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ABSTRACT Machine-generated text is increasingly difficult to distinguish from text authored by humans.
Powerful open-source models are freely available, and user-friendly tools that democratize access to
generative models are proliferating. ChatGPT, which was released shortly after the first edition of this
survey, epitomizes these trends. The great potential of state-of-the-art natural language generation (NLG)
systems is tempered by the multitude of avenues for abuse. Detection of machine-generated text is a key
countermeasure for reducing the abuse of NLG models, and presents significant technical challenges and
numerous open problems. We provide a survey that includes 1) an extensive analysis of threat models
posed by contemporary NLG systems and 2) the most complete review of machine-generated text detection
methods to date. This survey places machine-generated text within its cybersecurity and social context,
and provides strong guidance for future work addressing the most critical threat models. While doing so,
we highlight the importance that detection systems themselves demonstrate trustworthiness through fairness,
robustness, and accountability.

INDEX TERMS Artificial intelligence, cybersecurity, disinformation, generative Al, large language models,

machine learning, text generation, threat modeling, transformer, trustworthy Al

I. INTRODUCTION

A. RISKS OF MACHINE-GENERATED TEXT

Recent natural language generation (NLG) models have
taken a significant step forward in the diversity, control,
and quality of machine-generated text. The ability to create
unique, manipulable, human-like text with unprecedented
speed and efficiency presents additional technical challenges
for detecting abuses of NLG models, such as phishing [1],
[2], disinformation [3], [4], [5], fraudulent product reviews
[4], [6], academic dishonesty [7], [8], and toxic spam [9].
Addressing the risk of abuse is vital to maximize the potential
benefit of NLG technology, while minimizing harm — a
fundamental principle of trustworthy Al [10].

The overwhelming majority of contemporary state-of-the-
art NLG models are neural language models (NLMs) based
on the Transformer architecture [11]. Significant concerns
surrounding the threats posed by generative Transformer
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models are nearly as old as the models themselves: The
release of the 1.5B parameter GPT-2 architecture was delayed
for nine months due to fears of abuse [12]. Access to
GPT-3 remains permitted only via a carefully controlled
API [13]. Such measures demonstrably manifest only in
delays to open availability of models. Only four months
after the release of GPT-2, Grover — a 1.5B parameter
model based on the GPT-2 architecture — was made publicly
available [5]. Grover’s release not only foreshadowed the
speed with which private models would be replicated, but
also represented a limited threat model in itself: Grover was
specifically designed to both produce and detect neural fake
news. Grover’s primary author provided a reasoned justifi-
cation for the model release and called for an improved set
of community norms for the release of potentially dangerous
research prototypes [14].

Such norms have been slow to develop [15], and wide-scale
democratization of access to increasingly large-scale natu-
ral language generation models has continued. Open-source
initiative EleutherAl has produced open-source generative
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Transformer models with large numbers of parameters,
including the 6B parameter GPT-J [16], and 20B parameter
GPT-NeoX [17]. Even truly massive models are now avail-
able as open-source — the BigScience Large Open-science
Open-access Multilingual Language Model (BLOOM) is an
open-source multilingual model, and at 176B parameters,
is larger than GPT-3 [18]. Yandex [19], Meta AI [20], and
Huawei [21] have all open-sourced models with over 100B
parameters.

Real-life examples are beginning to emerge of how
generative Transformer language models may be abused.
A controversy in the Al research community resulted from
the publicized development of a GPT-J model trained on
the 4chan politics message board /pol/. This model was
subsequently deployed to produce numerous posts on the
board from which its training data came, including posts
containing objectionable content [9]. At its peak, the model
represented roughly 10% of all activity on the board in a
24-hour period [22]. The response to this model’s deployment
included a signed condemnation from 360 signatories across
the Al community, including scientific directors, CEOs, and
professors [23]. A similar project targeted a federal public
comments website with GPT-2 text until the submitted com-
ments comprised half of all comments, demonstrating the
extent of existing vulnerabilities [24].

Controversy around any individual publicized NLG model
belies the more fundamental concern — for years, any person
with access to adequate hardware and open-source training
scripts could train or fine-tune large, generative Transformers
for any purpose they choose, be it pop song lyrics, mass
disinformation, or toxic spam. Malicious individuals in the
process of training a generative language model need not
draw attention to their models via public release and currently
face limited risk of discovery. As NLG capabilities grow
and access barriers evaporate, we are quietly climbing the
adoption curve for this technology to be widely abused by
cybercriminals, disinformation agencies, scam artists, and
other threat actors.

Increasingly, access to these models is not limited to
sophisticated threat actors who can fine-tune them. User-
friendly web interfaces, such as the one provided by ChatGPT
[25], effectively eliminate any barrier to using powerful
generative models. Jasper, a tool marketed as an Al writ-
ing assistant, uses GPT-3 to write content alongside human
guidance [26]. This includes generating content for blogs
and websites, which Jasper can efficiently produce in large
volumes. Another website offers an endless supply of GPT-3
authored cover letters [27]. Tools such as Jasper allow those
with little technical knowledge to seed the model with a
prompt, specify keywords to include, and indicate a specific
tone of voice. Using publicly available open-source models,
a nearly identical system could easily be created to generate
endless streams of targeted disinformation that can be readily
loaded into existing grey-market account automation tools for
popular social media websites.
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NLG models have the potential to have an immensely
positive and transformative impact on human society. A stag-
gering one in three internet users aged 16 to 64 used an
online translation tool in the last week, a figure representing
over 1 billion people [28]. Text summarization can create
comprehensive summaries of complex legal text [29] or med-
ical records [30]. NLG models can give a voice to machine
systems, changing how humans interact with them [31].
The same Transformer architecture that is used frequently
for NLG can also be used to generate pictures from image
descriptions [32], produce functional code from a natural
language summary [33], or form the basis of a generalist
agent [34]. While future research in NLG will bring further
positive developments, alongside these opportunities is the
corresponding certitude that bad actors will use the same
technology to nefarious ends. Predicting how abuses are
likely to unfold, and determining the best defenses to use
against them, are essential in allowing humanity to reap the
positive benefits of this technology while minimizing poten-
tial harm. We must walk a cautious path through the age of
the silicon wordsmith.

B. SURVEY OVERVIEW

Since the release of GPT-2 [12] and the subsequent explo-
sion of high-quality Transformer-based NLG models, there
has been only one general survey on the detection of
machine-generated text [35]. The scope of this previ-
ous survey is limited to detection methods specifically
targeting the several generative Transformer models that
had been released at the time. Before this, a systematic
review of machine-generated text predating the Transformer
architecture covered methods that detected previous NLG
approaches, such as Markov chains [36]. Our survey differs
from previous work in three significant ways.

First, our survey of machine-generated text detection
is much more comprehensive and up-to-date than previ-
ous work. We consider the literature on the feature-based
detection of machine-generated text that was omitted from
previous reviews [37], [38], [39]. Such approaches are worthy
inclusions, as feature-based approaches still apply to contem-
porary NLG models [38], [40], [41] and may provide benefits,
such as improved robustness against adversarial attacks tar-
geting neural networks [40] or enhanced explainability [41].
Additionally, as research on NLG and detection has rapidly
advanced in the years since the previous survey, we must
now cover a wider range of generative models and defensive
research.

Second, this survey provides an in-depth analysis of the
risks posed by NLG models via the process of threat modeling
(i.e., identifying potential adversaries, their capabilities, and
objectives) [42]. The result of our threat modeling process
is a series of threat models that describe scenarios where
machine-generated text may be abused, the attackers’ likely
methodology, and existing research related to each threat.
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To date, there has been no survey of machine-generated
text detection focusing on the risks presented by machine-
generated text. Considering threat models is vital to setting
the groundwork for the trustworthy development of NLG
technology, encouraging early development of defensive
measures and minimizing potential harms.

