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ABSTRACT The number of brain tumor cases has increased in recent years. Therefore, accurate diagnosis
and treatment of brain tumors are extremely important. Accurate detection of tumor regions is difficult, even
for experts, because brain tumor images are low-contrast, noisy and contain normal tissue-like structures.
Therefore, in this study, a new convolution-based hybrid model was proposed to perform segmentation with
high accuracy. In the proposed model, instead of applying convolution to the whole image, convolution was
applied to the ROI regions detected in different modalities. With this approach, it was determined that the
processing cost is reduced, and the performance is increased. The proposed model was tested on BraTS
2020, BraTS 2019, and BraTS 2018 datasets. The proposed method in the study was also compared with
SOTA methods using the same dataset. As a result of the comparison, dice scores of 92.80%, 93.10%, and
91.90% were respectively obtained for whole tumors, enhance tumors and tumor nuclei in the images in the
BraTS 2020 dataset. With these results, the proposed model can compete with many models in the literature
using the same datasets. The proposed model is a newmethod that can be preferred in different segmentation
applications due to its performance success and especially the advantage of the pre-processing structure.

INDEX TERMS Image segmentation, deep learning, tumors, convolution, deconvolution.

I. INTRODUCTION
Medical imaging systems are the leading decision support
systems that play an important role in medical treatment and
diagnosis. These systems are widely used in the detection of
lesioned areas, such as tumors. Image processing methods
are used in the general structure of medical imaging sys-
tems. Image processing methods used in medical imaging
systems are widely used in the pre-processing of lesioned
areas, determination of their distinctive features, selection,
and classification [1]. One of the preferred methods among
image processing methods is the segmentation method. The
Region of Interest (ROI) can be detected on the image using
the segmentation method. Image segmentation, which is used
in many different imaging applications, has a vital role in
analyzing and interpreting medical images [2]. Magnetic
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Resonance Imaging (MRI) and Computed Tomography (CT)
imaging technologies are used in many different medical
applications, from tumor detection to disease classification.

MRI is an advanced method based on nuclear magnetic
resonance. MRI provides the flexibility to adjust many
parameters to obtain tissue resolution, sharpness, and dif-
ferent anatomical features [3], [4]. It also provides great
convenience for patients. Because MRI is a non-invasive
method. InMRI, powerful magnetic waves and radio frequen-
cies between 1.5T and 3T are used to visualize the internal
structure of the body and tissues [3]. These magnetic waves
and radio frequencies do not damage the organ being imaged
with high ionization and radiation effects. Therefore, it is an
actively used method in brain tumor segmentation.

Image segmentation methods are heavily needed in
medical decision support systems developed to assist
decision-makers using these technologies. Experts interpret
the difference between normal and diseased tissue using
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images from MRI and CT systems. But the need for decision
support systems is growing every day to minimize the poten-
tial problems caused by high workloads and human error.
With the increase in cancer cases today, the segmentation
of diseased tissue has become an extremely important issue.
Considering that patients with malignant brain tumors have a
very short life expectancy, it is extremely significant to detect
and segment ROI regions with tumors as early as possible and
with high accuracy [5]. These situations have been the main
motivation for the study.

Tissue deterioration can be seen as a result of neoplastic
and aggressive growth of cells in the brain. These tissue
disruptions are also called lesions or neoplasia. In general,
brain tumors are classified as primary and metastatic tumors.
Gliomas, which are primary brain tumors, are composed of
glial cells [6]. Metastatic brain tumors are tumors that migrate
to the brain from different parts of the body through the
bloodstream. The use of segmentation methods in MRI and
CT images, which are also used in the detection of these brain
tumors, is an important support that can help decision-makers
make decisions with high accuracy. As a result, an accurate
glioma segmentation can increase the survival rate of patients,
helping specialists from surgery planning to postoperative
observations. However, there are some difficulties in the seg-
mentation processes [7], [8].

One of the main difficulties encountered in brain tumor
segmentation arises from the choice of contrast used in MRI
scans. Because contrast selection is affected by clinical dif-
ficulties. What is meant by clinical difficulties here is the
requirement of local varying relaxation applied to the area to
be MRI scanned. However, this process cannot be applied in
brain tumor segmentation applications in general. In addition,
the selection of the optimal imaging plane is another clinical
difficulty in contrast selection.

Factors affecting the quality of MRI scans are low contrast,
noise in the image, contrast-to-noise ratios, image resolution,
and scan time [9]. The scale of voxel values in MRI is not
standardized. Therefore, the same tumor cells can have very
different gray level values depending on the type of MR
scanner (7, 3, or 1.5 Tesla) and protocol (field of view value,
voxel resolution, gradient power, b0 value, etc.) [10], [11].
In addition to all these, in some cases, MRI results of the
tumor region and MRI results of the healthy region may
show similar characteristics. Especially in brain tumor seg-
mentation, the use of spatial information as the primary tool
(e.g., template matching or image warping), as suggested
for normal tissue segmentation, is not appropriate. This is
because there are no a priori spatial criteria for changes that
can be easily applied [12].

Among patients with glioma brain tumors, the size, mor-
phology, and location of gliomas are among the reasons
that make the segmentation process difficult. In addition
to these reasons, many small artifacts found in the MRI
scan make the tumor classification process difficult because
they disrupt the balance between the lesion region and its
background [13].

This is also the main problem faced by experts working
on the subject. Because the detection of inhomogeneous
junctions of tumor regions complicates the classification
of tumors such as glioma brain tumors. Besides, tumors
are segmented as Enhancing Tumor (ET), Edema, and
Non-Enhancing Tumor (NET) / Necrotic Tumor Core (NTC),
as shown in Figure 1 [14]. In addition, the densities of
subregions of some tumor types may overlap with healthy
tissues. Images in different modalities are used to solve these
problems. The modalities frequently used in the literature are
T1, T1ce, T2, and FLAIR modalities presented in Figure 1,
respectively [15].

Images in the T1 modality use short echo and repetition
time, while images in the T2 modality use long echo and
repetition time. Images in the FLAIR modality are a T2
modality-based pulse sequence that overrides Cerebrospinal
Fluid (CSF) and can therefore distinguish between abnor-
mality and CSF. In FLAIR modality images, gray matter is
brighter than white matter. The tumor regions observed in the
brain have a higher intensity in FLAIR and T2 modalities
than other parts of the brain. The FLAIR modality is also
used to obtain information about fiber density in different
applications. Especially in the FLAIR modality, normaliza-
tion is recommended to remove the anisotropic effect and
make the data more uniform. The T1ce modality is created by
infusing a contrast substance called Gadolinium into the T1
modality. In the T1cemodality, there is contrast accumulation
in the lesion areas on the tissues. Therefore, it makes that the
area appear brighter. Because of this feature, it is frequently
preferred, especially in tissue classification applications.

