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ABSTRACT Many-objective optimization has recently gained popularity as it poses significant challenges
for the existing algorithms. Therefore, numerous optimization algorithms have been developed to handle
many-objective optimization in the literature. In addition, several studies have conducted experimental
comparisons to assess the performance of optimization algorithms. Nevertheless, existing empirical studies
have analyzed the performance of optimization algorithms on well-defined test problems, but it remains
unclear whether the results translate to real-world scenarios. Furthermore, empirical studies on validating the
performance of algorithms on real-world many-objective problems are intriguing but not yet fully explored.
Therefore, in this article, we present a comprehensive comparative study evaluating the performance of
15 state-of-the-art algorithms on ten real-world many-objective applications with four to ten objectives
from various domains. Further, these ten applications exhibit various mathematically challenging proper-
ties, including stochastic objectives, complex Pareto frontiers, and strong nonlinearity. In addition, four
performance metrics are employed to visualize the performance of MOEAs in experimental settings. Based
on comparative results, the performance of state-of-the-art algorithms with respect to different problems is
evaluated herein.

INDEX TERMS Convergence, diversity, many-objective optimization, multi-objective optimization,
real-world application.

I. INTRODUCTION
Multi-objective optimization problems (MOPs) are ubiqui-

where M is the number of objectives considered, and x rep-
resents an n-dimensional decision vector. Moreover, MOPs

tous in real-world applications and typically involve multiple
conflicting objectives that require simultaneous optimization
[1]. MOPs are fundamental in various domains and applica-
tions, including scheduling [2], deep learning [3], machine
learning [4], [5], and other industrial applications [6]. MOPs
are typically expressed as follows:

Minimize F (x) = (fl @), o), ..., frGe)T
subject tox €S2 (H
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comprise conflicting objectives; hence improving one objec-
tive without deteriorating at least one or other objectives is
impossible [6]. Thus, instead of a single optimal solution,
a set of nondominated solutions known as Pareto-optimal
solutions must be developed for solving MOPs. A collection
of Pareto-optimal solutions is called a Pareto-optimal set
(PS) in decision space, and its projection on an objective
space is referred to as a Pareto front (PF). Many-objective
optimization problems (MaOPs) are a particular category
of MOPs having more than three objectives [7]. Similar
to MOPs, many practical problems, such as time series
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learning [8], engineering design [9], and ensemble learning
[10], [11] involve MaOPs.

| Approaches for Many-objective optimization
I
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FIGURE 1. Approaches for many-objective optimization.

Multi-objective evolutionary algorithms (MOEASs) using
a population-based iterative search engine effectively solve
MOPs and MaOPs [12]. MOEAs enable the approximation
of PF by constructing well-converged and well-distributed
nondominated solutions. [13]. In other words, MOEAs aim
to achieve two conflicting but critical goals, namely, conver-
gence and diversity. Given the robust search process, MOEAs
achieved better performance for MOPs than the MaOPs.
In addition to MOEAs, other optimization algorithms such
as particle swarm optimization (PSO) [14], [15], firefly
algorithm (FA) [16], act colony optimization (ACO) [17],
etc. have been developed to address MaOPs. However, when
dealing with MaOPs, algorithms encounter three main chal-
lenges [18]. First, as the number of objectives increases, the
nondominated solutions increase, resulting in the weakened
selection pressure toward PF. Second, achieving convergence
and diversity in MaOPs is extremely challenging owing to
their high dimensionality. Third, the effect of evolutionary
operators in generating promising offspring solutions is con-
siderably reduced due to the high dimensionality in MaOPs
[19]. Consequently, considerable research efforts have been
expended to develop efficient algorithms and technologies to
address the scalability issues of optimization algorithms.

Based on the selection mechanism, the optimization algo-
rithms can be roughly classified into a) Pareto-dominance
approaches [20], [21], b) indicator-based approaches [22],
[23], [24], [25], c) decomposition-based approaches [26], and
d) preference-based approaches [27], [28]. Fig. 1 illustrates
different categories of optimization algorithms proposed
for solving MaOPs. However, each class of optimization
criteria has its disadvantages in solving MaOPs. In Pareto-
dominance-based approaches [20], [21], the nondominated
sorting procedure is adopted to differentiate candidate solu-
tions according to their dominance relation. The major issue
with Pareto-dominance-based approaches is relatively low
selection pressure toward the true PF because many solutions
are nondominated in a high-dimensional objective space. To
overcome this issue, two modifications to Pareto-dominance-
based approaches were proposed as depicted in Fig. 1,
a) Pareto-dominance-based approaches with additional con-
vergence metrics [13], [29] and b) relaxed dominance-based
approaches [30], [31]. However, additional convergence
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metrics are associated with computational complexity and
relaxed dominance often gets trapped in local optima. The
indicator-based approaches transform the MOPs/MaOPs into
a problem of optimizing an indicator using a performance
metric, such as the epsilon indicator [22], hypervolume indi-
cator [23], etc. The critical shortcoming of indicator-based
approaches is the high computational complexity of some
performance indicators, such as hypervolume (HV). The
decomposition-based approaches [26], [32], [33] divide the
MOPs/MaOPs into many subproblems and collaboratively
optimize them. Decomposition-based approaches are highly
sensitive to the shape of PF, and the need to specify a
set of well-distributed reference points/weight vectors is
another disadvantage of decomposition-based approaches.
Preference-based approaches provide decision-makers with
a small set of representative solutions in the region of interest
according to their preferences. However, in preference-based
approaches, articulating correct preferences is extremely
difficult [6].

Most optimization algorithms developed for MaOPs have
been tested on well-defined test problems to assess their
efficiency and effectiveness. These test problems comprise
a benchmark suite designed to reflect challenging problem
characteristics, including but not limited to multimodality,
discreteness, nonconvexity, deception, nonuniformity, iso-
lated optima, non-separability, and scalability of the number
of objectives as well as decision variables [34]. Although
these benchmarks capture various challenging character-
istics, whether they can capture the complexity observed
in real-world applications remains to be seen [35]. These
numerically-defined test problems cannot adequately capture
the intricate details of complex real-world problems. This
is an important and significant concern. Moreover, testing
solely on numerically-defined test problems could result in
a myopic understanding of the translational value of MOEAs
in the context of real-world applications [36].

Many comparative studies in the past analyzed the perfor-
mance of optimization algorithms [37]. However, these were
often restricted to artificial test problems, and only a few stud-
ies focused on using MOEAss for real-world applications [34],
[35], [36]. Unfortunately, the existing studies on real-world
applications are confined to just a few approaches to solving
two or three real-world problems. Furthermore, no existing
study provides a comparative analysis of the performance of
MOEAs on real-world multi-objective problems. Therefore,
in this article, we present a thorough comparative study on
the performance of MOEAs in solving real-world problems
from different domains herein.

The main contributions of this article are summarized as
follows:

« Herein, we compare the performance of 15 state-of-the-
art algorithms in solving ten real-world many-objective
problems from different domains to demonstrate the
advantages of optimization algorithms over other algo-
rithms and encourage domain experts to share their
challenges with researchers.
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o The performance of MOEAs is analyzed based on four
performance indicators, including hypervolume (HV),
inverted generational distance (IGD), generational dis-
tance (GD), and pure diversity (PD).

The rest of this paper is organized as follows. Section II
presents the research methodology, basic definitions related
to the evolutionary multi-objective community, description of
MOEAs, and real-world problems considered in this study.
Section III presents the experimental results and discussions,
and Section IV concludes the paper.

Il. RESEARCH METHODOLOGY

A. EXPERIMENTAL FRAMEWORK

In this comparative study, we compare the performance of
optimization algorithms from different selection categories in
solving ten real-world many-objective problems. The experi-
mental methodology is described as follows:

1) First, each algorithm is simulated on ten real-world
many-objective problems for 30 individual runs, and
the resultant approximated solution sets are recorded.
Then, the number of generations is set as 250 for all
real-world many-objective problems.

2) Next, because the true PF is not known for real-
world problems, we create reference sets by combining
well-known approximations of PF across all runs of all
algorithms on a given problem.

3) Herein, we use some proper performance metrics
to measure convergence and diversity, such as HV
and IGD, respectively. In addition, GD and PD
are employed to measure convergence and diversity,
respectively.

4) Finally, the performance of algorithms in solving each
real-world problem is analyzed based on the aforemen-
tioned performance metrics.

B. BASIC DEFINITION AND CONCEPTS

Definition 1: For any two solutions, x; € €2 and x> € €2, where
Q is the decision space, and solution x; dominates x» only if,
fux1) < fux2), Vm = 1,2,..., M, and there exists i =
{1,2,.., M} and fi(x1) < fi(x2).

Definition 2: A decision vector, x; € €2, is considered
Pareto-optimal when no other decision vector, xj € € that
dominates xp, i.e., x; < x| exists.

Definition 3: The set comprising Pareto-optimal solutions
is referred to as the Pareto-optimal set (PS), and the projection
of the PS onto the objective vector space is termed PF.

C. ALGORITHM DESCRIPTION

In this comparative study, we have evaluated the efficacy
of 15 state-of-the-art algorithms on ten real-world engineer-
ing problems. The selected algorithms belong to diverse
categories of methodologies that have been suggested for
addressing multi/many-objective optimization problems. The
general working principles of the 15 state-of-the-art algo-
rithms are outlined below.
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1) An MOEA with angle-based selection and shift-based
density estimation (AnD)1 [38]: In the AnD algorithm,
the angle-based selection strategy is employed along
with shift density estimation to solve MaOPs. First,
angle-based selection identifies a pair of individu-
als with the minor vector angle, which indicates
that their search directions are similar. Next, the
shift-based estimation strategy is used to deter-
mine inferior individuals based on convergence and
diversity. Hence, the AnD algorithm uses a simple
framework to remove inefficient individuals one by
one.

2) Ensemble fitness ranking with ranking restriction
(EFR-RR)>: EFR-RR is an improved version of
ensemble fitness ranking (EFR) [39] with a ranking
restriction scheme. EFR is an extension of max-
imum rank and average ranking [40] with highly
generalized fitness aggregation) functions. EFR adopts
the nondominated sorting genetic algorithms II
(NSGAII) framework with considerable differences
in environmental selection. These considerable dif-
ferences are that instead of objective functions, EFR
adopts fitness functions such as L,-norm, Tchebycheff
function, and Penalty-Boundary Intersection (PBI),
which help EFR to achieve a balance between conver-
gence and diversity in solving MaOPs.

3) MOEA based on an ISDE+ indicator (ISDE+)? [24]:
ISDE+ algorithm proposes an indicator that effec-
tively combines the advantages of the sum of objectives
and shift-based density estimation (SDE). The sum
of objectives increases the selection pressure towards
the PF, and SDE preserves diversity among population
members. Moreover, the ISDE+ indicator considers
diversity estimation only for individuals with high con-
verging abilities.

4) An Indicator-based MOEA with boundary protection
(MaOEA-IBP)* [1]: The MaOEA-IBP algorithm pro-
poses the worst-elimination strategy assisted by a
boundary protection mechanism to improve the con-
vergence, diversity, and coverage of a population.
First, a pair of candidate solutions from the popula-
tion with the smallest I values are identified and
compared based on their indicator value. Subsequently,
the solution with a higher /" value is eliminated.
If both have the same Ij value, then one solu-
tion is eliminated based on the boundary protection
strategy.