Third, guided by the EU Ethics Guidelines for Trustworthy
AI [10] and research community efforts [43], we present our
survey with sociotechnical and human-centric considerations
integrated throughout, focusing not only on NLG systems and
machine text detection technologies but also on the humans
who will be exposed to both text generation and detection
systems in daily life. The goal with trustworthy Al is to ensure
that Al systems are developed lawfully, ethically, and robustly
from both a technical and social perspective. Abuse of NLG
models threatens all three areas, creating safety risks for those
who may be targeted by NLG-enabled attacks, threatening
the integrity of online social spaces, and challenging the
resilience of the technical and social systems that comprise
modern society. Machine text detection protects against the
abuse of NLG models, enhancing the robustness and safety
of NLG development. Critically, our survey includes insight
into ensuring that defensive machine text detection systems
themselves are transparent, fair, and accountable.

To summarize, the major contributions of this work are as
follows:

o The most complete survey of machine-generated
text detection to date, including previously omitted
feature-based work and findings from recent contem-
porary research.

o The first detailed review of the threat models enabled
by machine-generated text at a critical juncture where
NLG models and tools are rapidly improving and
proliferating.

« A meaningful exploration of both topics through the
lens of Trustworthy AI (TAI), considering the ethical
and trust impacts of both threat models and detection
systems.

The rest of this survey is organized as follows. We pro-
vide definitions and a brief overview of existing methods
for natural language generation in Section II. In Section III,
we explore threat models related to the abuse of machine-
generated text, including impacts on trust. We provide a
comprehensive survey of literature related to the detection of
machine-generated text in Section IV. In Section V, we sum-
marize open problems and ongoing trends to guide the direc-
tion of future work. Finally, in Section VI, we present our
conclusions. While this work discusses machine-generated
text extensively, including models designed to generate sci-
entific papers, no such models were utilized in the authorship
of this work.

Il. MACHINE GENERATED TEXT

Before reviewing threat models and detection methodologies
for machine-generated text, we provide a formal definition of
machine-generated text and a condensed overview of natural
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language generation (NLG) models. We recommend further
reading of dedicated surveys on natural language genera-
tion for greater insight into the breadth of NLG models and
applications [44], [45], [46], [47], [48], [49].

A. DEFINITION AND SCOPE
In this survey, we use a broad definition of the term
“machine-generated text,” which we believe includes all
relevant research in the field:

“Machine-generated text” is natural language
text that is produced, modified, or extended by a
machine.

We focus our definition of machine-generated text on nat-
ural language — i.e., text written in human languages that
are “acquired naturally (in [an] operationally defined sense)
in association with speech” [S0] — and exclude non-natural
language — i.e., logical languages, programming languages,
etc. The exclusion of non-natural language aligns with other
work in the field: the term ‘‘text generation™ is currently
considered synonymous with “natural language generation”
[48], [51]. We anticipate that “‘text generation’’ may be repur-
posed in future research as an umbrella term that includes
non-natural language text. This would accommodate com-
mon considerations between NLG models and contemporary
code generation models, such as Codex [33] and CodeGenX
[52]. For example, attacks against StackOverflow or GitHub
may include both NLG and code generation working in tan-
dem. Code generation models can also be used to complete
programming assignments without triggering common pla-
giarism detection tools [53].

Our definition of machine-generated text is intentionally
broad and covers many possible use cases and associated
threat models, which will be discussed in Section III. To man-
age a survey scope that already spans a broad sociotechnical
context and range of literature, text generation by means of
text adversarial attack will not be considered. In the majority
of cases, the production of new text is not the primary goal
of a text adversarial attack, and text adversarial attacks and
threat models are already covered by surveys in the adver-
sarial attack literature [54], [55], [56]. We will discuss the
role machine-generated text plays in adversarial contexts in
Section III, as well as detection models’ adversarial robust-
ness in Section V.

This analysis focuses on threat models where a threat
actor leverages machine-generated text as part of an attack —
typically, scenarios where the attacker attempts to pass
off machine text as human and where the detection of
machine-generated text may be useful defensively. We do not
discuss attacks against NLG models themselves unless they
leverage NLG as part of the attack. For example, we would
not include a white-box training data extraction attack target-
ing the weights of a commercial speech-to-text model, but
we would include an NLG model used to produce data for
poisoning that model’s training dataset.
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TABLE 1. Inputs, tasks, and example models for natural language generation.

Input Task

Example models

None / Random noise | Unconditional text generation

GPT-2 [12], GPT-3 [13] (no prompt)

Conditional text generation

GPT-2 [12], GPT-3 [13] (with prompt), T5 [57]

Machine translation

FairSeq [58], T5 [57]

Text sequence Text style transfer

Style dictionary [59], GST [60]

Text summarization

BART-RXF [61], Word and Phrase Freq. [62]

FairSeq [58], TS [57]

Dialogue system

DG-AIRL [63], DIALOGPT [64], BlenderBot3 [65], ChatGPT [25]

Discrete attributes Attribute-based generation

MTA-LSTM [66], PPLM [67], CTRL [68]

Structured data Data-to-text generation

DATATUNER [69], Control prefixes (T5) [70]

Image captioning

GIT [71], ETA [72]

Multimedia . L
Video captioning

MMS [73], YouTube2Text [74]

‘ Question answering

Speech recognition

ARSG [75], wav2vec-U [76]

With this definition of machine-generated text in mind
and an understanding of the research scope under consid-
eration, we proceed to a brief overview of natural language
generation.

B. NATURAL LANGUAGE GENERATION

Using a computer to produce human-like text is well-
established in the history of computing. In 1950, Turing’s
proposed “‘imitation game” [77] considered the question of
machine intelligence based on a machine’s ability to con-
duct human-like conversation over a text channel. The first
widely published method was the ELIZA chatbot in 1966
[78]. We provide only a high-level taxonomy of major NLG
tasks and approaches as the groundwork for our analysis of
threat models and detection methodologies and leave detailed
discussion to the aforementioned dedicated surveys, given the
large volume of NLG research over the past 55 years.

1) NATURAL LANGUAGE GENERATION TASKS

Recall from § I-A that there are a wide variety of applications
for natural language generation. Leveraging previous surveys
[44], [48], [79], we provide a summary of major tasks in the
NLG domain, with examples of models that have been used
for each task in Table 1. Note that many of the models listed
are multipurpose and can be trained for numerous NLG tasks.
In Table 1, we provide a small selection of models that have
been used for each task as representative examples.

The summary in Table 1 is not exhaustive, and in reality,
amutually exclusive delineation between input types does not
exist. Combinations of different input types are possible. For
example, CTRL takes both a discrete control code attribute
and conditional text prompt in generation [68]. Question-
answering systems may be able to answer questions about
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images, such as Unified VLP [80] and TAG [81]. We consider
a ‘“topic” as an attribute in this overview, and so include
“topic-to-text generation” under the broader umbrella of
“attribute-based generation,” including work such as topic-
to-essay generation [66].

Transformer-based models rightly warrant particular
emphasis in review, given their strong generative capabili-
ties. However, as mentioned in Section I-B, consideration
of the broader NLG field and previous detection research
is important as detection techniques that apply against
pre-Transformer models have been shown to be useful in
detecting modern generative models, and diverse approaches
may offer increased adversarial robustness [40] or better
explainability [41].

C. NATURAL LANGUAGE GENERATION APPROACHES
There is a wide range of model architectures and algorithmic
approaches to natural language generation. We categorize
these approaches broadly into neural and non-neural meth-
ods and further itemize them into more specific categories.
A diagram of our simplified breakdown is shown in Fig. 1. As
mentioned previously, NLG encompasses a variety of tasks
and research areas, and this brief section serves as context
for understanding machine-generated text threat models and
detection methods.