However, due to MRI devices and protocols in different
hospitals, significant changes may be observed in the gray
values of abnormal tissues. Therefore, in the study, a deep
learning-based segmentation model was developed based on
T1, T2, T1ce, and FLAIR modalities. This is also seen in the
BraTS 2020, 2019, and 2018 datasets, which are benchmark
datasets in the literature. In these datasets, the gray values
of abnormal tissues from different hospitals’ machines with
various MRI protocols vary [11], [16], [17].

Therefore, ancillary decision support systems that can seg-
ment brain images are urgently needed. As a result of the
widespread use of deep learning and artificial intelligence
applications in the literature, it is aimed to apply segmentation
processes, which are frequently used in image processing
applications, on brain MRI. Although it has been determined
that similar methods are used in the literature research on
the subject, it is essential to increase the success of the
segmentation method used. For this reason, a new model has
been proposed based on the UNet architecture, which is used
as a basis in segmentation applications. But in general, there
are semantic gaps between the encoder and decoder in UNet
architecture. In addition, it shows poor performance in images
with fined details.

The proposed model aims to increase the segmentation
success by eliminating this disadvantage of the UNet archi-
tecture. In accordance with this purpose, firstly, a new data
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FIGURE 1. Four different MRI modalities and ground truth with corresponding manual segmentation annotation.

pre-processing strategy is proposed to remove redundant
space outside the ROI region. With the proposed strategy,
firstly, the location of the tumor was determined on the image,
and the segmentation model recommended only in the rele-
vant area was applied. Thus, the effect of many small artifacts
that can be found throughout the image is reduced, and the
negative effect on the classification success is eliminated.

As a result of reducing the size of the ROI, the overfitting
problems frequently mentioned in the literature have been
avoided [18]. Furthermore, the ResUNet+model is proposed
to perform segmentation by extracting effective features after
the pre-processing step.

Convolution operations were applied in blocks so that
the proposed model could be effective against differences
in tumor location, borders and size. The convolution oper-
ations preferred in this structure are also found in strong
deep-learning models used in the literature. In the proposed
model, different convolution blocks used in powerful deep
learning models in the literature are combined with a hybrid
structure.

The main contributions of the model proposed in this study
to the literature are briefly summarized below.

1) In the literature, a new pre-processing method has been
proposed, different from the pre-processing stages used
in brain tumor segmentation studies. In the proposed
method, using different modalities images, the tumor,
and ET region are more prominent.

2) The semantic gap in UNet models and the low perfor-
mance in fine detail images have been eliminated with
a proposed hybrid method based on residual block.

3) In the study, it was found that applying the proposed
model only on ROI instead of applying it to the whole
image increased the success performance.

4) The proposedmethod is comparatively tested on BraTS
2020, BraTS 2019, and BraTS 2018 datasets, which
are considered reliable for brain tumor segmentation
in the literature. The comparison results show that the
proposedmodel achieves higher classification accuracy
than the state-of-the-art methods in the literature.

The remainder of this paper is organized as follows. Stud-
ies involving state-of-the-art techniques and technologies in
brain tumor segmentation are described in Section II. The
pre-processing method and datasets applied in the study are

presented in detail in Section III. The proposed architecture
and other architectures used in the study with implementation
details, and evaluation metrics are explained in Section IV.
Results and discussion are presented in Section V. The paper
is concluded in Section VI.

II. RELATED WORKS
Recently, deep learning-based methods based on automatic
feature extraction for brain tumor segmentation have attracted
great interest and became a new research topic in the field
of medical imaging [7]. For this reason, U-shaped archi-
tectures have lately been developed and used in medical
image segmentation applications [19]. Walsh et al. have
developed a lightweight UNet application for brain tumor
segmentation. They tested their application on the BITE
dataset and claim the results are promising. In their study,
they achieved an intersection-over-union (IoU) 89% suc-
cess rate [20]. Ronneberger et al. [19] developed a U-shaped
segmentation model by sequentially applying convolutional
operations. In themodel they developed, the features obtained
at the encoder stage for the segmentation process are com-
bined and reassembled in the decoder section. However, as a
result of this process, semantic gaps may occur. In order to
eliminate these semantic gaps, some improvements have been
suggested in the literature by using different skip connec-
tions [21], [22].

Zhou et al. [23] developed a convolution-based segmen-
tation model called UNet++, which includes dense skip
connections to meet the need for medical image segmen-
tation. In the model they developed, the skip connections
they used showed better performance than the UNet model.
However, it contains too many parameters compared to the
UNet model used. Therefore, in ResUNet+ model, simpler
skip connections are preferred compared to UNet++ model.

Cao et al. [24] developed the DenseUNet model to increase
the success of the UNet segmentation model and to over-
come the vanishing gradient problem. In this UNet-based
model, they used dense blocks instead of convolution lay-
ers. They tested their model on ISBI 2012 EM dataset
without any post-processing module or pre-training. In the
ResUNet+ model, residual blocks are used together with
convolution layers to improve the discrimination in feature
maps. In addition, node structures were added between the
encoder-decoder.
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Liu et al. [25] preferred pre-trained block structures in
the structure of the segmentation model to obtain better
features than the U-shaped segmentation model found in
the literature. In the model they created, 3D sliced images
were used. Qamar et al. [26] proposed a new UNet model
that uses inception module constructs to segment brain
tissues that are highly desirable to divide in the clinical set-
ting. Alom et al. [25] similarly added residual and recurrent
modules to the UNet segmentation model. More specifi-
cally, Zhang et al. [27] developed the residual attention UNet
(AResU-Net), which simultaneously deploys the attention
mechanism and residual units to the UNet for an end-to-
end 2D brain tumor segmentation network. Huang et al.
focused on feature enhancement. Therefore, they collected
multi-scale features in their study [28]. Zhang et al. [29]
developed a new UNet model based on a swin transformer to
fully utilize the spatial and channel information of the image.
Wang et al. [30] proposed to combine the encoder-decoder
structures used in the U-Net structure into repetitive loop
unit structures. Zhuang et al. [31] developed a model capable
of capturing sensitive features. In the model they developed,
they designed multiple encoder-decoder branch pairs.

Although these studies presented in the literature are
very important studies in terms of eliminating the defi-
ciencies of classical UNet models, images can be under or
over-segmented due to the structure of convolution oper-
ations and medical images. In addition, developing the
network model only on a certain dataset to obtain stronger
features, and the representation may reduce the generaliza-
tion performance of the model. This can cause irreparable
errors, especially in medical images. As a result, deep
learning-based segmentation models in the literature need to
be both improved and tested for their accuracy on different
datasets [14].