IThe source code for AnD algorithm is downloaded from
https://intleo.csu.edu.cn/publication.html

2The source codes for the EFR-RR, MOEAD-URAW, NSGAIII, NSGAII-
SDR, PiCEA-g, RPD-NSGAIL RVEA, SPEAR, t-DEA, NMPSO algorithms
are downloaded from https://github.com/BIMK/PlatEMO

3The source code for ISDE+ algorithm is downloaded from
https://github.com/P-N-Suganthan/CODES

4The source code for MaOEA-IBP algorithm is downloaded from
https://github.com/CIA-SZU
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5)

6)

7

8)

9)

10)

MOEA/D with uniformly randomly adaptive weights
(MOEAD-URAW)? [33]: The MOEAD-URAW algo-
rithm generates subproblems by implementing
uniformly random initialization and ensuring that
the population size is flexible even with MaOPs. In
addition, during the evolutionary process, MOEAD-
URAW includes and removes subproblems using a
sparsity-level function of the population. Further,
weights are adapted in the MOEAD-URAW algorithms
to deal with PFs with different shapes.

Nondominated sorting  genetic  algorithm  III
(NSGAIII)? [29]: NSGAIII follows the NSGA-II [20]
framework with a significant modification in environ-
mental selection. NSGA-II adopts Pareto-dominance
and crowding distance to select the fittest candidate
solutions. In NSGAIII, crowding distance is replaced
with a set of well-spread reference points to maintain
individual diversity. First, each individual candidate
in the population is associated with a reference point
based on its perpendicular distance to a reference
line. Next, nondominated individual candidates close
to the reference points are given more preference as
compared to those farther away from the reference line.
A strengthened dominance relation based many-
objective evolutionary algorithm (NSGAII-SDR)?
[30]: The NSGAII-SDR algorithm proposes a strength-
ened dominance relation (SDR) to attain a trade-off
between convergence and diversity among the popula-
tion members. SDR adopts a niche technique developed
based on the angles between candidate solutions. Each
niche technique maintains the best-converged candi-
date solution within the niche technique.

MOEA based on a pivot solution based selection
(Pi-MOEA)’ [41]: The Pi-MOEA algorithm proposes
a pivot solution based selection mechanism assisted
by an adaptive neighborhood technique to solve MOPs
and MaOPs. Pi-MOEA algorithm designs an adaptive
neighborhood based on average rank to identify pivot
solutions in each nondominated front. The pivot solu-
tions drive the selection process toward convergence. In
addition, Euclidean distance-driven density estimation
is adopted in Pi-MOEA to enforce diversity.
Preference-inspired coevolutionary algorithm with
goals (PICEA-g)? [27]: PICEA-g uses the preference-
inspired coevolutionary algorithm (PICEA) to coevolve
candidate solutions and decision-maker preferences.
Adaptation through coevolution is noteworthy because
harnessing its power for optimization is challenging (as
opposed to exploring coevolutionary dynamics). More-
over, PICEA-g aims to help decision-makers approxi-
mate the entire PF through posterior optimization.
Decomposition-Based NSGA-I1 (RPD-NSGAII)? [12]:
In the RPD-NSGA-II approach, reference point-based

SThe source code for Pi-MOEA algorithm is downloaded from
https://github.com/Vikas11475/Pi-MOEA
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dominance is proposed (RP-dominance), which com-
pares individual candidates associated with different
reference points. The RP-dominance framework
combines the features of Pareto-dominance and
decomposition-based approaches. Furthermore, two
penalty-based boundary intersection (PBI) distances
are adopted to achieve a trade-off between convergence
and diversity.

11) A Reference vector guided evolutionary algorithm

12)

13)

14)

(RVEA)?> [42]: The RVEA algorithm proposes
angle-penalized distance (APD) to balance conver-
gence and diversity. APD measures the convergence
criterion using the distance between individuals and
the ideal points, as well as the diversity criterion using
the angle between population members and reference
points. In addition, an adaptive strategy is used to adjust
the distribution of reference points based on the range
of objective functions.

Strength Pareto evolutionary algorithm based on
reference direction (SPEA-R)? [32]: The SPEA-R
algorithm partitions objective space into different
subregions using a predefined set of reference direc-
tions. Further, candidate solutions in subregions are
guided toward the predefined search directions. In
addition, a diversity-first-convergence-second selec-
tion strategy increases the selection pressure adopted
in SPEA-R. Finally, a restricted mating selection
scheme is adopted to generate excellent offspring
solutions.

t-dominance based evolutionary algorithm (t-DEA)?
[31]: In t-DEA, a new dominance relation termed
f-dominance allocates the candidate solutions to differ-
ent clusters represented by well-distributed reference
points. Candidate solutions within the same cluster
possess a competitive relationship based on a fitness
function similar to penalty-based boundary intersec-
tion (PBI). The environmental selection based on
f-dominance selects candidate solutions with high fit-
ness values in each cluster that ensure convergence and
diversity.

Novel Fitness mechanism based particle swarm opti-
mization (NMPSO)? [14]: In the NMPSO algorithm,
a balanced fitness estimation (BFE) technique was
proposed to address MaOPs. This BFE method incor-
porates convergence and diversity distances to alle-
viate the curse of dimensionality in MaOPs and
direct particles to their real PFs. NMPSO also
utilized two additional operators: the evolutionary
search on the external archive and the novel veloc-
ity update equation. The evolutionary search is
intended to overcome the ineffectiveness of PSO-
based search on certain categories of MaOPs by
providing an alternative search pattern. The novel
velocity update equation, on the other hand, pro-
vides another PSO-based search direction and increases
diversity.

111639



IEEE Access

V. Palakonda, J.-M. Kang: Many-Objective Real-World Engineering Problems

15) Multi-objective Firefly algorithm (MOFA)® [16]: In the
MOFA approach, a learning-based search mechanism
is adopted for firefly algorithm to tackle the continuous
optimization problems.MOFA initializes a population
of n fireflies so that they are distributed as uniformly
as feasible throughout the search space using sampling
techniques based on uniform distributions. After defin-
ing the tolerance or number of iterations, the iterations
begin by assessing the brightness or objective values of
all fireflies and comparing each pair. Then, a random
weight vector is constructed with a sum of 1 to find the
optimum solution.

Among the fifteen state-of-the-art algorithms considered in
this study, NSGAII-SDR [30] and t-DEA [31] algorithms are
relaxed dominance-based methods. The AnD [38], Pi-MOEA
[41], and NSGAIII [29] belong to the category of algorithms
that incorporate additional selection metrics. ISDE+ [24] and
MaOEA-IBP [1] are approaches based on indicators. EFR-
RR [39] and MOEAD-URAW [33] are decomposition-based
methods that adapt weight vectors. RPD-NSGAII [12],
RVEA [42], and SPEA-R [32] are algorithms that belong
to the decomposition methods with reference-point adapta-
tions. PICEA-g [27] algorithm belongs to the category of
preference-based approaches. NMPSO [14] and MOFA [16]
are examples of swarm intelligence algorithms.

D. PROBLEM DESCRIPTION
In this comparative study, we consider ten famous real-world
engineering problems with 4 to 10 objectives.

1) Car side impact design problem (CSID)’: The CSID
[43] is a constrained three-objective problem that
aims to optimize the vehicle side impact crashworthi-
ness. CSID problem involves seven decision variables
describing the thickness of the B-pillars, roof rail, door
beam, cross-members, floor, etc. As suggested in [44],
we take into account the unconstrained four objec-
tive CSID problem that aims to optimize car weight,
the public force experienced by passengers, B-pillar
responsible average velocity, and summation of the
constraints.

2) Conceptual marine design (CMD)’: The CMD [45]
problem involves six decision variables, three objec-
tives, and nine constraints. The decision variables
represent block coefficients, speed, draft, depth, beam,
and length. As suggested in [44], we consider four
objectives aimed at optimizing transportation cost,
light-ship weight, the annual cargo transport capacity,
and summation of the constraints to solve the CMD
problem.

3) Vehicle vibration model problem (VVM)3: The VVM
[46] problem consists of seven decision variables and

%The source code for MOFA algorithm is downloaded from
https://github.com/zaleman/MOFA

7The source codes for the CSID, CMD, RWP, CCD problems are down-
loaded from https://ryojitanabe.github.io/reproblems/

8The source code for the VVM problem is provided by the authors.
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five objectives. The decision variables are related to the
seat stiffness coefficient, vehicle suspension stiffness
coefficient, seat damping coefficient, vehicle suspen-
sion damping coefficient, and seat position in relation
to the center of mass, respectively [46]. The five-
objective VVM problem [47] considered herein aims
at optimizing vertical seat acceleration, forward tire
vertical velocity, rear tire vertical velocity, the relative
displacement between forward tires and sprung mass,
as well as, the relative displacement between rear tires
and sprung mass.

4) Location of a pollution monitoring system (LPMS)’
[48]: This problem aims to determine the loca-
tion of a pollution monitoring system (LPMS) in
two-dimensional decision space. This problem consists
of five objectives that correspond to the expected infor-
mation loss based on the estimates of five experts. As a
result, finding a location that perfectly balances the five
possible losses is needed. The problem formulation for
LPMS is adopted from a previous study [49].

5) Machining problem (MP)'° [50]: This problem consid-
ers the optimization of multiple criteria for machining
operations on B390 die-cast aluminum alloy using
VC-3 carbide tools. The MP consists of three decision
variables, four objectives, and three constraints. The
decision variables are related to the depth of cut, feed
rate, and cutting speed. In this paper, we consider five-
objective machining problems that aim at optimizing
surface roughness, surface integrity, tool life, metal
removal rate, and summation of constraints.

6) Water resource planning (WRP)? [51]: This problem
entails the process of planning, developing, managing,
and allocating water resources to maximize their use.
The WRP problem consists of three decision vari-
ables related to maximum overflow rate, maximum
treatment rate, and local detention storage capacity. In
addition, the WRP problem consists of five objectives
and seven constraints. As suggested in a previous study
[44], we consider a six-objective WRP problem that
optimizes drainage network cost, storage facility cost,
treatment facility cost, expected flood damage cost,
expected economic loss due to floods, and summation
of constraints.

7) Work roll cooling design problem (WRCD)'?: The
WRCD problem [52] mainly focuses on shaping a
metal surface by decreasing its thickness and creating
a uniform surface. The WRCD problem consists of
seven decision variables related to delay time, roll tem-
perature, roll speed, cooling HTC, roll/stock contact
length, stock temperature, and roll/stock contact HTC.
In addition, WRCD consists of six objectives that aim

9The source code for the LPMS problem is downloaded from
https://www.mathworks.com/matlabcentral/fileexchange/87262-
preference-based-indicator-mode?s_tid=prof_contriblnk

10The source codes for the MP and WRCD problems are formulated from
https://link.springer.com/chapter/10.1007/978-3-319-54157-0_14

VOLUME 11, 2023



V. Palakonda, J.-M. Kang: Many-Objective Real-World Engineering Problems

IEEE Access

at optimizing change in temperature at roll surface,
radial stress at the roll surface, change in temperature
at 9mm depth, radial stress at 9mm depth, changes in
temperature at 15mm depth, and radial stress at 15mm
depth.

8) Car cab design (ccpy’ problem: The CCD [44]
problem considered herein consists of eleven decision
variables. The decision variables are divided into two
categories, where the first seven variables indicate the
thickness of the B-pillar inner, B-pillar reinforcement,
floor side inner, cross members, door beam, door belt-
line reinforcement, and rail roof, respectively. The
remaining variables are stochastic in nature and rep-
resent the material of the B-pillar inner, floor side
inner, barrier height, and barrier hitting position. As
suggested in the previous work [44], we consider a
nine-objective CCD problem with objectives as fi(x)
(weight of the car), and the remaining eight objec-
tives (f2(x), ..., fo(x)) correspond to each of the eight
constraints.

