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ABSTRACT A new generation of fitness trackers is pervasively invading different aspects of our life, taking
profit from wireless technology, embedded sensors, and increasingly accurate Al-based data analysis. The
most crucial aspects concerning the design of these systems include energy efficiency and accuracy. In this
paper, we propose a system relying on two microcontroller-based sensor nodes to track the physical activity
during sensorimotor training, a type of exercise that challenges the user’s balance skill, which has been
proven to be very effective in improving performance, preventing injuries and recovering from them. One of
the sensor nodes is integrated into a custom wobble-board and the second is wearable by the user. The nodes
are adaptable to be set in different operating modes, depending on the use case needs, enabling different steps
of near-sensor pre-processing. The most power-efficient operating mode executes a CNN-based analysis
directly on the microcontroller, to recognize physical exercises. The algorithm provides an accuracy of
respectively 99.4% and 97.6% on the two nodes. In-place execution of the CNN saves up to 65% power
consumption with respect to the transmission of raw data for on-cloud analysis.

INDEX TERMS Adaptive system, fitness activity tracking, sensorimotor training, low power electronics,
neural network, remote sensing, runtime.

I. INTRODUCTION

In recent years, fitness tracking has become increasingly
important in healthcare and sports. Wearable wireless sen-
sors can be designed to track physical exercises and monitor
performance, taking profit from the widespread availability
of microcontrollers and sensors of unprecedented quality,
as well as from the increasing accuracy and flexibility of
artificial intelligence (AI) and neural networks, opening up
new uses cases and possibilities.

In this paper, we focus on sensorimotor training, a type
of physical exercise that challenges an individual’s balance,
coordination, proprioception, and reaction time through a
series of progressively difficult exercises.

The associate editor coordinating the review of this manuscript and
approving it for publication was Vyasa Sai.
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Sensorimotor training is often used in rehabilitation set-
tings to help recover from pathological conditions or by
athletes and fitness enthusiasts to enhance their performance
and prevent injuries.

A specific research problem, common to other tracking
tasks, stems from the need for wearable and accurate sensor
solutions to support this kind of training. Despite being very
effective, sensorimotor training exercises can be repetitive
and challenging, which can lead to a lack of motivation and a
high dropout rate among trainees.

A useful solution could employ a methodology reliant on
sensor-based tracking devices. This allows precise monitor-
ing of the training and adequate reporting, enabling smoother
and more effective interactions between athletes/patients
and coaches/trainers. This method can be easily used to
implement gamification, making sensorimotor training more
engaging and enjoyable.
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To simultaneously ensure adequate accuracy and porta-
bility, we plan to combine smart microcontroller-endowed
sensor nodes and Al algorithms. These will be meticulously
optimized to execute on resource-constrained processing
platforms. In more detail, in this paper, we present the design
of a hardware and software processing system composed
of two sensor nodes, each executing an Al-based algorithm
for exercise classification at the edge. The proposed system
includes a balance board with an integrated sensor to detect
movement and execution of pre-defined exercises. Addition-
ally, a companion node worn by the athlete is capable of
classifying exercises executed while standing on the balance
board.

Each node is implemented to execute an analysis of the sen-
sor data at-the-edge, processing the acquired signals on the
microcontroller, reducing the power consumption required
for communication, and improving responsiveness. We use
SensorTile, a low-power microcontroller-based module inte-
grating inertial sensors commercialized by STMicroelec-
tronics. As a data-analysis algorithm, we use convolutional
neural networks (CNNs), nowadays commonly adopted in
embedded classification tasks for being highly accurate and
feature-free. Moreover, we execute an adaptive firmware
that adapts the power consumption to different operating
modes to save battery lifetime, changing the hardware setup
of the processing platform by adapting power-relevant set-
tings such as clock frequency, supply voltage, and peripheral
gating.

As the main finding of our work, we show, with our experi-
mental results, that lightweight CNNs, executable at-the-edge
on a microcontroller node, can provide the required accuracy
for the task of supporting sensorimotor training while pro-
viding adequate portability. We also show that, taking profit
from in-place data analysis and adaptive system management,
itis possible to increase significantly power/energy efficiency
and improve battery lifetime. Moreover, we provide a detailed
breakdown of the contributions to the overall power con-
sumption to highlight the benefits of edge-based execution
and to enable the reuse of our results in different domains.

The remainder of this paper is organized as follows: In
Section II, we delve into the related work, exploring the
current state of research on wireless fitness trackers imple-
menting edge processing. We also review existing solutions
for energy efficiency and event detection accuracy in wear-
able devices. Moving on to Section III, we provide an
overview of our proposed microcontroller-based wearable
device, describing the overall architecture and how it interacts
with the wobble board and the mobile application. We pre-
liminarily show the software-hardware structure of the node.
In Section IV, we discuss the design of the application,
explaining the available operating modes. We offer a detailed
description of the neural network model used in the device.
Section V presents the experimental results, showcasing the
outcomes of our evaluation of the neural network’s accuracy
and its impact on power consumption. Finally, in Section VI,
we draw conclusions by summarising the main findings and
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contributions of our work, emphasizing the key role of cog-
nitive on-edge processing.

Il. RELATED WORK

In literature, the field of study in computer science and arti-
ficial intelligence that applies machine learning algorithms
to identify and classify different types of human activities
based on sensor data is usually referred to as Human Activity
Recognition (HAR). In general, HAR methods can be divided
into two main groups: skeletal-based and inertial sensor-
based methods.

Skeletal-based HAR uses sensors to capture 3D skeletal
data from a person’s body and then uses algorithms to rec-
ognize the activity being performed. Since the release of
Microsoft Kinect depth sensor and body tracking SDK in
2010, real-time and accurate RGB-based human pose estima-
tion techniques have been developed [1], [2], [3], [4]. This
type of HAR is useful for applications such as healthcare,
sports, and gaming. It can be used to monitor the health
of a person, track the performance of athletes, and provide
feedback to gamers. However, the use of devices such as
the Kinect and cameras does not make this methodology
sufficiently versatile and user-friendly. Due to the different
technological nature of these kinds of approaches, they are
not directly comparable to our results and have to be consid-
ered complementary instruments.

On the other hand, inertial sensors measuring acceleration,
angular velocity, or magnetic field strength are small, low-
cost, and low-power. By combining data from these sensors,
HAR systems can accurately recognize and classify human
activities such as walking, running, and jumping. In par-
ticular, the authors in [5] show how inertial sensor-based
devices have many advantages over vision-based method-
ologies, which pose privacy issues and are limited by
computational requirements. Accelerometer, gyroscope, and
magnetometer sensors are the most commonly used sensors
in literature [5], [6].

More recent work has focused on sophisticated and accu-
rate algorithms, such as those based on artificial intelligence
or deep learning provide impressive performance in human
activity recognition challenges. Some of the most accurate
approaches adopt Convolutional neural networks (CNNs) as
analysis algorithms. In [7] the authors propose an approach
to leverage multiple data sources for robust and accurate
activity segmentation, exercise recognition, and repetition
counting, achieving good results in terms of accuracy with
multimodal deep learning models. In [8], the authors com-
pare in terms of accuracy of results some classical signal
processing techniques with deep learning models, showing
how the latter leads to better results. They use inertial sensors
plus an ECG in order to recognize ten manipulative gestures
performed in a car maintenance scenario. The authors in [9]
apply a CNN-based model to recognize eight different types
of activities: still, walk, run, bike, bus, car, train, and subway.
As in other works in literature, the authors use pre-processed
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TABLE 1. Comparison of different studies working on human activity detection using mainly microcontrollers and convolutional neural networks.

Work Dataset Activity Classess Accuracy in Device Model Power
% consumption
Coelho et al. [10] MHEALTH body motion 3-9 97.27 STM32F4- CNN 11.95 mW -
and physical based 67.78 mW
activities only MCU
during
inference
Daoetal. [11] Baoetal. [12]  daily activities 13 99.412 ESP32-based Random ~ 60mW
Forest
Ghibellini et al. [13] custom fall detection 3 97 Arduino BLE CNN + LSTM —
and physical 33 Sense
activities
Wenzheng et al. [14] WISDM daily activities 5 93.25 STM32L4- CNN —
based
Warunsin et al. [15] MobiAct fall 13 96.55 ESP32-based CNN —
Belousov et al. [16] WISDM daily activity 6 91.81 STM32F4- CNN —
based
Daghero et al. [17], [18] UCI HAPT - various 12-6-17-2  85.63-98.81- RISC-V MCU CNN ~ 3.8 mW
WISDM - 86.24 - 95.74 Quentin based only MCU
UniMiB-
SHAR -
WALK
Our work custom physical 3-5 99.427 - SensorTile CNN ~3 mW
activities 97.652 (STM32L4-
based)

data as input to the neural network. In our work, we avoided
this approach so as not to overly impact the workload on the
resource-limited platform we selected. As a main difference
with our work, these approaches are based on CNNs exe-
cuted remotely on high-performance computing platforms.
To make HAR more pervasive, requirements in terms of power
consumption, privacy, and responsiveness must be taken into
account, enabling at-the-edge processing of the sensor data.