For this reason, in the developed model, possible seman-
tic gaps that may arise from the features spread in the
encoder section are minimized. In addition, the structure
placed between the encoder and decoder is aimed to prevent
the semantic gap that may occur. Thus, the main advantage of
the proposed model is to reduce semantic gaps and improve
segmentation performance by using new convolution blocks.
For this reason, in this study, a new model was developed to
represent more powerful features and a test was performed on
different datasets.

III. MATERIAL
In this section, the BraTS dataset, which is a public dataset,
is focused on in order to make an accurate comparison of
the study with different methods in the literature. In the
next subsection of the study, detailed information about the
firstly used dataset is given. Afterward, the pre-processing
performed on this dataset is presented.

A. DATASET
Brain tumor segmentation is a difficult and complex problem
due to the low quality of images obtained from imaging

systems and the variability of intensity regions. For this rea-
son, pre-processing was applied to improve the quality of the
images to be used in the study. In the study, BraTS 2020,
BraTS 2019, and BraTS 2018 datasets were used as training
and testing material on the proposed model and UNet model.

TheMRI scan images in the BraTS 2020, BraTS 2019, and
BraTS 2018 datasets were obtained from a total of 19 differ-
ent medical institutions with different MRI scanners. BraTS
2020, BraTS 2019, and BraTS 2018 datasets contain two
different datasets: High-grade glioma (HGG) and low-grade
glioma (LGG). The BraTS 2020 dataset includes 369 patient
images with four modalities in which tumor areas weremanu-
ally segmented by experts. There are 125 patient images with
four modalities as validation data. There are 335 training data
with four modalities in the BraTS 2019 dataset. Similarly,
there are 125 patient images with four modalities for vali-
dation data. In the BraTS 2018 dataset, there are 285 training
data and 66 validation images of four modalities [32], [33].

Details about the number of images in the datasets used
are presented in Table 1. In practice, these data were divided
into two groups training and testing according to the cross-
validation 5 value. The image in each dataset has dimensions
of 240 × 240×155. The third dimension of the images used
refers to the slice layer.

TABLE 1. Parameters of the used datasets [14].

In the study, four different modalities of images were pre-
ferred, namely T1, T1ce, T2, and FLAIR. In the literature,
the T1ce method is generally used in the detection of tumor
nuclei because it is brighter than other modalities. Since
FLAIR and T2 modalities have higher density, the transition
between tumor and normal tissues is more pronounced [34].

B. PRE-PROCESSING
One of the biggest challenges in MRI analysis is the artifacts
caused by thermal noise and magnetic fields. In addition,
small artifacts caused by patient movements during the scan-
ning process can also occur. Therefore, noise in MRI scans
can distort fine details [35]. Thus, subtle edges in tumor
images may become blurred, and resolution may decrease.
As a result, the number of discriminative features is reduced.
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The performance of CNN-based approaches is also signifi-
cantly reduced [36].

For this reason, pre-processing processes such as noise
removal have started to be the subject of interest in studies to
be conducted with MRI in the literature [37], [39]. It is obvi-
ous that the application of this subject in brain segmentation
will increase performance.

Therefore, unlike many studies in the literature that use the
whole image, we focus on the detection of the ROI region by
pre-processing. Thus, it was aimed to exclude the non-ROI
regions from the study and to prevent the factors that nega-
tively affect the success. With this strategy, we don’t need to
use a very deep convolutional model, and we don’t need to
make convolutions on the whole image unnecessarily. As a
result, it is aimed to reduce both the computational cost and
memory usage compared to the classical method in which the
whole image is processed.

For this reason, the pre-processing is primarily carried out
in the study and this process is carried out in nine steps in
total. When the images used in the study were examined,
it was determined that the values in the image matrix were
between 0 and 1224. Therefore, in the first step, all values
in the image matrix are reduced to the range 0-1 using (1).
An example image obtained after applying this process is
presented in Figure 2.

Inorm =
I − Imin

Imax − Imin
(1)

In equation (1), I represents any image in four different
modalities, Imin represents the smallest value and Imax rep-
resents the largest value in this model [40].

The second step of pre-processing is to detect the
ROI region of interest in the image. For this, in addi-
tion to morphological processes, a different pre-processing
method from the literature has been adopted. In this
method;

1) The image in the FLAIR modality is taken as input in
Figure 3 (a).

2) Since all brain images and tumor regions are elliptical-
like structures, a disk-shaped structural element was
chosen in the study, and this element has hovered over
the figure. In the study, a 3 × 3 window size disk and
strel structure used for morphological processes were
applied.

3) Afterward, highHat and lowHat transformation func-
tions were applied, respectively, in order to obtain a
clear image by reducing the effect of uneven illumi-
nation. At this stage, imtophat and imbothat functions,
which are Matlab built-in functions, which are also
included in the literature, are used in the study [41].
This process is performedwith a 3-radius structural ele-
ment using high line (imtophat) and low line (imbothat)
transformation functions. The imtophat function is
used for light-colored objects on a darker background,
and imbothat for non-dark light-colored regions on
a lighter background [42]. Imtophat is obtained by

subtracting the opened image from the original image
using the morphological opening process. Imbothat,
on the other hand, is obtained as a result of subtracting
the image calculated with the closing operation from
the original image. Both functions, it is aimed to pre-
vent the negative effects caused by irregular lighting.
The operation performed in the third step is presented
in (2) [43].

Iout = [Iin ⊕ (Iin1se)] ⊙ (Iin∇se) (2)

Iin in (2) denotes the input image, se denotes the struc-
tural element specified in the second step, 1 imtophat
operation, ∇ imbothat operation, ⊕ addition operation
⊙ denotes subtraction. The result of Iin image and
imtophat operation is presented in Figure 3 (b), and the
result of imbothat operation is presented in Figure 3
(c). Iout also represents the filtered image obtained as
a result of the (2) operation.

4) In the next step, the 25 × 25 floating window median
filtering method is used to reduce the noise in the
FLAIR modality.

5) In order to increase the effect of the background in the
obtained image, the image obtained in the fourth step
and the FLAIR modality image are multiplied again on
an element basis in Figure 3 (d).

6) In this step, a two-dimensional 150×150 average filter
design is made. The designed filter is applied to the
FLAIR image used in the first step. The result obtained
is subtracted from the reverse of the FLAIR image in
Figure 3 (e).

7) The image obtained in the fifth step is subtracted from
the image obtained in the sixth step. Thus, the back-
ground is removed from the image and the ROI region
is more pronounced in Figure 3 (f).

8) The image obtained in the seventh step is divided into
the FLAIR image of the first step on a pixel basis.
Thus, the ROI region in the brain image is made more
prominently in Figure 3 (g).

9) In the last step, a disk-shaped 3-radius structural ele-
ment is created again, similar to the one in the second
step, and then applied with the imclose process. Thus,
small spots that may be noise on the image are cleared
from the image in Figure 3 (h).