9) Radar waveform design (RWD)!'! problem: The RWD
[53] problem comprises 4-12 decision variables and
nine objectives. Herein, we considered an uncon-
strained nine-objective RWD problem. Among the nine
objectives, f1 to fg objectives need to be maximized, and
hence they are multiplied by -1 in order to convert them
for minimization.

10) General aviation aircraft (GAA)'? design problem
[54]: The GAA design problem consists of nine deci-
sion variables and ten objectives. The design variables
are related to tapering ratio, tail length ratio, seat width,
engine activity factor, wing loading, propeller diameter,
sweep angle, aspect ratio, and cruise speed. The GAA
problem with ten objectives aims to optimize take-
off noise, empty weight, cruise speed, lift ratio, flight
range, product family dissimilarity, purchase price, fuel
weight, ride roughness, and direct operating cost.

The real-world problem considered in this paper consists
of continuous variables, and the Pareto front is unknown to
them. In addition, these ten applications exhibit a variety
of mathematically difficult characteristics, such as stochastic
objectives, complex Pareto frontiers, and robust nonlinearity.
Among the ten problems, car side impact design problem,
vehicle vibration model problem, machining problem, and
car cab design problem fall into the category of mechanical
design problems. The problems of conceptual marine design,
water resource planning, and work roll cooling design fall
under the category of process, design, and synthesis prob-
lems. The location of a pollution monitoring system is a
chemical engineering problem, whereas the design of radar
waveform and general aviation aircraft (GAA) are electronic
design problems.

UThe source code for the RWD problem is downloaded from
http://code.evanhughes.org/

12The source code for the GAA problem is downloaded from
https://github.com/mariocastrogama/GAA-problem-MATLAB
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E. PERFORMANCE EVALUATION METRICS

We employ four performance metrics, namely, HV [55], IGD
[56], GD [57], and PD [58] to evaluate and compare the qual-
ity of nondominated solution sets obtained from each MOEA.
The HV and IGD metrics related to the convergence and
diversity, respectively, of the final solution set obtained from
each MOEA. The GD and PD metrics reflect convergence and
diversity separately. These performance metrics are described
as follows:

1) Hypervolume (HV): The HV metric [55] estimates the
volume of objective space occupied by the solution set
obtained by each algorithm. The hypervolume metric
is evaluated as

HV(S) = vol | | J 1AG). 211 x ... x [firx). ZM]),

€S
2

where vol(-) indicates the Lebesgue measure, S is
the solution set obtained by each MOEA, 77 =
(21, ..., zu)T specifies a reference point. As shown in
Equation (2), a reference point is required to compute
the HV metric. To this end, first, the objectives are nor-
malized within the range of [0,1], and (1, 1, ... l)M is
set as a reference point. In addition, we have employed
the Monte Carlo sampling method with 1,000,000
points to estimate the HV metric.

2) Inverted generational distance (IGD): The IGD metric
[56] measures the average distance between the uni-
formly sampled reference set and PF approximated by
the final solution set obtained from each MOEA. The
IGD metric can be evaluated as follows:

dr,S
Zrel}]ﬂ(r _) 3)

where S is the solution set achieved from each MOEA,
R is the reference set, and d(r, S) is the minimum
Euclidean distance between each point in the refer-
ence set, r and the corresponding points in S. Herein,
we consider 8000 uniformly sampled points as the
reference set.

3) Generational distance (GD): The GD metric measures
the distance of the PF approximated using the obtained
solution set with respect to the true PF. The GD metric

is evaluated as follows:
INIS1 52
Zi:1 d;

GD(S,R) = TS 4)

where S is the solution set achieved from each MOEA,
and dl-2 is the Euclidean distance between each solution
in the obtained solution set and its nearest point in the
reference set.

4) Pure diversity (PD): The PD metric measures the diver-
sity of the solution set and is evaluated as follows:

PD(S) = max(PD(S\ {p}) + ygl{r{;} If () = f(@ll,)
o)
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f ) —Ff@@l » denotes the L, norm distance between
individuals p and ¢ in the objective space.
Note that the higher values of HV and PD metrics indicate
better performance of MOEAs; in contrast, lower values of
IGD and GD result in high performance of MOEAs.

lll. EMPIRICAL RESULTS

We analyzed the performance of MOEAs based on their
simulation runs for solving ten real-world many-objective
problems based on the experimental settings employed
herein.

A. EXPERIMENTAL SETTINGS

1) Population size: The ten real-world problems consid-
ered in this paper comprise 4-10 objectives. Hence,
the population size is set as 120, 126, 132, 112, 156,
210, and 275 for 4-, 5-, 6-, 7-, 8-, 9-, and 10-objective
problems, respectively.

2) Number of function evaluations: The number of func-
tion evaluations is set to 30,000, 31,500, 33000, 28000,
39000, 52500, and 68,750 for 4-, 5-, 6-, 7-, 8-, 9-, and
10-objective problems, respectively.

3) Algorithm parameter settings: The parameter set-
tings for the MOEAs selected for comparison are
adapted from their original publications. In the EFR-
RR algorithm, the number of closest weight vectors
is set to 2. In MOEAD-URAW, the number of can-
didate solutions replaced by every offspring solution
is set to 2, and the probability of selecting parents is
set to 0.9. In PICEA-g, the number of goals is set to
100 x M, where M is the number of objectives. In
RVEA, the parameter controlling the rate of change
of penalty is set to 2, and the frequency of employing
reference vector adaptation is set to 0.1. In MOFA, the
initial randomness factor is set to 0.2. The remaining
algorithms are parameter-free.

4) Genetic operators: The Genetic operators, such as
simulated binary crossover (SBX) [59] and polynomial
mutation [60] used in MOEASs considered in this com-
parative study. The distribution index and probability
for SBX are set as n, = 20 and p. = 1.0. The distribu-
tion index and probability for polynomial mutation are
set as n,, = 20 and p,, = 1/n, respectively, where n is
the number of decision variables.

B. EXPERIMENTAL RESULTS

The mean and standard deviation values of HV, IGD, GD,
and PD metrics obtained for the MOEAs simulation runs
corresponding to the ten real-world problems are listed in
Tables 1-10. Furthermore, we displayed the ranking of each
MOEA based on each performance metric in these tables.
We highlight the best-performing MOEA for each real-world
problem in terms of every performance metric. Further,
to analyze the performance of MOEAs, we perform the Fried-
man test to rank the algorithms on each real-world problem
and achieve an average rank.
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o CSID problem: The performance metric results for

15 algorithms on the CSID problem are listed in Table 1.
The results presented in Table 1, demonstrate that in
terms of HV and IGD metrics MaOEA-IBP algorithm
performs better than other MOEAs followed by the
NMPSO and ISDE+- algorithms. In terms of HV metric,
NSGAII-SDR, MOFA, RVEA, and SPEA-R algorithms
perform poorly on the CSID problem. Regarding the
IGD metric, PICEA-g, NSGAII-SDR, SPEA-R, and
RVEA algorithms exhibit poor performance on the
CSID problem. The NMPSO algorithm performs bet-
ter in terms of GD metric, followed by the Picea-g,
ISDE+, and NSGAII-SDR algorithms. By contrast, the
Pi-MOEA, RVEA, EFR-RR, and RPD-NSGAII algo-
rithms perform poorly on the CSID problem in terms
of GD metric. In terms of the PD metric, the AnD
algorithm performs better than other MOEAs followed
by MOEAD-URAW, MOFA, and Pi-MOEA algorithms.
The PiCEA-g, t-DEA, RVEA, and EFR-RR algorithms
perform badly on the PD metric. Therefore, the MOEA-
IBP, ISDE+4, NMPSO, MOEAD-URAW, and AnD
algorithms perform consistently better on all the perfor-
mance metrics compared to RVEA, SPEA-R, and t-DEA
algorithms.

CMD problem: The results of HV, IGD, GD, and PD
metrics obtained for 15 algorithms are listed in Table 2.
From the results presented in Table 2, the ISDE+
algorithm achieves superior performance than other
MOEAs, followed by MOEAD-URAW, NMPSO, and
MaOEA-IBP algorithms according to the HV metric.
However, PICEA-g, RVEA, NSGAIII, and NSGAII-
SDR algorithms perform poorly on the CMD prob-
lem with respect to the HV metric. Regarding the
IGD metric, MOEAD-URAW, ISDE+, Pi-MOEA, and
MaOEA-IBP algorithms provide better performance
than PiCEA-g, RVEA, NSGAII-SDR, and NSGAIII
algorithms. In terms of the GD metric, NMPSO, ISDE+,
PiCEA-g, and MaOEA-IBP algorithms demonstrate
excellent performance, but RVEA, AnD, NSGAII-SDR,
and EFR-RR algorithms demonstrate poor performance.
The diversity assessment results obtained based on
the PD metric illustrate that MOEAD-URAW, AnD,
Pi-MOEA, and RPD-NSGAII algorithms achieve better
diversity compared to that achieved by the PiCEA-g,
RVEA, EFR-RR, and NSGAIII algorithms. There-
fore, the ISDE+, MaOEA-IBP, MOEAD-URAW, and
Pi-MOEA algorithms perform consistently better, and
the RVEA algorithm performs poorly with respect to the
four performance metrics.

VVM problem: The performance metric results of
15 algorithms on the VVM problem are listed in Table 3.
Based on HV and IGD metrics, the MOEAD-URAW
algorithm achieves better performance than the rest
of the algorithms. Among the remaining algorithms,
MaOEA-IBP, PiCEA-g, and AnD perform better than
other MOEAs in terms of HV, and the Pi-MOEA,
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TABLE 1. Mean and standard deviation values of performance metrics on CSID problem.

CSID Problem

Algorithms HV IGD GD PD
AnD 4.821e-1(8.41e-3) | 6.160e-1 (4.04e-2) | 7.252e-2 (1.57e-2) | 1.470e+7 (9.07e+5)
EFR-RR 4.686e-1 (3.60e-3) | 8.339e-1 (4.53e-2) | 1.098e-1 (2.18e-2) | 9.362e+6 (1.43e+6)
ISDE+ 5.052e-1 (2.52e-3) | 5.608e-1 (3.16e-2) | 4.245e-3 (2.62e-3) | 1.147e+7 (6.49e+5)
MaOEA-IBP 5.076e-1 (2.03e-3) | 4.894e-1 (1.17e-2) | 7.651e-3 (9.24e-3) | 1.254e+7 (7.05e+5)
MOEAD-URAW | 4.690e-1 (1.08e-2) | 5.799e-1 (5.95e-2) | 1.712e-2 (6.22e-3) | 1.376e+7 (1.28e+6)
NSGAIII 4.519-1 (1.43e-2) | 8.257e-1(1.43e-1) | 2.394e-2 (9.71e-3) | 1.245e+7 (1.03e+6)
NSGAII-SDR 3.292e-1 (1.61e-2) | 2.146e+0 (2.51e-1) | 4.352e-3 (4.53e-3) | 1.270e+7 (8.76e+5)
Pi-MOEA 4.626e-1 (5.43e-3) | 6.685e-1(3.02e-2) | 1.357e-1(2.33e-2) | 1.287e+7 (1.04e+6)
PiCEA-g 4.704e-1 (5.20e-3) | 2.424e+0 (3.28e-1) | 3.074e-3 (1.25e-3) | 2.491e+6 (6.97e+5)
RPD-NSGAII 4.672e-1 (4.73e-3) | 9.052e-1(5.07e-2) | 1.001le-1(3.52e-2) | 1.018e+7 (1.27e+6)
RVEA 4.272e-1 (1.03e-2) | 9.354e-1(4.59e-2) | 1.129e-1 (5.63e-2) | 8.941e+6 (8.53e+5)
SPEA-R 4.517e-1 (6.03e-3) | 9.773e-1 (4.35e-2) | 9.243e-2 (2.06e-2) | 9.897e+6 (1.09¢+6)
t-DEA 4.533e-1 (3.50e-2) | 8.884e-1(3.31e-1) | 6.67%-2 (3.52e-2) | 8.593e+6 (1.21e+6)
NMPSO 5.056e-1 (2.89e-3) | 5.566e-1 (2.71e-2) | 1.798e-3 (1.04e-3) | 1.018e+7 (8.04e+5)
MOFA 4.201e-1 (1.22e-2) | 6.269¢e-1 (6.83e-2) | 1.937e-2 (8.33e-3) | 1.376e+7 (7.60e+5)

TABLE 2. Mean and standard deviation values of performance metrics on CMD problem.