Other examples in literature are more aligned with our
work, as they execute the algorithm at-the-edge, dealing with
the efficiency of resource-constrained platforms. The main
characteristics of these solutions are presented in Table 1.

In most of the studies, HAR is aimed at tracking the behav-
ior of the user and monitoring his daily activities. In [11],
the authors promote a real-time human activity recognition
system based on wearable devices. Classification is done
directly on the device, and the results can be accessed via
the Internet. The authors use the Random Forest algorithm,
the dynamic window method applied by the proposed model
allows to change in the data sampling time and increases the
performance in activity classification. Experimental results
show that the proposed system can classify 13 activities with
a high accuracy of 99.4%.

In [14], the authors use an accelerometer sensor and a neu-
ral network to recognize personal activity behaviors. Using
ST Microelectronics’ X-CUBE-AI development tool, the
trained model is imported into the firmware of the low-power
microcontroller to realize the classification and recognition of
activities such as jogging, standing, walking, standing, and
climbing stairs. Experimental results show that this method
can detect such classes with an accuracy of 93.25%.
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In [17] and [18], the authors bridge the gap between
on-device HAR and deep learning by proposing a set
of efficient one-dimensional convolutional neural networks
(CNNs) that can be implemented on general-purpose micro-
controllers (MCUs). The proposed CNNs are achieved
by combining hyper-parameter optimization with sub-byte
and mixed-precision quantization to find a good trade-off
between classification results and memory occupancy.
In addition, the adaptive inference is exploited as orthogonal
optimization to adjust the complexity of inference according
to the input processed, making the HAR system more flexible.
They achieve good results both in terms of memory occu-
pancy, which varies between 0.05 and 23.17 kB, and in terms
of power consumption.

In [16], the authors present a case study in which the
use of a pre-trained CNN feature extractor under realistic
conditions is evaluated. The case study consists of two main
steps: (1) evaluation of different topologies and parameters to
identify the best candidate models for HAR, thus obtaining a
pre-trained CNN model, and (2) use of the pre-trained model
as a feature extractor, evaluating its use with a real large-scale
dataset. The results show an accuracy of 91.81%.

Another promising task exploiting HAR is the detection
of risk-related events at home or in workplaces. In [15], the
authors developed a fall detection system using an accelerom-
eter as a sensor and a deep learning algorithm for fall pattern
recognition in Ambient Assisted Living (AAL). The authors
used an ESP32 microcontroller; if it detects a fall, it sends
a fall alert to the provider via Wi-Fi and the LINE applica-
tion. The proposed fall detection model demonstrated 96.55%
accuracy. In [13], the authors propose the use of on-board
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artificial intelligence (AI) to move data analysis closer to the
sensing units, thereby reducing the impact on user privacy
and network load of the mobile or wearable device. The
authors developed a HAR system based on a low-power
microcontroller unit to detect critical movements (e.g., falls,
runs) in industrial environments. They use a DL model based
on convolutional neural networks (CNNs) and a quantiza-
tion technique to reduce the model size. Preliminary results
show 97% accuracy for the CNN model, outperforming non-
DL techniques, and a 53% reduction in model size due to
quantization.

Finally, another exploitation sector is fitness tracking,
where near-sensor Al is used to classify physical exer-
cises and sports activities. In [10], the authors present a
lightweight framework for human activity recognition on
low-power devices, examining the impact of different sys-
tem configurations and complexity of deep learning models
on computational cost and energy consumption. This study
highlights the importance of developing energy-efficient
deep learning models to realize effective mobile HAR
applications.

Although all the mentioned studies provide a useful start-
ing point for understanding the necessary level of accuracy in
human activity recognition (HAR) and suggest that CNN is a
promising algorithm to use, they cannot be directly applied to
sensorimotor training. To the best of our knowledge, our work
is the first that focuses on supporting such a kind of training.
Additionally, none of these studies offer a thorough analysis
of the energy-related factors involved in the system, which
is key to understand when on-board processing is actually
beneficial.

The usefulness of sensor-assisted tracking of sensorimotor
training is suggested by several works in literature. In [19],
the authors highlight in a critical review how patient motiva-
tion has been taken into account in relation to rehabilitation
for strokes, fractures, rheumatic disease, aging, and cardiac
and neurological issues. The monotonous nature of the ankle
exercises and the inability to track one’s progress during
the training process may, at least in part, account for some
people’s lack of motivation [20]. To encourage people to use
a wobble board, which is crucial for ankle rehabilitation, the
authors in [21] and [22] suggest using it in creative ways,
enabling gamification and making the fitness activity process
more accessible.

In our work, we take the mentioned approach one step
further, adding Al-based on-board processing and using a
companion sensor for detecting body-weight exercises exe-
cuted when standing on the board. This increases the variety
of training routines that can be assigned to the user and
enables to create a more engaging training experience.

Summarizing, our work advances state-of-the-art
approaches in the following respects:

o it is the first work using Al-based at-the-edge HAR
for sensorimotor training, with power consumption
and accuracy aligned with other state-of-the-art HAR
approaches;
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« it is the first work that uses inertial sensors to enable
simultaneously the classification of the wobble board
movement and the recognition of bodyweights exercises
executed while standing on the board;

« combines state-of-the-art deep learning techniques and
dynamic management of hardware and software to min-
imize power consumption;

« demonstrates the usefulness of on-board processing by
studying all the contributions to power consumption,
including processing and data communication.

While a preliminary presentation of our approach was
presented in [23], in this paper, we further advance the system
capabilities, since:

o combined with the wobble board, we use the same
deep learning approach for the recognition of physical
exercises such as squats and push-ups through the use
of a companion wearable device placed on the arm,
exploiting the creation of a custom adequate dataset;

« we present in detail the impact in terms of power con-
sumption and system accuracy regarding the extension
of new features;

« we describe the engineering of the produced wobble
board and smartphone client application.

IIl. SYSTEM OVERVIEW

The objective of the system presented in our work is to track
the activity and exercises performed during sensorimotor
training. This kind of training typically exploits a wobble
board, a balance board that is designed to be unstable and
challenging to stand on. Common sensorimotor training exer-
cises require adopting a particular posture on the wobble
board or making precise adjustments to body weight to main-
tain balance and perform specific movement patterns. More
advanced routines envision the execution of dynamic workout
exercises, such as squats, push-ups, and lunges while standing
on the balance board.

Exploiting sensor nodes to monitor and evaluate user per-
formance, our system can be connected to an interactive
user interface, to make the sensorimotor training experience
more engaging for users, to foster their commitment to their
training or rehabilitation program.

Figure 1 visually represents the components of the sys-
tem. At the core of the tracking functionality, we use two
wireless sensor nodes, which are small battery-powered
microcontroller-based devices that gather data from sensors
and connect via Bluetooth low-energy to transmit/receive
data from the rest of the system.

The first sensor node, called hereafter board sensor node,
is embedded in a custom wobble board. The sensor in the
board tracks its movements and provides data on the athlete’s
performance. The wobble board is extensively described in
Section III-A. The second sensor node, called hereafter body
sensor node, is designed to be worn on the athlete’s forearm.
It tracks the athlete’s movements during exercises like squats
and push-ups, providing data on the number of repetitions and
the quality of the exercise. We chose the upper limbs as the
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mode-specific payload

Body sensor node

Detects and classifies the
execution of bodyweight
exercises

Board sensor node
Detects and classifies the
execution of balance
exercises

mode control cmd

mode-specific payload

Custom wobble board
designed to embed the
sensor

mode control cmd

Mobile phone app
assignment and tracking of exercices, operation mode
control, user profile management

FIGURE 1. A graphical representation of the system architecture, consisting of two loT sensor nodes that gather data from

various sensors and transmit it via Bluetooth low-energy.

sensor placement because of their ability to better represent
several physical exercises, including those covered in the
present work and others that could be added for detection
in the future. This placement was chosen to allow the sensor
to be worn comfortably and to minimize invasiveness while
performing the exercises.