After detecting the ROI regionwith the tumor on the image,
this region is converted to binary format and its coordinates
were calculated. Afterward, the region with the same coordi-
nate in four different modalities was determined as the image
region to be used in the study, as shown in Figure 4.

In the images in the Ground Truth (GT) region, there is a
total of 4 different classes, including the healthy class. The
study, it is aimed to classify Tumor Core (TC), Enhancing
Tumor (ET), andWhole Tumor (WT) regions. For this reason,
GT images with ROI regions of each relevant area in the
GT images were created to use specifically in the proposed
model.
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FIGURE 2. Four different modalities and ground truth mask images in the datasets used in the article are presented. In general, healthy tissues can be
differentiated more clearly in the T1 modality. In the T1ce modality, tumor borders are slightly more pronounced than in other modalities. In the T2
modality, edema tumor areas are more prominent. In the FLAIR modality, the boundaries between the cerebrospinal fluid region and edema tumor
regions are clearer. Ground truth, on the other hand, refers to the image obtained by manually marking the WT, ET and TC regions by experts.

FIGURE 3. Figure 3 (a) is presented a slice view of a 3D MRI image from
the BraTS 2018 dataset in the FLAIR model. This image is also used as
sample input data in the pre-processing step. The results of the imtophat
and imbothat operations in step 3 are shown in Figure 3 (b) and Figure 3
(c), respectively. The result of the pre-processing method at step 5 is
shown in Figure 3 (d), the result at step 6 is shown in Figure 3 (e), the
result at step 7 is shown in Figure 3 (f), the result at step 8 is shown in
Figure 3 (g), and the final result is shown in Figure 3 (h).

IV. METHODS
In the literature, the UNet model is one of the most popular
architectures preferred for biomedical image segmentation.
One of the main reasons why the UNet model is preferred
is its ability to extract local and global features at varying
scales. For this reason, the UNet model is first mentioned
in this study. Then, ResUNet+ model is presented in detail
by making improvements to this model. In the next step, the
implementation of the application is shared in detail. In the
last step, the performance criteria used to measure the success
of the systems are presented. Thus, the difference between the
proposedmodel and the inspiredmodel is presented in amuch
clearer way.

A. UNET
UNet is one of the most widely used CNN-based segmenta-
tion models in the literature for biomedical semantic image
segmentation. The main reason behind the widespread use
of UNet is its ability to extract local and global features at

FIGURE 4. The coordinates of the center point of the ROI region obtained
from the images in modalities are expressed by Xcj , Ycj . The width of the
ROI is represented by Wobject and the height is represented by Hobject .

varying scales. In addition, it can transfer the feature map of
each encoder level to the decoder level with skip connections.
As a result, the pixel-based classifier can increase its perfor-
mance level by processing the low-level layer, which contains
information about the edges, and the upper-level layer, which
contains information about the low-level layer, together.
In image segmentation based on the CNN model, automatic
feature extraction is performed in the first layers. In the next
layers, segmentation masks are created by classifying the
analyzed pixels according to objects or backgrounds. In the
CNN-based segmentation approach, the image is divided into
small patches.

To estimate the class labels of these patches, CNN is
applied to each patch. Therefore, patch-based image seg-
mentation is performed in the CNN-based approach. One
of the leading CNN-based segmentation models used in the
literature is the UNet segmentation model.
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FIGURE 5. a-) UNet architecture developed by Ronneberger et al. [19]. b-) The input images are transferred to the encoder structure by convolutions as
shown in Figure 5 (b) . After applying different convolution operations in the encoder structure, it is transferred both directly to the decoder structure at
the same level itself and a lower layer by downsampling. In the decoder structure of UNet, both the data from the lower layer by upsampling and the
data from the encoder are processed to produce the result.

The UNet segmentation model, as shown in Figure 5 (a),
consists of an expanding and contracting path called encoder
and decoder. The overall structure of the network resembles
a classical convolution-based architecture but without a fully
connected layer. Starting from the first layer, the 3 × 3 con-
volution process is repeatedly applied to the incoming image.
It is then passed to the ReLU activation function. This process
is shown in Figure 5 (b) and (3).

bx,y,l = ReLU

∑
i∈{−1,0,1}
j∈{−1,0,1}
c∈{1,...,C}

wi,j,k,l .αx+i,y+j,k + cl

 (3)

In equation (3), w is the weight of the matrix used in the
convolution process, α is the input feature matrix, c is the bias
value, and b is the newly created convolution matrix. The 2×

2max pooling process with a stride value of 2 is applied to the
value obtained as a result of (3). This process is called down-
sampling. Repeating the downsampling process down to the
lowest layer is called the encoder process. In the encoder
stage, for each downsampling operation, the image size is
halved and the feature channels are doubled. In the decoder
block, the compressed image obtained from the encoder stage
is converted back to its original size by 2 × 2 upsampling
operations. In the upsampling process, the features from the
bottom layer are generally combined with the features from
the layers shown in Figure 5 (b). The decoder block and
encoder block are similar in structure but differ in that only
attribute fusion and max pooling is not applied to the decoder
layer. In addition, in the output layer, 1 × 1 convolution
is performed to map the feature vector to the desired num-
ber of classes. The UNet architecture created in this way
consists of 23 convolution layers in total [19]. The UNet
model, while providing great innovations in segmentation,

is computationally costly and inefficient due to overlapping
patches in the image [44]. Therefore, there is a need to
develop new segmentation models to improve the perfor-
mance of the UNet model in challenging segmentation tasks.

B. PROPOSED MODEL
Although the UNet model is used in the literature for brain
segmentation, it has some limitations. One of the main ones
is the gradient vanishing problem that occurs as the network
gets deeper. Because as the network gets deeper, the gradient
becomes almost zero in the lower layers [45]. In addition,
when creating segmentation masks in the UNet model, low-
level features and high-level features that contain information
about the boundary, edges, and location of the tumor region
are equally important. In this case, the influence of impor-
tant features may decrease whereas the value of unimportant
features may increase. This has a negative impact on segmen-
tation success. In order to improve performance metrics in
brain segmentation, the gradient vanishing problem arising
from the classical UNet structure needs to be addressed.

In general, whereas skipping connections between the
encoder and decoder is important for data transfer, down-
sampling needs to be done more deeply in order to access
more discriminative features. As a result, local details from
previous layers may be lost due to convolutional operations.

To address these issues, the ResUNet+ model is proposed.
The ResUNet+model differs from other UNet-based models
in that some modifications are made in the encoder stage
of the model to preserve low-level features and to solve the
gradient vanishing problem. For this, residual blocks are used.
Residual blocks are one of the structures that can be used to
preserve low-level features and solve the gradient vanishing
problem. For this reason, residual blocks are preferred in
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FIGURE 6. Images are first resized and then transferred to the input of the encoder structure. The proposed model structure that produces the output
data with the help of residual, node, and attention block structures in the encoder-decoder.

the encoder structure of the proposed model presented in
Figure 6. In addition, there are semantic gaps between the
encoder and decoder in the classical UNet structure [46].
To solve this problem, unlike other UNet models, new con-
nection nodes are added between the encoder and decoder.

