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ABSTRACT Recent spectacular progress in computational technologies has led to an unprecedented boom
in the field of Artificial Intelligence (AI). AI is now used in a plethora of research areas and has demonstrated
its capability to bring new approaches and solutions to various research problems. However, the extensive
computation required to train AI algorithms comes with a cost. Driven by the need to reduce the energy
consumption, the carbon footprint and the cost of computers runningmachine learning algorithms, TinyML is
nowadays considered as a promising AI alternative focusing on technologies and applications for extremely
low-profile devices. This paper presents the results of a literature survey of all TinyML applications and
related research efforts. Our survey builds a taxonomy of TinyML techniques that have been used so far
to bring new solutions to various domains, such as healthcare, smart farming, environment, and anomaly
detection. Finally, this survey highlights the remaining challenges and points out possible future research
directions.We anticipate that this surveywill motivate further discussions on the various fields of applications
of TinyML and the synergy of resource-constrained devices and edge intelligence.

INDEX TERMS TinyML, embedded machine learning, deep learning, edge intelligence.

I. INTRODUCTION
Recent advances in computational technologies have enabled
an unprecedented boom in the field of Artificial Intelligence
(AI). AI has become ubiquitous in our daily life. Ranging
from game playing [1] to healthcare monitoring [2], [3] and
passing by Natural Language Processing (NLP) [4], com-
puter vision (CV) [5], social media [6], and Autonomous
Driving [7], [8], more AI applications continue to expand as
more people embrace this technology. However, the extensive
computation needed to reach such exciting results inAI-based
research and projects comes with a cost. Financially, the price
of dedicated hardware to run AI algorithms is increasing.
The cloud alternative does not always overcome the cost
issue since the cloud compute time is proportional to the
number of processes being executed [9]. This also impacts the
environment, as a consequence of non-renewable energy sup-
plied to modern tensor processing hardware. Authors in [9]
evaluated the estimated cost of training some benchmark
Deep Learning (DL) algorithms, in terms of CO2 emissions
and cloud compute time. The results show that as the trained
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models become larger and larger so does their carbon foot-
print. To overcome the side effect of AI on the ecosystem and
to make it more affordable for researchers and practitioners,
tiny machine learning (TinyML) has recently emerged as a
promising field of AI. Driven by the need to reduce the energy
consumption and the CO2 emissions of computers running
machine learning algorithms, TinyML is an AI alternative
that exclusively uses extremely low-profile devices to process
AI algorithms [10].

TinyML is a big shift in AI. It pushes the intelligence to the
edge and makes use of tiny devices such as microcontollers
to execute AI algorithms. TinyML enpowers low-latency,
consumes low power, and uses low bandwidth. In modern
computing technologies, standard CPUs consume gener-
ally up to 85 watts and standard GPUs consume between
200 watts to 500 watts [11], [12]. A typical microcon-
troller consumes thousand times less power, in the order of
milliwatts or microwatts. Such low energy consumption of
TinyML devices enables running them unplugged for weeks
or even years.

In AI, training large ML models requires a significant
amount of data that should be processed in the cloud net-
work. AI researchers are nowadays more concerned about
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the ethical aspect of machine learning than the accuracy
of the model [13]. This has led to extensive works on
privacy-preserving machine learning techniques for big data
analysis [14]. There is a growing interest from the ML com-
munity in leveraging a plethora of cryptographic techniques
to secure data both in the training phase and the testing phase.
However, by deploying TinyML where the source of data is
created and since this data does not leave the device, privacy
concerns are largely addressed.

There are different promising domains where TinyML can
bring a significant impact. In industry, anomaly detection is
highly critical and can help reducing the downtime for repairs
and thus increase the efficiency of the production process.
By deploying ML algorithms in the edge, one can detect
and analyze continuously the sound emitted by the machine
during the production process, which can inform of a possible
break down in that device. Analyzing different metrics such
as sounds or vibrations in real time will help saving time in
correcting or replacing any defective device without unnec-
essary delays. In environment [15], one of the recent research
fields, where sensors have been extensively deployed, is the
Internet of animals [16], [17]. Understanding animal behavior
continues to be a gruelling task for a majority of researchers.
It is indeed not an easy routine to track animals for hours or
even days in their living place to document their behavior.
Internet of Things (IoT) and especially TinyML canmake this
arduous work largely superfluous. It can help getting more
detailed insights on animals life and predict possible threats.
In the elephant TinyML project [18], collars are attached to
an elephant and capture its real-time movements using GPS.
The embedded sensors take surrounding images that are con-
tinuously processed and analyzed by TinyML and can predict
events around each animal such as the presence of human
predators. OtherMLmodels can also be applied to understand
and detect the mood of the elephant, while an accelerometer
is used to further determine the movement of the elephant.
TinyML brings new insights and unlocks new possibilities for
sustainable development. By reducing the latency, TinyML
enables real time applications to be deployed in the source
of data, such as in the case of image and speech recognition.
TinyML models can also run even when there is no internet
connection, which can not be realized in the cloud context.
In TinyML, the processed data do not need to leave the device,
which significantly improves user privacy and thus complies
with data protection regulations.

The scope of this paper is to present TinyML as a major
candidate for the support of machine learning in small and
constrained devices such as microcontrollers, by decom-
posing various related technologies and revealing research
challenges and directions. This paper also highlights the
power that TinyML brings to the research field of AI in
general and Deep learning in particular. The current study
shows to theAI researchers worldwide, whomay have limited
access to the high technology of dedicated servers and data-
centers, that TinyML is an affordable alternative. Specifically,
the contributions of this paper can be summarised as follows:

1) We provide a new classification of TinyML applica-
tions and techniques by surveying all published papers
on TinyML until 2023.

2) We study in depth the main advantages of using
TinyML compared to other existing approaches

3) We highlight how TinyML unlocks new advances for
sustainable development.

4) We highlight the remaining challenges in TinyML
towards its worldwide deployment in different research
fields.

The rest of this paper is organized as follows. Section I dis-
cusses existing surveys, highlights their contributions, and the
main gap we fill with the current survey. It also presents the
scope of this survey and the research methodology. Section II
presents an overview of TinyML. Section III presents envi-
ronmental TinyML applications. Section IV focuses on recent
TinyML applications in healthcare. Section V covers recent
advances of TinyML in smart farming. Section VI presents
TinyML use for anomaly detection. Section VI presents the
remaining challenges in TinyML, open research questions,
and future research directions. Finally, Section VII concludes
the paper. For ease of use, the acronyms are summarized in
Table 5.

A. EXISTING SURVEYS
In this section, we explore existing survey specific publica-
tions to TinyML. As of the writing of this paper, there are
a few surveys exploring TinyML. This is mainly due to the
fact that TinyML is relatively a new research topic. According
to [19], the year 2019 was the year where TinyML was dis-
cussed for the first time in research publications. In Table 1,
we order the existing surveys by publication year. The table
shows a comparison of existing surveys in terms of the topics
covered: Benefits of TinyML, model compression techniques
for TinyML, TinyML frameworks and inference engine,
TinyML Hardware, taxonomy of the main TinyML applica-
tions, TinyML in the environment, smart farming, anomaly
detection, healthcare and challenges. The table lists the depth
in which each topic was addressed (covered, partially cov-
ered). It also includes the number of references and their year
of publication, cited in each survey paper. We can categorize
the main topics surveyed as follows: surveys that discuss how
TinyML can optimize ML models to bring intelligence and
autonomy to devices in specific field such as, healthcare [20]
and embedded vision [21]. Those that focused on general
aspects of TinyML implementations. These include, 1) the
benefits, 2) use cases in TinyML, 3) frameworks and infer-
ence engine, 4) hardware, 5) model compression techniques,
6) tools, and challenges and future roadmap [22], [23], [24],
[25], [26]. A survey presented the challenges and direction of
benchmarking in TinyML [27]. The work in [21] explored
existing TinyML engineering, workflow and its challenges
specific to IoT embedded vision. In [28], the authors covered
reformable TinyML, and listed existing workflows, deploy-
ments schemes and sectors affected by reformable TinyML.
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FIGURE 1. Organization of the survey.

The study in [29] presented a clear and complete closed-loop
workflow for the development and deployment ofMLmodels
for MCUs. It outlined each step in the workflow and provided
both qualitative and numerical insights.

All of these surveys have reported the same promising ben-
efits of TinyML including energy efficiency, low cost, data
integrity, privacy, security, and latency. They also reported the

same remaining challenges including limitation of existing
benchmarks, hardware limitations when it comes to large
amount of data, software and hardware co-design which is
specifically addressed in [25]. However, existing surveys
have not focused on the sectors where TinyML has a major
impact, such as healthcare, environment, smart farming,
and anomaly detection. Most of the surveys demonstrated
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the implementation of TinyML in different use cases, such
as gesture recognition, speech recognition, keyword spot-
ting, image recognition, and visual wake words. Our survey
attempts to address these limitations which we discuss in
detail in the following section.

B. THE CURRENT SURVEY
Our survey defines TinyML and presents its potential ben-
efits in different sectors. In addition, we report the current
advances and challenges in applying tinyML. We explore in
depth existing contributions to critical sectors where the use
of TinyML brings a significant impact. To the best of our
knowledge, this survey is the first to include a taxonomy
of the main TinyML applications. The main sectors that we
survey are, the environment, smart farming, healthcare and
anomaly detection. The choice of these sectors was driven
by the amount of existing publications in these fields. The
potential of TinyML revolutionizing these specific sectors as
well as others can be sensed by the detailed overview of the
existing work that we share in this survey. We believe this
survey is an important added value to the research field as
well as a valuable reference to researchers.

C. REVIEW PROCEDURE
The research procedure used in this survey is a System-
atic Literature Review (SLR) [30], which consists of the
following steps: defining the research questions, retrieving
the literature, evaluating the literature, extracting the data,
and finally presenting and discussing the results. Our aim
is to present a fair evaluation of existing works on TinyML.
To this aim, we used different digital libraries: IEEE Xplore
Digital Library, Science Direct, and Springer Link. We also
used Google Scholar for bibliographic databases. Differ-
ent words and acronyms have been used in our research,
as : TinyML, Tiny-ML, embedded, tiny machine learning,
embedded machine learning, edge intelligence, and TinyDL.
We noted the existence of some research papers dealing with
TinyML as the main topic without mentioning this term in the
title neither in the keywords [31], [32], [33].