Both sensor nodes, described in further detail in
Section III-B, are designed to execute some on-board pre-
processing of the sensed data. To conserve battery power,
the sensor nodes have a hardware and software architecture
that enables real-time reconfiguration, to adjust processing
resources on-the-fly setting the system in a specific operating
mode, depending on the modality chosen by the user.

Sensor nodes communicate with a dedicated mobile phone
app, described in Section III-C. The app collects the data from
both sensors and displays it to the user. It can also be used
by a coach or trainer to assign specific training routines to
the athlete. Depending on the selected training modality, the
app is in charge to send operating mode change commands to
the nodes, thus expecting a differently pre-processed payload
for each chosen configuration. The mobile application serves
as a main user interface. First, the tracking data can be used
by coaches and trainers to monitor the athlete’s progress
over time and adjust their training program as needed, even
remotely. Second, it can share the athlete’s results with a
cloud database, to allow the athletes to compete against other
users in a virtual leaderboard or to earn rewards for achieving
certain milestones. Moreover, the app can use the board as a
controller for simplistic video games.

A. CUSTOM WOBBLE BOARD

The basic idea behind sensorimotor training is to have the
trainee try to be as stable as possible on unstable surfaces such
as Bosu balls or wobble boards while introducing increasing
difficulties. For example, standing on one leg instead of
two, standing with eyes closed, trying to catch a ball while
standing on a wobble board, trying to perform a squat without
the board touching the ground on the edge, etc. The physical
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design of the board impacts how difficult the exercises on
the board will be. A half sphere underneath the board allows
movement in all directions, while a half cylinder only in
two, making the exercise easier and more specific. Next, the
inclination and size of the sphere control the sensibility of
the whole board; a slightly flattened half-sphere will be more
forgiving of small oscillations in balance by the trainee.

We have designed and physically prototyped a custom
wobble board for the purpose of this research. Similarly to
the microcontroller, we opted for an adaptable design also
for the board itself. Figure 2 shows the building blocks of
the board: 1) the upper part upon which the trainee stands
consists of a wooded plate or a standard 10 kg bumper, 2) a
placeholder for the sensor, so that it can be removed and used
for recognition of activities not related to the wobble board,
and finally, 3) interchangeable lower part (currently cylinder
or sphere, others could be added later on). The possibility to
change the geometry of the board is an additional requirement
for the exercise recognition algorithms.

B. SENSOR NODE ARCHITECTURE

The architecture that we designed for the sensor nodes is
a layered structure composed of hardware, firmware, and
software components.

Regarding the hardware, we selected SensorTile by STMi-
croelectronics, a microcontroller-based low-power plat-
form with an ARM Cortex-M4 32-bit. The LSM303AGR
accelerometer sensor, integrated into the SensorTile, is opti-
mally configured for our applications at a 100 Hz sampling
rate, to ensure accurate data acquisition and analysis. As men-
tioned, communication with the sensor node happens wire-
lessly via the Bluetooth Low Energy standard implemented
by an on-board dedicated BlueNRG-MS module, and the
device is battery-powered with a Lithium Polymer battery.
The overall size of the SensorTile node is 13.5 x 13.5 mm.

The firmware layer exploited in the sensor node is
essential for managing the data collected by the hardware,
ensuring efficient operation and communication. To enable
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Wooden board
or
Bumper

Plug ‘

SensorTile ‘

Flange

Wooden sphere
or
Wooden cylinder

FIGURE 2. Adaptability of the wobble board with interchangeable bottom
parts for different levels of difficulty.

EHHH)

FIGURE 3. Basic tasks identified in our model, providing the foundational
operation structure within our system.

task-level abstraction, we use Free Real-Time Operating
System (FreeRTOS) on the node. This allows to acti-
vate/deactivate real-time tasks without having a significant
impact on the application’s memory footprint. The operating
system is between 4 and 9 kB in size. It includes features
such as real-time scheduling, interprocess communication,
synchronization, and time measurement. With the support of
this system, it is possible to create the processing tasks to be
performed on the platform as dynamically activatable threads
and readily manage their scheduling at runtime. Moreover,
a key component of the firmware layer is the CMSIS, in par-
ticular, CMSIS-NN [24], that we exploit for the efficient
execution of neural network processing.

Regarding the software layer, we have devised an appli-
cation structure based on a network of processes. Tasks
are represented as distinct processes that communicate with
each other using FIFO structures and blocking read-and-write
communication primitives. Using a software pipeline, pro-
cesses can run concurrently if sufficient processing resources
are available, potentially improving performance. To enable
adaptivity of the system, we create a series of tasks that
operate on the sensed data for each sensor that needs to
be monitored (Figure 3). For each sensor node, a chain of
processes is created. Processes can be dynamically activated
or deactivated according to their utility, the morphology of
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the chain depends on the selected operating mode. For each
sensor, we devise four general types of tasks:

o Get data task: takes care of taking data from the sensing
hardware integrated into the node;

o Process task: this type of task can be used to perform
different stages of a data processing algorithm. By hav-
ing different levels of processing available, a potential
user can choose the level of analysis, which affects
the required communication bandwidth, the level of
detail of the information collected, and the amount of
power/energy used;

o Threshold task: With this task data can be filtered,
its purpose is to limit the node’s ability to send data.
It allows data to be transferred to the cloud only in case
of certain events or alarm circumstances, e.g., sending
the processed data if and only if they are collocated
within a predetermined range of values;

o Send task: is the task responsible for outward communi-
cation.

This allows users to choose from a range of application
configurations, using different operating modes with varying
degrees of in-place computation, bandwidth requirements,
and monitoring accuracy.

As an additional component of the software layer, we have
developed ADAM (ADAptive runtime Manager), which is
executed as an additional periodic thread on the platform
and takes care of the management of dynamic hardware and
software reconfiguration. Although a timer is used by default
within ADAM to activate it periodically, it is also possible to
activate it under other circumstances, such as reconfiguration
commands received from the mobile application or other
relevant events (e.g. change of the battery status).

Under these conditions, ADAM is able to react by perform-
ing certain actions:

o Change the operating frequency of the microcontroller

to increase or decrease performance;

« Activate or deactivate each task in the sensor task chain
separately or all together;

o Redirect the FIFO-managed data flow according to the
current operating mode;

« Decide whether or not to put the microcontroller in sleep
mode.

For example, to switch from an operating mode that sends
pre-processed data to the cloud, to one that sends raw data,
ADAM can reconfigure the system by disabling a processing
task, as shown in Figure 4.

C. USER INTERFACES: MOBILE APPLICATIONS AND
GAMES

Following the basic idea behind sensorimotor training
describe earlier, we devised a set of possible user interfaces
that permit interaction with the system to implement an enjoy-
able and more effective training experience. A first Ul is
a simple Training mobile application targeting coaches and
personal trainers. A mobile app is a widely available and
easy portable implementation for the user interface, directly
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DOOE

FIGURE 4. Task representation of a generic system capable of
morphological changes in the running process network, facilitated by
ADAptive runtime Manager.

fostering the pervasive use of the sensors by a very vast
scope of possible users. A second kind of interface receives
messages from the sensor node so that the board can be used
as a controller to play some games.

1) TRAINING APP

The application enables them to create training sessions by
defining and combining different elements of the training
session. The screenshot from Figure 5 highlights these ele-
ments: training duration, number of allowed touches, number
of requested tilts front and back and/or left and right, num-
ber of requested circles on the board, one-legged execution,
blindfolded execution. When this kind of use is selected, the
app needs to receive a message from the board sensor every
time one of the requested exercises is performed. Thus the app
sends a reconfiguration message to the board sensor node to
set it in an adequate operating mode, that performs in-place
classification of the movement (such mode will be indicated
as Classification mode in the following) and simply counts
repetitions.

Another possible option is to request the trainee to hold
as still as possible and the application will give a score on
how well the trainee performed. In this case, the app needs to
receive an indication of the inclination of the board over time
and provides a score depending on how much and how often
inclination changes. An adequate reconfiguration message is
sent to the sensor node to set it in the required operating mode
(see detection mode hereafter).

A session is successfully completed if all the requested
criteria are met. Each so-defined session can be saved for later
reuse and exercises can be combined into sets so it is possible
to define a complete training session composed of warm-up
exercise, main training session, and relaxation exercises. Sets
can also be saved for later reuse. Multiple users can be related
in the user database to implement competition and rankings.
An application add-on can count exercises classified by the
body sensor.