At each node between the encoder-decoder layers in
Figure 6, the data at the same level as itself and the val-
ues from a lower layer are combined. Also, if Figure 6 is
examined carefully, besides the node structures having a tight
connection with each other, the value in a node structure
goes to also other nodes through different nodes. As a result,
the semantic gap between the encoder and decoder is filled
significantly. Thus, the created structure is transformed into
a hybrid model.

In the proposedmodel, residual blocks containing 1×1 and
3×3 convolution operations, which are presented in Figure 6,
respectively, are added to each encoder layer in order to pre-
vent the features that can be lost as a result of convolutional
operations that are generally used in UNet models. With this
process, the features are strengthened a little more before the
convolution process is applied in each layer.

However, theremay still be lost features. In order to prevent
this, nodes were added between the encoder and decoder, and
these nodes were evaluated with the features coming from
a lower layer. By means of the nodes used in this way, the
features have been moved from the lowest layer to the top
layer. In the notation of the nodes presented in Figure 6, the
first digit represents the number of layers, and the second
digit represents the node row number in that layer. As it can
be understood from here, the number of nodes in the upper

layers is more than in the lower layers. The reason for this
is that while stronger features are obtained towards the lower
layers, there are predominantly features in the upper layers,
especially in the border regions of the image, which are highly
distinctive but can be lost by convolution operations due to
their sensitive structure. More node structures are used in the
upper layers to prevent the loss of features that can be useful
among these highly distinctive sensitive features. Another
reason is that the features already obtained from the lower
layers aremoved to the upper layer with the decoder structure.
With the presented model, especially the gradient vanish-
ing problem, the gap and feature loss between the encoder
and decoder have been prevented. In this case, it positively
affected the performance of the ResUNet+ model.

C. IMPLEMENTATION DETAIL
The study was performed using Matlab 2020b on a worksta-
tion with Xeon processor (2X E5-2650), 64 GB RAM, 64
MB Cache, CUDA above 11.0, CuDNN 8.8.1, 6 GB GPU
(1060 NVIDIA) and 64-bit operating system. BraTS 2018,
2019, and 2020 datasets were used in the training phase of the
proposed model and UNet model. Training of both UNet and
ResUNet+ models was started with random weights without
using pre-trained weights.

The data was divided into two parts 80% training and
20% testing according to the cross-validation 5 value. The
images in each modality are 240×240×155 in size. The third
dimension here refers to the slice value. When the images
used in the proposed model are evaluated, segmenting the
brain tumor structure with only single-modality images is not
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TABLE 2. Some basic parameters of the proposed model.

successful enough since the boundary between WT, ET, TC,
and edema regions and healthy tissue is unclear [45]. For this
reason, in this study, firstly, pre-processing was performed on
the images to identify the relevant areas from all images and
then images with four different modalities were used. It is
important to emphasize that each modality has a significant
effect on brain tumor segmentation. When these effects are
examined, the T2 modality is used to identify edematous
tumor regions, the T1 modality is used to distinguish healthy
tissues, and the T1ce modality is used to make tumor borders
visible. In addition, the FLAIR modality is also useful in
distinguishing edema regions from cerebrospinal fluid [47].

Therefore, how to effectively integrate the feature infor-
mation of multimodal images is a hot topic in tumor
segmentation [48]. In this respect, the proposed model fills an
important gap in the pre-processing process in the literature.
This is because as shown in Figure 7, images with different
modalities are considered as separate inputs. These images
are then subjected to normalization. At the end of the nor-
malization process, the pre-processing process described in
Section III-B was performed. The pre-processing obtains the
ROI of the region where the tumor is located. After obtaining
the ROI, the rest of the processing was performed in five steps
as shown in Figure 7.

In the first step, the ROI region of the T1ce modality is
used. In the second step, the FLAIR and T2 modalities are
multiplied element-wise and then normalized again and used
as input for the proposed model. In the third step, the ROI
region of the T1 modality is used as input to the proposed
model. There is one attention module in the fourth step. The
task of this module is to combine the images from different
modalities in steps first, second, and third. Thus, instead of
extracting feature information for all tumor regions through
a single modality, feature information is extracted by using
the T1 modality for non-enhancing tumors, FLAIR and T2
modality for enhancing tumors, and T1 modality for edema,
and these features are combined.

In the fifth step, the three-segmented regions are found
together on the resulting image. The segmentation success
was thenmeasured by using evaluationmetrics on the images.

In order to determine the best combination of hyperparam-
eters used in the proposed model, a series of experimental
studies, were carried out. At the beginning of the exper-
imental work, small filters were used to collect a lot of
local information. Then the size of these filters was grad-
ually increased. The learning rate was gradually decreased,
starting with the largest value. This empirical approach aims
to approach the global minimum point. The hyperparameter
values used during the training of the model are generally
presented in Table 2.

D. EVALUATION MEASURE
Brain tumor segmentation is commonly used in the literature
to segment the WT region [34]. However, brain tumor seg-
mentation is concerned with separating the WT region from
the sub-regions of the tumor, namely the TC and ET regions.
There are only a limited number of studies in the literature on
this topic. Therefore, the study focuses on this topic.

As seen in the literature [49], [53] articles use dice, jaccard,
sensitivity, specificity, and accuracy performance metrics.
On the other hand, accuracy, dice, jaccard, precision, and
recall metrics are used in [54] and [56] articles. In both groups
of studies, the authors emphasize the importance of dice,
jaccard, and accuracy metrics. As seen in both groups, similar
and different evaluation metrics were used. For this reason,
dice, jaccard, sensitivity, specificity, accuracy, and precision
evaluation metrics were used in the study.

Dice is obtained by dividing the similar pixels between
the model prediction and the actual GT by the total pixels in
both images. Dice represents the spatial overlap ratio between
the binary images, which consists of values between 0 and
1 as a result of comparing the segmented result with the
GT result [57]. In these values, 0 represents no match and
1 represents a perfect match. A andB are defined as the region
predicted by the proposed system as tumor and GT region,
respectively. According to these definitions, the formulas of
dice and jaccard metrics are given in (4-5) and their graphical
representation is presented in Figure 8 [50].