The scope of our work in the current survey was guided by
answering the three following research questions:

1) What are the new AI related publications that use non
traditional computing resources and use mainly tiny
devices?

2) What are the smart solutions proposed by TinyML
developers and researchers that mitigate the limitations
of existing AI based approaches?

3) What are the trending topics in TinyML, remaining
challenges, and future research directions?

II. BACKGROUND
A. IoT ARCHITECHURE
The term IoT has been introduced for the first time back
in 1999 by Kevin Ashton at MIT’s Auto-ID Center to refer
to a network that not only connects computers but extends

FIGURE 2. Types of used references.

this connection to any other device or thing [34]. Today, IoT
is a huge network that connects various devices including
computers, smartphones, drones to wearable and autonomous
vehicles. IoT devices are getting more complex as machine
learning models are integrated, allowing them to be more
intelligent. Because of the vast quantity of data that can
be acquired from IoT components, the coupling of machine
learning with IoT leads to overall development and better
intelligence of IoT devices. The IoT architecture can be bro-
ken down into four fundamental layers [35]: 1) the perception
layer: it is composed of sensors that gather data and physical
measurements, and actuators that execute tasks or actions
based on sensor data; 2) the network or transport layer: it
comprises the infrastructure for internet gateways and data
acquisition systems, to transmit and gather data from dif-
ferent devices to an on-premise location; 3) the middleware
or processing layer; it includes high-performance machines
for data analysis and data storage; and 4) the application or
service/interface layer; it grants users access to services and
presents them through interfaces or APIs. Nevertheless, when
implementing tasks such as machine learning models, this
architecture may encounter difficulties such as high energy
consumption. It might also need to maintain a steady connec-
tion at the network layer in order to preserve communication
with devices and the cloud.

The IoT architecture may be separated into three tiers
based on computing capacity, according to [36]. This hierar-
chical separation increases efficiency and dependency among
layers while also allowing for cost and resource optimiza-
tion [37]. Cloud computing in the top layer is intended for
high-level data processing and storage. However, the distance
between cloud servers and the data source causes challenges
such as sluggish decision-making and latency. In 2011, Fog
computing has been introduced to overcome the increas-
ing number of IoT devices, as a decentralized computer
layer between the cloud and the sensing components [38].
This layer performs data collection, medium processing,
and decision-making, decreasing the quantity of information
coming to the cloud layer. Fog computing permits to cope
with the huge amount of data to be processed in the cloud
by performing task offloading. The lowest layer is edge

VOLUME 11, 2023 96895



Y. Abadade et al.: Comprehensive Survey on TinyML

TABLE 1. Comparison of related survey papers. Annotations: ‘‘✓’’ indicates that the topic is covered, ‘‘≈’’ indicates that topic is partially covered, ‘‘✗’’
indicates that the topic is not covered.

computing, which puts data storage and computation closer to
the source of the data (components of the sensing layer) [39].
The fog and edge layers increase bandwidth and reduce
latency, allowing autonomous decision-making. These two
layers improve the security and the privacy of the user data
since it does not need to be sent outside the local network
for further processing and storage. The edge layer is more
dependable than the fog layer since the core tasks are handled
locally, lowering device and network costs while providing
quicker reaction time and offline availability. The comput-
ing paradigm is currently shifting from cloud computing to
end-edge-cloud computing, which also supports AI evolving
from a centralized AI deployment to a distributed artifi-
cial intelligence (DAI). This new paradigm is empowered
by end-edge-cloud computing (EECC), where the heteroge-
neous computing capabilities of on-devices, edge, and cloud
servers are managed to meet the requirements raised by
resource-intensive and distributed AI computation [40].

B. TinyML
Artificial intelligence is one of the sectors touched by the
new IoT paradigm, which advocates bringing intelligence to
the edge layer. Edge AI evolved as a response to the limits
of cloud-based AI, which is not necessarily appropriate for
real-time applications and devices with limited processing
power and bandwidth [41]. The term has become more pop-
ular in recent years as IoT and the number of linked devices

have expanded, along with the requirement for low-latency
and real-time decision making [23]. Mobile Machine Learn-
ing is one example of the use of intelligence on the edge layer,
notably on mobile devices such as smartphones and tablets.
Mobile ML techniques are meant to perform effectively on
mobile devices’ limited computing resources (few gigabytes
of RAMmemory) and battery restrictions. A Neural Process-
ing Unit (NPU) was incorporated in current mobiles to enable
the execution of ML algorithms. It is a customized proces-
sor designed to speed neural network workload calculation.
NPU is substantially quicker than traditional processors
such as CPU or GPU [42] in performing matrix mul-
tiplications, which are the essential operations of neural
networks.

TinyML focuses on deploying compressed and optimized
machine learning models on tiny, low-power devices such
as battery-powered microcontrollers, and embedded systems.
TinyML was inspired by Mobile ML’s features [43] (low
latency, resource limits, moderate cost) and its development
grew as a result of the technical breakthrough in the field
of IoT and MCUs. TinyML is successfully applied in vari-
ous application areas(see Fig. 3) e.g., healthcare, agriculture,
industrial IoT and environment. TinyML technology is driven
by the necessity to integrate intelligence in a wide range of
applications that were previously not viable owing to the high
power and computing needs of standardMLmodels as shown
in Fig. 4:
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FIGURE 3. Taxonomy of the main TinyML applications.

1) REDUCING LATENCY
TinyMLmodels can run on the device itself; thus the response
time is much faster than sending the data to the cloud for pro-
cessing. This is critical for applications that require real-time
decisions, such as image and speech recognition. Figure 5
illustrates a comparison between the latency and accuracy
of a ResNet-based model for Image Classification deployed
on two TinyML-supported boards (NDP9120-EVL Board
and GAP9 EVK Board), a traditional cloud-based deploy-
ment on Google Cloud, and Amazon servers. To conduct
the benchmark test, MLPerf [44] and Stanford DAWN [45]
were utilized. The results presented in Fig. 5 demonstrate that
the deployment of models on TinyML systems significantly
reduces latency, with a range of 0 to 5 ms, as compared to
cloud-based machine learning models. Furthermore, TinyML
systems offer high accuracy in their models, with only a slight
decrease from 95% to 85% due to compression and optimiza-
tion for use on restricted devices. These findings highlight the
potential of TinyML to minimize latency while maintaining
model accuracy, making it an attractive option for deploying
machine learning models on resource-constrained devices.

2) OFFLINE CAPABILITY
TinyML models can run even when there is no Internet con-
nection, whereas cloudMLmodels require such connectivity.

This is important for applications that need to be deployed in
areas with poor or no Internet access.

3) IMPROVING PRIVACY AND SECURITY
TinyML keeps the data on the device; thus, sensitive informa-
tion does not have to be sent to the cloud for processing. This
feature drastically changes the AI ethics picture by ensuring
the user data privacy, which complies with data protection
regulations.

4) LOW ENERGY CONSUMPTION
One significant part of decreasing energy usage in TinyML is
to reduce the quantity of data that has to be transported and
processed. Furthermore, TinyML algorithms are frequently
intended to be computationally efficient, which can help in
lowering the power consumption of the device on which they
are executed. Other methods for reducing energy usage in
TinyML systems include employing low-power components,
designing for low voltage and battery-powered operations,
and adopting sleep or idle modes.

5) REDUCING COST
TinyML models can save on costs associated with sending
data to the cloud for processing and storage, such as band-
width and storage costs. The low energy consumption is also
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FIGURE 4. TinyML benefits.

FIGURE 5. Latency and accuracy comparison.

an additional factor that implies the reduction of costs of
TinyML.

TinyML enables IoT devices to become intelligent by
allowing them to perform data analysis at the edge, leading
to faster decision-making. Additionally, it can be applied to a
variety of use cases to provide standalone ML services. Fig 6
describes the integration of TinyML in IoT workflow. In the
IoT workflow, TinyML refers to the use of ML models that
are small and resource-efficient enough to run on devices with
limited computational capabilities, such asMCU found in IoT
devices. These models are trained to perform specific tasks,
such as image recognition, audio classification, or sensor data
analysis. The data is collected by sensors on the IoT device
and passed through the TinyML model for processing. The
output of the model is then used for various purposes such as
controlling the device, sending data to the edge, fog node or
cloud for further analysis.

There are various proposed techniques in the literature that
address the challenges associated with cloud-based systems,
including alternative mechanisms for data analysis such as
fog and edge computing. These technologies have been used
to extend cloud services to the local area network, where
data processing occurs at an IoT gateway or a fog node
located close to the extreme edge device. Typically, each IoT
device is registered onto a gateway or fog node to enable the

extraction and processing of multi-sensor data. Although fog
and edge computing provide low latency, the major drawback
is that the wireless connection between the IoT device and
the gateway or fog node must remain active for complex
operations.

Table 2 compares TinyML with cloud, fog, and edge com-
puting in terms of latency, data privacy, accuracy, power
consumption, reliability, and memory consumption. The val-
ues presented in the table are derived from the benchmark
conducted by MLCommons [44], an open engineering con-
sortium dedicated to advancing machine learning innovation
and fostering the development of cutting-edge ML models
and systems. Benchmarking plays a crucial role in allowing
ML enthusiasts to measure, compare, evaluate, and poten-
tially enhance learning systems. It is important to note that the
TinyML benchmark is still in the early stages of development,
with the latest version being 1.0 [44]. The table shows that
TinyML has advantages over other technologies in terms of
latency, privacy, power consumption, memory consumption
and reliability. However, it seems to have lower accuracy
compared to these technologies due to themodel optimization
for deployment on low-constraint devices.

C. HARDWARE CONSTRAINTS
The growth of the Internet of Things industry has been fueled
by advancements in artificial intelligence and machine learn-
ing, as well as improved connectivity. The growing demand
for portable devices and the increasing use of microcon-
trollers for edge computing drive the microcontroller Market.
According to verified market research [46], the microcon-
troller market size was valued at USD 348.83 million in
2021 and is expected to reach USD 992.80 million by 2030.
A microcontroller is a compact integrated circuit designed
to control a specific function in an embedded system and
comprises a processor ranging from small and simple 4-bit
processors to complex 32-bit, memory, input/output (I/O)
peripherals, potentially with hardware accelerators, sensors,
and connectivity. MCUs are generally small, low-cost and
energy-saving.