1) NON-NEURAL MODELS

Predating the popularization of neural approaches in the NLG
domain, a range of systems were used to accomplish NLG
tasks. These early approaches can broadly be summarized as
“rule-based,” though a variety of processes, pipelines, and
target tasks existed. A review of rule-based systems can be
found in Reiter and Dale’s book on the subject [49].
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An alternative approach to purely rule-based approaches is
to use an existing natural language corpus to generate rules
for NLG system components, such as content selection [82],
[83] or template generation [84]. These statistical approaches
are intended to be more adaptable to different domains than
strictly rule-based systems. While many statistical models
have been integrated with NLG systems in various ways,
Hidden Markov Models (HMMs) [85] feature prominently
in past work. More recent non-neural research has used the
reinforcement learning [86] and hierarchical reinforcement
learning [87] of Markov Decision Process (MDP) agents to
learn optimal text generation policies.

2) NON-TRANSFORMER NEURAL METHODS

Natural language generation using neural networks was
demonstrated to be highly effective using recurrent neural
networks (RNN) [88], [89], [90], including long short-term
memory (LSTM) architectures [91] and gated recurrent units
(GRUs) [92]. However, RNN and LSTM architectures had to
contend with the vanishing gradient problem, to which the
multi-head attention mechanism of the Transformer architec-
ture is more resilient [93]. Generative adversarial networks
(GANS) [94] — commonly used to generate continuous data
(such as images) — can also be adapted to a discrete context
for natural language generation [95], [96].

Deep reinforcement learning (RL) has been used with
neural networks to learn policy gradient methods that reward
text characteristics associated with high-quality text genera-
tion [97]. Inverse reinforcement learning (IRL) is a related
area of work that aims to address reward sparsity and mode
collapse problems in GAN-based text generation by learning
an optimal reward function and generation policy [63], [98].

3) TRANSFORMER

The multi-head attention architecture of Transformer lan-
guage models [11] currently represents the state-of-the-art
in natural language generation across natural language tasks.
Among Transformer models, the unidirectional GPT-2 [12]
and GPT-3 [13] models are the most studied in the field
of machine-generated text detection due to their ground-
breaking performance on unconditional and conditional text
generation — though like many Transformer models, these
architectures can also be used for other NLG tasks.

In addition to GPT-2 and GPT-3, related autoregressive
language models using similar architectures are also notable,
with variations in sampling procedures or training datasets.
Such models include Grover [5] (a GPT-2-style model trained
on a news dataset that uses nucleus sampling instead of top-k
sampling), GPT-J [16] (a 6-billion parameter autoregressive
language model trained on The Pile [99]), and GPT-NeoX-
20B [17] (a20-billion parameter model similar to GPT-3, also
trained on The Pile [99]).

Unidirectional Transformer language models generate text
by performing self-supervised distribution estimation to pre-
dict the next token based on previous tokens. The model is
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trained on an existing set of variable-length example texts
(x1,x2, ..., x,), each composed of symbols (s1, 52, ..., Sp).
These symbols may be characters or multi-character tokens
obtained through a tokenization process.

The probability of a given text can then be expressed as the
conditional probability of the final token, given each previous
token. That is:

pe) =[] psmlst, s sm-1) (0
i=1

The self-attention mechanism in the Transformer architec-
ture makes it possible to train neural network architectures
that can estimate such probabilities effectively, given a suit-
able pre-training task. In unidirectional models such as those
in the GPT lineage, a common training task is predicting the
next token in a sequence. To generate text, such models can
receive an input sequence by sampling from the probability
distribution of all possible next tokens based on previous
tokens. An important parameter in this sampling process is
“temperature” T € (0, 00), which can be raised above
1 to increase the likelihood of selecting a less-probable next
token — improving diversity at the potential cost of choosing
an unusual token — or lowered below 1 to bias sampling
toward more common tokens.

There are three common decoding strategies used to sam-
ple token probabilities from contemporary unidirectional
generative Transformer models [100]:

1) No truncation — Sample from the entire probability

distribution. At T = 1, this is called “pure sampling.”

2) Top-k truncation — Sample from the k£ most probable
tokens.

3) Nucleus sampling (also known as top-p truncation) —
Sample from tokens in the top-p portion of the
probability mass, rather than a fixed number of
tokens k.

Alternative sampling methods are an active research area
in improving text generation. Such methods include “typ-
ical sampling,” in which tokens are selected based on
expected information gain rather than the strict probability of
occurrence [101].

While unidirectional generative models are key fixtures of
machine-generated text detection research, other Transformer
architectures can also be used for NLG tasks. The BART
[102] architecture includes a bidirectional encoder (similar
to BERT [103]) but maintains a left-to-right decoder for
sequential text generation. Other Transformer architectures,
such as MASS [104], T5 [57], and ULMFiT [105], can also
be used for NLG tasks.

An important area of ongoing research centers around
shaping the output produced by Transformer models. This
can include prompt engineering — carefully crafting the con-
ditional text input for a language model to continue [13] —
or providing additional discrete attributes used to influence
the generation of the network, such as control code, topic,
or sentiment as in CTRL [68], PPLM [67], or GeDi [106].
Greater control over model output increases the risks posed
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NLG Approaches
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FIGURE 1. Taxonomy of major NLG approaches.

by threat models [13]. For example, when generating social
media posts as part of an NLG-augmented online influence
campaign, an attacker would benefit from ensuring that gen-
erated comments 1) mention a targeted political opponent,
and 2) demonstrate negative entity sentiment toward the
opponent. We cover such potential abuses and others in detail
in the next section, which concerns threat models associated
with machine-generated text.

lll. THREAT MODELS

Machine-generated text enables a diverse array of attacks.
Threat actors may perform these attacks with specific objec-
tives, such as compromising a computer system, exploiting
a target individual for financial gain, or enabling large-
scale harassment of particular communities. The EU ethics
guidelines for trustworthy Al emphasize that unintended or
dual-use applications of Al systems should be recognized,
and efforts should be made to prevent and mitigate the abuse
of Al systems that can cause harm [10]. Trustworthy Al in the
NLG context necessitates understanding the areas where such
models may be abused and how these abuses can be prevented
(by detection technologies, moderation mechanisms, gov-
ernment legislation, or platform policies). When discussing
attacks, we discuss not only the direct impact on targets, but
also the broader impacts on trust of attacks and mitigation
measures.

To understand the risks that motivate research on
machine-generated text detection, we draw from existing
literature to present a series of threat models incorporating
natural language generation. Threat modeling reflects the
process of thinking like an attacker and identifying vulner-
abilities to systems by identifying potential attackers, their
capabilities, and objectives. The goal of threat modeling
is to improve system security by considering the greatest
threats to systems and their users. Many threat modeling
methods have been developed over the years, some includ-
ing system diagrams, itemized vulnerability checklists, and
open-ended brainstorming [107], [108], [109], [110]. In late
2020, a diverse group of experts formed a threat modeling
working group to produce a high-level set of guidelines
for effective threat modeling approaches [111]. We leverage
these guidelines in the open-ended attack-centric modeling
approach in this section.
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A. THREAT MODELING FUNDAMENTALS

We anticipate an audience with varying exposure to cyber-
security topics. Therefore, before we present threat mod-
els related to machine-generated text, we first provide an
overview of threat modeling and characterize the approach
taken in this section.

A basic example of a common threat model is “a thief
who wants to steal your money”’ [112]. We can add detail
to this threat model by considering more specific capabilities
and objectives that such an attacker might have. For example,
we may consider “a thief with lock picks who wants to steal
your TV or “a thief who found your banking password in
a database dump and wants to transfer money out of your
account.” With these threat models in mind, we can propose
mitigation strategies, such as “install locks that are resistant
to lock picking” or “‘use multifactor authentication for online
banking.” We evaluate whether our mitigation approach is
sufficient to address the threat and determine what other
threat models we might need to consider. Threat modeling
is inherently an iterative process [111], [112].

Shostack’s Four Question Frame for Threat Modeling
[112], [113] presents a plain-language foundation for threat
modeling by posing four simple questions:

1) What are we working on? — Identify the system under

attack.

2) What can go wrong? — Determine potential attackers,
their capabilities, and objectives.

3) What are we going to do about it? — Devise a mitiga-
tion strategy.