Dice =
2 |A ∩ B|

|A| + |B|
(4)

Jaccard =
|A ∩ B|

|A ∪ B|
(5)

Accuracy =
Tp + Tn

Tp + Fp + Fn + Tn
(6)

Specificity =
Tn

Tn + Fp
(7)

Sensitivity =
Tp

Tp + Fn
(8)

Precision =
Tp

Tp + Fp
(9)

Represent the true positive (Tp), true negative (Tn), false
positive (Fp), and false negative (Fn) values in (6-9). The
performance of the proposed model was measured in two
steps. In the first step, the evaluation values of the TC, ET,
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FIGURE 7. Images in four different modalities were first subjected to normalization. Then the ROI regions were detected by applying the
pre-processing steps in Section III-B. The ROI regions in FLAIR and T2 modalities were multiplied on a pixel basis and normalization was applied. The
proposed model is applied separately to the ROI values in T1 and T1ce modalities together with the ROI values obtained from here. Finally, the
obtained values are transferred to the attention module, and the system generates output.

FIGURE 8. Dice and jaccard metrics.

and WT regions separately for each slice value are calculated
with (4-5) as shown in Figure 8.
In the second step, the average dice, jaccard, and accuracy

values of each slice were calculated using (7-9). In the second
step, the performance results obtained in the first step were
averaged.

V. RESULT AND DISCUSSION
In this study, the ResUNet+ model is proposed, inspired by
the UNet architecture. This section, in which the results and
analyses of the proposed model are presented, basically con-
sists of three subsections. In the first subsection, the general
performance results of the study carried out to determine the
TC, ET, and WT regions in the brain with the segmentation
process were shared in the BraTS 2020, BraTS 2019, and
BraTS 2018 datasets. In the title of the ablation experiment
in the second subsection, the effect of residual blocks, which

will eliminate the semantic gaps between the encoder and
decoder blocks, is discussed in detail. In the third subsection,
the performance results were compared with state-of-the-art
brain tumor segmentation approaches using the same dataset.

A. OVERALL PERFORMANCE ANALYSIS
Although the UNet segmentation model is generally used in
the literature, residual blocks, and node structures are used
to achieve higher segmentation performance in the study.
Especially with the special node structure added between
the encoder and the decoder, semantic gaps are minimized
and interconnections are strengthened. In this approach the
proposed model was created by taking the strengths of dif-
ferent segmentation models. The accuracy success for BraTS
2020 train images of the ResUNet+ model, in which four
different modalities are used, is also presented in Figure 9.
The overall loss value of the ResUNet+ model is also shared
in Figure 9.
The success results of the proposed model and UNet on

the same images allocated for the test in different datasets are
presented in Figure 10. When the ground truth in Figure 10
and the images obtained from the two models are compared,
the success of ResUNet+ on the same image is clearly seen.

The segmentation results of the proposed model on dif-
ferent BraTS datasets are presented visually in Figure 11.
Evaluation metrics shared in Section IV-D were used in the
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FIGURE 9. Accuracy and loss graph for the train data of the proposed model.

performance evaluation of the model. The training and testing
performance of the inspired model were measured with the
same evaluation metrics. The training performance results
obtained are presented in Table 3. As can be seen from the
results in Table 3, the training performance results of the
proposed ResUNet+ model are higher than the other model
in three different datasets used in the study.

The BraTS 2020 training dataset also has some additional
data that is not available in BraTS 2019. For this reason,
the dice, jaccard, and accuracy test results of TC, WT, and
ET, especially for BraTS 2020, are shared in Figure 10.
When dice values were examined, 91.90, 93.10, and 92.80,
performance results were obtained for TC, ET, and WT for
the BraTS 2020 dataset, respectively.

In the same graph, the accuracy and loss values of the
underlying UNet model are also presented. As can be seen
in Figure 9, the accuracy and loss values of the ResUNet+
model are higher than the inspired model. If the dynamics of
the curves of both models are analyzed in general, the local
minimum and maximum points can change during iteration.
However, for the UNet model, even though the iteration
value increases, the accuracy and loss values are bound to
exhibit behavior in a constant range after approximately the
800th iteration. The ResUNet+model starts to exhibit similar
behavior in a fixed range after the 3400th iteration.

In Figure 11, non-enhanced tumor, enhanced tumor, and
edema are denoted in blue, green, and red, respectively. The
TC region is represented by the collection of enhanced and
non-enhanced regions. The entire tumor region is obtained
by summing the tumor core and edema regions [58].

As a result of the approach proposed in the BraTS
2020 dataset, in Table 3, details of the dice coefficient values
of the training sets for TC, WT, and ET are given. Here, the

TABLE 3. Training performance results of the segmentation models used
in the study on the dataset.

BraTS 2020 training dataset contains some additional data
that is not available in the BraTS 2019 and BraTS 2018 train-
ing sets [59].

B. ABLATION EXPERIMENT
The proposed ResUNet+ model has a depth level of four.
There are residual blocks in the encoder part of the model,
and there are nodes between the encoder and decoder. While
experimenting with the ResUNet+ architecture, first of all,
arrangements were made on the convolutional layers in the
encoder section of the UNet model. In these arrangements,
in addition to the convolution blocks used in the UNet model,
the residual blocks in Figure 12were added. In the study, three
different residual block structures were tested. In particular,
the block structure in Figure 12 (c) adversely affected both
the processing time and the success.

When the block structure in Figure 12 (b) was changed,
no remarkable success was achieved. An increase in perfor-
mance was observed when Figure 12 (a) was used. After the
residual block structure to be used was determined, it was
applied in all layers. As a result of this process, it has been
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FIGURE 10. Shown the box plot of dice, jaccard, and accuracy for TC, ET,
and WT of ResUNet+ model in the BraTS 2020, BraTS 2019, and BraTS
2018 test datasets. When analyzed for jaccard values, performance values
of 91.32, 92.15, and 92.42 were obtained for TC, ET, and WT, respectively.
Accuracy performance values were obtained as 98.46, 97.75, and 98.58,
respectively. If a general evaluation is made in the BraTS 2020 dataset,
it is seen that ET and NET values are determined with close accuracy.

determined that semantic gaps continue between the encoder-
decoder layers. To solve this problem, a special node structure
has been added between the encoder-decoder. In this node
structure, the value from the convolution layer or node at the
same level as itself and the value from the convolution layer or
node in a lower layer is collected. At this stage, the collection
of different node structures has also been tested, and the node

FIGURE 11. Four different MRI modalities and ground truth with
corresponding manual segmentation annotation.

FIGURE 12. The different residual block structures for the ablation
experiment.

structure that gives the highest performance is presented in
the proposed model in Figure 6.

C. COMPARISON WITH STATE-OF-THE-ART STUDIES
In the literature review on brain tumor segmentation, it was
determined that different evaluationmetrics were used. In this
section of the paper, only the evolution metrics used by the
authors in the evaluation of SOTA studies are used. Since
three different BraTS datasets were used in the study, the
studies performed with the same datasets are presented in
detail in Table 4 -VI. The (-) expression used in Tables 4-6
indicates that it does not contain a value for that metric.