Themarket has seen an emergence of the new 32bits gener-
ation of IoT-ready microcontrollers [46]. This emergence has
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TABLE 2. Comparison of TinyML performances against existing technologies.

drustically transformed edge computing. Because of support
for single instruction multiple data (SIMD) and digital sig-
nal processing (DSP) instructions, Cortex-M-based devices
may now perform previously unachievable tasks. MCUs also
include on-chip SRAM and embedded Flash; thus models
that can fit within the memory limits are free from the
costly DRAM accesses that limit classical ML. The broad
acceptance and implementation of TinyML relies on the
capabilities of these platforms.While general-purposeMCUs
provide flexibility, specialized hardware provides the best
TinyML performance efficiency. These customized devices
can attain performance in the one micro Joule per inference
level, pushing the limits of machine learning to the ultra-low
power end of TinyML processors [27].

Deep learning hardware accelerators are specialized chips
or circuits designed to improve the performance and effi-
ciency of neural networks. These hardware accelerators are
crucial for deploying deep learning models on TinyML as
they provide parallel processing capabilities and optimized
data flow to reduce computation time, energy consumption,
and memory usage. Authors in [47] present a convolu-
tional neural network accelerator (HBDCA) that uses a
high-accuracy block random access memory (BRAM)-aware
FPGA structure. For quantization, the HBDCA incorporates
TensorFlow Lite (TFL) with 8-bit per-layer activation. The
toolchain enables BRAM content to be updated without the
need for re-synthesis or re-implementation. The HBDCA
supports multiple kernel-level parallelism and uses spa-
tial and temporal mechanisms to minimize memory access.
Keras TensorFlow Lite is used to train the toolchain, and
FPGA resources are used to find the best hardware con-
figuration. The toolchain’s final output is a memory map
information file, which is generated at the end of the flow.
The toolchain is designed for TinyML environments and
provides a high-accuracy workflow that does not require
re-implementation. The GrAI One accelerator which is a
platform for sparsity-aware computing in neural networks
that attempts to decrease computation overload and improve
energy usage. The platform focuses on connection, space,

time, and activation sparsity. The GrAI One accelerator pro-
cesses network events on chip and saves weights in local
SRAM. The neurons carry out basic neural and arithmetic
operations, and their states are stored in local SRAM. Based
on a synapse table, the platform generates events and neural
model values. The sparsity-aware technique is similar to
TinyMLmodels and has the potential to save energy in neural
network calculations [23].

Additionally, another technique for optimizing machine
learning workloads is based on the usage of Tensor Process-
ing Units (TPU’s). A TPU is a custom-built AI accelerator
designed by Google to perform highly efficient matrix calcu-
lations: the foundation of many machine learning algorithms.
TPUs may greatly accelerate ML model training and infer-
ence, lowering the time and expense necessary to create
correct models. Edge TPU is a form of TPU developed by
Google intended exclusively to run TinyML models with
great performance and minimal power consumption. The
Edge TPU is an ASIC (Application-Specific Integrated Cir-
cuit) that can conduct real-time inference in conjunction with
edge devices such as the Raspberry Pi and Coral Dev Board.
The Edge TPU is a low-cost solution for running TinyML
models on devices at the network’s edge, allowing these
devices to do complicated ML tasks with minimal energy
consuption, and excellent accuracy that is significantly better
than traditional CPUs, according to the [48]. The edge TPU
has demonstrated the capacity to run cutting-edge mobile
vision models such as mobilenet v2 at around 400 FPS while
being power efficient [49].

Table 3 compares various TinyML devices, in terms of
processor, CPU clock frequency, flash memory, SRAM size,
power consumption or voltage, connectivity, sensors, product
developer, and price. The majority of hardware boards use the
ARM Cortex processor with CPU clock frequencies ranging
from 100MHz to 480MHz.Most of the boards haveWiFi and
Bluetooth connectivity, as well as various on-board sensors
such as light sensor, air pressure sensor, microphone, tem-
perature sensor, humidity sensor, gyroscope, gesture sensor,
accelerometer, air quality sensor and camera. Some TinyML

VOLUME 11, 2023 96899



Y. Abadade et al.: Comprehensive Survey on TinyML

TABLE 3. Hardware platforms to support TinyML.

devices also incorporate hardware accelerators, such as the
Coral Edge TPU ML.

D. SOFTWARE OPTIMIZATION
TinyML relies mostly on software, which enables the deploy-
ment of machine learning models on resource-constrained
hardware. Because software allows for the optimization
of model size and computational needs, machine learning

models may be operated on devices with limited process-
ing power and memory. This enables the incorporation
of machine learning capabilities into a wide range of
devices, resulting in new applications and better end-user
experiences.

Model compression is a strategy for reducing a machine
learning model’s size and processing needs. This method can
result in a 20% to 30% decrease in memory space required
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FIGURE 6. TinyML In IoT WorkFlow.

for network parameter storing. Several ways to compress a
model exist:
Pruning: The pruning method begins with training the

network and then selecting the key links by locating the
weights that are greater than a specific threshold. Weights
below this level are subsequently eliminated, resulting in a
trimmed model. This trimmed model may not provide the
same accuracy as the dense network, however retraining the
residual weights can restore the accuracy. Pruning also aids
in the removal of connections and neurons that have no input
or output connections.
Quantization: Quantization is used to reduce the preci-

sion of the weights and activation is reduced from 32-bit
or 64-bit floating-point numbers to 8-bit or lower fixed-
point numbers. As fixed-point arithmetic is quicker and more
energy-efficient than floating-point arithmetic, this decreases
the model’s memory footprint as well as the amount of pro-
cessing required. Quantization can be done either during or
after model training. The objective is to strike a compromise
between model accuracy and the precision of the weights and
activations, as lowering precision too much might result in
severe accuracy loss.
Low-Rank Factorization: Low-rank factorization is a

mathematical approach for approximating a high-dimensional
matrix with a low-dimensional one while maintaining as
much information as possible from the original matrix. The
purpose of low-rank factorization in Machine Learning is to
decompose a dense weight matrix into the product of two
lower-dimensional matrices with lower ranks, hence reducing
the matrix’s dimensionality while keeping its structure and
significant properties. As a result, the model is represented
more compactly, with fewer parameters and is more compu-
tationally efficient.
Huffman Coding: Huffman coding is a lossless compres-

sion method, which means that compressed data can be

precisely rebuilt to its original form with no information loss.
Huffman coding works by assigning binary codes to each
symbol in the data set, with shorter codes for frequently
appearing symbols and longer codes for less frequently
occurring symbols. The rationale behind this method is that
symbols that appear more frequently in the data will take up
less space if they are represented by shorter codes.

Knowledge Distillation: In addition to the Model com-
pression techniques, Knowledge distillation is another impor-
tant technique used in TinyML. Knowledge distillation is a
machine learning approach in which a smaller, more compact
model (referred to as the student model) is trained to mimic
the outputs of a bigger, more accurate model (known as the
teacher model). The student model’s goal is to approximate
the teacher model’s predictions as closely as possible, and
the idea behind knowledge distillation is that the smaller
model can learn useful information about the problem from
the teacher model, even if the student model is not as complex
or accurate as the teacher model. The knowledge distillation
training procedure consists of two steps: (1) training the
teacher model on the original training data, and (2) training
the student model with the teacher model’s predictions as the
target. The student model is trained using a loss function that
takes into account both the accuracy of its own predictions
and the similarity of its predictions to those of the instructor
model.

However, the traditional techniques for compressing
TinyML models mentioned above can lead to a significant
loss of accuracy due to poor matrix characteristics result-
ing from high compression rates [50]. This prompted the
development of Tiny neural networks, which are compact
neural networkmodels with a restricted number of parameters
designed to function effectively on embedded devices with
low processing resources. When compared to bigger, more
complicated models, tiny neural networks are often trained
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TABLE 4. Tiny neural networks.

on a fraction of a larger dataset and employ a simpler design.
This allows them to be trained and deployed more quickly
and efficiently while retaining a high degree of precision. The
table below 4 illustrates the several TinyNeural Networks that
exist, as well as applications, the number of parameters, and
the size if available.

The technique of autonomously searching for the opti-
mum neural network design for a particular job is referred
to as NAS. NAS may be used in the context of TinyML to
discover compact and efficient neural network architectures
that can run on small embedded devices with low com-
puting resources. NAS for TinyML seeks neural network
designs that balance accuracy, model size, and computa-
tional performance in order to satisfy the restrictions of
real-time deployment on small embedded devices. NAS algo-
rithms may find structures utilizing a variety of optimization

strategies, including reinforcement learning, evolutionary
algorithms, and gradient-based methods. One example of a
NAS framework for TinyML is DNAS. It stands for Differ-
entiable Neural Architecture Search, which is a type of neural
architecture search method for tiny machine learning. DNAS
approaches differ from traditional NAS methods by using
gradient-based optimization techniques to search for the best
network architecture. The idea is to train a network architec-
ture generator that outputs a candidate architecture, and then
use gradient descent to optimize the architecture generator
parameters such that the accuracy of the resulting architec-
ture is improved. [60] Another framework is FPGA-aware
graph neural architecture search (FGNAS). FGNAS performs
a search for the best GNN architecture while considering
hardware constraints. The framework is evaluated on bench-
mark datasets such as Cora, CiteCeer, and PubMed, and the
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results show that FGNAS has better capability in optimizing
the accuracy of GNNs when their hardware implementation
is specifically constrained. [61]

The deployment of models to embedded devices cannot
currently support model training due to limited resources.
Typically, models are trained on the cloud or on a more capa-
ble device before being distributed to the embedded device.
However, applying machine learning algorithms on embed-
ded devices creates difficulties, such as restricted computing
power. There are three methods for deploying models [62]:
hand coding, code generation, and ML interpreters. Hand
coding provides for low-level optimizations but takes time;
code generation creates optimized code but has portability
difficulties. An ML interpreter is a tool used to implement
machine learning algorithms on embedded devices with lim-
ited processing capabilities, including MCUs. It is part of a
framework that includes tools and software libraries and calls
individual kernels.