CMD problem

Algorithms HV 1IGD GD PD
AnD 5.035e-1 (8.64e-3) | 3.523e+2 (3.50e+1) | 9.835e+2 (1.72e+2) | 3.729e+9 (5.18e+8)
EFR-RR 5.016e-1 (6.78e-3) | 3.344e+2 (2.87e+1) | 2.435e+2 (1.69e+2) | 2.344e+9 (5.85e+8)
ISDE+ 5.513e-1 (9.15e-4) | 1.305e+2 (4.48e+0) | 6.807e-1(8.43e-1) | 2.506e+9 (1.55e+8)
MaOEA-IBP 5.302e-1 (2.27e-3) | 2.036e+2 (2.61e+1) | 2.882e+0 (3.07e+0) | 2.551e+9 (2.28e+8)
MOEAD-URAW | 5.466e-1 (1.34e-3) | 1.046e+2 (3.10e+0) | 3.151e+0 (1.06e+0) | 3.796e+9 (4.55e+8)
NSGAIII 4.889%e-1 (4.72e-2) | 5.499e+2 (4.31e+2) | 7.993e+0 (3.02e+0) | 2.360e+9 (7.32e+8)
NSGAII-SDR 4.979-1 (6.52e-2) | 5.751e+2 (8.19e+2) | 9.391e+2 (3.76e+2) | 3.161e+9 (1.04e+9)
Pi-MOEA 5.205e-1 (5.86e-3) | 1.848e+2 (1.32e+1) | 1.346e+1 (5.45e+0) | 3.466e+9 (8.38e+8)
PiCEA-g 4.061e-1(2.34e-2) | 1.355e+3 (2.65e+2) | 1.854e+0 (1.22e+0) | 1.592e+9 (2.41e+8)
RPD-NSGAII 5.107e-1 (3.72e-3) | 2.972e+2 (1.80e+1) | 1.391e+2 (6.26e+1) | 3.403e+9 (6.66e+8)
RVEA 4.878e-1(3.85e-3) | 4.759e+2 (2.97e+1) | 1.126e+3 (8.79e+2) | 2.207e+9 (6.45e+8)
SPEA-R 4.996e-1 (1.01e-2) | 2.924e+2 (3.38e+1) | 9.676e+1 (5.33e+1) | 2.912e+9 (5.94e+8)
t-DEA 5.095e-1 (6.90e-3) | 2.994e+2 (2.86e+1) | 2.054e+1 (1.60e+1) | 2.369e+9 (3.67e+8)
NMPSO 5.374e-1 (1.31e-2) | 2.788e+2 (1.39e+2) | 3.738e-1(2.43e-1) | 2.386e+9 (1.60e+8)
MOFA 5.170e-1 (1.13e-2) | 2.295e+2 (4.71e+1) | 5.552e+1 (2.76e+1) | 3.347e+9 (5.33e+8)

SPEA-R, and EFR-RR algorithms achieve better per-
formance than other MOEAs in terms of the IGD
metric. By contrast, NSGAII-SDR, RVEA, and t-DEA
algorithms exhibit poor performance on the VVM
problem in terms of HV and IGD. Based on the
GD metric, the PiCEA-g, ISDE+, MaOEA-IBP, and
MOEAD-URAW algorithms exhibit optimal conver-
gence abilities, and NSGAII-SDR, RPD-NSGAII, AnD,
as well as EFR-RR algorithms exhibit less-than-optimal
convergence performance on the VVM problem. In
terms of the PD metric, NSGAII-SDR, Pi-MOEA, AnD,
and MOEAD-URAW algorithms demonstrate better

VOLUME 11, 2023

diversity performance than PiCEA-g, RVEA, ISDE+,
and t-DEA algorithms. In summary, the MOEAD-
URAW performs better compared to other MOEAs
consistently on all performance metrics. By contrast,
RVEA and t-DEA algorithms exhibit worse performance
compared to other algorithms in terms of all perfor-
mance metrics.

e LPMS problem: The mean and standard deviation
values of HV, IGD, GD, and PD metrics obtained
by 15 algorithms are listed in Table 4. The ISDE+,
MaOEA-IBP, MOFA, and MOEAD-URAW algorithms
perform better than RVEA, RPD-NSGAII, SPEA-R, and
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TABLE 3. Mean and standard deviation values of performance metrics on VVM problem.

VVM Problem

Algorithms HV IGD GD PD
AnD 4.362e-1 (2.70e-3) | 3.636e-2 (5.27e-3) | 2.813e-3 (2.39¢-3) | 2.936e+6 (3.40e+5)
EFR-RR 4.343e-1 (3.04e-3) | 3.139e-2 (3.98e-3) | 2.290e-3 (5.43e-4) | 2.771e+6 (2.52e+5)
ISDE+ 4.327e-1 (2.38e-3) | 5.251e-2 (1.31e-2) | 4.130e-5 (3.93e-5) | 1.325e+6 (1.21e+5)
MaOEA-IBP 4.403e-1 (1.76e-3) | 4.789e-2 (1.24e-2) | 6.576e-5 (5.49e-5) | 1.437e+6 (1.65¢e+5)
MOEAD-URAW | 4.405e-1(1.38¢-3) | 2.099e-2 (8.24e-4) | 3.120e-4 (1.05e-4) | 2.787e+6 (2.52e+5)
NSGAIII 4.355e-1 (2.33e-3) | 5.134e-2 (1.06e-2) | 4.269¢e-4 (7.36e-5) | 1.773e+6 (2.04e+5)
NSGAII-SDR 3.541e-1 (1.75e-2) | 1.732e-1 (7.04e-2) | 4.596e-2 (3.61e-2) | 5.445e+6 (8.37e+5)
Pi-MOEA 4.357e-1 (2.46e-3) | 2.767e-2 (1.48e-3) | 1.440e-3 (2.76e-4) | 4.103e+6 (3.39¢e+5)
PiCEA-g 4.372e-1 (7.32e-4) | 8.069e-2 (1.16e-2) | 2.656e-5 (1.19e-5) | 5.855e+5 (7.81e+4)
RPD-NSGAII 4.186e-1 (1.09¢e-2) | 3.771e-2 (4.76e-3) | 6.638e-3 (6.37e-3) | 2.209e+6 (2.42e+5)
RVEA 4.229e-1 (5.50e-3) | 6.945e-2 (1.28e-2) | 1.398e-3 (6.97e-4) | 6.855e+5 (1.79e+5)
SPEA-R 4.35%-1 (2.01e-3) | 3.149e-2 (2.98e-3) | 1.435e-3 (3.00e-4) | 2.555e+6 (2.98e+5)
t-DEA 4.309e-1 (1.25e-3) | 5.324e-2 (1.35e-2) | 5.105e-4 (1.36e-4) | 1.424e+6 (1.93e+5)
NMPSO 4.112e-1 (1.36e-3) | 3.985e-2 (1.68e-3) | 5.385e-5 (5.42e-5) | 1.029e+6 (1.10e+5)
MOFA 4.023e-1 (1.45e-3) | 4.476e-2 (1.68e-3) | 4.662e-4 (4.22e-5) | 1.461e+6 (1.20e+5)

TABLE 4. Mean and standard deviation values of performance metrics on LPMS problem.

LPMS problem

Algorithms HV IGD GD PD
AnD 9.196e-2 (1.04e-3) | 8.022e-1(2.63e-2) | 8.104e-2 (1.39¢e-2) | 3.370e+8 (1.24e+7)
EFR-RR 7.156e-2 (7.56e-3) | 1.721e+0 (1.81e-1) | 1.135e-1 (4.23e-2) | 1.965e+8 (1.91e+7)
ISDE+ 9.800e-2 (8.78e-4) | 7.564e-1(2.66e-2) | 3.882e-3 (3.37e-3) | 3.367e+8 (1.47e+7)
MaOEA-IBP 9.751e-2 (9.27e-4) | 7.014e-1(1.75e-2) | 4.096e-3 (3.66e-3) | 3.501e+8 (9.97e+6)
MOEAD-URAW | 9.479e-2 (6.08e-4) | 6.692e-1(9.18e-3) | 1.878e-2(9.26e-3) | 3.743e+8 (8.15e+6)
NSGAIIL 8.548e-2 (5.20e-3) | 1.394e+0 (1.69e-1) | 1.186e-2 (5.29¢-3) | 2.177e+8 (2.70e+7)
NSGAII-SDR 9.168e-2 (1.24e-3) | 8.566e-1 (3.47e-2) | 8.718e-2 (1.79e-2) | 3.205e+8 (1.51e+7)
Pi-MOEA 8.614e-2 (2.13e-3) | 9.409e-1 (3.96e-2) | 6.761e-2 (2.98e-2) | 3.134e+8 (2.16e+7)
PiCEA-g 9.256e-2 (1.77e-3) | 1.743e+0 (3.02e-1) | 2.099e-3 (2.61e-3) | 2.033e+8 (1.76e+7)
RPD-NSGAII 6.503¢e-2 (5.57e-3) | 1.839e+0 (1.71e-1) | 6.136e-2 (3.39¢-2) | 1.515e+8 (2.19e+7)
RVEA 5.654e-2 (3.14e-3) | 2.310e+0 (1.39e-1) | 1.955e-1(7.55e-2) | 1.060e+8 (1.37e+7)
SPEA-R 6.964e-2 (4.82e-3) | 1.830e+0 (1.59e-1) | 2.544e-2 (9.06e-3) | 1.323e+8 (1.76e+7)
t-DEA 7.322e-2 (5.21e-3) | 1.751e+0 (1.95e-1) | 1.512e-2 (6.58e-3) | 1.485e+8 (2.15e+7)
NMPSO 9.371e-2 (1.46e-3) | 8.475e-1(6.11e-2) | 1.164e-2 (6.63e-3) | 3.120e+8 (1.82e+7)
MOFA 9.647e-2 (8.09¢e-4) | 6.860e-1 (2.20e-2) | 6.114e-2 (1.40e-2) | 3.986e+8 (1.43e+7)

EFR-RR algorithms in terms of the HV metric. How-
ever, in terms of IGD, the MOEAD-URAW, MOFA,
MaOEA-IBP, and ISDE+ algorithms perform better
than the RVEA, RPD-NSGAII, SPEA-R, and t-DEA
algorithms. In terms of GD, PiCEA-g, ISDE+, MaOEA-
IBP, and NMPSO algorithms exhibit good convergence;
by contrast, RVEA, EFR-RR, NSGAII-SDR, and AnD
algorithms exhibit poor convergence. Regarding PD,
MOFA, MOEAD-URAW, MaOEA-IBP, and AnD algo-
rithms exhibit better diversity performance than RVEA,
SPEA-R, t-DEA, and RPD-NSGAII algorithms. To sum

up the performance of MOEAs on the LPMS problem,
MOEAD-URAW, MaOEA-IBP, MOFA, and ISDE+
algorithms perform consistently better than RVEA,
RPD-NSGAIIL, SPEA-R, and t-DEA algorithms accord-
ing to HV, IGD, GD, and PD metrics.

o Machining Problem: The mean and standard devi-
ation values for performance metrics obtained by
15 algorithms on the Machining problem are listed
in Table 5. The NMPSO, MaOEA-IBP, ISDE+, and
MOEAD-URAW algorithms achieve better perfor-
mance than PiCEA-g, RPD-NSGAII, SPEA-R, and
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TABLE 5. Mean and standard deviation values of performance metrics on machining problem.