4) Did we do a good job? — Review whether the analysis
is accurate and complete.

Using these terms, we summarize our threat modeling

approach in this section as follows:

1) Identify the system under attack. We provide a broad
attack-centric analysis of machine-generated text on
society rather than a system-centric analysis focused on
vulnerabilities to a specific IT system. We identify sev-
eral discrete technological systems within the broader
societal supersystem.

2) Determine potential attackers, their capabilities, and
objectives. We consider threat actors of varying sophis-
tication and motives but with a common modus
operandi — in all cases, our attacker is an individual
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FIGURE 2. Broad taxonomy of threat models enabled by machine generated text.

or organization exploiting an NLG model. We charac-
terize the attacker when explaining each attack.

3) Devise a mitigation strategy. After identifying a
threat model, we propose mitigation measures to
improve security and reduce risk. Detection of
computer-generated text is often part of the presented
mitigation approaches, but policy changes and human
moderation systems can also have a significant impact.

4) Review whether the analysis is accurate and com-
plete. We have carefully analyzed the presented threat
models, which were formed from perspectives gained
across industry, academia, and government. However,
as threat modeling is an iterative process that benefits
from diverse perspectives [111], we greatly encourage
further analysis of potential attacks and mitigation mea-
sures in future research.

The remainder of this section comprises our threat model
analysis, in which the attacks are broken into four major
categories, followed by a concluding discussion. Within each
category, we discuss threat models associated with that cate-
gory of attack, identify systems at risk, and describe possible
threat actors, their objectives, and capabilities. For each
attack, we propose mitigations and discuss the trust impacts
of both the attack and — crucially — the proposed mitiga-
tions. A taxonomy of the broad categories of attacks using
NLG models can be found in Fig. 2.

While an exhaustive list of future malicious applica-
tions of NLG models is not possible, the threats outlined
here span a broad range of current tangible dangers and
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represent valuable areas for preemptive ethical defensive
research. Cybersecurity professionals looking to improve
defenses should focus on the presented NLG threat models
that are most relevant to their own organizations, and consider
how machine-generated text augments the adversary tactics,
techniques, and procedures (TTPs) documented in public
knowledge bases such as MITRE ATLAS" and MITRE
ATT&CK®. As mentioned previously, threat modeling is
iterative, and we hope these threat models will serve as the
foundation for future work that improves security against
machine-generated text.

B. FACILITATING MALWARE AND SOCIAL ENGINEERING
1) PHISHING AND SCAMMING

Phishing attacks focus on socially engineering a target indi-
vidual to perform a desired action. These attacks include
convincing a target to open an infected file, causing a target
to enter account details on a fake login webpage, or encour-
aging them to share sensitive information for identity theft or
password recovery. These are just a few among many other
documented methods [114], [115]. Phishing attacks target
numerous channels, including email, phone, SMS, and chat
applications.

Automated messaging approaches are common in the
early stages of phishing campaigns [115]. Attackers attempt-
ing to scale or target phishing or scam campaigns often
use machine-generated text as a tool. NLG models can
generate target-specific text instead of providing the same
message to all targets. Research has demonstrated NLG’s
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effectiveness both in scaling email masquerade attacks [1]
and community-targeted phishing [2]. Carefully targeting a
phishing attack (commonly referred to as “spear phishing™)
greatly increases the likelihood that a specific target will fall
for the attack [116]. In chat messages, NLG models that serve
as dialogue agents may be exploited to exchange messages
with the target under a pretext before exploiting them [64].

The methods used to mitigate NLG-enabled phishing
attacks will be similar to those used on existing phishing
attacks, including automated detection systems, user report-
ing, and awareness campaigns [117]. Automated phishing
detection systems are likely to increasingly include com-
ponents for detection of machine-generated text. NLG may
present an increased challenge for existing detection sys-
tems because generated messages can have unique or highly
varied content, though attackers may be forced to include
specific “‘payload” content for an attack to be effective
(e.g., a phishing email may include a unique short link to the
same fraudulent website, or a malicious chatbot may need to
socially engineer responses to the same security questions).
As text content becomes more varied and human-like due
to advances in generative models, the presence of payload
content may represent a stable detection feature.

2) SOCIAL WORMS

NLG models may be particularly useful for worms that spread
through social media or email contact networks. When an
exploit compromises an individual’s account, that account
may be used to send malicious messages that propagate the
exploit to other users. Using previous messages or emails
between individuals as context for an NLG model, it may
be possible to automatically produce messages that include
personal details, mimic a loved one’s writing style, or carry on
a short conversation before delivering a malicious file or link.
Given that NLG models are often large, NLG functionality
may need to run on a separate command-and-control server
and queried from behind a proxy rather than bundled with the
exploit code itself (unless the pretext of the conversation can
be used to convince the target to download a file).

Platforms could adopt formal policies stating that users
cannot use machine-generated text in their communications,
except under carefully controlled circumstances, to miti-
gate such attacks. Detection models could then be leveraged
against user communications. While this may be consid-
ered acceptable for public posts, processing private messages
presents privacy risks. Detection models could be executed
on the receiving device as part of the message-viewing appli-
cation to protect end-to-end message privacy. A warning may
be raised if a user receives several messages that score highly
for machine-generated text detection. This approach is not
without risks, as the privacy of direct messages must be
protected, and any real or perceived erosion of privacy will
undermine public trust. Beyond this, such policy decisions
would also have collateral impacts on non-malicious usage
of NLG (e.g., translation models, writing assistants), and may
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not impact users of all language backgrounds equally. Other
security measures to protect accounts from unauthorized
logins, such as multi-factor authentication, should continue to
be used to protect against accounts from being compromised.

3) MODEL POISONING
Cybercriminals may attempt to poison the training datasets
of machine learning models. This may support other attacks
(e.g., degrading a malware detection algorithm or email spam
filter) or compromising a target model may be the primary
goal (e.g., manipulating an algorithmic trading model, so the
attacker can trigger trades that financially benefit them). If
a threat actor identifies that they can access the training
data of a target model, they may use NLG to produce many
training examples containing a particular malicious signa-
ture they wish to conceal. Poisoning attacks against neural
code-completion algorithms have been performed by gen-
erating samples including a given vulnerability [118], and
GPT-2 has been used in research to produce fake cyber-threat
intelligence reports for poisoning defense systems [119].
Mitigation of dataset poisoning varies based on the model’s
sensitivity and the nature of the training dataset. The first
line of defense is basic IT security best practices that prevent
unauthorized modifications to training datasets. However,
in some situations, models are trained on publicly available
data, and it is impossible to prevent access to training data. In
these cases, data might be screened prior to their inclusion in
the training dataset. This screening can include classifiers —
potentially including the machine-generated text detection
approaches discussed in Section IV — or other analysis
methods, such as cluster-based methods, to detect poisoning
in training datasets [120]. For sensitive models, it may be
appropriate to leverage data versioning techniques and audit
logging to capture changes to the data potentially made by a
malicious insider.

4) IMPACTS OF ATTACKS AND MITIGATION ON TRUST
It is likely that using NLG models to produce compelling,
target-specific messages as part of large-scale phishing
attacks and social worms will further reduce trust in text
communications, particularly those received from contacts
that users do not personally know. Individuals may become
even more suspicious of unsolicited messages, even seem-
ingly innocuous ones. As a good-natured greeting may be
the first message from a malicious dialogue agent, individuals
may decide it is safer not to reply to such messages. Advanced
NLG systems can be expected to further reduce trust and
social interaction among new contacts in online communities.
NLG-based poisoning attacks against machine learning
models will likely have the greatest trust impact on machine
learning practitioners, who may be required to carefully scru-
tinize open-source training data for poisoned samples. Lim-
iting access to training datasets with auditing and approval
processes to mitigate poisoning attacks may cause devel-
opers to feel distrusted and undermine their relationships
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with the organizations with which they work. While the
trust impact of NLG-based data poisoning attacks may be
relatively minor among the general population, a high-profile
attack (e.g., a poisoning attack against a medical diagnosis
model) may cause individuals to lose trust in machine learn-
ing systems more broadly based on concerns that such models
are not safe from malicious tampering.