Aside from the interpreter, a TinyML framework typically
includes TinyML libraries and tools for data processing,
as well as a Tiny Inference Engine, which is a low-level soft-
ware library or hardware accelerator designed to efficiently
perform the computation required for machine learning
inferences. Table 5 shows some TinyML inference engines
along with their supported platform and training library.
Overall, the Tiny Inference Engine provides the computing
capabilities needed to execute the models, while the TinyML
Interpreter handles model execution. The development tools
for constructing and testing machine learning models, such
as data preparation tools, model training and validation tools,
and performance profiling tools, are also included in the
frameworks.

A TinyML Framework’s goal is to provide a comprehen-
sive solution for constructing and deployingmachine learning
models on low-power devices, making it easier for developers
to create edge computing applications. TinyML Frameworks
serve to guarantee that machine learning models operate
quickly and successfully on small, low-power devices by pro-
viding a comprehensive collection of tools and technologies.
Among these frameworks we can cite:
TensorFlow Lite(TFL) [63] is a Google open-source deep

learning framework designed for inference on embedded
devices. It is made up of two primary parts: the Converter
and the Interpreter. The TensorFlow Converter is used to con-
vert TensorFlow code into a compressed flat buffer (.tflite),
shrink the size of the model, and optimize the code with
minimal accuracy loss. TFL currently supports quantization,
pruning and clustering. TensorFlow Lite Micro(TFLM) [64]
is an extension of TFL designed to execute machine learn-
ing models on 32-bit microcontrollers with limited memory
(just a few kB). It’s been successfully ported to a variety
of processors, including the Arm Cortex-M Series and the
ESP32. The core runtime just fits in 16 KB on an Arm
Cortex M3 and is capable of executing many basic models.
It operates independently of an operating system, eliminating

the need for standard C or C++ libraries or dynamic memory
allocation [64].
Edge Impulse [65] is a cloud-based solution that facilitates

the creation and deployment of machine learning models
for TinyML device, from collecting data using IoT devices,
to extracting features, training models, and finally deploy-
ing and optimizing the models for TinyML devices. The
trained models can run on various edge devices, like micro-
controllers, single-board computers, and embedded systems.
It employs the EON compiler for model deployment and
also supports TFLM. Edge Impulse utilises TensorFlow’s
Model Optimization Toolkit to quantize models, lowering the
precision of their weights from float32 to int8 with minimal
impact on accuracy [66]. The EON compiler [67] compiles
the neural network model directly into C++ source code,
reducing the amount of stored ML operators that are not in
use. It has been demonstrated that the EON compiler can
run the same network with 25% to 55% less SRAM and
35% less flash compared to TFLM [29]. Edge Impulse has
also designed a novel machine learning algorithm named
FOMO [68]. It is a ML model designed for highly resource-
constrained devices. It enables object detection to count
objects, determine their location within an image, and
track multiple objects in real-time using far less process-
ing power and memory compared to MobileNet SSD or
YOLOv5 [68].
Arm NN is a Linux-based, open-source software frame-

work for machine learning inference on embedded devices
developed by the company Arm. The core of the framework
is the CMSIS NN library, which is a collection of optimized
neural network kernels designed for maximum performance
and minimum memory footprint on Cortex-M processor
cores. Arm NN makes use of fixed-point arithmetic, quan-
tizing model parameters to either 8-bit or 16-bit integers for
deployment to microcontrollers for inferencing. The frame-
work leverages the processing architectures of Arm’s popular
Cortex-M series of microcontrollers to enhance execution
time [62].

E. CONNECTED TinyML
TinyML algorithms are intended to be deployed on devices
withminimal resources, such asmicro-controllers. Achieving
the connectivity of the tiny embedded device, while adhering
to the given restrictions of low energy consumption, may
be possible using Low-power wide-area network (LPWAN).
This type of wireless network has various benefits over
standard IoT system approaches such as Bluetooth (BLE),
WLANs, IEEE 802.15.4-based protocols (Zigbee or 6LoW-
PAN), and cellular networks. Fig. 7 compares the networking
technologies, used by IoT devices, in terms of power con-
sumption, bandwidth, and range.

LPWANs employ low-power radio frequencies and oper-
ate at low data speeds. They are based on a cellular-like
architecture, in which end-devices communicate directly
with a central gateway or a base station allowing to handle
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TABLE 5. TinyML inference engine.

FIGURE 7. Different wireless networks used in embedded devices.

a large number of devices while consuming little power.
Thus, LPWANs are well-suited for IoT applications in which
devices must run for lengthy periods of time on batteries or
other restricted power sources, and may be scattered across
broad regions that sometimes can exceed dozens of kilo-
meters [69]. LPWANs support applications with low-rate
requirements where related devices can remain operational in
the field for years without battery charging or replacement.
They are generally considered as a type of Wireless Sensor
and Actuator Networks (WSANs) [70]. LPWANs also offer
great scalability and node density, making them suitable for
ultra-dense scenarios like highly populated cities, and their
network architecture does not require cooperation among
end-devices or the use of routing protocols or node coordi-
nation. The research [24] proposed an example of employing
LPWAN with TinyML in a federated learning (FL) scenario,
where a variety of edge devices collaborate to develop a
global model using only local copies of the data. This enables
the model to be developed in a decentralized and distributed
manner, eliminating the requirement for parties to share data.

There are other LPWAN-based wireless communication
technologies available today, but LoraWAN is the most often
used in TinyML projects (Table 1).
LoRaWAN: LoRaWAN is a media access control (MAC)

protocol developed on top of LoRa, a communication
technology that uses a modulation method called Chirp
Spread Spectrum (CSS) to send data over vast distances
while consuming minimal power. It is intended for wireless
battery-powered Things in a regional, national, or worldwide
network [71]. The utilization of license-free sub-gigahertz
radio frequency channels is a significant characteristic of
LoRaWAN. This allows the deployment of a large number of
gateways, enabling extensive coverage and low-power com-
munication with IoT devices. Sanchez-Iborra [72] evaluated
the connectivity of a wearable device within a test region
using a pre-existing LoRaWAN deployment. The results
show that the device achieved good connectivity both indoor
and outdoor locations, with a coverage shadow found in an
area with dense vegetation and big buildings. The packet
delivery ratio (PDR) obtained in the trials was over 92% in
all cases, with better performance in the uplink direction due
to the better noise factor of the gateway radio module as com-
pared with that of the end-device. Overall, the results demon-
strate that the TinyML device was able to achieve long-range
connectivity with an efficient transmission technology.
Sigfox: It deploys its own base stations in multiple nations

using its patented ultra-narrowband (UNB) technology in
the unlicensed sub-GHz ISM frequencies (e.g. 915MHz
in North America and 868MHz in Europe). End-devices
communicate with these base stations through BPSK mod-
ulation in a 100 Hz ultra-narrow band with a maximum
data rate of 100 bits/s [73]. Sigfox effectively utilises the
frequency band and has very low noise levels by employing
ultra-narrowband in the sub-GHz spectrum, resulting in low
power consumption, great receiver sensitivity, and low-cost
antenna design [74].
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NB-IoT: To empower the Internet of Things, 3GPP devel-
oped Narrowband Internet of Things (NB-IoT) technology
that may be used in both licensed and unauthorized bands.
It is an air interface that is part of the LTE standard but has
been reduced including handover, channel quality measures,
carrier aggregation, and dual connection. [75] It is meant to
promote long battery life and low-cost devices by utilizing
one resource block of LTE networks, equivalent to 180 kHz
in the frequency range. [76]

III. TINYML AND ENVIRONMENT
TinyML has the potential to play an important role in envi-
ronmental problem solving. TinyML enables the deployment
of intelligent devices capable of monitoring and collecting
data on numerous environmental aspects such as air quality,
water quality, and meteorological conditions. Indeed, these
devices are designed to be resistant to noise and changes
in data distribution. They may also be required to work in
tough environments, such as extreme weather temperatures
or places with limited or no access to power. TinyML devices
may also be installed on a wide scale and offer real-time
data on the state of the environment, allowing for a quick
identification and resolution of problems.

A. ATMOSPHERE-RELATED APPLICATIONS
1) VEHICULAR EMISSION
The greenhouse effect, a key contributor to environmen-
tal concerns, is mostly generated by automobile emissions.
These emissions contain significant volumes of carbon diox-
ide. To solve this issue, the authors in [77] employed TinyML
and the on-board diagnostics system, available in most auto-
mobiles, to monitor the amount of CO2 emitted per liter
and send the data to Typicality and Eccentricity Data Ana-
lytic(TEDA), an unsupervised anomaly detection algorithm.
This method measures the quantity of CO2 created in grams
per second; it saves the data on a microSD card for cloud
processing by external systems through Bluetooth or 4G. The
algorithm’s recursive structure makes it time-efficient, with
low computation and memory needs. The collected data can
be used to guide the execution of public actions to mitigate
the greenhouse impact.

2) TEMPERATURE PREDICTION
TinyML’s temperature forecasting is a critical application in
the realm of environmental monitoring. Accurate temperature
forecasts may help in making decisions such as a) when to
utilize energy in buildings; b) when to plant crops and c)
what type of crops to plant. The authors in [78] proposed
an approch to predict temperature values; it uses an edge
computing technique and a TinyML-based device, such as
the Arduino Nano 33 BLE Sense. They processed time-series
data and made temperature forecasts using a multilayer
perceptron, a sort of artificial neural network, with three dis-
tinct cost functions (Root Mean Square Error(RMSE), Mean
Absolute Error(MAE), and R-squared).

3) PRESSURE PREDICTION
The authors in [79] employed Tiny Neural Networks and
edge computing methodologies to obtain numerical weather
forecasts, especially pressure forecasts. They employed a
Tiny Deep Neural Network, a hybrid of Recurrent Neural
Network and Convolutional Neural Network. They evaluated
four distinct network versions and two different cost func-
tions. The model was trained and validated using data from
a recognized weather station; the findings revealed that the
forecasts were highly accurate in matching the ground truth
data. The model was then implemented on an STM32 micro-
controller using a C-library that was tailored for simplicity
and power economy. The output data was moved to a visual
platform for analysis. Using edge computing for this task can
drastically cut costs and compute complexity; it while also
allowing for the production of online simulations based on
atmospheric models.