Machining Problem

Algorithms HV IGD GD PD
AnD 2.162e-1 (8.30e-4) | 1.936e-1 (2.90e-3) | 4.193e-18 (4.79%-18) | 1.136e+8 (2.78e+6)
EFR-RR 1.571e-1(5.81e-3) | 4.046e-1(2.26e-2) | 4.838¢-19 (2.65¢-18) | 5.387e+7 (4.25¢+6)
ISDE+ 2.182e-1 (9.17e-4) | 2.124e-1 (6.11e-3) 0.000e+0 (0.00e+0) 9.985e+7 (2.81e+6)
MaOEA-IBP | 2.187e-1(9.52¢-4) | 1.975¢-1(5.12e-3) | 9.080¢-18 (2.44e-18) | 1.108e+8 (3.21c+6)
MOEAD-URAW | 2.164e-1 (7.63e-4) | 1.814e-1(1.92¢-3) | 1.175e-19 (6.43e-19) | 1.229e+8 (4.82e+6)
NSGAIIL 2.021e-1 (2.13e-3) | 2.457e-1 (7.87e-3) | 3.323e-19 (1.82e-18) | 7.804e+7 (4.25e+6)
NSGAII-SDR 2.123e-1 (1.93e-3) | 2.435e-1 (1.35e-2) 0.000e+0 (0.00e+0) 9.546e+7 (5.91e+6)
Pi-MOEA 1.985¢-1 (2.24e-3) | 2.496e-1(8.14e-3) | 5.673¢-19 (2.19¢-18) | 7.965e+7 (3.73¢+6)
PiCEA-g 7.051e-2 (1.50e-2) | 9.624e-1 (1.31e-1) 0.000e+0 (0.00e+0) 1.009e+7 (3.85e+6)
RPD-NSGAIl | 1.642e-1(7.19¢-3) | 3.610e-1 (3.88¢-2) | 1.112e-17 (6.59¢-18) | 5.284e+7 (4.25¢+6)
RVEA 1.539e-1 (5.41e-3) | 4.375e-1 (2.18e-2) 0.000e+0 (0.00e+0) 3.937e+7 (3.70e+6)
SPEA-R 1.563e-1 (5.03e-3) | 3.909e-1 (1.40e-2) 0.000e+0 (0.00e+0) 4.531e+7 (3.05e+6)
t-DEA 1.738e-1 (3.65e-3) | 3.419e-1 (9.51e-3) | 0.000e+0 (0.00e+0) 4.867e+7 (4.29e+6)
NMPSO 2.190e-1 (1.13e-3) | 2.194e-1(8.17e-3) | 1.507e-18 (3.11e-18) | 9.882e+7 (3.08e+6)
MOFA 2.145e-1 (9.73e-4) | 1.897e-1 (4.23e-3) | 0.000e+0 (0.00e+0) 1.139e+8 (3.87e+6)

TABLE 6. Mean and standard deviation values of performance metrics on WRP problem.
WRP Problem
Algorithms HV IGD GD PD

AnD 7.771e-1 (2.56e-3) | 1.022e+5 (1.83e+4) | 1.050e+4 (6.09e+3) | 1.348e+13 (1.42e+12)
EFR-RR 7.565e-1 (4.42e-3) | 1.392e+5 (1.64e+4) | 1.523e+4 (7.57e+3) | 9.445e+12 (2.00e+12)
ISDE+ 7.874e-1 (3.56e-3) | 6.680e+4 (8.51e+3) | 1.312e+2 (1.41e+2) | 7.620e+12 (5.59e+11)
MaOEA-IBP 7.842e-1 (5.84e-3) | 7.315e+4 (7.13e+3) | 1.437e+2 (1.20e+2) | 5.361e+12 (1.35e+12)
MOEAD-URAW | 7.851e-1(3.13e-3) | 4.956e+4 (2.84e+3) | 3.103e+3 (4.42e+3) | 1.056e+13 (1.07e+12)
NSGAIII 7.715e-1 (4.40e-3) | 8.300e+4 (1.12e+4) | 2.371e+3 (4.96e+2) | 9.266e+12 (1.98e+12)
NSGAII-SDR 7.226e-1 (1.64e-2) | 1.434e+5 (5.60e+4) | 3.304e+2 (1.77e+2) | 7.276e+12 (1.83e+12)
Pi-MOEA 7.568e-1 (5.01e-3) | 1.299e+5 (1.26e+4) | 4.352e+4 (1.13e+4) | 1.883e+13 (2.65e+12)
PiCEA-g 7.681e-1 (5.45¢e-3) | 9.209e+4 (1.55e+4) | 2.088e+2 (1.19e+2) | 5.529e+12 (7.10e+11)
RPD-NSGAII 7.448e-1 (6.83e-3) | 1.656e+5 (2.58e+4) | 1.519e+4 (1.06e+4) | 8.650e+12 (1.61e+12)
RVEA 7.031e-1 (1.57e-2) | 2.211e+5 (1.69e+4) | 8.516e+4 (4.49e+4) | 4.379e+12 (1.19e+12)
SPEA-R 7.404e-1 (4.14e-3) | 1.642e+5 (1.37e+4) | 2.058e+4 (1.12e+4) | 1.020e+13 (1.26e+12)
t-DEA 7.518e-1 (6.60e-3) | 2.584e+5 (6.56e+4) | 2.627e+3 (1.19e+3) | 6.890e+12 (1.32e+12)
NMPSO 7.654e-1 (1.25e-2) | 9.061le+4 (2.16e+4) | 5.843e+1 (1.04e+2) | 3.549e+12 (3.88e+11)
MOFA 7.644e-1 (7.48e-3) | 7.138e+4 (5.68e+3) | 5.675e+3 (1.36e+3) | 6.477e+12 (1.02e+12)

RVEA algorithms in terms of HV. The MOEAD-URAW,
MOFA, AnD, and MaOEA-IBP algorithms achieve bet-
ter performance than PICEA-g, RPD-NSGAII, SPEA-R, .
and RVEA algorithms in terms of IGD. However,
in terms of GD, the performance of all metrics
is similar/at par in solving Machining Problem. In
terms of PD, MOEAD-URAW, MOFA, AnD, and
MaOEA-IBP algorithms present excellent performance
compared with PiCEA-g, RPD-NSGAII, SPEA-R,
and RVEA algorithms. In summary, MOEAD-URAW,
MOFA, AnD, and MaOEA-IBP algorithms consis-
tently perform better than PiCEA-g, RPD-NSGAII,
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SPEA-R, and RVEA in terms of all performance
metrics.

WRP problem: The mean and standard deviation val-
ues of HV, IGD, GD, and PD metrics obtained by
the 15 algorithms are listed in Table 6. The ISDE+,
MOEAD-URAW, MaOEA-IBP, and AnD algorithms
exhibit better performance, and RVEA, NSGAII-SDR,
SPEA-R, and RPD-NSGAII algorithms perform poorly
with respect to the HV metric. However, in terms of
IGD, MOEAD-URAW, ISDE+, MOFA, and MaOEA-
IBP algorithms exhibit good performance, and t-DEA,
RVEA, SPEA-R, and RPD-NSGAII algorithms exhibit

111645



IEEE Access

V. Palakonda, J.-M. Kang: Many-Objective Real-World Engineering Problems

TABLE 7. Mean and standard deviation values of performance metrics on WRCD problem.

WRCD problem

Algorithms HV IGD GD PD
AnD 1.444e-1 (8.63e-4) | 6.874e+1 (1.94e+0) | 2.087e+0 (3.99¢-1) | 1.406e+11 (5.00e+9)
EFR-RR 9.347e-2 (4.37e-3) | 1.357e4+2 (5.69e+0) | 3.621e+0 (5.58e-1) | 7.048e+10 (6.00e+9)
ISDE+ 1.418e-1 (3.03e-3) | 2.036e+2 (4.57e+1) | 6.444e-3 (2.24e-2) | 7.851e+10 (6.39e+9)
MaOEA-IBP 1.444e-1 (1.14e-3) | 1.197e42 (2.08e+1) | 1.534e-1(1.04e-1) | 9.733e+10 (9.35e+9)
MOEAD-URAW | 1.351e-1(2.17e-3) | 7.255e+1 (2.83e+0) | 7.571e-1 (4.15e-1) | 1.327e+11 (7.69e+9)
NSGAIII 1.324e-1 (2.65e-3) | 1.257e4+2 (2.30e+1) | 1.051e+0 (4.60e-1) | 8.117e+10 (7.45e+9)
NSGAII-SDR 1.390e-1 (2.18e-3) | 7.951e+1 (4.49e+0) | 7.429e-1(2.90e-1) | 1.211e+11 (8.84e+9)
Pi-MOEA 1.261e-1 (3.29e-3) | 8.279e+1 (2.89e+0) | 2.877e+0 (8.79¢-1) | 1.120e+11 (9.96e+9)
PiCEA-g 3.287e-2 (8.94e-3) | 3.634e+2 (3.73e+1) | 8.874e-3 (2.36e-2) | 2.301e+10 (5.32e+9)
RPD-NSGAII 1.057e-1 (1.30e-3) | 1.273e+2 (4.38e+0) | 2.127e+0 (3.90e-1) | 6.274e+10 (4.72e+9)
RVEA 6.977e-2 (3.08e-3) | 1.834e+2 (1.27e+1) | 1.778e+0 (8.90e-1) | 3.720e+10 (3.85e+9)
SPEA-R 9.024e-2 (2.73e-3) | 1.428e42 (7.00e+0) | 3.609e+0 (2.91e-1) | 6.250e+10 (4.48e+9)
t-DEA 1.059¢-1 (2.69e-3) | 1.324e+42 (7.93e+0) | 1.240e+0 (4.13e-1) | 5.573e+10 (4.20e+9)
NMPSO 1.486e-1 (1.00e-3) | 1.115e+2 (3.09e+1) | 1.619e-1(8.92e-2) | 1.037e+11 (6.25e+9)
MOFA 1.226e-1 (5.20e-3) | 7.111e+1 (2.43e+0) | 1.382e+0 (1.52e-1) | 1.285e+11 (4.50e+9)

TABLE 8. Mean and standard deviation values of performance metrics on CCD problem.