C. ONLINE INFLUENCE CAMPAIGNS

Online influence campaigns are of particular concern for
abuse by machine-generated text. The objectives of threat
actors in this area may be political (e.g., disinformation, pro-
paganda, election interference) or commercial (e.g., product
promotion, smearing competitors, fake reviews). In either
case, the goal is to promote a particular idea or prompt a
specific action among the target audience.

Either type of campaign may leverage or facilitate other
threat models, such as spam, harassment, mass submission of
agenda-driven content, phishing, or malware. The distinction
between commercial and political influence campaigns is
useful to understand threat actors and threatened systems in
more detail and to categorize existing research.

1) POLITICAL INFLUENCE CAMPAIGNS

Machine-generated text that is part of political influence
campaigns has been analyzed in previous work [3], [4], [5].
Papers related to the threat of generative language models
on online influence operations may use terminology such as
“fake news” [5], “disinformation” [4], [121], or “domestic
and foreign influence operations” [121].

The threat actor in a political influence campaign repre-
sents an entity who wishes to influence beliefs or prompt
action among a target group. These threat actors might
include:

o A political party hiring a group to post unflattering

comments online about their political adversaries

« A nation-state disseminating fraudulent news reports to

mask human rights abuses

« A nation at war attempting to incite the citizenry of an

opposing nation to overthrow the government

Facebook [122] Reddit [123], and Twitter [124], have
released datasets from past political influence campaigns,
including operations attributed to threat actors in 22 distinct
countries. Threat actors in this space can be expected to
have the capability to run online political influence cam-
paigns using human employees or contractors. Attackers are
likely already familiar with social media automation tools
that facilitate the registration and management of fraudulent
social media accounts. Large generative models with strong
few-shot performance can simply be given examples of the
desired messaging to produce further propaganda. This is
shown in Table 2, where providing historical Russian infor-
mation operations executed on Twitter during the Syrian civil
war as input to GPT-3 results in additional ‘“‘on-message”
tweets that promote Syrian Arab Army (SAA) and Russian
forces while discrediting American involvement.
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There are many avenues where machine-generated text
might be utilized by a threat actor to improve the scaling
and targeting of influence operations, especially as people
heavily consume text content online. The large population
of engaged users on social media platforms are valuable and
vulnerable targets for such campaigns [122], [123], [124].
Research that focuses on ““fake news” detection only covers
a small subset of critical threat models. Fake news detection
research often imagines an adversary using an NLG model
to produce news-like disinformation at scale [5]. Producing
large volumes of news-like content may be a less-desirable
approach than social messaging for several reasons:

o Research has demonstrated that individuals are more
likely to share an article than read it [125], and a major-
ity form an opinion on news topics by only reading
headlines [126].

o Scaling by number of articles does not multiply effec-
tiveness — a single news article or many articles can
be widely disseminated, reducing the need to generate
numerous articles each day.

o Scaling by number of articles requires either manip-
ulating existing platforms to host them (i.e., layering
and information laundering [127]) or procuring domain
names and hosting infrastructure, representing addi-
tional cost and effort.

o Human involvement in authoring fake news articles
allows disinformation threat actors to accurately tailor
messaging, reduce detection, and carefully walk the line
between promoting manipulative information and trig-
gering moderation actions from social media websites.

While social messaging may be a more scalable attack
vector, NLG remains useful for producing news-like content
as part of political influence campaigns. Research on GPT-3
has shown that it and similar models can easily be used in a
few-shot setting to generate conspiratorial content to promote
radicalization [128]. AI writing assistants may be used to
save time and minimize costs [26], while translation mod-
els can be used to disseminate propaganda across language
barriers. Social bots can amplify this content by distributing
links to disinformation articles, promoting discussion around
incendiary headlines, and producing numerous comments
that represent a false public consensus. Targeted users do
not even need to read the shared articles — the artificial
amplification of a headline and an overwhelming ‘grass-
roots” narrative guided by machine-generated comments has
been demonstrated as sufficient to influence public opinion
[125], [126].

Past research on mitigation has identified that the aver-
age user is overly trusting of profiles with Al-generated
photos and GPT-2 text, accepting connection requests from
deepfake profiles on LinkedIn 79%-85% of the time [129].
As such, it is unlikely that user reports will serve as an
adequate first line of defense. Instead, a combination of
automated detection models (including machine-generated
text detection) and platform moderation efforts should be
used to detect political influence campaigns. These should
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TABLE 2. Few-shot generation of information warfare based on Syrian civil war influence operations.

GPT-3 Prompt:
Human tweets

RT @TheArabSource: Confirmed: #US retrains #ISIS and #ISIS-like jihadists in east #Syria and
re-brands them ‘democratic forces’ (VIDEO) - E...

from Russian
foreign military

RT @Tasnimnews_EN: #Iraq Army Discovers #US Drone in #Daesh Arms Depot near Fallujah
https://t.co/zYRgEHmIr0 https://t.co/H762Uxw1Qx

intelligence
(GRU) [124] ISIS-affiliated band group Wilayat al-Sham recruits new #terrorists in US-controlled #Rukban camp.
GPT-3 Response ~ @ALFaham_ #SAA seized a big amount of #ISIS #ISIL weapons from the convoy in east

#Homs countryside today. https://t.co/k3kzPoLlsd #Syria #Damascus #Jobar #ISIS

#Washington is willing to perform the functions of #MiddleEastern policeman and play the role
of accessory to #Turkish#aggression against #Syria. https://t.co/HVGXuvRZ

#Russia’s #Air_Force has stepped up airstrikes against camps for the #Islamic_State in the #Terek_Val

include broad measures to protect users from social media
abuse, such as detection of account automation and scrutiny
of coordinated inauthentic activity for content amplification.
Investigations into disinformation or coordinated inauthentic
behavior, such as those carried out on Twitter, are likely to
remain relevant [124].

2) COMMERCIAL INFLUENCE CAMPAIGNS

The goal of a commercial influence campaign is to sway
individuals’ opinions in a manner that commercially benefits
the threat actor. Examples of such campaigns include publish-
ing fraudulent reviews, artificially boosting a website’s page
ranking on a search engine, spamming online communities
with product advertisements, or attempting to inorganically
cause promotional content to trend on social media. As with
previous categories, there may be overlap between different
attackers’ approaches.

The use of machine-generated text to generate fraud-
ulent reviews that either promote one’s own product or
service, or target a competitor, is a threat model of particu-
lar interest [4], [6], [41]. Published work has demonstrated
sentiment-preserving fake reviews, which might be used for
such a purpose [6]. Fake reviews can be abused on market-
place websites or target potential customers on social media
platforms. Threat actors operate such campaigns themselves
or make use of the thriving online market for fake reviews
[130]. Organizations selling fake reviews may become early
adopters of open-source NLG models to provide unique,
specific, low-cost reviews.

Machine-generated text detection could be run on reviews
on online marketplaces to mitigate NLG models used for
fake reviews on these sites, in addition to other detection
systems currently used to combat this problem. Advanced
NLG models should not affect context-based detection meth-
ods (e.g., identifying patterns in reviewer usernames, similar
account creation times, unusual purchase behavior). It may
be more difficult to detect commercial influence campaigns
if attackers post content outside marketplace websites. For
example, social media websites (e.g., Facebook, Instagram,
Reddit, YouTube comments), map platforms (e.g., Google
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Maps), or dedicated review sites (e.g., Yelp) are locations
where false reviews may be posted.

3) IMPACTS OF ATTACKS AND MITIGATION ON TRUST

In addition to the societal risks posed by machine-generated
text in online influence campaigns, widespread NLG threat
models cause fundamental damage to online trust. The per-
ceived value of online discourse is degraded when users are
suspicious that others are part of a concerted political or
commercial campaign. When facing online disagreements,
Internet users may dismiss other users as “‘bots’ rather than
acknowledge that real people hold a variety of different
viewpoints. The net effect is reduced trust in the authenticity
of online interactions, and an expedient mental shortcut for
dehumanization of perceived opponents.