B. HYDROSPHERE-RELATED APPLICATIONS
1) WATER QUALITY MONITORING
The authors in [80] proposed combining machine learning
and TinyML-based devices(Raspberry Pi) to build a method
to monitor and evaluate the water quality. Sensors capture
data on numerous water quality variables(e.g., temperature,
pH, and chemical material concentration) and communicate
the data to a Raspberry Pi linked to a data center. The data is
then analyzed by a machine learning model and transferred to
the cloud for analysis. The authors emphasize the advantages
of this technique, such as water saving and the capacity to
monitor many elements that impact water quality.

The authors in [81] created prediction models for water
quality utilizing multiple characteristics employing a graphi-
cal user interface (GUI) and a deep learning algorithm based
on Artificial Neural Networks (ANNs). Their software prop-
erly predicted the quantity of toxic compounds in aMalaysian
lake.

2) WATER MISUSE DETECTION
The authors in [82] developed a system for maintaining water
reservoirs using a mix of Raspberry Pi, Arduino IDE, and
ANN model. Sensors embedded in water faucets collect and
send data using Raspberry Pi, which analyses it with a deep
learning application. The application may then determine
regular water usage as well as any leaks or waste. This has the
potential to increase water conservation and decrease water
waste.

3) WATER DISEASE DETECTION AND PREDICTION
Authors in [83] employed Edge AI to safeguard water sup-
plies from dangerous contaminants such as cholera. They
criticized the present Alkaline Peptone Wate (APW) tech-
nique and advocated employing edge computing to construct
an experimental setup tomonitor the physicochemical param-
eters of water in order to avoid Cholera outbreaks. Because of
the absence of wireless connectivity in remote regions, they
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proposed to use an offline model that achieves 96% accuracy
while conserving battery power. The device was eventually
connected with on-tap inference and could monitor water
safety metrics. The authors intend to expand and generalize
the model in order to handle other illnesses that may contam-
inate water.

4) UNDERWATER IMAGING
Traditional underwater imaging systems require active power
sources, which are not accessible in most underwater envi-
ronments. These systems can be used to research marine
species, climate change, marine geology, aquaculture farms,
particulate organic carbon transport, and maritime archeol-
ogy. Recent research has revealed that completely submerged,
battery-free cameras and acoustic backscatter can be used for
on-site wireless underwater imaging. However, the narrow
bandwidth of the underwater acoustic channel makes picture
acquisition and communication energy inefficient. To solve
this issue, the authors in [84] created proposed a fish visual
wake word (fishVWW) model based on wake word models.
A wake word network is a sort of machine learning approach
that is used to detect a certain word or phrase (the ‘‘wake
word’’) in a stream of data. Wake word networks are often
used in voice assistants such as Amazon’s Alexa or Apple’s
Siri to allow users to activate the assistant by uttering the
‘‘wake word’’: ‘‘Alexa’’ or ‘‘Hey Siri.’’ The goal of a wake
word network is to allow devices to operate onminimal power
most of the time. This is accomplished by activating and
processing audio data, only when the wake word is detected.
Similarly, the fishVWW model was created for battery-free
underwater cameras that can only take, compress, and send
images when they detect a fish. The fishVWW model was
tested on the STM32L476RG, a very low-power microcon-
troller (with 1 Mb Flash and 128 kbs SRAM). In order
to decrease the amount of needless data transmitted, the
authors [84] did investigate eliminating underwater artifacts
from the image.

C. LITHOSPHERE-RELATED APPLICATIONS
1) HYPERSPECTRAL IMAGING (HSI)
TinyML has the ability to give useful insights in geology
by analyzing sensor data in real time and making it more
accessible, usable, and interpretable. One possible TinyML
application in geology is the analysis and classification of var-
ious types of rocks and minerals using hyperspectral imaging
(HSI). HSI collects detailed information on light reluctance
at various wavelengths, which may be utilized to assess
the composition and attributes of the materials being pho-
tographed. This data may be utilized to pinpoint specific rock
formations, mineral deposits, and geologic features. HSI pic-
tures, on the other hand, are often high-dimensional and need
a significant amount of power and storage. To address these
issues, the authors of the research [85] offer an algorithm-
hardware co-design solution for 2DTinyMLworkloads. They
propose inserting sophisticated calculations like convolutions

and non-linear activation functions inside and the periphery
pixel array. This decreases the need for data transfer between
the image sensor and the accelerator for Convolutional Neural
Networks (CNN) processing, resulting in lower energy and
bandwidth requirements. The authors in [85] also offer two
CNNmodels that are implemented using PIP (pixel-in-pixel),
which yields considerable compression while reducing data
rates and power consumption.

2) EARTHQUAKE DETECTION
Researchers in [86] focuse on earthquake detection as a vital
initial step in Earthquake Early Warning (EEW) systems.
The authors point out that in order to give real-time alerts,
robust EEW systems must have high detection accuracy,
low detection latency, and a high sensor density. They note
that classic EEW systems rely on fixed sensor networks or,
more recently, networks of mobile phones equipped with
micro-electromechanical systems (MEMS) accelerometers.
The authors suggest a new technique for global-scale earth-
quake detection and warning based on IoT edge devices with
TinyML capabilities and always-on, always-connected sta-
tionary MEMS accelerometers. They explored and assessed
deep learning ML algorithms for earthquake detection using
a limited-resource Arduino Cortex M4 microcontroller (256
kB of RAM).

D. BIOSPHERE-RELATED APPLICATIONS
1) WILDLIFE CONSERVATION
Sensor technology is important in wildlife conservation
efforts, particularly when it comes to protecting endangered
species. Authors in [87] discuss the use of ML techniques,
including on-animal sensors for tracking movement and
bioacoustic sensors, to gather data about wildlife and the
environment. These techniques can be used to improve our
understanding of biodiversity and the environment. However,
the paper also notes that there are limitations and challenges
to be addressed, including issues with low latency and low
capacity due to the large amount of data and the vastness of
habitats.

Another application in the same scenario was presented
in [88]. TinyML was used to small payload satellites weigh-
ing less than 180 kg, often known as SmallSats, to meet
a specific conservation task. The study focuses primarily
on the protection of sea turtles, who are under threat from
factors such as uncontrolled fishing and sea pollution. The
TinyML framework was used to assist conservation efforts by
implementing state-of-the-art real-time vision-based TinyML
support. The study’s goal was to utilize this technology to
track sea turtles in real time, giving real-time data on their
position, activity, and population to assist enhance the effi-
ciency and efficacy of conservation operations. This may be
utilized not only for sea turtles, but also for other conservation
duties such as unlawful hunting, logging, and animal welfare.

Hackster.io and Smart Parks organized an event named
ElephantEdge [89] to encourage members of Hackster.io to
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FIGURE 8. WASN-based soundscape monitoring system architecture.

develop TinyML models for tracking collars, with the goal of
reducing the loss of elephants due to illegal ivory poaching,
trophy hunting, human conflict, and environmental degra-
dation. The authors in [90] proposed two TinyML models
based on two different input such as, audio and accelerometer
data(x,y,z). The first model detects poacher attacks based on
the sound of kalashnikovs and bush arrow. The second model
detects poacher attacks based on the elephant’s physical activ-
ity. Both models were created using Edge Impulse Studio.

2) BIO-ACTIVITY MONITORING
Using TinyML can also help monitor vital biological activi-
ties of different species, providing valuable information about
their behavior, movement, and ecosystem. Ultrasonic sensors
can be used to track bat activity, as described in [91]. The
sensors capture sound waves and generate a spectrogram,
which is processed by Machine-Learning-based hardware to
classify the signal and provide information about the bat’s
location, genus, and time of recording. This approach can give
insights into biodiversity loss and other important ecological
information.

3) SOUNDS CLASSIFICATION
TinyML might be useful in the subject of biophony, which
is the study of the sounds generated by living creatures
in their natural surroundings. It is feasible to analyze and
interpret the complex audio patterns created by different
kinds sources in a studied environment using TinyML mod-
els on small, low-power devices, and potentially utilise this
information for conservation and environment management.
TinyML was utilized in the article [92] to construct an
in-situ soundscape monitoring system based on a wireless
acoustic sensor network (WASN). The system was created

to statistically anticipate soundscapes using an RF52840
32-bits-microcontroller on a low-cost edge device. The sys-
tem’s machine learning algorithms were able to identify
noises into four categories: anthrophony (human sounds),
traffic, biophony (animal sounds), and geophony (environ-
mental sounds). The final model utilized in the system was a
CNN based on mel-frequency cepstral coefficients (MFCCs),
with an accuracy of 81.6%. The paper proposes a system
architecture using three layers: the edge layer, which consists
of sensors and a machine learning model running on the
Arduino Nano 33 BLE Sense development board; the fog
layer, which consists of an ESP32 and a LoRa transceiver
acting as a gateway; and the cloud layer, which handles global
storage as well as web-based application for visualization
and analysis using Grafana and Node-Red. The development
board is equipped with environmental sensors, a MEMS
microphone, and the nRF52840 processor, and is capable
of running TinyML and TensorFlow Lite. The sensor mod-
ule also includes a real-time clock and a small battery for
retaining date and time. Fig. 8. depicts the architecture of the
soundscape monitoring system.

IV. TinyML AND HEALTHCARE
The development of TinyML has inevitably touched the
sector of healthcare, which is substantial in every society
worldwide. And since the human body can be considered as
a source of signals emitted by a variety of organs, sensors
can be deployed to collect these data and use it to mitigate
dilemmas related to healthcare. The deployment of TinyML
would fit to solve these issues as illustrated in table 6. Pre-
vious surveys [20], [23], [93] indicate that the integration
of these edge devices would revolutionize the healthcare
sector, and enhance the well-being of people. The latter can
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TABLE 6. Summary of the applications of TinyML in healthcare.

provide quality and reliable healthcare monitoring; in addi-
tion to the improvement of many health products. Moreover,
the technology has the potential to enable new forms of
medical monitoring, diagnostics, and therapy, improve the
quality of care, and ultimately improve patient outcomes.
Especially with the ability of TinyML to process data in
real-time and in low profile devices. This opens new pos-
sibilities for healthcare professionals to monitor and treat
patients in a more effective and efficient way [94]. The
analysis of previous works allows us to amalgamate the
general process adopted to apply TinyML in healthcare as
illustrated in Fig. 9. The human body is the provider of
biological signals that are detected by specialized sensors
and later transmitted to the heart of the embedded system
that consists of ML or DL algorithms interacting with a
cloud environment. This combination allows the device to
reveal the type of deficiency, as well as to monitor, predict
or assist the patient. In this section, we explore promising
TinyML-based solutions in the healthcare field, as summa-
rized in table. 6., by shedding light on some of its trending
applications.