2) GAMES

The board has been tested to work as a controller/joystick
in different games. In this case, the board sensor is also
set in an operating mode providing inclination and direction
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FIGURE 5. Screenshot of a mobile application for the coach: composition
of sensorimotor exercise with elements recognized on the edge by the
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microcontroller.

values, to be used to command the games. Some prelimi-
nary users have played with a Python version of Pacman
implemented on a PC. Others have tried more advanced
wobble-board action games developed with Unity using
LEGO Microgame [25]. Playability has been verified, how-
ever, it is deeply impacted by the shape of the bottom layer of
the wobble-board. A lower semisphere is easy to play with,
while more difficult shapes require advanced user skills.

IV. SENSOR NODE SOFTWARE DESIGN

For the implementation of the board and body sensor nodes,
we have set up the general previously described software
application model to support three different operating modes,
namely raw, detection, and classification. Figure 6 shows
the three different operating modes configuration and which
tasks participate in the process chain. The first from the top,
operating mode raw, enables more detailed downstream anal-
ysis on the cloud by transmitting all data to it. This approach
ensures comprehensive information is available for further
processing but may require more bandwidth for data transfer.
The second operating mode, detection, allows for basic edge
analysis, sacrificing the detailed accelerometer trace data that
could be processed later on the cloud. This mode reduces
communication with the cloud, conserving bandwidth but
offering limited analytical capabilities. Lastly, the operating
mode classification combines the main advantages of the first
two operating modes, providing detailed analysis directly on
the device while simultaneously reducing the communication
bandwidth with the cloud. By employing a Convolutional
Neural Network (CNN) on the edge device, this mode strikes
a balance between the need for detailed analysis and efficient
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data transfer, maximizing both processing capabilities and
communication efficiency.

In further detail, Table 2 provides an overview of the
operating modes for both sensors.

In the operating mode raw, the system does not perform
any processing and transmits accelerometer data directly. The
data for each accelerometer axis has a size of 2 bytes. To save
power consumption when sending the data, it was decided to
merge two acquisitions into a single Bluetooth packet, so a
dimension of 4 bytes for each axis of the accelerometer will
be shown in Table 2.

The operating mode detection detects the direction and
inclination of the board or the absence of motion. If no
movement is detected, the system will not proceed to the next
task, which involves the use of the threshold task or CNN task.

The operating mode classification uses Al-based detection
to identify various movements when a sensory node is placed
on a wobble board or on the arm for body exercises. The
different recognizable physical exercises are classified into
distinct categories for board and body movements. For board
movements, the class labels are B (Basic stance balance),
S (Side tilt), FB (Forward/Backward), and R (Two leg tilts).
For body movements, the class labels are SQ (Squats) and
P (Push-ups). In both cases, the G label represents unmatched
actions or lack of movement. An approach based on an
Al-based analysis applied to data acquired by a simple and
affordable sensor, delegates accuracy to the software instead
of exploiting multiple sensors or more expensive hardware,
improving the usability of the device.

A notable observation from Table 2, which will be further
substantiated in Section V-B with power consumption find-
ings, pertains to the data rate reduction when incorporating
data processing. With the first level of processing, activated
in the operating mode detection, there is a tenfold decrease in
the volume of data transmitted externally. For the second level
of processing, enabled by the classification operating mode,
the data rate experiences at least a 40-fold reduction. This
decline in data rate results in significant power consumption
savings due to the diminished utilization of the wireless
communication module.

A. NEURAL NETWORK DESIGN
To implement the classification of board and bodyweight
exercises envisioned in the classification operating mode, due
to their ability to capture complex patterns and hierarchical
features from data [26], we chose to use a Convolutional Neu-
ral Network. CNNs are particularly well suited for working
with raw signals, as they can automatically learn relevant
features without the need for manual preprocessing. Fur-
thermore, the use of CNN models for activity recognition
applications is widely discussed and used in the literature,
as reported in Section II, further confirming the validity of
choosing deep learning for this system.

We have performed a design space exploration to select a
convenient CNN topology, comparing with each other tens of
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FIGURE 6. Specific representation of the task chain for each operating
mode in our selected use case, offering insight into the practical
implementation and functioning of our system. From top to bottom: the
raw operating mode, the detection operating mode, and the classification
operating mode.

different models featuring different number of layers, number
of neurons per layer, and kernel size. Comparison has con-
sidered accuracy and computational complexity, taking into
account the memory storage inside SensorTile and the possi-
bility of being executed in real-time by the target processor.
The selected network topology is displayed in Figure 7.

We partitioned the data into independent training, valida-
tion, and test sets, guaranteeing that the evaluation of the
model’s performance was on unseen data, thus providing
a realistic assessment of its predictive power. The setup of
the training environment is indicated in Table 3. We used a
training set consisting of 70% of the total dataset elements,
randomly selected. Additionally, 15% of the dataset is allo-
cated for the validation set, and another 15% is reserved
for the testing set. To verify and prevent overfitting in our
deep learning approach, we implemented a few strategies.
Primarily, we employed the early stopping (ES) algorithm.
This technique halts the training process if an increase in the
validation loss is detected for a specified number of consecu-
tive epochs, known as the patience [26]. In our case, we chose
a patience value of 5, meaning the training would cease if
a loss increment is observed for five consecutive epochs.
If the model’s performance on the training set continues to
improve while its performance on the validation set starts to
deteriorate, it indicates overfitting. In such cases, the training
process would be stopped early, thus preventing the model
from overfitting.

Quantization is an important technique used to optimize
neural networks, as it significantly reduces memory and com-
putational requirements without significantly affecting the
model’s performance. The benefits of applying quantization
include reduced memory footprint, lower power consump-
tion, faster inference times, and the ability to exploit the
SIMD (Single Instruction Multiple Data) capabilities of the
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TABLE 2. Summary of operating modes for board and body movement detection.

Operating Description Board Body
mode
Processing level \ No processing
. Bluetooth sending rate | 50 Hz
]
&~ Bluetooth packet | 4 byte X-axis + 4 byte Y-axis + 4 byte Z-axis + 4 byte timestamp
Data rate | 800 B/s
Example usage \ Detailed offline analysis; Dataset collection/enrichmen
Processing level e Direction and inclination detection. e  Motion detection.
The first angle indicates the tilt of the board Detection of motion below a predetermined
relative to the ground, while the second threshold, within a specified tolerance level,
angle identifies the direction of the tilt. to prevent activation of the next activity in
case of undetected movement.
e Motion detection.
_5 Detection of motion below a predetermined
§ threshold, within a specified tolerance level,
5 to prevent activation of the next activity in
A case of undetected movement.
Bluetooth sending rate | 10 Hz -
Bluetooth packet 2 byte tilt direction + 2 byte inclination + 4 -
byte timestamp
Data rate | 80 B/s -
Example usage ‘ Controller interacting with games; Providing input to the mobile app to grade the stability over time
Processing level o Al-based: board exercise classification. o Al-based: body exercise classification.
The neural network is capable of identifying The neural network is capable of
various movements when a sensory node is recognizing typical physical exercises when
placed on a wobble board, including a sensory node is placed on the arm,
different types of tilts and rotations, as well currently identifying two specific exercises
as accounting for other unexpected actions and a generic class for other movements.
or lack of movement
Al classes e  Basic stance balance (B): Upright o  Squats (SQ): Involves bending the
g torso, neutral spine, board balancing. knees, lowering the torso with a straight
2 o  Side tilt (S): Weight shift, left-right tilt, back, and pushing the hips back before
= controlled movement. returning to a standing position.
2 e  Forward/Backward (FB): Front-back e  Push-ups (P): Executed in the prone
S tilt, slow and controlled. position, facing down, and entails raising
e Two leg tilts (R): 360-degree rotation, and lowering the body by extending and
alternating directions. flexing the arms.
o  Other (G): Unmatched actions or lack o  Other (G): Unmatched movements.
of movement.
Bluetooth sending rate ‘ 0~ 1Hz 0~4Hz
Bluetooth packet ‘ 1-byte Al classification + 4-byte timestamp
Data rate | 0~ 5B/s 0~ 20B/s
Example usage ‘ Providing input to the mobile app for counting of exercise repetitions
TABLE 3. Neural network hyperparameters used. assumes 8-bit resolution inputs. Thus the deployment process
requires a quantized CNN model, built by converting weights
Hyperparameter _ Value Hyperparameter _ Value and biases from floating-point to integer format. To convert
Training set 70% Validation set 15% the weights, we introduced MinMax observers at the quan-
Testing set 15% Optimizer Adam R .
Batch size 32 Learning rate 0.0001 tization phase, whose task is to analyze the outputs of each
Loss criterion  Cross Entropy Betas 0.9, 0.999) layer. We set the biases to zero to minimize the computational
ES patience 5 Eps 1e-08 . .
ES evaluation Every epoch Weight decay 0 load on the node. This decision reduces the overall computa-

microcontroller, making it particularly suitable for deploy-
ment on resource-constrained devices such as microcon-
trollers. For deployment, we exploited static quantization [27]
since the model inference is executed on the target proces-
sor using the CMSIS-NN optimized function library, which
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tional complexity of the neural network, which is particularly
beneficial for resource-constrained devices as it allows for
more efficient processing and lower power consumption. The
observer returns a value of scale and zero point by analyzing
the distribution of the outputs of each layer. They are used to
resize the output of the various layers so that they can take
advantage of the 8-bit resolution and avoid saturation. For
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FIGURE 7. CNN structure and classes description.

both convolutional and fully connected layers, CMSIS-NN
provides the logical shift on the output. In this way, the output
data is efficiently represented with only 8 bits. The quantiza-
tion process in PyTorch, however, returns a value of scale that
is not necessarily equal to a power of two, making the logical
shift on the output not usable. Consequently, we made a small
modification to the CMSIS-NN functions to adapt them to the
PyTorch scale values, representable with float type variables.
The inference execution time is slightly longer because of this
change. We estimated an increase in execution time of 2.87%
after testing inference with and without this modification.