CCD problem
Algorithms HV 1IGD GD PD
AnD 5.949¢-2 (2.78e-3) 1.624e+0 (8.52e-2) 1.664e-2 (2.53e-3) | 3.022e+10 (2.14e+9)
EFR-RR 5.643e-2 (3.54e-3) | 2.298e+0 (2.71e-1) 1.212e-2 (2.00e-3) 1.866e+10 (1.47e+9)
ISDE+ 6.067e-2 (2.75e-3) 1.757e+0 (1.69¢-1) 1.300e-2 (6.18e-3) | 2.790e+10 (1.85e+9)
MaOEA-IBP 5.663e-2 (3.76e-3) 1.929¢+0 (3.64e-1) 1.441e-2 (3.01e-3) | 2.799e+10 (1.73e+9)
MOEAD-URAW | 3.904e-2 (4.14e-3) | 2.059e+0 (2.41e-1) 1.804e-2 (4.33e-3) 1.972e+10 (1.98e+9)
NSGAIII 5.171e-2 (4.50e-3) 1.700e+0 (1.68e-1) 1.861e-2 (7.53e-3) | 2.680e+10 (2.03e+9)
NSGAII-SDR 1.778e-3 (4.44e-4) | 1.555e+1 (1.22e+0) | 3.028e-2 (5.78e-3) 5.144e49 (8.86¢e+8)
Pi-MOEA 5.534e-2 (3.16e-3) | 1.526e+0 (9.03e-2) 1.487e-2 (2.28e-3) | 2.727e+10 (1.23e+9)
PiCEA-g 5.971e-2 (3.14e-3) | 2.321e+0 (2.02e-1) | 8.465e-3 (2.13e-3) 1.563e+10 (1.25e+9)
RPD-NSGAII 5.800e-2 (3.83e-3) 1.888e+0 (1.57e-1) 1.249e-2 (1.89¢-3) | 2.144e+10 (1.58e +9)
RVEA 8.161e-3 (3.37e-3) | 9.933e+0 (2.05e+0) | 5.021e-2 (2.26e-2) 4.963e+9 (1.05e+9)
SPEA-R 5.005¢e-2 (3.80e-3) 1.816e+0 (8.32¢-2) 1.355e-2 (2.81e-3) | 2.038e+10 (1.73e+9)
t-DEA 5.913e-2 (4.35e-3) | 2.217e+0 (3.69¢e-1) | 9.925e-3 (1.35¢-3) 1.918e+10 (1.57e+9)
NMPSO 6.007e-2 (4.41e-3) 1.668e+0 (1.81e-1) 1.121e-2 (2.58e-3) | 2.715e+10 (2.11e+9)
MOFA 3.233e-2 (3.48e-3) | 2.195e+0 (3.21e-1) 1.892e-2 (2.23e-3) 1.551e+10 (1.22e+9)
poor performance. In terms of GD, NMPSO, ISDE+, algorithms with respect to the four performance metrics
MaOEA-IBP, and PiCEA-g algorithms show a good worse.
convergence, but RVEA, Pi-MOEA, SPEA-R, and EFR- e WRCD problem: The performance metric values
RR algorithms fail to converge on the WRP problem. obtained by MOEAs on the WRCD problem are listed in
Regarding PD, Pi-MOEA, AnD, MOEAD-URAW, and Table 7. The NMPSO, AnD, MaOEA-IBP, and ISDE+
SPEA-R algorithms exhibit good diversity capabili- algorithms perform better, and the PiCEA-g, RVEA,
ties, but NMPSO, RVEA, MaOEA-IBP, PiCEA-g, and SPEA-R, and EFR-RR perform worse according to
t-DEA algorithms exhibit poor diversity capabilities. To the HV. Furthermore, in terms of IGD, AnD, MOFA,
sum up the performance of MOEAs in solving the WRP MOEAD-URAW, and NSGAII-SDR, algorithms exhibit
problem, the MOEAD-URAW algorithm performs bet- better performance, and the PICEA-g, ISDE4-, RVEA,

ter consistently than RVEA, RPD-NSGAII, and t-DEA and SPEA-R algorithms perform poorly. Regarding
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TABLE 9. Mean and standard deviation values of performance metrics on RWD problem.

RWD problem

Algorithms HV IGD GD PD
AnD 7.209e-3 (2.57e-4) | 9.231e+2 (9.76e+1) | 5.442e+0 (4.72e-1) | 7.191e+12 (3.58e+11)
EFR-RR 3.159¢-3 (3.82e-4) | 1.397e+3 (2.59¢+2) | 7.260e+0 (3.10e+0) | 1.935e+12 (4.05e+11)
ISDE+ 8.755e-3 (2.36e-4) | 9.051e+2 (1.55e+2) | 2.262e+0 (5.18e-1) | 6.231e+12 (4.77e+11)
MaOEA-IBP 6.824e-3 (2.45e-4) | 6.627e+2 (8.47e+1) | 3.782e+0 (5.85e-1) | 5.886e+12 (3.74e+11)
MOEAD-URAW | 3.215e-3 (3.47e-4) | 5.691e+2 (4.78e+1) | 7.536e+0 (1.29¢+0) | 6.342e+12 (4.49e+11)
NSGAIII 1.989e-3 (2.84e-4) | 2.187e+3 (2.05e+2) | 4.189e+0 (5.20e-1) | 3.047e+12 (3.16e+11)
NSGAII-SDR 1.014e-3 (1.48e-4) | 3.013e+3 (1.27e+2) | 8.726e+0 (1.05e+0) | 4.434e+12 (2.53e+11)
Pi-MOEA 5.170e-3 (2.90e-4) | 5.506e+2 (2.50e+1) | 8.934e+0 (8.51e-1) | 5.975e+12 (3.39e+11)
PiCEA-g 2.450e-3 (3.88e-4) | 2.571e+3 (2.32e+2) | 2.506e+0 (2.28e+0) | 3.190e+11 (1.45e+11)
RPD-NSGAII 3.439¢e-3 (6.40e-4) | 9.259e+2 (1.80e+2) | 2.128e+1 (1.06e+1) | 2.711e+12 (4.25e+11)
RVEA 6.927e-4 (1.31e-4) | 3.246e+3 (1.93e+2) | 3.072e+1 (1.53e+1) | 1.035e+12 (1.42e+11)
SPEA-R 2.992e-3 (5.11e-4) | 1.244e+3 (1.56e+2) | 2.059e+1 (5.44e+0) | 2.176e+12 (3.13e+11)
t-DEA 4.472e-3 (4.91e-4) | 1.395e+3 (2.19e+2) | 6.942e+0 (2.82e+0) | 2.309e+12 (4.38e+11)
NMPSO 8.172e-4 (2.31e-4) | 1.035e+3 (1.04e+2) | 4.017e+1 (1.11e+1) | 1.702e+12 (3.20e+11)
MOFA 2.201e-3 (2.44e-4) | 9.855e+2 (1.37e+2) | 1.503e+1 (1.10e+0) | 4.052e+12 (3.30e+11)

TABLE 10. Mean and standard deviation values of performance metrics on GAA design problem.

GAA design problem
Algorithms HV IGD GD PD
AnD 5.335e-2 (1.98e-3) 1.374e+2 (1.30e+1) 1.087e+0 (8.36e-2) | 5.203e+12 (1.85e+11)
EFR-RR 2.152e-2 (2.31e-3) | 6.334e+2 (9.27e+1) 3.419¢e-1 (1.16e-1) 9.735e+11 (1.75e+11)
ISDE+ 6.416e-2 (3.59¢-3) 1.560e+2 (2.76e+1) 3.213e-1 (1.01e-1) 4.206e+12 (4.25e+11)
MaOEA-IBP 6.134¢-2 (2.26¢-3) 1.351e+2 (2.96e+1) 3.970e-1 (8.58e-2) 3.592e+12 (2.45e+11)
MOEAD-URAW | 2.774e-2 (3.04e-3) | 1.248e+2 (9.85e+0) 9.008e-1 (1.85e-1) 3.755e+12 (3.22e+11)
NSGAIII 2.571e-2 (1.97e-3) | 2.168e+2 (5.06e+1) 1.392e+0 (2.20e-1) | 3.409e+12 (2.46e+11)
NSGAII-SDR 1.214e-2 (9.07e-4) | 9.074e+2 (1.07e+2) 5.510e-1 (6.87¢e-2) 1.386e+12 (9.41e+10)
Pi-MOEA 4.041e-2 (2.14e-3) 1.355e+2 (9.81e+0) | 3.157e+0 (3.45¢e-1) | 4.920e+12 (2.34e+11)
PiCEA-g 6.738e-3 (7.44e-4) | 4.460e+2 (4.70e+1) 1.678e+0 (1.30e-1) | 4.241e+12 (1.37e+11)
RPD-NSGAII 3.217e-2 (3.08e-3) | 2.883e+2 (4.05e+1) 9.322e-1 (2.55¢e-1) 1.629¢+12 (1.44e+11)
RVEA 1.091e-2 (1.78e-3) 1.127e+3 (1.48e+2) 1.251e+0 (6.59¢e-1) | 2.818e+11 (5.18e+10)
SPEA-R 1.708e-2 (1.64e-3) | 2.152e+2 (1.95e+1) 1.877e+0 (2.22e-1) 1.603e+12 (1.13e+11)
t-DEA 3.142e-2 (2.66e-3) | 3.998e+2 (4.23e+1) 5.027e-1 (8.10e-2) 1.469e+12 (1.46e+11)
NMPSO 7.379e-2 (2.99¢-3) 1.271e+2 (1.28e+1) 2.204e-1 (1.31e-1) 6.556e+12 (1.54e+11)
MOFA 9.560e-3 (1.33e-3) | 2.031e+2 (2.09e+1) | 2.249e+0 (1.04e-1) | 5.119e+12 (1.67e+11)
GD, ISDE+, PiCEA-g, MaOEA-IBP, and NMPSO e CCD problem: The mean and standard deviation values

algorithms attain good convergence, and by contrast,
the algorithms EFR-RR, Pi-MOEA, SPEA-R, RPD-
NSGAII exhibit bad convergence performance. With
regard to PD, AnD, MOEAD-URAW, MOFA, and
NSGAII-SDR exhibit good diversity, and PiCEA-g,
RVEA, t-DEA, and SPEA-R algorithms exhibit poor
diversity performance. In summary, AnD and MOEAD-
URAW algorithms consistently have better than other
MOEAs, and the SPEA-R and RPD-NSGAII algorithms
perform worse than other MOEAs in terms of all the
performance metrics.
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of HV, IGD, GD, and PD obtained by 15 algorithms
on the CCD problem are listed in Table 8. Algorithms
ISDE+, NMPSO, PiCEA-g, and AnD attain better
performance than other MOEAs, and NSGAII-SDR,
RVEA, MOFA, and MOEAD-URAW, algorithms per-
form poorly in terms of HV metric compared to other
MOEAs. Regarding IGD, Pi-MOEA, AnD, NMPSO,
and NSGAIII, algorithms demonstrate better perfor-
mance than the NSGAII-SDR, RVEA, PiCEA-g, and
EFR-RR algorithms. However, in terms of conver-
gence performance, the PiCEA-g, t-DEA, NMPSO,
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and EFR-RR algorithms exhibit excellent performance,
and the algorithms RVEA, NSGAII-SDR, MOFA, and
NSGAIII exhibit poor performance. In terms of PD,
AnD, MaOEA-IBP, ISDE+, and Pi-MOEA exhibit
good diversity performance compared to that exhib-
ited by RVEA, NSGAII-SDR, MOFA, and PiCEA-g
algorithms. In summary, the ISDE+4, NMPSO, AnD
algorithm has consistently better performance than other
MOEAs in terms of performance metrics, and MOFA,
NSGAII-SDR, and RVEA algorithms perform poorly
with respect to the performance metrics.

o RWD problem: The performance metric values obtained
by algorithms on the RWD problem are listed in Table 9.
The RPD-NSGALII, SPEAR, t-DEA, and PiCEA-g algo-
rithms show a better performance than RVEA, NSGAII-
SDR, NMPSO, and ISDE+- algorithms perform inferior
according to the HV. In terms of IGD, Pi-MOEA,
MOEAD-URAW, MaOEA-IBP, and AnD algorithms
exhibit highly efficient performance, whereas EFR-RR,
PiCEA-g, t-DEA, and NSGAIII exhibit poor perfor-
mance. With regard to GD, the AnD, ISDE+, NSGAIII,
and MaOEA-IBP algorithms possess good convergence
capabilities, but RVEA, NMPSO, RPD-NSGAII, and
SPEA-R algorithms have poor convergence. In terms
of PD, ISDE+, MOEAD-URAW, t-DEA, and RPD-
NSGA algorithms exhibit good diversity performance,
and RVEA, PiCEA-g, NSGAII-SDR, and SPEA-R algo-
rithms exhibit poor diversity performance. To sum up
the performance of MOEAs on the RWD problem, AnD
and RVEA algorithms exhibit the best and worse perfor-
mance, respectively.

o GAA design problem: The mean and standard deviation
of the performance metrics obtained by 15 algorithms
on the GAA design problem are listed in Table 10.
The NMPSO, ISDE+, MaOEA-IBP, and AnD algo-
rithms perform better than PiCEA-g, MOFA, RVEA,
and NSGAII-SDR algorithms in terms of HV met-
ric. Regarding IGD, the MOEAD-URAW, NMPSO,
MaOEA-IBP, and Pi-MOEA algorithms exhibit bet-
ter performance than RVEA, NSGAII-SDR, EFR-RR,
and PiCEA-g algorithms. In terms of GD, NMPSO,
ISDE+, EFR-RR, and MaOEA-IBP algorithms present
good convergence properties and Pi-MOEA, MOFA,
SPEA-R and PiCEA-g present poor convergence. With
regard to PD, NMPSO, AnD, MOFA, and Pi-MOEA
algorithms exhibit good diversity compared to RVEA,
EFR-RR, NSGAII-SDR, and t-DEA algorithms. In sum-
mary, NMPSO, ISDE+, and MaOEA-IBP algorithms
perform consistently better than RVEA and PiCEA-g
algorithms with respect to the performance metrics.