A. BLOOD-PRESSURE MONITORING
One way to see how TinyML can find its place in health-
care is by investigating [95], where researchers apply the
edge device to monitor high level blood pressure, called
‘‘TinyCare’’ [95]. The authors developed a cloud independent
TinyML solution that merely relies on data obtained from
patients. The authors in [95] adopt a systematic procedure to
tackle the problem, starting by preprocessing the data based
on physiological signals and then extracting the features.
Their model used a variety of ML algorithms deployed on
three Edge Devices: Arduino uno, ESP32 Wrover Board,
and AdaFruit PyBadge. [95]’s methodology enabled to test
a variety of models, not only with respect to accuracy, but
also latency and complexity.

B. NEURAL SPEECH ENHANCEMENT FOR HEARING AIDS
Noise suppression and Hearing Aids are medical solutions
used by people with damaged ears, they help in the decrease
of listening difficulties, especially in noisy environments.
Many models were developed through usage of RNN [96],
the authors in [97] built on these models, but using TinyML.
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FIGURE 9. Demonstration of the general process adopted to apply TinyML technology in the healthcare sector.

The base of the hardware was chosen to be the Hearing Aid,
and the authors used RNNs and pruning techniques to create
the model that would enhance the hearing of speech. Authors
in [97] acknowledged the constraints imposed by the edge
device, since they required to train large neural networks with
large data-sets due to the limited storage feature; nonetheless,
the authors were able to achieve moderate satisfactory rating
for their model.

C. IMPROVING WEARABLE AND AMBULATORY SYSTEMS
According to [98], TinyML can generate many embed-
ded solutions and optimization techniques in the domain
of wearable devices in Healthcare. Such contributions can
be recognized in the detection and recovery from FoGnin
Parkinson’s patients, achieving high accuracy of 93.58% by a
ML model deployed on ATMega2560 microcontroller that is
able to balance between power consumption and processing
speed [99]. The applications of TinyML in the healthcare
domain can be further extended to the detection of Cardiac
Arrhythmia,an irregular heartbeat caused by abnormal elec-
trical activity in the heart. The detection process was boosted
by the usage of low-powered microcontrollers as indicated
by [100]. The authors in [100] relied on the CMSIS-NN
library as a software tool to deploy their convolutional neu-
ral network. The authors reported a power efficiency of
1.64 GOps/s/W achieving a reasonable accuracy of 78.4%
(including the implementation of CMSIS-NN). The treat-
ment of epilepsy is a typical paradigm for the application of
TinyML. The authors in [101] deploy an ultra low powered
wearable device in treatment of this neurological deficiency

through the detection of epileptic seizure. The experimental
setup included an ML model (Random Forest) as a classifi-
cation algorithm, that classifies signals after being deployed
on STM32L476 ARM cortex-M4 microcontroller. The entire
setup accomplish up o 40.87 hours of monitoring using a
single battery charge (approximately a whole day of work); in
addition to reduced amount of false-alarms that [101] worked
on to obtain. are all domains to apply this technology. The
authors in [102] and [103] introduce TinyML as a medical
embedded system for the diagnosis of of focal liver lesion
(FLL) using a DNN model trained on liver images that were
priory obtained using ultrasound imaging. The entire process
was implemented using computer aided diagnosis, which was
later transfered in a small memory footprint that runs in an
edge platform [102].

D. EMOTION DETECTION
Another substantial application of TinyML comes with emo-
tion detection. The authors in [104] and [105] aimed to
construct a smart wearable device to achieve the recogni-
tion of emotions through physiological signals emitted by
the human body. For instance, in [104] from the respiratory
belt, photoplethysmography (a measuring tool of variation of
blood in a certain organ), and fingertip temperature, mean-
while, The authors in [105] used bioelectrical measurement
technologies to measure parameters such as skin conduc-
tance, electroencephalographic, and heart rate signals. After
deploying the data collect by sensors on trained ML mod-
els, [105] obtained an accuracy that ranges from 53.6% to
69.9%, in contrast, [104] achieved an accuracy of 69% to
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73.08% which proves that these devices can be further har-
vested and polished in the identification of the emotional state
of a person, which may contribute in the improvement of
ergonomic conditions of people around the world.

E. IDENTIFICATION OF DEADLY MOSQUITOES
Applications in healthcare also involve the detection of harm-
ful species that provoke disease and infectious illnesses.
Works already exist before adopting TinyML in the process,
such as [106], where they use CNN to classify audios cap-
tured through smartphones. However, the authors in [107]
introduced TinyML technology by establishing an approach
to detect hazardous mosquitoes using a model sensor that
compiles wing beats to audios, which will be classified
by a Tiny Embedded System that employs both Machine
Learning and Edge Impulse Platform. The authors in [107]
rely on Arduino Nano BLE 33 Sense-based prototype that
is equipped by a trained ML model capable of classifying
collected audio data of wing beats so as to identify the type
of species in which the mosquito belongs to. The model
of [107] achieves an accuracy of 88.3%, which is a good
result especially with respect to the low-cost and low-energy
consumption.

F. TINY RESERVOIR NETWORK FOR THE DETECTION OF
PATHOLOGICAL CONDITIONS
One of the areas where tinyML can be applied is in the
processing of electrocardiograms (ECGs). ECGs are sig-
nals used for measuring the electrical activity of the heart,
which provides substantial information about the cardiovas-
cular state of the human body. The authors in [108] aimed
to reduce the complexity of this process by introducing a
tinyML based ECGs that supports reservoir computing (e.g.
a machine learning algorithm that uses a recurrent neural
network (RNN) with a fixed architecture). In their model,
they deployed their model low-power microcontroller unit
able to process biological signals coming from the ECG for
the recognition of a variety of pathological conditions. Their
setup consumed less power, and acquired an accuracy of
95.4% with variance over the processed data of 0.001 [108].
The adoption of tinyML-based ECG analysis can unlock
many new use cases, such as continuous monitoring and
real-time feedback for medical doctors or patients.

V. TinyML AND SMART FARMING
According to the United Nations(UN) [109], the world
population is expected to reach 9.8 billions by 2050. As con-
sequence, the requirements of agricultural products are con-
tinually increasing to serve the future population. However,
rapidly growing population, climate change, soil degradation
and depleted of natural resources are all factors affect the food
production. The need for an evolutionary agricultural to keep
up with growing demand in food production is necessary.

Farmers, scientists, and agricultural industries turn to new
technologies and solutions such as IoT, drones, ML, big
data, cloud, fog and edge computing to transform traditional

agriculture into sustainable, smart, efficient, and eco-friendly
agriculture named Smart Agriculture (SA) or Smart Farming
(SF) [110].

IoT plays a vital role in this transformation. Thanks to IoT
solutions, farms can monitor the health of the crop and soil,
detect any diseases can affect the plants, check the growth of
plantation with drones and more. The electronics industry has
seen significant advancements, leading to the availability of
high-quality and cost-effective components such as MCUs,
single-board computers, sensors, and radio transceivers. The
newer generation of MCU are not only capable of performing
standard sensing and control tasks, but also support complex
operations such as running ML model. Moreover, contem-
porary radio technology has progressed to the point where
long-range transmissions can be achieved with lower energy
consumption.

The SF IoT network employs IoT devices to gather data
on soil, crops, greenhouses, irrigation, and weather via cam-
eras or sensors [110]. This data is transmitted to the cloud
throughWireless Sensor Networks (WSN) and can be utilized
by farmers to monitor crop health and identify diseases in
the plants [110]. By analyzing and interpreting the data,
farmers can comprehend the relationship between different
agricultural factors, such as soil characteristics and climate
variables, which aids in informed decisions and effective
planning [111]. In this context, ML plays a crucial role in
modeling the complex patterns present in the data, forming
the backbone of decision support systems.

There are various architectures used in SF, depending
on the specific application. Some common architectures
include those with two layers(physical-edge), three layers
(physical-edge-cloud) and four layers (physical-edge-fog-
cloud). Many SF applications use three-layer architec-
ture [112](see Fig. 10). The physical layer consists of sensors,
actuators, and drones that collect data from the soil, animals,
greenhouse, and weather. Data collected are transmitted to
edge nodes using WSNs. The edge layer consists of com-
puting devices that interpret and analyze data received from
physical layer. The edge nodes have low or medium com-
puting resources. The cloud layer represents the brain and
data storage in SF architecture; it has a high storage capac-
ity to save the data generated by various sensors. It also
aggregates and draws insights to provide ML models for
decision-making.

Complex ML algorithms require significant computing
resources for effective execution, leading to the adoption of
cloud computing; it has the capacity to handle large ML
models with millions of parameters, as well as the high-speed
processors and gigabytes of memory needed to run these
models efficiently. However, this can be challenging in cer-
tain locations [113], such as in Africa [18], where internet
bandwidth may not be sufficient to support the quick trans-
mission to the cloud. Poor internet connection causes some
issues such as huge latency, data loss and the reliability
issues [112]. Moreover, frequent access to the cloud increase
cyber-attack threats and decrease data protection [114].
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FIGURE 10. Smart farming architecture.

FIGURE 11. Number of articles on TinyML in smart farming.

To overcome the challenges posed by the cloud, some
specialized techniques have been developed that bring the
computation process closer to end devices, such as fog and
edge computing. In recent years, the integration of TinyML in
SF has also gained attention. TinyML allows sensor devices to
perform ML tasks, such as monitoring crop health, detecting
plant diseases, and predicting the best crops, without the need
for the cloud. TinyML offers several advantages over cloud,
fog, and edge computing in terms of privacy, security, latency,
and energy consumption [112].

TinyML holds enormous potential in SF, especially in
Africa where embedded systems and AI are currently under-
utilized [18]. PlantVillage [128] is one of these chances. It is
an open-source project managed by Penn State University.
The team in this project [128] has created the Nuru app to aid
farmers in identifying and combating plant diseases. By using
ML through TensorFlow Lite on mobile phones, the app
provides real-time solutions without internet access, which is
crucial for farmers in remote areas. The future development
of the system will utilize TinyML and TensorFlow lite micro
to install sensors across distant farms, resulting in improved
tracking and analysis [24].