The CNN layers are slightly different between the board
and the body sensor nodes. Table 4 describes the differences
between the two versions. A main difference is related to the
input features: in the body version, all three axes are taken
into account, while, in the wobble board version, only two
axes, X and Y, are used, namely those parallel to the ground.
For the board model, the total parameters amount to 98,460.
Since the data is stored with 8-bit variables, each parameter
requires 1 byte of memory. Thus, the memory requirement
for the board model is approximately 98,460 bytes or around
96.11 KB. Similarly, for the body model, the total parameters
amount to 34,600. The memory requirement for the body
model is approximately 34,600 bytes or around 33.79 KB.
As both models operate independently, each of them can fit
within the 128 KB SRAM of the microcontroller. However,
it is essential to consider that the firmware itself also requires
memory, which reduces the available memory for the neural
network models. In the case of the board model, the first Fully
Connected Layer, which has 94,000 parameters, might not
entirely fit within the available SRAM due to the memory
consumed by the firmware. To address this issue, some of
the weights from the first Fully Connected Layer can be
stored in the microcontroller’s flash memory. However, it is
important to note that using flash memory might result in a
slight decrease in performance, as accessing flash memory is
generally slower than accessing SRAM.
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FIGURE 8. Possible positioning of the sensory node.

1) DATASET

In literature, there are few datasets available that could be
useful for our work. In [7], the authors make their dataset
with numerous recordings of different exercises publicly
available, including those selected in our work, namely
squats, and push-ups. For each exercise, the authors provide
several recordings, each made with a different device, i.e.
camera, earbud, two smartwatches (one per arm), and two
smartphones (different models). Although the dataset is well
structured and contains numerous recordings, we chose to
create one from scratch. The creation of a custom dataset
was necessary because no publicly accessible dataset featured
data collected from sensors placed at the same location spec-
ified in our study. The sensor placement was an important
factor in our research, which required us to generate a dataset
in line with our specific needs, rather than relying on an exist-
ing dataset that would not meet our technical requirements.
We chose to place the sensor on the left arm as shown in
Figure 8, as it is a good compromise between comfort and
detection accuracy. Our dataset [28] includes 108 recordings
that are generally one minute long but can vary between
30 seconds and 90 seconds. The exercises in question will
be described in Table 2. The recordings are in json format
and contain information regarding: the type of exercise; the
number of samples in the recording; the timestamp; any notes;
the samples and a list of events corresponding to the samples
in which the repetitions are performed. We recruited eight
members from a fitness gym, consisting of both males and
females, aged between 25 to 50 years. These individuals
exhibited a wide range of experience levels, from beginners to
those with moderate experience. The number of subjects and
recordings involved is comparable with other datasets avail-
able in literature, e.g. MM-Fit and MHEALTH, mentioned in
Section II. The fact that more people were included, increases
the generality of the dataset and thus the ability of the neural
network to detect an exercise performed in different ways.
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TABLE 4. Neural network model parameters for the wobble board and body version.

Layer Input dimension ~ Output dimension Input features Output features Kernel size Number of parameters
Board  Body Board  Body Board Body Board  Body Board Body Board Body
Convolutional 215 76 207 72 2 3 20 20 9 5 360 300
Max pooling 207 72 103 36 20 20 20 20 2 2 - -
Convolutional 103 36 95 32 20 20 20 20 9 5 3600 2000
Max pooling 95 32 47 16 20 20 20 20 2 2 — —
Fully connected 940 320 100 100 — — — — — — 94000 32000
Fully connected 100 100 5 3 — - - - - - 500 300
Total number of parameters 98460 34600

TABLE 5. Augmentation parameters in the wobble board version.

Parameter Value

Shifting, temporal distance between frames 0.25s
Rotation, X and Y axis rotation £—4, /20, Z4

Time dilation, downsampling 6,7,8

2) DATA AUGMENTATION & GENERALIZATION

The process of labeling the exercises in the dataset was done
manually, centering labels as precisely as possible within
the frames of samples corresponding to an exercise repe-
tition. If no countermeasures are taken during training or
during dataset preparation, this determines that the network
classifies accurately only frames that are precisely coherent,
in terms of centering, with the manually labeled frames used
in training. In other words, the neural network is not robust
to input temporal shifts.

The trivial solution to this issue is to execute the inference
very frequently, to increase the probability of performing at
least one inference on an adequately centered input frame,
and to actually classify correctly each single exercise repeti-
tion. This solution obviously is not convenient when it comes
to the power consumption of the device.

Another way to make the network more robust is to train
it to recognize different exercises even with inputs that are
not perfectly centered within the frame. This is possible
by exploiting some data augmentation techniques on the
dataset. Operations like shifting the training signal for a few
samples in each direction can often greatly improve general-
ization [26]. Through the utilization of this data augmentation
technique, it is possible to tolerate a lower execution fre-
quency (fcyn), improving the overall power efficiency of
the system. On the other hand, an excessive degree of aug-
mentation could lead to an increase in false positives. It is
worth emphasizing that the data augmentation techniques,
designed to increase the diversity and representation of our
dataset, were applied exclusively to the training set. This
procedure enriched the model’s learning phase without intro-
ducing potential bias into the validation and test stages.

The parameters chosen for this type of augmentation can
be seen in Table 5.

As for the squat and push-up exercises, only the shifting
transformation was used. Note that in this case a distinction
of shifting parameters was made according to the type of
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TABLE 6. Augmentation parameters in the body version.

Exercise Parameter Value
Squat Shifting, temporal distance From -0.5 s to 0.5 s with
between frames intervals of 0.1 s,
Push-up Shifting, temporal distance From -0.2 s to 0.2 s with

between frames intervals of 0.1 s.

exercise, this is due to the different execution and duration
of the exercise. The parameters chosen for this type of aug-
mentation can be seen in Table 6.

V. EXPERIMENTAL RESULTS

In this section, we present an experimental research study
aimed at evaluating the performance and power consumption
of our proposed hardware/software model. The primary goal
is to assess the effectiveness of our dynamically managed
low-power node in performing in-place analysis of sensed
data while maintaining high accuracy and low energy con-
sumption. We hypothesize that the proposed model will be
able to efficiently manage hardware and software reconfigu-
ration, leading to significant energy savings.

To test our hypothesis, we have conducted experi-
ments using the neural network for both wobble board
and body versions. The experimental setup includes the
microcontroller-based node running on-edge CNN process-
ing and the ADAM component handling device reconfigura-
tion. We also assessed the effects of using data augmentation
techniques on accuracy and power consumption.

Our experiments involve the following steps:
training the quantized neural network on a custom
dataset;
evaluating the accuracy of detecting wobble board
movements and body exercises;
assessing the power consumption for each selected oper-
ating mode;
analyzing the energy savings achieved by enabling
in-place analysis and efficient device management.

A. NEURAL NETWORK ACCURACY

We have first evaluated the classification accuracy obtainable
by the CNN on the board sensor, comparing a floating-point
and fixed-point implementation, when recognizing four types
of exercises performed over the wobble board: basic stance
balance, side tilt, forward/backward tilt, two leg tilts, and a
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FIGURE 9. Neural network confusion matrix for the wobble board
version. The classes were defined in Table 2.

generic movement. First, the neural network models were
trained without utilizing any data augmentation techniques.
The resulting accuracy achieved for the floating-point model
was 98.02%, and for the fixed-point model was 97.05%. Sub-
sequently, data augmentation techniques were incorporated
into the training process, resulting in improved accuracy for
the model. The resulting floating-point model achieved an
accuracy of 98.158%, while the fixed-point model version
achieved an accuracy of 97.652%. These results confirm that
the incorporation of data augmentation techniques can lead
to improved accuracy in neural network models and that the
quantization process, although beneficial for computational
reasons, introduced a slight degradation in accuracy due to
the inherent trade-off between precision and efficiency. The
corresponding confusion matrix for the obtained models is
shown in Figure 9. The limitations of the quantized model
mostly derive from the difficulty in distinguishing between
the basic stance balance and generic movement classes due
to the reduced numerical precision and approximations intro-
duced during the quantization process.