C. FURTHER ANALYSIS

1) OVERALL PERFORMANCE OF THE ALGORITHMS

In the preceding sections, a comprehensive analysis was con-
ducted on the efficacy of the various algorithms in addressing
each real-world problem. This section presents an analysis
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TABLE 11. Average rank obtained by each algorithm according to
friedman test.

Friedman Test Ranking

Algorithms HV IGD GD PD
AnD 5.25 4.9 10.3 2.5
EFR-RR 9.4 10.6 10.5 9.65
ISDE+ 3.7 6 2.6 6.55
MaOEA-IBP 3.65 4.65 5.3 6.8
MOEAD-URAW 5.1 2.4 7.3 3.5
NSGA-III 8.8 8.6 7.3 8.5
NSGAII-SDR 11.7 10.7 8.5 7.8
Pi-MOEA 7.6 4.85 10.9 4.7
Picea-g 8.7 13.1 3.9 12.8
RPD-NSGAII 8.8 9.9 11.1 8.25
RVEA 13.8 133 12.5 13.9
SPEA-R 10.4 9.6 10.2 9.6
t-DEA 8.5 11.3 6.7 10.7
NMPSO 4.8 49 4.45 8.4
MOFA 9.8 52 8.45 6.35

p-value 0 0 0 0

X 62.0586 | 84.5826 | 62.4532 | 69.3693

of the overall performance of the selected algorithms across
ten real-world problems. Furthermore, to assess the effective-
ness of 15 algorithms, a Friedman test was performed for
hypothesis testing utilizing the KEEL program [61]. Table 11
displays the mean ranks achieved by every algorithm for each
performance metric, as per the Friedman test. The p-value
and x2 value for each performance metric have been pre-
sented in our analysis. Table 11 displays the p-value of O for
each performance metric, suggesting statistically significant
distinctions among the algorithms listed. Furthermore, the
chi-squared values pertaining to HV, IGD, GD, and PD are
62.0586, 84.5826, 62.4532, and 69.3693, correspondingly.

o Table 11 presents a comparative analysis of various
multi-objective evolutionary algorithms (MOEAs) based
on their performance metrics, namely HV, IGD, GD, and
PD, across multiple real-world problems.

o The results indicate that MaOEA-IBP, ISDE+, NMPSO,
and MOEAD-URAW algorithms consistently outper-
form other MOEAs in terms of the aforementioned
metrics.

o The findings indicate that ISDE+, MaOEA-IBP, and
MOEAD-URAW algorithms exhibit superior perfor-
mance compared to other MOEAs in addressing most
of the problems analyzed, as evidenced by the values in
Tables 1 - 10.

o Furthermore, the AnD and Pi-MOEA algorithms exhibit
favorable performance with respect to the HV, IGD, and
PD metrics, albeit demonstrating comparatively inferior
performance concerning the GD metric.

« The aforementioned observation suggests that the algo-
rithms AnD and Pi-MOEA face difficulties in achieving
convergence. The algorithms EFR-RR, NSGAII-SDR,
NSGAIIIL, t-DEA, SPEA-R, and RPD-NSGAII demon-
strate satisfactory performance in terms of the HV, IGD,
GD, and PD metrics.
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FIGURE 2. Critical diagram plots based on HV metric.
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FIGURE 3. Critical diagram plots based on IGD metric.
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FIGURE 4. Critical diagram plots based on GD metric.
15 14 1312 1110 9 8 7 6 5 4 3 2 1
I.II.I.I.I.I.II.II.I.III.I
RVEA3:200 | 250 ApD
Picea-g!28% 3500 MOEAD-URAW
t_DEAlO.7OO 4.700 Pl'MOEA
EFR_RR 9.650 6.350 MOFA
SPEA-R 2% 6550 |SDE+
NSGA-|I| &3%0 6800 MaOEA-IBP
NMPSQ £4% 1.800 NSGAII-SDR

RPD-NSGAI| 2220

FIGURE 5. Critical diagram plots based on PD metric.

o The PiICEA-g and RVEA algorithms demonstrate inad-
equate performance across all real-world problems in
relation to every performance metric. The PiCEA-g
algorithm’s proficiency in GD is noteworthy but may be
deemed premature convergence.

Furthermore, the critical diagram plots are presented in

Figs. 2 - 5 for analyzing the algorithms’ performance, as they
provide detailed information on the subject [12]. The crucial
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diagram plot displays the algorithms ranked according to
their performance indicators. The algorithms with the highest
performance indicators are positioned on the right side of the
plot, as illustrated in Figures 2 - 5. Conversely, the algorithms
with the lowest performance indicators are situated on the left
side of the plot. Based on the data presented in Figures 2 - 5,
it can be observed that MaOEA-IBP, ISDE+, and MOEAD-
URAW consistently exhibit superior performance across all

111649



IEEE Access

V. Palakonda, J.-M. Kang: Many-Objective Real-World Engineering Problems

performance metrics, as evidenced by their consistent place-
ment on the right-hand side of the visual representation. The
image depicts a consistent pattern wherein the algorithms
RVEA, SPEA-R, and EFR-RR consistently exhibit inferior
performance across all performance measures, as evidenced
by their placement on the left side of the image.

2) DISCUSSIONS AND ANALYSIS

Many algorithms have been suggested in the literature to
address many-objective optimization problems, and they
have demonstrated exceptional performance across vari-
ous benchmark problems. The present study conducted a
comparative analysis to assess algorithms’ performance in
real-world scenarios involving many-objective problems.
Hence, 15 algorithms have been chosen from the exist-
ing literature, with each algorithm being classified into
separate categories as described in Section II-C. In other
words, as previously stated, several approaches (namely
Pareto-dominance-based, indicator-based, decomposition-
based, and preference-based) have been suggested to handle
MaOPs. The algorithms selected in this study serve as a
representation of these methodologies. The most important
insights of this comparative study are outlined as follows:

o As stated by the no-free lunch theory, no single
algorithm can outperform all other algorithms on the
entire set of test problems. A similar conclusion can be
drawn from the experimental results on each individual
problem, where no algorithm performs better than the
remaining algorithms on all ten real-world problems.

o Among the different approaches proposed for han-
dling MaOPs, the indicator-based approaches have
demonstrated better performance when compared to
the remaining methodologies on the ten real-world
many-objective problems. The aforementioned obser-
vation can be derived from the critical diagram plots
depicted in Figures 2 through 5. These plots indicate
that the indicator-based algorithms, namely ISDE+ and
MaOEA-IBP, consistently exhibit superior performance,
as they are consistently positioned on the right-hand side
of the plot. Therefore, indicator-based methodologies
exhibit strong performance on real-world problems by
employing suitable parameter selection and optimizing
population member indicator values.

o Among the two algorithms (EFR-RR and MOEAD-
URAW) chosen to represent decomposition-based
approaches with weight vector adaptations, MOEAD-
URAW performs better on real-world problems, and in
contrast, the EFR-RR algorithm fails drastically. The
disparity in performance between the two algorithms
indicates that decomposition-based methods are suscep-
tible to weight vector adaptation. Therefore, developing
efficient methods for generating weight vectors would
enhance the functionality of decomposition-based
approaches in real-world scenarios.

o In contrast, decomposition-based approaches with
reference vector strategies (RVEA, SPEA-R, and
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RPD-NSGAII) are unable to handle real-world problems
effectively. Due to the fact that the Pareto front of
real-world problems is unknown, generating appropriate
reference vectors is a daunting task. In consequence,
these approaches perform poorly on real-world prob-
lems.

o The performance of the relaxed dominance approaches,
namely NSGAII-SDR and t-DEA, on real-world
problems is suboptimal due to their susceptibility to
becoming trapped in local optima. By contrast, the
methodologies that utilize additional selection metrics,
namely Pi-MOEA and AnD, exhibit superior perfor-
mance when applied to real-world problems. NSGA-III
algorithm that incorporates reference points selection
criteria as an additional metric exhibits suboptimal per-
formance when applied to real-world problems due to
the inherent challenge of approximating reference points
in such scenarios.

o The preference-based approaches necessitate external
input in order to incorporate preferences to handle
MaOPs. In contrast, it is challenging to articulate
preferences in real-world scenarios, rendering these
approaches (PiCEA-g) incapable of addressing real-
world problems.

e Due to their efficient search capabilities, the swarm
intelligence approaches (NMPSO and MOFA) achieve
respectable results with real-world problems.

3) OPEN ISSUES AND FUTURE DIRECTIONS
1) The availability of real-world many-objective problems
in the public domain is limited. There are a variety
of factors why only real-world problems are discussed
publicly.

o Corporate companies may sometimes conceal
information related to mathematical definitions
of real-world problems to safeguard their trade
secrets.

o Occasionally, the reasons are implementation-
related, such as when proprietary software is
required to conduct the evaluations. For instance,
Airfoil designing problem proposed in [62]
requires XFOIL [63] software for evaluation.

o It is also conceivable that individuals do not
disclose their problems to the public due to a per-
ceived lack of advantages associated with such an
action.

Consequently, there is a need to develop a test suite for
benchmarking real-world problems in order to evaluate
the efficacy of algorithms and make them available
to the public. In the case of security or other issues,
real-world many-objective problems can be formulated
as a black-box optimization problem, in which the
providers can conceal the problem characteristics and
the users can analyze the algorithms.

2) Algorithms specifically developed for addressing
many-objective  problems  exhibit  exceptional
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performance on synthetic and benchmark problems.
Nonetheless, this particular performance does not accu-
rately translate to the effective resolution of numerous
many-objective problems encountered in practical
applications. Consequently, designing algorithms that
exhibit superior performance on real-world problems
is imperative.