Mitigating influence operations via automated detection
of machine-generated text carries substantial risks related
to the mass suppression of online speech. Previous work
has found that text on political topics written by non-
native English speakers was at a high risk of being erro-
neously detected by a Transformer trained on previous
political influence campaigns [131]. As methods based on
RoBERTa (a Transformer) are currently the state-of-the-art
for machine-generated text detection [132], [133], classifiers
for machine-generated text detection leveraged to combat
online influence campaigns must be carefully trained and
ethically evaluated to minimize the risk of similar incidences
of mass discrimination. Continued public reporting of influ-
ence campaign datasets would be beneficial to protecting trust
in social media moderation, such as Twitter’s regular public
releases for researchers [124].

Language background considerations evoke another prob-
lem: there are legitimate reasons why a user might rely on
machine-generated text. A person writing in their non-native
language could leverage an online translation model to assist
them. While such text can be considered machine-generated
text, this text is not inauthentic — it represents genuine self-
expression. Much of the world relies on translation tools
to participate in online discourse; recall that one in three
Internet users aged 16 to 64 have used an online translation
tool in the last week [28]. Relying on machine-generated text
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detection alone is therefore likely to produce a solution that
is discriminatory, unreliable, and greatly damaging to trust
in social media platforms. Machine-generated text detection
should be used among multiple features, such as account
creation times, activity patterns, registered phone numbers,
and IP addresses, to determine whether activity is linked as
part of an online influence operation.

D. EXPLOITING Al AUTHORSHIP

1) ACADEMIC FRAUD

The use of algorithms to generate scientific papers has been
well-established since SCIgen was created in 2005 to pro-
duce nonsensical papers that nevertheless sometimes passed
peer review [7]. Many years later, these papers continue
to appear in respected publications despite the comparative
simplicity of the context-free grammar generation method
[134], [135]. The generation of artificial scientific papers
consumes valuable reviewing resources, lowers standards by
producing misleading or nonsensical articles, and weakens
trust in the scientific review process. In education, NLG
models are used by students to easily produce essays [8], [66]
or cheat on language learning assignments using machine
translation [104]. These are instances where institutions may
be tempted to perform machine-generated text detection to
improve academic integrity and encourage students to learn
the course material. Widespread access to convenient NLG
interfaces online, such as that provided by ChatGPT [25],
allows any student with an Internet connection to leverage
such models, even when doing so undermines the learning
objectives of an assignment (i.e., cheating).

Threat actors submitting Al-generated papers are typi-
cally either 1) academics attempting to inflate publication
statistics, particularly when meeting a quota to main-
tain their position [135]; or 2) well-meaning researchers
probing the publication standards of a potentially disrep-
utable conference [136]. Threat actors’ capabilities include
using well-established tools such as SCIgen or more recent
Transformer-based approaches that are promoted as ‘“‘sci-
entific writing assistants,” which can nevertheless be eas-
ily exploited to generate long articles of little substance
[137]. Mitigation measures should include flagging suspected
machine-authored publications using published approaches
for detecting SClgen articles [134], [135] and new detection
approaches based on detecting Transformer-generated text
[138]. Human reviewers can more carefully review flagged
articles to determine whether the article contains credible
research, regardless of the detection result.

The acceptability of machine text within scientific writing
is an active area of discussion in academic disciplines. The
Association for Computational Linguistics has released a set
of guidelines on the use of Al writing assistance [139]. If the
results published by a researcher are true and accurate, limited
use of a carefully guided NLG model may be acceptable in
some publications. Emerging research aims to differentiate
between acceptable and unacceptable use of NLG models in

VOLUME 11, 2023

scientific writing [140], which should be part of a broader,
ongoing conversation on norms surrounding Al usage and
disclosure.

2) APPLICATIONS AND COVER LETTERS

Contemporary NLG models can be used to easily gener-
ate cover letters or essays for scholarship or employment
applications. Commercial websites already offer to produce
cover letters using GPT-3 [27]. While the overall usefulness
of human-written cover letters has been debated in business
media [141], they are ostensibly meant to be an earnest
reflection of a candidate. Using Al models to generate a cover
letter or essay is therefore likely to be seen as exploitative
by organizations who review them. The threat actor in this
case may be an individual (perhaps understandably) looking
to save time and improve their employment opportunities by
bypassing a cumbersome application process, or a malicious
attacker looking to flood a target company with fraudulent
submissions (an attack similar to those we will discuss further
in “Spam and Harassment™’).

Machine-generated text detection may identify artificial
cover letters or essays, if they are of sufficient length (the
odds of successful detection improve with sequence length
[51, [12], [142]). However, caution should be taken with
this approach, as using Al writing tools is not necessarily
exploitative. Individuals writing in a second or third language
may rely on translation models or NLG writing assistants to
help them write cover letters or scholarship applications. It
may be difficult to differentiate those who mean to exploit
such systems and those who rely on Al writing tools to better
express themselves. An alternative strategy for evaluating
candidates, such as placing more emphasis on face-to-face
discussions with prospective job candidates or award recipi-
ents, could be a preferable mitigation approach.

3) CONTENT GENERATION
A growing threat model for social media platforms is the
possibility that a critical mass of users may begin using
generative Al models (including NLG models) to produce
social media content in ways that harms these platforms.
While threat actors in this case may not be overtly malicious,
large volumes of content from generative models could dilute
perceived content quality, undermine overall trust in a plat-
form, or create plagiarism concerns. For example, in response
to the recent release of highly effective AI models for image
generation (DALL-E [32], Stable Diffusion [143]), several art
websites enacted a blanket ban on all Al-generated art [144].
Video is a particularly important medium on modern
social media: there are approximately 4.95 billion Internet
users on Earth [145]. Of these, an estimated 92.6 percent
watch digital videos each week [28]. The interplay between
social media creators and generative models represents an
important sociotechnical context to avoid common pitfalls in
trustworthy machine learning [146]. Award-winning online
commentator Drew Gooden performed a video demonstra-
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tion of GPT-3-based writing assistant Jasper [26], critiquing
applications of Jasper for producing video scripts and social
media content [147]. When attempting to generate a bio for a
company website, Gooden found that Jasper produced a sam-
ple that directly plagiarized a Newswire article (timestamp
11:55). Gooden also noted that utilizing such a tool without
disclosure would violate viewers’ trust (timestamp 4:22).

Mitigations of threats related to the undesired inclusion of
NLG content in social media may involve similar blanket
bans to those targeting Al-generated art [144] or policies
that mandate the preemptive disclosure of the use of Al
tools as part of a platform’s terms of service (similar to
the requirements mandated in the Responsible Al License
[148]). The difficult enforcement of such policies would
likely necessitate a combination of machine-generated text
detection algorithms and moderator investigations.

4) IMPACTS OF ATTACKS AND MITIGATION ON TRUST

The widespread use of machine-generated text in written
submissions may undermine the trust that individuals place
in such written works and lead to greater scrutiny of such
material. Given that a suitable cover letter with language
tailored for a position can be quickly generated by existing
user-friendly tools [25], [27], it is possible that employ-
ers will soon place so little trust in cover letters that they
eschew them altogether. Reviewers of scientific publications
must increasingly be vigilant for submissions that exploit
machine-generated text in unacceptable ways, while defining
their own policies on acceptable use [139]. Internet users
are likely to interpret algorithm-generated blogs, articles, and
video scripts as low-effort and untrustworthy.

Detection processes must be used carefully. As men-
tioned previously, it is possible that machine-generated text
detection may unfairly skew toward false-positive classifi-
cation of individuals with specific language backgrounds
[149]. There are cases where using machine-generated text
may be permissible (e.g., translation models or assistive
writing technologies). The perception of fairness in applica-
tion processes will be undermined if it appears that certain
individuals are unfairly screened out because of erroneous
false-positive detection. Submitting a scientific paper only to
have a reviewer allege that a given section might be written by
an algorithm could similarly lead to a loss of faith in scientific
reviewing.