Second, we have assessed the body version of the neural
network, designed to classify between squats, push-ups, and
a generic motion. A comparative analysis has been conducted
on the training results before and after the implementa-
tion of data augmentation techniques. The neural network
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FIGURE 10. Neural network confusion matrix for the body version. The
classes were defined in Table 2.

TABLE 7. Summary of neural network model accuracies.

Augmentation Model type \ Board Body
No Floating-point | ~ 98.02% 97.864%
Fixed-point | 97.05% 97.153%
Yes Floating-point \ 98.158% 99.427%
Fixed-point |  97.652% 99.427%

trained with the un-augmented dataset achieves an accuracy
of 97.864% in the case of the floating-point model, with a
reduction in accuracy down to 97.153% in the fixed-point
case. After augmentation, the model achieved an impressive
accuracy of 99.427%. The conversion process to fixed-point
did not lead to a noticeable degradation in performance.
Figure 10 shows the corresponding confusion matrix, which
further supports the minimal impact of the conversion on
the model’s overall performance. The improved performance
suggests that data augmentation has successfully enhanced
the model’s ability to generalize from the training set to
unseen data, thus improving the robustness and reliability of
our system.

Table 7 summarizes the results of performance analy-
sis in terms of classification accuracy of neural networks
based on the use of data augmentation techniques, model
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type (floating-point or fixed-point), and system considered
(board or body). Augmentation techniques lead to increased
accuracy for both systems. For instance, when comparing
the floating-point model with augmentation (98.158% for
Board and 99.427% for Body) to the one without augmen-
tation (98.02% for Board and 97.864% for Body), there is a
noticeable improvement in accuracy. A similar trend can be
observed for fixed-point models. Regarding quantization, it is
important to note that the process of converting floating-point
numbers to fixed-point numbers can introduce some degree of
information loss. This loss is generally due to the reduction in
numerical precision, which may impact the model’s ability to
accurately represent and process the data. However, the table
indicates that this impact on accuracy is within a reasonable
range, suggesting that the benefits of quantization, such as
reduced memory and computational requirements, might out-
weigh the minor loss in accuracy for certain applications.

Finally, we report another experiment to visualize the effect
of augmentation. We evaluated the two models trained with
augmented data and with non-augmented data on two test
traces, respectively corresponding to 30 seconds of squats
and 30 seconds of push-ups. The test was repeated for two
different inference frequencies, 1 Hz and 4 Hz. The results of
these tests are presented in Figure 11 In the graphs, vertical
lines represent the ground truth, indicating when the sub-
ject has actually performed the exercise. To correctly detect
a repetition we expect at least one inference execution to
classify the input frame as a squat or a push-up for each of
the vertical lines. When executing the inference 4 times per
second, on both input traces, both the non-augmented and
the augmented versions are capable of detecting at least one
squat/push-up for each repetition. However, when reducing
the execution rate, the network trained without augmentation
does not allow the exercise to be detected unless it is opti-
mally centered within the frame. This aspect is clearly visible
in Figure 11, where the network was tested with foyy equal
to 1 Hz. In these cases, the network struggles to detect the
exercise, since for some of the repetitions, highlighted with
rectangles, none of the inference executions has classified
the frame to be a squat or a pushup. The version trained
with augmentation, on the other hand, detects every repeti-
tion correctly even when the inference is executed once per
second, thus it permits to reduce in the overall workload for
the microprocessor, highlighting how the augmentation has
beneficial effects on the energy-related aspects of the system.

In summary, our accuracy assessments emphasize the
reasonable negative impact of quantization on the model’s
accuracy and demonstrate how augmentation techniques have
contributed to achieving more proficient models in terms of
accuracy. This illustrates the feasibility of utilizing artificial
intelligence-based algorithms on platforms with constrained
capabilities without compromising high accuracy in the
results.

As an additional validation of the approach based on
CNNs, we also compared our model with a simple two-layer
Artificial Neural Networks (ANN). This ANN, designed with
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a number of parameters comparable to that of our CNN
models, would have fit into the available memory. However,
after testing, the performance of the ANNs did not match
that of our CNN models. Despite having a similar memory
footprint, the accuracy of the ANNSs for the board version was
93.432 %, and for body version was 98.025 %, lower than the
CNNss accuracy (97.652% for board version and 99.427% for
body version). This disparity in performance can be attributed
to the inherent strengths of CNNs when dealing with lattice-
type data, such as those of our time-series sensors. CNNs
are better suited for identifying hierarchies or spatial patterns
within this type of data.

B. POWER CONSUMPTION

We have assessed the power-related features of the system,
to verify the related effectiveness of in-place processing
and of dynamic management. To do so, we monitored the
voltage drop across a shunt resistor connected in series to
the SensorTile node power line using an ANALOG Dis-
covery 2 digital oscilloscope. We have performed multiple
measurements to determine the power consumption for each
operating mode. The results are shown in Figure 13. The
power consumption due to BLE transmission is highlighted,
visualizing the impact of communication on the overall con-
sumption. Moreover, it helps to understand the effectiveness
of pre-processing, which enables (by means of the thresh-
old task in the application model) to send in output only
relevant data. Finally, we highlighted the additional power
that would be consumed if the frequency is not optimized
dynamically by ADAM, using the same system frequency
required to support all operating modes (in this case 4 MHz).
As may be noticed, the most efficient modes are those that
implement some on-board pre-processing of the acquired
data. Especially the CNN mode is convenient. It provides
detailed analysis capabilities, used for exercise classification,
but exploiting in-place processing reduces the communica-
tion requirements, saving around 65% power consumption in
the case of the body sensor and around 50% in the case of
the board sensors, with respect to the raw data transmission
that would be required to perform the same analysis on the
cloud. In the following, we comment on each operating mode
in more detail.

1) OPERATING MODE raw

As outlined in Section IV, this operating mode allows the
transmission of all data taken from the sensor via Bluetooth
Low Energy (BLE). In this case, the contribution related to
transmission does not depend on pre-processing results and
is continuously dissipated by the system. For supporting such
a continuous communication, the adequate clock frequency
(fsys) is set to 4 MHz. To maximize data transmission via Blue-
tooth, two sensor acquisitions are combined into one BLE
packet, reducing the sending frequency from 100 Hz (equal
to the sampling rate) to 50 Hz. Nevertheless, the raw mode
is the most power-consuming operating mode, consuming
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FIGURE 11. Tests on two different traces for squats and push-ups execution. Each was tested with a network trained with augmented and
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FIGURE 13. Power consumption for each operating mode.

8.83 mW, with a contribution of 3.5 mW dissipated for trans-
mission.

2) OPERATING MODE detection

As described in Section IV, when the system is set in this
operating mode, the node communicates dome pre-processed
inclination and direction data to the mobile app. The pro-
cessing task Movement is executed 10 times per second.
If no threshold is applied, the task send is also executed
with a frequency of 10 Hz, requiring a clock frequency fys
set to 2 MHz. In this case, the node dissipates 4.4 mW,
which can decrease to around 3 mW if no relevant inclination
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or direction changes are detected. The savings obtained by
means of dynamic clock frequency optimization, in this case,
derive from a reduction from 4 MHz to 2 MHz, corresponding
to only around 3% improvement.

3) OPERATING MODE classification

Whenever neural network inference is executed, information
about the results of exercise classification is transmitted.
Again, as mentioned in Section in Section IV, there are two
types of CNN-based processing, board movement classifica-
tion, and body movement classification. As shown in Table 4,
they have different sizes, the board version requiring more
computational capabilities. For this reason, the two cases are
considered distinct to show the power consumption results.
Board movement classification requires fiys to be set at a
minimum of 4 MHz, while for body movement classification,
the optimal clock frequency is 1 MHz. For both cases, fcny
is equal to 1 Hz. This is the most power-efficient oper-
ating mode (3.13 mW for the body sensor and 4.55 mW
for the board), demonstrating how enabling edge process-
ing can lead to improved power consumption. As may be
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TABLE 8. Energy values for each task in the process network and the
power consumption of the platform.