IV. CONCLUSION AND FUTURE WORKS

In this paper, the search behaviors of 15 state-of-the-art
algorithms (AnD, EFR-RR, ISDE+, MaOEA-IBP, MOEAD-
URAW, NSGAIII, NSGAII-SDR, Pi-MOEA, PiCEA-g,
RPD-NSGAII, RVEA, SPEA-R, t-DEA, NMPSO, and
MOFA) in the ten real-world problems from different
domains were examined. The algorithms considered in
this article belong to different categories, such as Pareto
dominance-based (relaxed dominance and additional met-
rics), indicator-based, decomposition-based (weight vector
and reference set), and preference-based approaches. Further,
HV, IGD, GD, and PD were used as performance metrics
to examine the performance of MOEAs. The experimen-
tal results obtained using real-world problems demonstrate
that the indicator-based algorithms (ISDE+ and MaOEA-
IBP) have consistently outperformed the other algorithms
in terms of the HV, IGD, GD, and PD metrics. On the
other hand, the Pareto-dominance techniques based on sec-
ondary selection criteria (Pi-MOEA and NSGAIII), as well
as the decomposition-based algorithm with a weight vector
(MOEAD-URAW), have both shown improved performance.
The Pareto-dominance techniques with relaxed dominance
(t-DEA and NSGAII-SDR) perform inconsistently because
they perform better on certain measures while performing
worse on others. According to the performance measures,
NMPSO among the swarm intelligence algorithms performs
better, and MOFA on the other hand, performs quite well.
In terms of the performance metrics, the preference-based
techniques and the decomposition-based approaches based
on reference vectors (RVEA, SPEA-R, and EFR-RR) perform
poorly.

In this comparative study, we covered a few many-
objective real-world applications to examine the performance
of the algorithms. As a part of the future study, we aim to
develop a test suite for benchmarking the many-objective
applications.

APPENDIX
The mathematical models for the real-world many-objective
problems considered in this paper are as follows:
o Car side impact design problem
Sfikx) = 1.98 +4.9x1 4 6.67x2 + 6.98x3 + 4.01x4 +
1.78x5 4+ 1072x6 + 2.73x7
Hx) =472 —0.5x4 — 0.19x2x3
f3kx) =0.5(VMBP(x) + VFD(x))
g1(x) =1—1.1640.3717x2x4 + 0.0092928x3 > 0
g2x) = 0.32 — 0.261 + 0.0159x1x2 + 0.06486x71 +
0.019 x 2x7 — 0.0144x3x5 — 0.0154464x6 > 0
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g3(x) = 032 — 0.214 — 0.0082x5 + 0.04520x; +
0.0135168x; — 0.03099xx + 6 + 0.018xpx7 —
0.007176x3 — 0.0232x3 + 0.00364x5x6 + O : 018x22 >0
ga(x) = 032 —-0— 74 + 0.61x; + 0.031296x3 +
0.031872 x 7 —0.227x3 > 0
gs(x) = 32—28.98 —3.818x3+4.2x1xp — 1.27296x¢ +
2.68065x7 > 0
go(x) =32 —33.86—2.95x3 +5.057x1x + 3.795x, +
3.4431x7 — 1.45728 > 0
g7(x) =32 —46.36 + 9.9x + 4.4505x; > 0
gs(x) =4—falx) >0
go(x) =99 —-VMBP(x) >0
gl0(x) =15:7—-VFD(x) >0
VMBP(x) = 10.58 — 0.674x1x2 — 0.67275x;
VFD(x) = 16 :45 — 0.489x3x7 — 0.843x5x¢
fix) =32, max{gi(x), 0}
where x; € [0.5, 1.5], xp € [0.45, 1.35], x3 € [0.5, 1.5],
x4 € [0.5,1.5], x5 € [0.875,2.625], x¢ € [0.4,1.2],
x7 € [0.4,1.2]
Conceptual Marine Design
file) = gmmaeosts
f2(x) = W+ W, + Wy;
f3(x) = —Cargopwr x RTPA
gix) =5—-6>0
Q) =15-£>0
g3(x) = 19—;20
g4(x) =0.45DWTO3! —T >0
g5(x) =07D+07-T >0
g6(x) = DWT — 3000 >0
g7(x) = 500000 — DWT > 0
gs(x) =032—-F, >0
go(x) = KB+ BMT — KG —0.07B >0
annual,ysss = capitaleoses + rUnNINGcosts + voyageosts
capital osrs = 0.25hipcost
shipcosi = 1.3 (2000W085 4 3500W,, + 2400P%8)
Wy = 0.034L'7B07 pO-4 0>
W, = 1.0L083p06p0-3 Y1
Wy, = 0.17P%9
FUNNING costs = 40000DWT O3
DWT = displacement — lightgpip
displacement = 1.025LBTCp
displacement 3 Vk3
\,“JFT
n— W
V =0.5144V;; g =9 : 8065
a= 4977.06C§ — 8105.61Cp + 4456.51
b= —10847.2C§ + 12817Cp — 696032
voyage osts = (fuelcoss + porteoss) RTPA
fueleoy = 1.05 x LPX24 4 0.2 5 290y, % 100
POFteost = 6.3DWT0'§)
RPTA = 20—
seddays = %Vk

— 7 (-Larsopwr
pOthays =2 (handlingmte + 05)

Cargopwr = DWT — 0'119(%624 +0.2 x (seagays +5) —

2DWT0?

P:
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handlingq.e = 8000; K123 =0.53T; KG=1+0.52D
BMy = (0‘08501;53.002)3

fsx) =212 max{gi(x), 0}

where L,B,D, T, Vi, Cp correspond to six decision
variables (xi, x2, X3, X4, X5, andxe), respectively. The
range of the six variables is as follows: L €
[150,274.32], B € [20,32.31], D € [13,25], T €
[10, 11.71], Vi € [14, 18], and Cp € [0.63, 0.75]
Vehicle vibration model problem

f1(x) = seat acceleration

Jfo(x) = forward tire velocity

f3(x) = rear tire velocity

fa(x) = relative displacement between sprung mass and
forward tire

f5(x) = relative displacement between sprung mass and
rear tire

Location of a pollution monitoring system

fOr,x) = —ui(x,x) — ua(xi, x9) — w31, x2)
ur(xr, x) = 3(1 —xy)2e ™ *(x2+21)

= — X1 —X7X
uz(xy, x2) = 10(4_)(?_)(;)3 1%

2 2
u3(xy,x3) = et TR

fi(x1, x2) = fxr, x2)

Hx1,x0) =fxr —1.2,x00 — 1.5)

&, x) =f(x1 +0.3,x —3.0)

falxr, x2) =f(x1 —1.0,x2 +0.5)
fs(x1,x0) =fx1 —0.5,x —1.7)

where x; € [—4.9,3.2], x» € [—3.5, 6]
Machining Problem

filx) = —7.49 + 0.44x; — 1.16x2 + 0.63x3
fHrlx) =—=4.3140.92x; — 0.16xp + 0.43x3
F3(x) = 21.90 — 1.94x; — 0.30x — 1.04x3
fa(x) = —11.331 +x1 +x2 + x3

g1(x) = —0.44x; + 1.16x, — 0.61x3 < —3.17
g2(x) = —0.92x; + 0.16x, — 0.43x3 < —8.04
g3(x) = —1.94x; + 0.30x2 + 1.04x, < 18.50

£ =32 max{gi(x), 0}

where x; € [6.40,7.09], x» € [0.69,2.89], and x3 €
[3.91,4.61]

Water resource planning

fi(x) = 106780.37 x (x + x3) + 61704.67

f(x) = 3000x,
_ (305700x2289x7)
S = 5061228000

fa(x) = 2250 x 2289 x ¢~ 39722 H9953+2.74)
fs(x) =25 x (% + 4940x3 — 80)

gi(x) = 20012 4 4.94x; — 0.08 < 1.0

ga(x) = 200006 4 1 082x3 — 0.0986 < 1.0
g3(x) = # + 49408.24x3 + 4051.02 < 5000
ga(x) = 209 1 8046 33x3 — 696.71 < 16000

X1X
gs(x) = 2% 4 7883.30x3 — 705.04 < 10000
g6(x) = % + 1721.26x3 — 136.54 < 2000
g7(x) = 01‘—54 +631.13x3 — 54.48 < 550

folx) = Z}ﬁl max{g;(x), 0}
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where x; € [0.01, 0.45], xo € [0.01,0.10], and x3 €
[0.01, 0.10]

Work roll cooling design problem

Silx) =8TS(x)

Jf2(x) = ST11S(x)

fH(x) = 68Tgq(x)

fa(x) = Sllog(x)

f5(x) = 8T154(x)

f6(x) = S11154(x)

where the decision variables, x; € [5,15], x €
[950, 1250], x3 € [15,50], x4 € [10,30], x5 €
[0.14, 1.256], x¢ € [40, 80], x7 € [20, 100]

Car cab design problem

filx) = 1.98 4+ 4.9x; + 6.67xy + 6.98x3 + 4.01x4 +
1.78x5 4+ 0.00001x¢ + 2.73x7

g1x) = 1—=(1.16 — 0.3717x2x4 — 0.00931xpx10 —
0.484x3x9 + 0.01343x¢) >0

g2(x) = 0.32 — (0.261 — 0.0159x1x, — 0.188x1xg3 —
0.019x2x7 4+0.0144x3x5 +0.8757x5x10 + 0.08045x6x9 +
0.00139xgx11 + 0.00001575x10x11) >0

g3(x) = 0.32 — (0.261 — 0.0159x1x, — 0.188x1x3 —
0.019x7x7 +0.0144x3x5 4+ 0.8757x5x10 +0.08045x6Xx9 +
0.00139xgx11 + 0.00001575x10x11) =0

ga(x) = 032 — (0.74 — 0.61x, — 0.163x3x3 +
0.001232x3x10 — 0.166x7x9 + 0.227x0x3) >0

g5(x) =32 — (URD*MéeD*LRD) >0

URD = 28.98 + 3.818x3 — 4.2x1x2 + 0.0207x5x10 +
6.63xgx9 — 7.77x7x8 + 0.32x9x10

MRD = 33.86 + 2.95x3 + 0.1792x19 — 5.057x1xp —
11x2xg — 0.0215x5x10 — 9.98x7x8 + 22x8%09

LRD = 46.36 — 9.9x7 — 12.9x1xg 4+ 0.1107x3x19

g6(x) =32—(4.72—0.5x—4—0.19xx3—0.0122x4x10+
0.009325x6x10 + 0.000191x11x11) >0

g7x) = 4 — (10.58 — 0.674x1xy — 1.95x2x3 +
0.02054x3x10 — 0.0198x4x10 + 0.028x6x19) > 0

gs(x) = 9.9 — (16.45 — 0.489x3x7 — 0.84xs5x6 +
0.043)69)610 — 0.0556)69)611 — 0.000786)611)611) > 0
J2(x) = maxg(x), 0

f3(x) = maxga(x), 0

fa) = maxgs(x), 0

f5(x) = maxga(x), 0

Jo(x) = maxgs(x), 0

Sf1(x) = maxge(x), 0

fs(x) = maxg7(x), 0

fox) = maxgg(x), 0

where x; € [0.5, 1.5], xp € [0.45, 1.35], x3 € [0.5, 1.5],
x4 € [0.5,1.5], x5 € [0.875,2.625], x¢ € [0.4,1.2],
x7 € [0.4,1.2]

Radar waveform design

f1(x) = Median range decodability

Jf2(x) = Median velocity decodability

Sf3(x) = Median range blindness

fa(x) = Median velocity blindness

f5(x) = Minimum range decodability

Jf6(x) = Minimum velocity decodability
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f7(x) = Minimum range blindness
f3(x) = Minimum velocity blindness
Jfo(x) = Dwell time

« General aviation aircraft

f1(x) = takeoff noise

fo(x) = empty weight

f3(x) = direct operating cost

Jfa(x) = ride roughness

f5(x) = fuel weight

Jfo(x) = purchase price

f7(x) = product family dissimilarity
f3(x) = flight range

Sfo(x) = lift/ drag ratio

Sf10(x) = cruise speed
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