In this section, we explore promising TinyML-based solu-
tions in SF field. As shown in Fig. 11, the most deployed

case is crop management with 8 papers, smart greenhouse
with 3 papers and smart irrigation with 2 papers. The table 7
summaries the application of TinyML works in SF in terms
of area, dataset, classification algorithm, target device, frame-
work, power consumption, memory consumption, latency
and accuracy.

A. CROP MANAGEMENT
Crop management refers to the various techniques used to
grow and maintain crops in an efficient and sustainable
manner. This can include things like proper irrigation and
fertilization, pest and disease management, and optimizing
crop yields. TinyML could be used to gather data on factors
such as soil moisture and temperature, as well as analyze
this data to make predictions and provide insights that can
improve crop yields and efficiency. The authors in [115]
designed an embedded ML pipeline that helps farmers and
scientists to monitor the health of the crop and its growth.
This pipeline allows users to create an embedded ML that
can be used for different plants in labs, greenhouses, farms or
gardens. The first step of the pipeline is data collection, where
the authors proposed best practices to collect data plants. The
next step is training a Convolution Neural Network (CNN)
for two cases: a) estimation of Leaf Area Index (LAI) and
b) prediction of the plant growth stage. After training phase,
the ML model is compressed and converted to TensorFlow
Lite(TFLite) format to be deployed on MCU device. For
testing, the authors have chosen Sony Spresense setup as
target device.

The authors in [33] proposed a TinyML solution to detect
drought stress in soybeans. The system is composed of a
Raspberry Pi zero W and Sony IMX219 camera module. The
Raspberry device runs CNN model on the captured image to
detect crop drought stress and then sends prediction to a web
platform. The CNNmodel was converted to TFLite format in
order to be deployed on limited-resources device.
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TABLE 7. Summary of the applications of TinyML in smart farming. Annotation: ‘‘–’’ is used to signify that authors did not provide information.

The authors in [116] proposed a low-power and real-
time image detector for grape leaf esca diseases based on
a compressed CNN model. Many compressing techniques
such as, CP decomposition, tucker decomposition and tSVD
are analyzed to chose the method with the best compression
factor and accuracy. CP decomposition are chosen and it
applied on CNN model. After training and validation of the
model; it compressed with post-training quantization using
TFLite to generate amodel with 8bits. The compressedmodel
is deployed on OpenMV Cam STM32H7. The device is
mounted on an agricultural vehicle moving with a constant
speed through the cultivation field.

The authors in [118] developed a TinyML CNN model
aims to classify between infected and healthy coffee plant.
This model aims to monitor the health of the coffee plants
and prevents the propagation of the epidemic to the oth-
ers. The authors compressed a model with Qm,n format
using X-CUBE-AI tool. The TinyML model is deployed on
STMicroelectronic ‘‘STM32F746G-disco’’ board connected
to an STM32F4DISCAM module; both embedded in a box
equipped with LEDs which are used to light coffee leaf while
taking picture(see Fig. 12).

The authors in [120] built a prototype to identify and
classify fruits and vegetables from images deployed on MCU
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FIGURE 12. Coffee plant disease prototype [118].

ESP-32. This prototype helps farmers to identify fruits and
vegetables in real-time. They performed experimentation on
three models such as CNN, pre-trained MobileNet model v1
and v2 in order to choose a better model in terms of accuracy,
inference time, RAM and flash occupation. These models
were converted to TFLite format. Finally, the Mobile Net
model v1 was chosen to be deployed on ESP-32.

The authors in [31] proposed a device(STM32F401CC)
with a lightweight neural network model to predict the best
crop to grow based on the observed soil parameters, such
as nitrogen, phosphorus, potassium, soil PH, temperature,
and humidity of the soil. The embedded ML model predicts
five crops: beans, maize, lentil, peas, and watermelon. The
device sends the prediction results to the cloud via GSM to
notify farmers. The model is created and optimized via Edge
Impulse platform.

The authors in [94] built a prototype to detect and count
the number of strawberries in the image. This prototype aims
to help farmers to know where and when strawberries need
attention to harvest them or to apply fertilizer. The authors
used the newMLmodel for constrained devices developed by
Edge Impulse named FOMO (Faster Objects, More Objects).
They used Edge Impulse cloud platform to design, train, vali-
date, optimize and deployMLmodel onArduino PortentaH7.

The authors in [127] created a TinyML image classification
deep neural network model deployed on smart camera to
detect crop diseases. The study applying depthwise sepa-
rable convolution module instead of standard convolution
and squezze to reduce model parameter and computational
complexity. The Sony-CXD5602 MCU device has been used
as a target device. The model achieved a good performance
in terms of time inference and accuracy on two publicly
agricultural datasets such as, potato and tomato datasets.

B. SMART IRRIGATION
The authors in [32] proposed a system for agro-environmental
management employingmoisture sensors and real-time video
analysis of soil photographs. The VGG-19 model is used to
distinguish picture types and calculate the quantity of water
required for irrigation based on the kind of crop planted.
The model is trained on a Kaggle soil structure dataset and
evaluated on a proprietary dataset.

The authors in [126] proposed a low-cost device based on
theMCUESP32-CAM that uses a camera to gather data from
numerical water meters to monitor central pivot irrigation
systems. The device runs a TinyML model to process the
images in order to read the water meter; it then transmitted
to a server using LoRaWAN. The TinyML model scored an
accuracy of 88%.

C. SMART GREENHOUSE
A greenhouse is a structure designed to provide controlled
environment for plants to grow. This controlled environment
can include factors such as temperature, humidity, light,
and nutrient levels, which can be adjusted to optimize crop
growth. Greenhouses can be used to grow a wide variety of
crops, including fruits, vegetables, and flowers, year-round,
regardless of the outdoor weather conditions. TinyML can
be used in greenhouse to optimize crop growth by using ML
on low-power devices to gather data and make predictions.
The authors in [123] proposed a low+cost device that aims
to recognize different types of gas (NH3, CH4, N2O). This
device helps farmers to monitor greenhouse gases coming
from the soil. They chose an ANN algorithm to classify three
types of gas. It was compressed and deployed on NUCLEO-
L476RG device using X-CUBE-AI toolchain.

The authors in [124] developed a multi-label TinyML
model based on Multi-Layer Perceptron(MLP) architecture
for micro-climate control of a strawberry agricultural green-
house. The model takes five parameters as input such as,
temperature, humidity, soil humidity, solar illuminance and
the air CO2 concentration. And then generates as output a
five-dimensional vector where each binary numerical value is
associated with one control action to be performed automat-
ically within the greenhouse. The model scored an accuracy
of 97% on the validation sets, and 96% on test set, with a
number of 151 trainable parameters.

The authors in [125] proposed a system where IoT devices
and edge nodes work together to monitor the status of the
plants in a greenhouse to make decisions about the operation
of sprinklers. Each IoT device uses its embedded TinyML
model based on Decision Tree(DT) to determine the needs of
the plants, and then sends this information to the edge node.
The edge node collects decisions made by all the sensors
for a specific sprinkler and uses an ML model to decide the
final action (‘‘no action’’, ‘‘irrigation’’, or ‘‘fertigation’’). The
study uses Arduino Uno board as a target device for end
device and edge node. The TinyMLmodel scored an accuracy
of 99%.

VI. TinyML AND ANOMALY DETECTION
Anomaly detection(AD) or outlier detection refers to the
techniques for identifying patterns or observations in data
that do not conform to an expected behavior [129]. This
techniques are used in variety of IoT smart applications [129]
such as, smart city, smart monitoring and smart power
management. Mostly of this applications used sensors as an
input device. These devices generated a huge volume of data
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that are transmitted to the cloud servers for analysis, decision
making and storage [129].

Many detection methods have been introduced in the lit-
erature to detect anomalies on data such as, geometrical,
statistical, and ML [130]. Data-driven approach using ML
algorithms and deep learning are becoming more and more
popular as a way to identify abnormal situations [131]. It used
to build models from large data generated by sensors to
distinguish between ordinary and abnormal classes.

Cloud-based architectures have been used for many
anomaly detection application [129]. An example of cloud
based anomaly detection is condition monitoring [132]. The
study used cloud computing to monitor the health condition
of machines using vibration signals. The edge devices collect
vibration data and transfer them to the cloud for storing.
Cloud provides an ML model to detect machine’s abnor-
mal behavior. Analyzing and processing data in the cloud
server poses some limitations such as, latency and security
issues.

TinyML has the potential to play a big role in anomaly
detection by using ML at the edge, allowing for real-time
monitoring and identification of unusual patterns or behav-
iors without a connection to a more powerful computing
device. In this section, we explore exciting work that inte-
grate TinyML in AD as summarized in table.8 in terms of
application, dataset, ML algorithm, target device, framework,
accuracy, latency, power and memory consumption.

A. CONDITION MONITORING
The authors in [133] developed TinyML model deployed
in STMicroelectronic STM32H743Z12 to detect anomalies
in rotating machinery. The MCU device acquires vibration
signals through an accelerometer, process it to extract features
and store data on MCU to train locally an Auto-encoder
ML model. The Auto-encoder model is trained sequentially
by providing the training data in small batches at a time
(4 batches of 100 samples). After training step, the model
is stored in flash memory of MCU to be used during the
inference. To determine whether an anomaly is present or not,
unseen data is input to the model and the MCU calculates the
MSE between the sample and its reconstruction. If the MSE
is larger than the anomaly threshold, it is determined that an
anomaly.

The authors in [134] describe a system for detecting
anomalies in submersible pumps at wastewater management
plants using a retrofitting kit with MCU. The kit includes
temperature and vibration sensors, an ESP32DEVKITMCU,
and power line communication equipment installed in the
terminal chamber of the pump. The MCU collects data from
the sensors, processes it to extract features, and uses this data
to train locally a Isolation Forest model to identify anomalies
in the data stream. After training step, the MCU switches to
inference model. Even during this mode, the MCU continues
to process and learn to update the model. The model is devel-
oped using python 3 and libraries NumPy and SciPy. The

authors opted for theMicroPython firmware as base firmware
for the MCU.