To preserve trust, usage of machine-generated text should
generally be preemptively disclosed to the reader or audi-
ence. In many cases, the audience may have a negative
view of content authored by machines, and this could under-
mine trust in a particular publication platform, news website,
or brand. Similarly, some organizations may be concerned
with spam consisting of low-quality machine-generated con-
tent overwhelming editorial staff. Media and entertainment
organizations that publish content from multiple creators may
decide to enforce that certain categories of content are to
be completely written by humans. This may improve the
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perception of trustworthiness or reduce the risk of plagia-
rism or copyright infringement as some models have been
found to memorize training data which can emerge during
inference [150].

E. SPAM AND HARASSMENT

We distinguish spam and harassment from other categories
of attacks by focusing on cases where the intent is to harm
a platform or users with a large volume of content. As in
previous cases, there are similarities to other threat models,
but it is useful to distinguish spam use-cases to understand
how attacks using machine-generated text impact platforms
when deployed at large scale.

1) SOCIAL MEDIA SPAM

Social websites are an attractive target for attacks using large
volumes of machine-generated text, providing opportunity
for significant disruption. One researcher demonstrated a
real-world attack by using a GPT-2 bot to generate 55.3%
of all comments on a federal public comment website before
voluntarily withdrawing the comments and shutting down the
bot [24]. It is important to realize that spam attacks against
social media websites are already possible — high-quality
NLG models simply make spam attacks more difficult to
detect, as posts can be unique and better mimic the style and
substance of discussion.

Using generative models to produce large volumes of
hateful spam targeting specific groups and individuals is
a particular cause for concern. While OpenAl attempts to
reduce the incidence of offensive content generated by its
GPT-3 API through careful training measures and filtering of
inference prompts [13], open-source models are not subject
to any such restrictions. GPT-4chan, which was trained on
and subsequently deployed to create a large volume of posts
on the 4chan politics message board, provides a complete
example of how such a model might be created and deployed
to cause havoc [9], [22]. An attacker with sufficient motive
(political, personal, or otherwise) can render an entire com-
munity nearly unusable with spam.

In general, mitigation measures against automated spam
should rely heavily on methods designed to prevent auto-
mated user activity. Some approaches include increased
scrutiny of proxy and VPN usage, typically used in con-
junction with Completely Automated Public Turing test to
tell Computers and Humans Apart (CAPTCHA) [151] chal-
lenges to verify that a user is human. Notably, both of the
previous examples of Transformer-based spam take advan-
tage of either 1) a lack of CAPTCHA tests [24], or 2) a
method of bypassing CAPTCHA and proxy restrictions [22].
CAPTCHA is not a perfect defense — iterative versions of
human-verification schemes and bypass methods are in con-
tinuous adversarial development [152] — but such defenses
represent an important first step to increase the difficulty of
automation. As spam results in large volumes of text, and
machine-generated text detection is easier on long sequence
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lengths [142], many comments from the same user or IP range
could be combined to generate a larger sample for effective
machine-generated text detection.

2) HARASSMENT

Techniques similar to spamming may be used to cause dis-
tress to individuals or communities by targeting them with an
overwhelming number of messages. A motivated individual
or group could register social media accounts to be controlled
by automation tools, or voluntarily use their own account to
deliver a large volume of machine-generated messages tar-
geting a particular individual or community. SMS and phone
call automation tools could facilitate such approaches outside
social media.

The motivations of threat actors engaging in such behavior
range from personal grudges to political objectives. Online
communities, formed around religion, racial identity, sexual
orientation, or gender expression, are at risk of brigading
[153] from hate groups using such models to flood them with
abuse. Political figures or political discussion boards of all
stripes may be at risk of large-scale automated harassment
from motivated enemies among their political adversaries.

Mitigation measures for large-scale harassment are similar
to defenses against spamming — the best defenses focus on
verifying that an individual is human prior to making a post
or sending a message, targeting the automation of message
delivery rather than the machine-generated text. Beyond this,
a moderation system that enforces a set of clearly defined
acceptable-use policies is a fundamental measure for reduc-
ing the impact of harassment on social media.

3) DOCUMENT SUBMISSION SPAM

The platforms previously mentioned in “Exploiting Al
Authorship” may be vulnerable to being overwhelmed by
large volumes of Al-generated content. A motivated attacker
might submit massive numbers of unique cover letters and
resumes to a company, none of which corresponds to a real
individual, thus frustrating recruiting attempts. Depending on
the method of submission, reviewers at scientific conferences
or news outlets could be vulnerable to excessive numbers
of misleading Al-generated submissions that are difficult to
distinguish from real ones without a time-consuming review
process. Detecting machine-generated text may be a use-
ful mitigation measure in these cases, pre-screening content
based on its likelihood of being written by a machine, as well
as including CAPTCHA [151] challenges to reduce auto-
mated submissions.

4) IMPACTS OF ATTACKS AND MITIGATION ON TRUST

Spam and harassment harm the assumption in online com-
munities that other users are real people. Following the
deactivation of the GPT-4chan bot, discussions on 4chan
continued to express concern that subsequent posts were
made by NLG models [22]. The more frequently individuals
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knowingly encounter such models on social media, the less
trust they will have in the integrity of online social spaces.

Mitigation of such attacks would incorporate increased
verification of human posting activity. Such restrictions
would likely include limitations on usage of known prox-
ies and VPNs, potentially requiring additional information
at sign-up (e.g., email addresses, phone numbers, payment
methods, government IDs) and an increase in CAPTCHA
challenges. The overall result is a reduction in online pri-
vacy and an increase in barriers to participation in online
discussion — both of which can harm users’ trust in online
platforms.

Spam and harassment operations can be highly disruptive,
and they represent a highly visible case of Al model abuse.
As such, the abuse of such models in online communities
may decrease public trust toward Al model development in
general, and NLG models in particular.

F. SUMMARY OF THREAT MIODELS

In this section, we discussed a range of threat models asso-
ciated with natural language generation. We summarize our
key findings as follows:

« NLG models have significant potential for abuse in
improving scaling and targeting of existing attacks.

« Platforms that receive text submissions of any kind are
likely to face a growing influx of machine-generated text
content, particularly as user-friendly tools continue to be
developed [26], [27].

o Much of the research on NLG-enabled influence oper-
ations focuses on Al-generated news articles, while
sociological data suggest that machine-generated com-
ments may pose a more significant threat.

« While NLG models may make detection of coordinated
inauthentic activity more difficult, abuse often requires
bypassing existing defenses such as IP reputation checks
and CAPTCHA [151].

Future threat modeling and observed cyberattacks will
certainly augment the threat models discussed in this
section. However, we have now provided sufficient moti-
vation for exploring the defensive capabilities offered by
machine-generated text detection. In the next section, we dis-
cuss the current status of research on machine-generated text
detection and outline the major findings in the field thus far.

IV. DETECTION OF MACHINE GENERATED TEXT

Analysis of threat models indicates that when utilized cor-
rectly, machine-generated text detection is a valuable tool
for reducing the negative impacts of NLG model abuse.
Machine-generated text detection is typically framed as a
binary classification problem in which a classifier is trained to
differentiate samples of machine-generated text from human-
generated text [5], [37], [39], [40], [133], though a related
research area centers on attribution of machine-generated text
to the model that generated it [154], [155], which we discuss
in § V-B.