The overall performance of the proposed architecture was
measured with all evolution metrics presented in Section IV-
D on the BraTS 2018 dataset. Thus, a more realistic
comparison can be made with the studies in Table 4 using the
same dataset in the literature. Some of the studies compared
are;

Akbar et al. [53] developed a new model called MRAB
for brain tumor segmentation by using atrous convolution
and attention mechanisms to improve the segmentation per-
formance of the UNet architecture. In the structure of the
model, they proposed in their study, two atrous convolution
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TABLE 4. Comparison of ResUNet+ model with state-of-the-art brain tumor segmentation methods on the BraTS 2018 datasets.

sequence blocks are combined with an attention block. In the
ResUNet+ model proposed in this paper, unlike Akbar’s
work, residual blocks and skip connection structures are used
to solve the semantic gap and gradient loss between the
encoder and decoder.

Sun et al. [60] determined the boundaries of the segmen-
tation regions by using a different skip connection structure
to prevent the loss of features during pooling layers and
convolution operations. The layered architecture used has a
fusion part in its structure. The extracted features are com-
bined in this step. In the ResUNet+ model, fusion is applied
to the segmentation results after pre-processing as shown in
Figure 7. Thus, different regions on different modality images
are combined and presented to the user.

Ranjbarzadeh et al. [34] focused on ROI regions in
their studies. This aspect also inspired the ResUNet+
model. They state that they use a strong pre-processing
method in their work and therefore develop a less com-
plex architecture. Although a similar strategy is used in the
ResUNet+ model, a stronger segmentation method is pro-
posed. In this case, TC has a high impact on the success of
classification.

Mehta and Arbel [61] classified multimodal MR images
with a simple CNN model in their 3DUNet model. However,
it achieved low performance in ET and TC. The main reason
for this is the architecture used. Since the ResUNet+ model
proposed in this study is a more comprehensive model, there

is not a big difference between training and test results and it
shows superior performance.

Wang et al. [30] developed a simpler network structure for
each sub-task instead of using a single network structure for
multiple classifications. In this way, they claim that they have
solved the overfitting problem by facilitating the training of
the model they developed. On the other hand, their model can
confuse the WT and ET regions as they themselves state. The
fact that they use different network structures in their studies
has been a point of inspiration during the development of the
ResUNet+model. The ResUNet+ structurewas used in three
different arms in parallel, as shown in the general structure
of the study in Figure 7. This had a positive effect on the
performance results.

Rezaei et al. [6] developed amethod to solve the problem of
pixel level imbalance that occurs when the majority of pixels
belong to the healthy region and only a few pixels belong to
the tumor region. They used a segmented network structure
in their method. However, there is a significant difference
between the specificity and sensitivity performance values of
the model they developed. This situation definitely affected
the accuracy value of their study. However, no accuracy value
was presented in their study. In the ResUNet+ model, the
focus is directly on the segmentation and classification of
WT, ET, and TC regions. Therefore, especially the dice score
of the ResUNet+ model showed a much higher performance
than this study.
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TABLE 5. Comparison of ResUNet+ model with state-of-the-art brain tumor segmentation methods on the BraTS 2019 datasets.

The ResUNet+ model gives the highest performance in
terms of dice values, which is the common performance
measure in all studies, as can be seen from these comparisons
and from Table 4 for the BraTS 2018 dataset. Similarly, the
sensitivity values are higher than in other studies. However,
according to Rezeai et al. [62], the specificity performance of
the ResUNet+model is competitive. As seen in Table 4, eval-
uation metric values such as jaccard, accuracy, and precision
are not given in most of the studies given for comparison.

In this study, SOTA studies using the same dataset with the
values obtained from the BraTS 2019 dataset are presented
in Table 5. The first study presented in Table 5 is also again
by Akbar et al. [53]. They obtained similar results with the
BraTS 2018 dataset. Along with Akbar et al. [53], Sun et
al. [60] also obtained similar results on the BraTS 2018 and
BraTS 2019 datasets.

Zhang et al. [63] developed the model called AGResU-Net
in their study. In their model, they examine the effective-
ness of the attention gate on a classical UNet model. They
also added an attention mechanism to this structure. As they
stated, the model they developed can lose some context
information and local details between different slices. In the
ResUNet+model, the context information is further strength-
ened thanks to the connection used. As a result, the detection
of local details can be achieved with high success. This is
especially reflected in the classification results of ET and TC.

Ahmad et al. [64] developed a model called Residual-
Dilated Dense Atrous-Spatial Pyramid Pooling(RD2A) to
segment relatively small brain tumor regions. They aimed to
preserve the contextual information of small tumors in the
encoder stage.

They used dense connections to reduce the parame-
ters. They had problems in training with large patch
sizes on the BraTS dataset. Therefore, they used rela-
tively smaller patch sizes. No large patch problem was
encountered in the training of the BraTS dataset with the
ResUNet+ model. As a result, higher performance was
obtained especially in ET and TC classification compared to
Ahmad et al. [64].

The proposed ResUNet+ model provides higher success
in the detection of ET and TC regions than other models on
the BraTS 2019 dataset. In addition, WT detection produces
results at a level that can compete with Sun et al. [60].

In Table 6 presents the SOTA studies using the BraTS
2020 dataset and the performance evaluation metrics of these
studies. Raza et al. [45] tested the DresUNet model they used
for the BraTS 2018 dataset on the BraTS 2020 dataset and
obtained similar results.

Ullah et al. [51] developed a new automatic model for the
segmentation of brain tumor regions using multiscale resid-
ual attention-UNet (MRA-UNet). The model they developed
also, were used three consecutive slices as input. Although it
is claimed that progress has been made in the detection of TC
and ET regions, the results of the ResUNet+ model provide
higher performance values. The main reason for this is that
the ResUNet+ model uses slice values in four modalities at
the same time.

Akbar et al. [53] tested the MRAB model on BraTS
2018 and BraTS 2019 datasets and also tested it on BraTS
2020 dataset. The proposed ResUNet+ model gave better
results thanMRAB on all three datasets, especially in the dice
evaluation performance metric.
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TABLE 6. Comparison of ResUNet+ model with state-of-the-art brain tumor segmentation methods on the BraTS 2020 datasets.

Savadikar et al. [65] developed a probabilistic UNET
model by utilizing different numbers of attention block struc-
tures to improve the segmentation quality. They claim that
increasing the number of attentions in their model gives
better segmentation results. Instead of the attention block
structure used in their proposed model, the node and attention
structures used in the ResUNet+ structure can provide much
higher success on the same dataset, especially for the dice
evaluation metric.