Task type Number of cycles Energy contribution
Get data 863 E, =3.05uJ
Movement 831 Ep =291 pJ
CNN, wobble board version 2429623 Ecyw = 1086.18 uJ
CNN, body version 623 605 E.p = 259.26 uJ
Threshold 910 E, =273 pJ
Send data (fsys = 1 MHz) — Es; =213.29 uJ
Send data (fsys = 2 MHz) — E; =170.73 pnJ
Send data (fsys = 4 MHz) - E; =105.18 uJ

Device Power consumption
1 MHz 2 MHz 4 MHz
Platform in idle state ~ 2.568 mW  2.802mW  3.267mW

noticed, in-place processing has significantly decreased the
communication-related needs, the transmission of data only
contributes 0.21 mW (body version, around 7% of the total)
and 0.11 mW (board version, around 2,5% of the total).
Dynamic frequency optimization is used only in the body
version and permits saving around 0,6 mW (16% of the total)
by reducing the clock frequency to 1 MHz from the 4MHz
static value.

4) POWER CONSUMPTION BREAKDOWN

In order to better understand the different contributions to the
power figures and to be capable of understanding the effects
of the proposed approach on different use cases, we have
built a model showing how each task contributes to power
consumption. To derive it, we have conducted a wide range
of measurements of the energy consumed by the node under
different configuration circumstances. In Table 8, the energy
values for each task in the process network and the power
consumption of the platform as a function of the chosen
system frequency fjy, are shown. Below are the equations that
estimate the power consumption for all operating modes:

Praw = (Eq + Ey) - fs + Pidie, (D
Petection = Eg 'fs + (Em + Er + Ey) 'fm + Pidle,  (2)

Pelassification = Eg - fs + Ep - fin + (Eex + Et + Ey)
-fenn + Pidge - 3

In Equations 1, 2 and 3, the following operators are used:
f5 1s the sampling frequency; fcyy is the frequency of convo-
lutional neural network execution; f;,, is the movement task
frequency execution; ! is the number of samples inserted
in a BLE package; P;g. power consumption of the platform
in idle state, depends on the system frequency.

An example of the application of such power estimation
equations is shown in Figure 12, from it, the contribution of
each task can be observed. As can be noticed from the graph,
the operating mode raw has the highest power consumption
among the different modes. The power consumption of the
Send task alone in this mode is greater than the combined
power consumption of all other tasks in the detection and
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classification operating modes. This is due to the high data
transmission rate associated with the operating mode raw.
In some operating modes, it is possible to reduce the system
frequency by as much as 4 times compared to the operating
mode raw without violating real-time constraints. Another
noteworthy aspect is the low power consumption resulting
from the CNN task, which is able to dramatically reduce
the usage of the send task. This is achieved through effi-
cient processing that simplifies the information, subsequently
reducing the frequency of data transmission to external sys-
tems.

The implementation of edge computing, as demonstrated
by the efficient processing in the detection and classifica-
tion operating modes, leads to significant energy savings
compared to scenarios where processing is not enabled on
the node, as in the case of the operating mode raw. This
approach demonstrates the potential benefits of leveraging
edge computing in real-time applications.

VI. LIMITATIONS AND FUTURE PERSPECTIVES
In forthcoming developments, our intention is to improve our
system by diversifying the dataset to encompass a range of
activities, environments, and participants, thereby enhancing
its adaptability to new circumstances. This will lead to an
improvement in the generality of the dataset and in the robust-
ness of the neural network without necessarily having to
give up data augmentation techniques. Additionally, we plan
to incorporate handheld sensors to expand our exercise
tracking capabilities, and to provide more comprehensive,
personalized feedback for each user. This approach aims to
facilitate the development of more efficient and individu-
ally customized training programs. Building on these future
developments and improvements, the envisioned enhance-
ment of our system will not only improve individual user
experiences, but also pave the way for broader applications.

To move into a wider area of our research, our approach
is designed to seamlessly fit into an Internet of Things (IoT)
environment, thus facilitating the evolution of mHealth appli-
cations. The authors in [29] and [30] reveal some of the most
important critical issues in this area, our work could solve
some of these criticisms. Specifically, key concerns addressed
include energy efficiency in wearable sensors and data accu-
racy, both of which our system mitigates through innovative
data processing techniques and employing state-of-the-art Al
methodologies, respectively. To tackle the critical issue of
data privacy and security, we’ve constructed our model to
minimize data transmission, thereby reducing potential data
breach risks. Our system further accommodates the necessity
for decision support in mHealth by offering real-time data
analysis to assist users with their exercise routines. Finally,
we cater to the demand for ambient assisted living solutions,
with our system thoughtfully designed to provide sensorimo-
tor training support for users within their homes, promoting
health and independence.

Compatibility with IoT systems is further strengthened
by our previous work [31]. In that study, we successfully

VOLUME 11, 2023



M. A. Scrugli et al.: Microcontroller-Based Platform for Cognitive Tracking of Sensorimotor Training

IEEE Access

implemented an interconnected network of ECG sensors in
an [oT environment using a similar approach.

VIi. CONCLUSION

We have developed a system relying on two microcontroller-
based sensor nodes, capable of tracking exercises and activity
performed during sensorimotor training. The sensors, respec-
tively integrated into a custom wobble-board and worn by
the user, can monitor the training to finely track the results,
enable interaction with a trainer, and foster user engagement.

Each node is capable of running on-edge CNN process-
ing and is able to detect basic movements performed on a
wobble board. Depending on the operating mode and the
required workload, the device can reorganize itself automat-
ically. They dynamically switch between operating modes,
corresponding to different levels of pre-processing applied to
the sensor data, to adapt to different usage requirements.

In-place execution of a quantized neural network on the
nodes achieves over 97% accuracy in detecting wobble board
movements and over 99% accuracy in identifying body exer-
cises on a custom dataset. This demonstrates the possibility
of using lightweight Al algorithms to implement activity
recognition in this scope.

Moreover, we were able to save up to 65% of energy by
enabling in-place analysis and efficiently managing hardware
and software reconfiguration of the device, confirming the
potential of using sensor data in-place processing to increase
battery life.

REFERENCES

[1]1 R. Saini, P. Kumar, P. P. Roy, and D. P. Dogra, “A novel framework
of continuous human-activity recognition using Kinect,” Neurocomput-
ing, vol. 311, pp. 99-111, Oct. 2018. [Online]. Available: https://www.
sciencedirect.com/science/article/pii/S0925231218306179

[2] J. K. Aggarwal and L. Xia, “Human activity recognition from
3D data: A review,” Pattern Recognit. Lett., vol. 48, pp.70-80,
Oct. 2014. [Online]. Available: https://www.sciencedirect.com/science/
article/pii/S0167865514001299

[3] S. Herath, M. Harandi, and F. Porikli, “Going deeper into action recogni-
tion: A survey,” 2016, arXiv:1605.04988.

[4] R. Poppe, “A survey on vision-based human action recognition,” Image
Vis. Comput., vol. 28, no. 6, pp. 976990, Jun. 2010. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0262885609002704

[5] E Demrozi, G. Pravadelli, A. Bihorac, and P. Rashidi, ‘“Human activ-
ity recognition using inertial, physiological and environmental sensors:
A comprehensive survey,” IEEE Access, vol. 8, pp. 210816-210836, 2020.

[6] S. Herath, M. Harandi, and F. Porikli, “Going deeper into action
recognition: A survey,” Image Vis. Comput., vol. 60, pp. 4-21, Apr. 2017.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
50262885617300343

[7]1 D. Strombick, S. Huang, and V. Radu, “MM-Fit: Multimodal deep learn-
ing for automatic exercise logging across sensing devices,” Proc. ACM
Interact., Mobile, Wearable Ubiquitous Technol., vol. 4, no. 4, pp. 1-22,
Dec. 2020, doi: 10.1145/3432701.

[8] S. Ha, J.-M. Yun, and S. Choi, “Multi-modal convolutional neural net-
works for activity recognition,” in Proc. IEEE Int. Conf. Syst., Man,
Cybern., Oct. 2015, pp. 3017-3022, doi: 10.1109/SMC.2015.525.

[9] G. Dogan, S. S. Ertas, and I. Cay, ‘““‘Human activity recognition using con-
volutional neural networks,” in Proc. IEEE Conf. Comput. Intell. Bioinf.
Comput. Biol. (CIBCB), Oct. 2021, pp. 1-5.

[10] Y. L. Coelho, FE. de Assis Souza dos Santos, A. Frizera-Neto, and
T. F. Bastos-Filho, “A lightweight framework for human activity recog-
nition on wearable devices,” IEEE Sensors J., vol. 21, no. 21,
pp. 24471-24481, Nov. 2021.

