniques,
datasets, open challenges, and recommendations,’’ Appl. Sci., vol. 10, no.
15, p. 5208, 2020.

[24] J. Glasser and B. Lindauer, ‘‘Bridging the gap: A pragmatic approach to
generating insider threat data,’’ in Proc. IEEE Secur. Privacy Workshops,
May 2013, pp. 98–104.

[25] L. Liu, O. De Vel, Q. Han, J. Zhang, and Y. Xiang, ‘‘Detecting and
preventing cyber insider threats: A survey,’’ IEEE Commun. Surveys Tuts.,
vol. 20, no. 2, pp. 1397–1417, 2nd Quart., 2018.

[26] B. Krawczyk and M. Woz̀niak, ‘‘One-class classifiers with incremental
learning and forgetting for data streams with concept drift,’’ Soft Comput.,
vol. 19, no. 12, pp. 3387–3400, Dec. 2015.

70572 VOLUME 11, 2023

http://dx.doi.org/10.1016/j.eswa.2019.05.043


R. B. Peccatiello et al.: Applying One-Class Algorithms for Data Stream-Based Insider Threat Detection

[27] B. Kurlej and M. Wozniak, ‘‘Active learning approach to concept drift
problem,’’ Log. J. IGPL, vol. 20, no. 3, pp. 550–559, Jun. 2012, doi:
10.1093/jigpal/jzr011.

[28] D. W. Kim, S. S. Hong, and M. M. Han, ‘‘A study on classification of
insider threat using Markov chain model,’’ KSII Trans. Internet Inf. Syst.,
vol. 12, no. 4, pp. 1887–1898, 2018.

[29] H. Zhang, W. Liu, S. Wang, J. Shan, and Q. Liu, ‘‘Resample-based ensem-
ble framework for drifting imbalanced data streams,’’ IEEE Access, vol. 7,
pp. 65103–65115, 2019.

[30] K. Kendall, ‘‘A database of computer attacks for the evaluation of intru-
sion detection systems,’’ M.S. thesis, Massachusetts Insitute Thechnology,
Cambridge, MA, USA, Jun. 1999.

[31] A. Bifet, G. Holmes, B. Pfahringer, R. Kirkby, and R. Gavaldà, ‘‘New
ensemblemethods for evolving data streams,’’ inProc. 15th ACMSIGKDD
Int. Conf. Knowl. Discovery Data Mining, Jun. 2009, pp. 139–147.

[32] S. Yuan and X. Wu, ‘‘Deep learning for insider threat
detection: Review, challenges and opportunities,’’ Comput.
Secur., vol. 104, May 2021, Art. no. 102221. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0167404821000456

[33] P. Liashchynskyi and P. Liashchynskyi, ‘‘Grid search, random search,
genetic algorithm: A big comparison for NAS,’’ 2019, arXiv:1912.06059.

[34] F. T. Liu, K.M. Ting, and Z.-H. Zhou, ‘‘Isolation forest,’’ in Proc. 8th IEEE
Int. Conf. Data Mining, Dec. 2008, pp. 413–422.

[35] S. Howard, ‘‘The elliptical envelope,’’ 2007, arXiv:math/0703048.
[Online]. Available: https://arxiv.org/abs/math/0703048

[36] M. M. Breunig, H.-P. Kriegel, R. T. Ng, and J. Sander, ‘‘LOF: Identifying
density-based local outliers,’’ in Proc. ACM SIGMOD Int. Conf. Manage.
Data. New York, NY, USA: Association for Computing Machinery, 2000,
pp. 93–104, doi: 10.1145/342009.335388.

[37] L. Breiman, ‘‘Random forests,’’ Mach. Learn., vol. 45, no. 1, pp. 5–32,
2001.

[38] S. S. Khan and M. G. Madden, ‘‘One-class classification: Taxonomy
of study and review of techniques,’’ Knowl. Eng. Rev., vol. 29, no. 3,
pp. 345–374, Jun. 2014.

[39] M. Vakili, M. Ghamsari, and M. Rezaei, ‘‘Performance analysis and
comparison of machine and deep learning algorithms for IoT data clas-
sification,’’ 2020, arXiv:2001.09636.

[40] A. Rossi, ‘‘Meta-aprendizado aplicado a fluxos contínuos de dados,’’
Ph.D. dissertation, Instituto de Ciências Matemáticas e de Computação,
Univ. de São Paulo, São Paulo, Brazil, 2014.

[41] R. H. Moulton, H. L. Viktor, N. Japkowicz, and J. Gama, ‘‘Contextual one-
class classification in data streams,’’ 2019, arXiv:1907.04233.

RAFAEL BRUNO PECCATIELLO received the
Graduate degree in information systems, in 2010,
and he is currently applying for a master’s degree
with the Department of Computer Science, Uni-
versity of Brasilia (UnB). He has experience in
subjects related to cyber defensive and offensive
operations. His research interests include security
information, digital forensics, and cyber security.

JOÃO JOSÉ COSTA GONDIM received theM.Sc.
degree in computing science from the Imperial
College, University of London, in 1987, and the
Ph.D. degree in electrical engineering from the
University of Brasilia (UnB), in 2017. He is cur-
rently an Assistant Professor with the Department
of Computer Science (CIC), UnB, where he is also
a tenured member of the Faculty of Engineering.
His research interests include networks, informa-
tion, and cyber security.

LUÍS PAULO FAINA GARCIA received the Grad-
uate degree in computer engineering, in 2010, and
the Ph.D. degree in computer science from the
University of São Paulo, in 2016. In 2017, his
thesis was ranked among the best by the Brazilian
Computer Society and received the CAPES Award
for the best thesis in computer science in the coun-
try. He is currently an Assistant Professor with the
Department of Computer Science, University of
Brasília. He has experience in subjects related to
noise detection, meta-learning, and data streams.

VOLUME 11, 2023 70573

http://dx.doi.org/10.1093/jigpal/jzr011
http://dx.doi.org/10.1145/342009.335388