Ma et al. [66] developed a deep supervision-based 2D
residual model (a deep supervision-based 2D residual UNet)
to alleviate the gradient distribution caused by the network
depth. They claim that their model improves training sta-
bility. However, the encoder-decoder is directly connected
to each other. As a result of any no module in between the
encoder-decoder. Since this type of connection can cause
some problems, a special node structure is used in the
ResUNet+ model. The effect of using the node structure is
directly reflected in the evaluation values of WT, ET, and TC
regions.

Soltaninejad et al. [67] developed a model based
on the encoder-decoder structure to combine low and
high-resolution contextual information in MRIs. In their
model, they obtained the system output by combining
the features from two different encoder-decoder structures.
Although two encoder-decoder structures were used in their
model, an attention or node structure was not used to

eliminate the semantic gaps in the encoder-decoder structures
as stated in the literature. In this case, especially compared to
the ResUNet+model, lower performance was obtained in the
detection of the TC region.

The ResUNet+model proposed in the study outperformed
its closest competitor with approximately 5.58 points in WT
detection, approximately 5.16 points in TC detection, and
approximately 2.92 points in ET detection for the dice met-
ric in the BraTS 2020 dataset. In addition, the specificity
and sensitivity values obtained from the ResUNet+ model
are capable of the level competitive with the studies in the
literature.

Unlike the SOTA studies presented above, there are some
also studies that have been carried out to optimize the fea-
tures extracted by CNN-based methods. One of these studies
was performed by Khan et al. [68]. In the first step of their
study, they developed a fusion-based technique to increase
the contrast of tumors. In the second step, they used an active
contour-based method to enhance the segmentation region.
In their study, they extracted features by fine-tuning them
EfficientNetB0. The extracted features were selected as the
best features using the dragonfly optimization algorithm and
classified using an extreme learning machine (ELM). In their
study, they obtained 94.89%, 95.14%, and 95.94% success
rates on the modalities in BraTS 2018, BraTS 2019, and
BraTS 2020 datasets, respectively. In their study, unlike the
proposed ResUNet+ model, they evaluated the classes as T1,
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T1ce, T2, and FLAIR. In the ResUNet+ model, T1, T1ce,
T2, and FLAIR images were evaluated as MRI modalities
in parallel with the literature [45], [51], [69]. WT, ET, and
TC regions were used as tumor classes in the ResUNet
model.

In SOTA studies, automatic feature extraction fea-
tures of CNN-based algorithms are generally used exten-
sively [44], [59], [70], [71]. On the other hand, there are
applications where feature extraction is performed by tra-
ditional manual systems. Rajinikanth et al. [72] resized the
images obtained in step one. They performed tumor seg-
mentation with VGG-UNet in the second step, deep features
extraction with VGG-16 in the third step, handcrafted fea-
ture extraction in the fourth step, and selected the best
features. In the fifth step, they used the firefly algorithm.
In the last step, the serial feature has completed the appli-
cation with concatenation and binary classification. If the
proposed ResUNet+ model and this study are evaluated
together, the ResUNet+ model first segments and then
classifies WT, ET, and TC regions over images in four
different modalities. Rajinikanth et al. [72], on the other
hand, classify healthy or unhealthy based on T2 modality
images.

The weights of all the studies presented in Tables 4, 5, and
6 in the literature are initialized random values without any
pre-training as stated by the authors. The proposed model
differs in its architecture and evaluation metrics, as can be
seen from the SOTA studies. Tested on BraTS 2020, 2019,
and 2018 datasets, the ResUNet+ model performed better
than a lot of pre-trained models.

The accuracy or jaccard values of many studies in the
literature are not shared as evaluation metrics. However, the
metric values of the dice have been shared in many studies
in the literature. In some studies, in addition, only specificity
and sensitivity values were shared. In order to make a realistic
comparison with the obtained values, the accuracy value must
be given in the studies. In addition, as seen in Table 4,
very different dice values can be obtained even when two
very similar UNet models are tested on the same dataset by
different authors ( [30], [61], OursUNet). Themain reason for
this is the pre-processingmethods used to obtain TC,WT, and
ET regions. This directly shows the effect of pre-processing
on performance. Due to the correct pre-processing method
used in the study, even the classical UNet model gives better
results than many SOTA methods derived from it.

VI. CONCLUSION
The main topic of this study is the development of a new
segmentation model with high-performance criteria on MRI.
In order to improve the segmentation performance of the
existing segmentation models in the literature, a new seg-
mentation model called ResUNet+ is proposed, inspired by
residual blocks and node structures.

In the proposed model, the first step is focused on the
extraction of the ROI region. At this stage, the ROI region
was determined by using four different modalities in a hybrid

manner. This method used in the extraction of the ROI region
differs from many studies in the literature. Thus, unnecessary
convolutions on the entire image were avoided, and the focus
was only on the ROI region in the study. The impact of
this procedure on success is also shown for the classical
UNet model on different BraTS datasets in Tables 4, 5, and
6. As can be seen here, the success of the UNet model,
which uses or does not use the proposed pre-processing,
is also demonstrated by different metrics. The model pro-
posed in this study requires a much longer training time
than the inspired UNet model. However, this is tolerable due
to the superior performance metrics and the importance of
human health. However, gradient vanishing and exploding
problems are frequently encountered in UNet-based deep
learning segmentation applications. In the study, the gradient
exploding problemwas solved with the nodes placed between
the encoder and decoder. With the residual blocks added to
the encoder block, a structure that can prevent the gradient
vanishing has been created. Thus, each layer of the model is
connected to the next layer, and the encoder–decoder blocks
at the same level are more strongly connected to each other.
The model proposed in the study and the compared UNet
model were analyzed using the cross-validation 5 value on
the BraTS 2020, 2019, and 2018 datasets. Unlike the exper-
imental test results of the ResUNet+ model, the training
performance results are also presented in detail in Table 3.
The ResUNet+ model outperformed both the underlying
UNet model and many studies in the literature using the same
dataset.

In the BraTS 2020 dataset, it is about 5.58 points ahead
of its closest competitor in the dice metric for WT detection,
about 5.16 points for TC detection, and about 2.92 points for
ET detection. Similar results were obtained in other datasets
used in the study. Although the study focuses specifically on
the dice metric, other evaluation performance metrics are also
shared so that they can be easily compared with other studies
in the future.

In the future, the proposed method can be applied to dif-
ferent segmentation datasets and can be also used in different
decision support systems to assist experts in the health sector.
At the same time, RestfulAPIs can be designed that can be
used on any platform by expert health personnel. In future
studies, new ResUNet+ based algorithms that can perform
segmentation on different biomedical datasets will continue
to be created.

The ResUNet+ model also has a few minor limitations.
The most important of these is the training time and the
number of epochs. For this, the model parameters can be
optimized in the future. Another limitation of the study is
that the ResUNet+ model and the pre-processing steps used
are T1, T1ce, T2, and FLAIRmodalities. Different modalities
models can be used in the future.
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