VOLUME 11, 2023

(11]

[12]

(13]

(14]

(15]

[16]

(17]

(18]

[19]

(20]

(21]

[22]

(23]

[24]

(25]

[26]

[27]

(28]

(29]

(30]

(31]

T.-H. Dao, H.-Y. Hoang, V.-N. Hoang, D.-T. Tran, and D.-N. Tran,
“Human activity recognition system for moderate performance micro-
controller using accelerometer data and random forest algorithm,”
EAI Endorsed Trans. Ind. Netw. Intell. Syst., vol. 9, no. 4, p. e4,
Nov. 2022. [Online]. Available: https://publications.eai.eu/index.php/inis/
article/view/2571

L. Bao and S. S. Intille, “Activity recognition from user-annotated accel-
eration data,” in Pervasive Computing, A. Ferscha and F. Mattern, Eds.
Berlin, Germany: Springe, 2004, pp. 1-17.

A. Ghibellini, L. Bononi, and M. Di Felice, “Intelligence at the IoT edge:
Activity recognition with low-power microcontrollers and convolutional
neural networks,” in Proc. IEEE 19th Annu. Consum. Commun. Netw.
Conf. (CCNC), Jan. 2022, pp. 707-710.

Z. Wenzheng, “Human activity recognition based on acceleration sensor
and neural network,” in Proc. 8th Int. Conf. Orange Technol. (ICOT),
Dec. 2020, pp. 1-5.

K. Warunsin and T. Phairoh, “Wristband fall detection system using
deep learning,” in Proc. 7th Int. Conf. Comput. Commun. Syst. (ICCCS),
Apr. 2022, pp. 223-227.

I. I. Belousov and A. A. Smirnov, “HAR CNN using accelerometer
data set with debugging board based on STM32F407 microcontroller,”
in Proc. 8th Int. Young Researcher’ Conf.-Phys., Technol., Innov., 2022,
Art. no. 090004, doi: 10.1063/5.0088699.

F. Daghero, A. Burrello, C. Xie, M. Castellano, L. Gandolfi, A. Calimera,
E. Macii, M. Poncino, and D. J. Pagliari, ‘““‘Human activity recognition on
microcontrollers with quantized and adaptive deep neural networks,” ACM
Trans. Embedded Comput. Syst., vol. 21, no. 4, pp. 1-28, Aug. 2022, doi:
10.1145/3542819.

F. Daghero, D. J. Pagliari, and M. Poncino, “Two-stage human activ-
ity recognition on microcontrollers with decision trees and CNNs,” in
Proc. 17th Conf. Ph.D Res. Microelectron. Electron. (PRIME), Jun. 2022,
pp. 173-176.

N. Maclean and P. Pound, “A critical review of the concept of patient
motivation in the literature on physical rehabilitation,” Social Sci. Med.,
vol. 50, no. 4, pp. 495-506, 2000.

S. E. Asp, K. O. Halldorsdottir, C. Higg, M. L. Mgller, B. P. Mickelsson,
L. Boldt, and D. Skaarup, “WobbleActive,” in Proc. Ist Int. Symp. Ludic
Engagement Design, 2007.

N. C. Nilsson, S. Serafin, and R. Nordahl, “Gameplay as a source of intrin-
sic motivation for individuals in need of ankle training or rehabilitation,”
Presence, vol. 21, no. 1, pp. 69-84, Feb. 2012.

B. Blazica and P. Krivec, “OLOK boardy—Gamified sensorimotor train-
ing with affordable smart balance board,” in Proc. 3rd Annu. Sci. Prof. Int.
Conf. ‘Health Children Adolescent’, Sep. 2019, p. 185.

M. A. Scrugli, B. BlaZica, and P. Meloni, “An adaptable cognitive micro-
controller node for fitness activity recognition,” in Proc. Int. Workshop
Design Archit. Signal Image Process., K. Desnos and S. Pertuz, Eds. Cham,
Switzerland: Springer, 2022, pp. 149-161.

L. Lai, N. Suda, and V. Chandra, “CMSIS-NN: Efficient neural network
kernels for arm cortex-M CPUs,” 2018, arXiv:1801.06601.

Unity. Lego Microgame. Accessed: Apr. 18, 2023. [Online]. Available:
https://learn.unity.com/project/lego-template

I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning (Adap-
tive Computation and Machine Learning series). Cambridge, MA,
USA: MIT Press, 2016. [Online]. Available: https://books.google.it/
books?id=Np9SDQAAQBAJ

Pytorch. Static Quantization With Eager Mode in PyTorch. Accessed:
Oct. 18, 2022. [Online]. Available: https://pytorch.org/tutorials/advanced/
static_quantization_tutorial.html

M. Scrugli. Wobble Board Dataset. Accessed: Apr. 18, 2023. [Online].
Available: https://github.com/matteoscrugli/wobbleboard-dataset

O.S. Albahri, A. S. Albahri, K. I. Mohammed, A. A. Zaidan, B. B. Zaidan,
M. Hashim, and O. H. Salman, ““Systematic review of real-time remote
health monitoring system in triage and priority-based sensor technology:
Taxonomy, open challenges, motivation and recommendations,” J. Med.
Syst., vol. 42, no. 5, p. 80, 2018, doi: 10.1007/s10916-018-0943-4.

Y. A. Qadri, A. Nauman, Y. B. Zikria, A. V. Vasilakos, and S. W. Kim,
“The future of healthcare Internet of Things: A survey of emerging tech-
nologies,” IEEE Commun. Surveys Tuts., vol. 22, no. 2, pp. 1121-1167,
2nd Quart., 2020.

M. A. Scrugli, D. Loi, L. Raffo, and P. Meloni, “An adaptive cognitive
sensor node for ECG monitoring in the Internet of Medical Things,” IEEE
Access, vol. 10, pp. 1688-1705, 2022.

70793


http://dx.doi.org/10.1145/3432701
http://dx.doi.org/10.1109/SMC.2015.525
http://dx.doi.org/10.1063/5.0088699
http://dx.doi.org/10.1145/3542819
http://dx.doi.org/10.1007/s10916-018-0943-4

IEEE Access

M. A. Scrugli et al.: Microcontroller-Based Platform for Cognitive Tracking of Sensorimotor Training

MATTEO ANTONIO SCRUGLI received the M.S.
degree (Hons.) and the Ph.D. degree in electri-
cal engineering from the University of Cagliari,
in 2018 and 2022, respectively. He is currently
a Research Fellow with the DIEE, University
of Cagliari. His research mainly concerns the
development of systems capable of managing
at runtime the hardware and software configu-
ration of low-power devices in order to adapt
it to the required operating mode. His current
research interest includes the cognitive IoT devices, based on single-core or
multi-core platforms.

BOJAN BLAZICA received the Ph.D. degree. He is
aresearcher in the fields of human—computer inter-
action, user experience design, usability testing,
and artificial intelligence. Most recently, he has
been involved in projects related to active aging,
where individualized targeted training (SI4Care)
and gardening (turntable) have been used to
improve the quality of life of the elderly, and
projects related to crowd-sourcing food composi-
tion data with a mobile application, and developing
usable interfaces for decision support systems in agriculture (DEXiWare).
He is the Co-Founder of BMP3 (focused on producing biomechanical mea-
surement devices) and Proventus (software company developing web and
mobile platform for gardening Tomappo).

LUIGI RAFFO (Member, IEEE) received the Lau-
rea degree in electronic engineering and the Ph.D.
degree in electronics and computer science from
the University of Genoa, Italy, in 1989 and 1994,
respectively. He is currently a Full Professor in
electronics with the Department of Electrical and
Electronic Engineering, University of Cagliari,
Italy, where he joined the Department of Electrical
and Electronic Engineering, as an Assistant Pro-
fessor, in 1994, an Associate Professor, in 1998,
and a Full Professor in electronics, since 2006. Since 2012, he has been a
Rector’s delegate for International Research Projects. His research interests
include the study, design, and development of platforms, and systems and
integrated circuits for several applications mainly in the field of biomed-
ical engineering, with focus on high-performances, high-efficiency, and
adaptability. He is the author of more than 200 scientific papers and five
international patents.

PAOLO MELONI is currently an Associate Pro-
fessor with the University of Cagliari. His research
interests include the development of advanced dig-
ital systems, on the application-driven design and
programming of multi-core on-chip architectures
and FPGAs.

Open Access funding provided by ‘Universita degli Studi di Cagliari’ within the CRUI CARE Agreement

70794

VOLUME 11, 2023