The authors in [135] compared two types of TinyML
models, an autoencoder and a variational autoencoder for
mechanical anomaly detection in washing machines using
an MCU device (Arduino Nano 33 BLE Sense). The MCU
device collects accelerometer data (x, y, z) and runs the ML
model to detect an imbalanced laundry load. To determine
whichMLmodel should be deployed on theMCU device, the
authors evaluate models using accuracy, precision, and recall.
The autoencoder model was chosen due to its performance in
terms of accuracy. Both models were written in Python using
TensorFlow library and then converted to TFLite format to be
deployed on Arduino device. The results show around 92%
accuracy and 90% precision.

B. PREDICTIVE MAINTENANCE
The authors in [136] created a TinyML model deployed on
ESP-WROOM-32 MCU device to detect anomalies in ther-
mal images; it sends data only when it detects an anomaly
on a machine to the server using Message Queuing Teleme-
try Transport(MQTT) protocol. The MCU device runs a
CNN model created by Keras and converted using tinyml-
gen library from EloquentArduino. The study was tested on
hydraulic refrigeration system. The results show around 94%
accuracy and 92% f1-score.

The authors in [137] proposed a online learning anomaly
detectionmodel namedDeep Echo State Network(DeepESN)
to monitor the reliability of water distribution systems; it
adapts itself to the environmental changes and it can be
deployed on a MCU. DeepESN is based on Recurrent Neural
Network(RNN). To optimize the complexity of the models,
the online learning can be made in two different ways: single
iteration and batch decomposition. The model was tested on
STM32H743ZI Nucleo Arm.

The authors in [138] proposed a Block based Binary
Shallow Echo State Network (BBS-ESN) model which is a
deeply quantized anomaly detector of oil leaks that happen
in the wind turbines. This TinyML model uses DeepESN,
binarized images and one-bit quantization of weights and
activations function. The model was tested on STMicroelec-
tronics NUCLEO-H743ZI device.

C. INTERNET OF INTELLIGENT VEHICLES
Authors in [139] proposed a MCU device attached to a vehi-
cle to detect road anomalies such as potholes, bumps and
obstacles. The study used Arduino Nano 33 IoT that col-
lects accelerometer data and runs an unsupervised TinyML
algorithm named TEDA. The results on real experiments
(Asphalt pavement) show an accuracy of 99% and an f1-score
of 0.76.

VII. NAVIGATING THE CHALLENGES: AN OVERVIEW OF
THE CHALLENGES FACING TINYML
Investigating the challenges of TinyML technology is a cru-
cial part in the current survey as they define the state of the
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TABLE 8. Summary of the applications of TinyML in anomaly detection. Annotation: ‘‘–’’ is used to signify that authors do not provide information.

art, open research questions, and possible directions. In spite
of the potential benefits and advantages that TinyML offers,
as ditailed in the aforementioned sections, it is important to
understand and address the obstacles and challenges that may
impede its progress. From technical limitations to societal
concerns, these challenges must be carefully considered in
order to fully realize the potential of this technology, and
reinforce its capacities to fulfill further tasks in human soci-
ety. In this section, we explore the various challenges that are
currently facing the implementation and adoption of TinyML.
We delve into the specific issues in more detail in an attempt
to provide insight on possible solutions.

• Evolution of the Environment: The current TinyML
solutions are based on offline learning. ML model is
first trained on powerful machine or cloud and then
deployed on tiny edge device. Edge devices cannot adapt
themselves to the evolution of the environment because
they cannot learn from the data. The ML model perfor-
mance will consequently be dropped. This problem is
known as concept drift [140]. On-device learning facil-
itates the transition from offline ML model training to
updating it automatically using real-time data. Attempts
already addressed this issue such as, the authors in [140]

proposed a novel solution called TinyOL (TinyML with
Online-Learning) allowing MCUs to learn on stream-
ing data. This study is based on the concept of online
learning. Online Learning follows a process of updating
a model’s parameters in real-time using new data as it
becomes available, rather than using a fixed dataset. This
allows the model to adapt to changes in the underlying
data distribution and improve its performance over time.
Other implementations of On-Device learning are pre-
sented on this paper [10].

• Limited Memory: The memory challenge in TinyML
refers to the difficulties that arise from the limited
amount of memory that is available on these devices.
This challenge remains a major challenge and a trade-off
between the model’s performance and memory usage.
These devices, such as sensors, wearables, and IoT
devices, have limited computational resources andmem-
ory, which makes it difficult to run complex machine
learning models. Larger models tend to be more accu-
rate, but they also require more memory. This can lead to
trade-offs between model accuracy and memory usage,
which can result in models that are less accurate than
desired. In addition, the increase of memory, which is
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FIGURE 13. Illustration of the security challenges facing TinyML, indicating potential security breaches within the process.

a power-hungry component, yield to heavy power con-
sumption which can affect the battery life of the edge
devices. To avoid the memory constraint, data might be
stored in a remote server and accessed on-demand, this
can increase the latency and communication overhead.
Some possible solutions exist via AI Model Efficiency
Toolkit (AIMET) [141], which blends the AI trained
algorithm with compression and quantization which
leads to the optimization of the ML or DL model while
maintaining the same accuracy.

• Heterogeneity of Hardwares and Softwares: which
mainly includes the diversity in the devices and systems
being used, each with their own unique software and fea-
tures [23]. Which creates a challenge when it comes to
managing and coordinating the various systems, as dif-
ferent software may not be compatible or may require
different levels of resources in terms of the operating
system and programming language; in addition to the
varieties of levels of memory, processing power and
storage. The heterogeneity of data is alsoworthmention-
ing. It mainly refers to the diversity and complexity of
data that is captured and processed by small, low-power
devices sensors. This can be a result of the inevitable
noise that interferes with real data. Format and resolu-
tion also takes part in this heterogeneity as they hinder
the ML algorithm to generalize the model. In addition to
that, Tiny-ML algorithms requires an assemblage of sys-
tems, devices and software, including microcontrollers,
sensors and the cloud environment, which may obstruct

researchers wishing to exploit this technology by gener-
ating experimental complexity, which may also lead to
discrepancies between frameworks [18].

• Accuracy Drop: As many researchers report a decrease
in the accuracy of the ML model once imported on
the edge. Especially that TinyML systems are typi-
cally designed to work low-power devices (e.g. wear-
ables, edge devices, IoT devices) the limited available
resources of these devices can make it challenging and
difficult to achieve the same level of accuracy as larger
systems. The limited amount of data that can be stored
and processed on these devices can also lead to lower
accuracy. Additionally, the compression of the algorithm
may also yield to the reduction of the accuracy, fur-
ther reducing accuracy. In [100] for instance, the team
recorded an accuracy drop from 80% to 78.4% as soon as
they deployed it in the edge. In [99], the accuracy drop is
estimated to be 1.3%. These percentages are substantial
considering the sensitivity of the healthcare domain.

• The Privacy Problem: some of the most common sen-
sors used in TinyML are cameras and microphones that
may possibly collect sensitive or private information
about the user without their knowledge which obviously
implies many privacy concerns. The limited resources
available in this technology obstruct the possibility to
secure and protect the collected data and its storage,
which makes it vulnerable to many breaches such
as unauthorized manipulation or access by impostors.
As indicated by figure 13, thewhole edge and computing
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TABLE 9. Table of acronyms.

process is susceptible to unethical security breaches,
which implies unsafety in terms of data collection and
data flow. The wide deployment of TinyMLmay yield to
the accumulation of personal data of users with respect
to the lack of regulation, standardization and specifi-
cations of this technology, and thus exacerbating the
privacy issue. Attempts already addressed this issue such
as the TinyMLaaS [23], where they build an embedded
architecture capable of confining business sensitive data
within the IoT device boundaries. However, to fulfill this
shield of protection, the device should be constraint by
a narrowband connectivity (NB-IoT) meaning that the
device should have a very limited possession of data
transmissions. Another promisingmodel that considered
this important concern is [142], where they established
a TinyML model whose data is processed within the
device, which [142] called it privacy-centric on-device
transfer learning, without any interaction or sharing with
the cloud and external servers, Hence solidifying data
privacy and its security.

• Product Trustworthiness and Reliability: TinyML is
a relatively new field that deals with the application
of machine learning algorithms on small, low-power
devices such asmicrocontrollers and sensors. The device
will definitely gain many use cases in a variety of sectors
and domains; nonetheless, the trustworthiness and reli-
ability of such device remains questionable, especially

in the healthcare domain where the life and health of
patients is at stake, and the robustness of the device
becomes a necessity. Additionally, researchers of [143]
corroborate the reliability challenge of TinyML, which
consists of the variations in precision of these devices,
since they vulnerable to variety of extensive factors;
in addition to the errors that may occur during the
construction of circuits and assemblage of wafers. The
hardware layer is also exposed to high energy particles
that modifies the output of the algorithm. Finally, aging
of the device and the degradation of its components may
provoke other variations in battery-life, accuracy, and
even data collection by sensors.

VIII. CONCLUSION
Over the last couple of years, the topic of TinyML has gained
a tremendous attention from industry and academia, with the
drive of unlocking various new possibilities for sustainable
development technologies. Artificial intelligence has become
nowadays ubiquitous and has demonstrated its capability
to bring new approaches and solutions to various research
problems. However, training AI algorithms needs extensive
computation as well as specialized (costly) hardware, which
leads to a higher energy consumption and a significant carbon
footprint. To overcome such AI issues, TinyML is the suitable
candidate technology, which will make the future of AI tiny
and bright. In this paper, we presented the results of a com-
prehensive literature survey of all TinyML applications and
related research efforts. Special emphasis has been placed on
building a taxonomy of TinyML techniques that have been
used so far to bring new solutions to various domains, such as
healthcare, smart farming, environment, and anomaly detec-
tion. Our survey has shed light on the new insights of TinyML
and how it unlocks new possibilities for sustainable develop-
ment. For this we discussed how TinyML reduces latency and
enables real time applications to be deployed in the source
of data. We also brought to the attention of AI researchers
how TinyML models can run even when there is no internet
connection, and how the processed data do not leave the
device, which significantly improves user privacy and thus
complies with data protection regulations. Finally, this survey
highlighted the remaining challenges and discussed future
research directions. We believe that our survey will serve as
a guideline for the future research initiatives in TinyML and
will motivate further discussions in this promising field.
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