70989



IEEE Access

E. N. Crothers et al.: Machine-Generated Text: A Comprehensive Survey

In this section, we outline the methods used for
machine-generated text detection. In § IV-A, we summa-
rize feature-based approaches, while § IV-B covers detection
approaches based on neural language models (NLMs). In
§ IV-C, we survey domain-specific research on applications
of machine-generated text detection. In § IV-D, we review
human reviewers’ ability to identify machine-generated text
and approaches for human-aided machine-generated text
detection. In § IV-E, we discuss trends in evaluation method-
ology within detection research. Finally, in § IV-F, we explain
prompt injection, a method of shaping NLG model responses,
which may be useful in facilitating detection. Table 3 provides
a summary of prominent detection methods and their evalua-
tion in current research.

A. FEATURE-BASED APPROACHES

Machine-generated text often differs from human text in ways
that can be identified using statistical techniques [37], [38],
[40]. Feature-based approaches to machine-generated text
detection apply natural language processing to create fea-
ture vectors from input sequences and classify these feature
vectors using a downstream classification algorithm, such
as a support-vector machine (SVM), random forest (RF),
or neural network (NN) [37], [38]. We provide a summary of
features used in prior art, with references for further reading
on implementation of specific features for machine-generated
text detection.

An important consideration in detecting machine-
generated text using feature-based approaches is that different
language model sampling methods (e.g., top-k versus top-
p sampling in Transformer language models, as discussed
in § II-C3) lead to different artifacts in the generated text
[38], [100]. As a result, the performance of feature-based
detection can diminish when detecting text generated using
a different sampling approach than that used to train the
detection model [38]. A feature-based detector trained on
output from a smaller model can be used to detect output
from larger models [5], [38]. However, it is more effective to
use a detector trained on a larger model to detect outputs from
smaller generative models [38].

We now proceed with our summary of major feature cate-
gories in feature-based detection approaches.

1) FREQUENCY FEATURES

A major category of statistical features used in machine-
generated text detection centers around the frequency of
terms within text samples. Human-written text often con-
forms with Zipf’s Law: The frequency of a word is inversely
proportional to its rank in an ordering of words by frequency
[156]. In Zipf’s Law, the normalized frequency f of a token
of rank k out of N different tokens follows the relationship:

1/k*
f ~ N/— 2)
Zl(l/nS)
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where {s € R|s > 1} is an exponent that characterizes the
distribution.

Machine-generated text does not perfectly mirror the distri-
bution of tokens in human text. Transformer language models
produce different token frequency distributions depending on
the chosen sampling method (see Fig. 7 of Holtzman et al.,
2019 [100]). Therefore, the distribution of tokens provides
useful discriminating power, particularly when a greater vol-
ume of text is available for consideration.

Another prominent frequency-based feature from previ-
ous statistical detection research is term frequency-inverse
document frequency (TF-IDF). TF-IDF unigram and bigram
features with a logistic regression detector have been used as
a baseline for detection [12], [133] or as a feature in statistical
approaches [38].

Previous research has used lemma frequency as a statistical
feature [37], [40]. In this approach, a linear regression line
that fits log-log lemma frequency versus rank is learned, and
the mean-square error cost function is used to calculate the
information loss of the regression.

Due to the observed repetitiveness of writing produced
by NLG models [100], [157], another potentially useful
frequency feature is the n-gram overlap of words and
parts-of-speech tags between sentences [38]. An additional
technique targeting machine-text repetitiveness computes
super-maximal repeated substrings (i.e., the set of the longest
repeated substrings, excluding all substrings which are
already part of a longer repeated substring) in large collec-
tions of text [158].

2) FLUENCY FEATURES

Another major category of features centers around the flu-
ency or readability of generated text. At longer sequence
lengths, machine-generated text is increasingly likely to man-
ifest difficulties in producing consistently clear and coherent
text [100], [159]. The Gunning-Fog Index and Flesch Index
each provide a statistical measure of text readability and
comprehensibility, respectively, and have previously shown
predictive power in detecting machine-generated text [40].
More complex measurements use an auxiliary model to per-
form coreference resolution to create measures of coherence
either based on the presence of main entities in specific
grammatical structures or by using Yule’s Q statistic [38].

3) LINGUISTIC FEATURES FROM AUXILIARY MODELS
Past research has measured the “consistency” of machine-
generated text by calculating the number of phrasal verbs
and coreference resolution relationships within a sample [37],
[40]. Other work has used the entire distribution of sample
part-of-speech (POS) tags and named entity (NE) tags [38].
Such work is motivated by differences between human and
machine POS tag distributions observed in past analyses of
machine-generated text [12], [159].

Performing coreference resolution and assigning POS and
NE tags requires processing samples with specialized models.
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Contemporary models for this purpose are neural, and as a
result, modern feature-based approaches that use auxiliary
models to produce linguistic features may still perform infer-
ence on a neural network as part of feature creation [38],
[40]. This implies that feature-based approaches that initially
appear entirely non-neural may nevertheless include feature
creation steps that are vulnerable to adversarial attacks that
target neural networks.

4) COMPLEX PHRASAL FEATURES

Detection work targeting the translation of long texts found
that specific idiomatic phrases were not commonly found
in machine text [37]. However, recent work has shown
that these features do not perform well against contempo-
rary Transformer models, particularly on shorter sequence
lengths [40].

5) BASIC TEXT FEATURES

Many simple text features are frequently used in feature-
based text classification in natural language processing.
These features include high-level characteristics such as the
number of punctuation marks or the length of sentences and
paragraphs, which have been used in machine-generated text
detection [38].

B. NEURAL LANGUAGE MODEL APPROACHES

Detection approaches based on neural networks are highly
effective in machine-generated text detection, especially
those that incorporate features derived from Transformer
neural language models. This aligns with broader trends in
natural language processing, where state-of-the-art perfor-
mance has been attained on a wide range of natural language
tasks using Transformer models [160].

We separate NLM-based approaches into two major
categories: zero-shot classification using existing models
and fine-tuning pre-trained language models. These two
approaches represent the majority of NLM-based machine-
generated text detection.

1) ZERO-SHOT APPROACH

A baseline approach to machine-generated-text detection is
to perform text classification using generative models them-
selves, such as GPT-2 or Grover [5], [12], [133]. Generative
models can be used without fine-tuning to detect either their
own outputs or outputs from other (typically similar) gen-
erative models. Autoregressive generative models, such as
GPT-2, GPT-3, and Grover, are uni-directional, where each
token has an embedding dependent on the embeddings of
preceding tokens. As a result, an embedding for a sequence
of tokens can be created by appending a classification token
[CLS] to the end of the input sequence, so that the embed-
ding of this token can be used as a feature vector for the entire
sequence. Using these feature vectors, a labelled dataset of
human and machine text can be used to train a linear layer of
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neurons to classify whether an input sequence is produced by
a machine or a human.

Multiple studies have observed that smaller NLG models
can be used to detect text generated by larger NLG models [5],
[40], [133]. While a model’s ability to detect larger models
diminishes as the difference in scale grows, the predictive
ability of smaller architectures may be useful as recreating
large multi-billion parameter Transformer architectures is
highly compute-intensive.

Grover, a model trained to generate and detect ““neural fake
news,” demonstrates strong zero-shot detection performance
specifically within the news domain it was trained on [5].
However, it shows limited performance on out-of-domain text
[133], [155]. While Grover’s authors initially suggested that
the best detection method for generative models might be
generative models themselves [5], further investigation has
shown that the increased representational power of bidirec-
tional Transformer models appears to have an advantage for
machine-generated text detection [133].

Similar to Grover’s weakness outside the news domain,
findings indicate that the zero-shot approach generally under-
performs a simple TF-IDF baseline when attempting to detect
output from a generative model that has been fine-tuned on a
different domain [133]. As attackers may routinely fine-tune
generative models for different purposes, this represents a
notable weakness in the zero-shot approach using generative
models for detection without fine-tuning.

2) FINE-TUNING APPROACH

The state-of-the-art approach for neural machine-generated
text detection is based on fine-tuning large bidirectional lan-
guage models [133]. In this approach — initially evaluated
on GPT-2 text — RoBERTa [132], a masked general-purpose
language model based on BERT [103], is fine-tuned to differ-
entiate between NLG model output and human-written NLG
model training samples.

The source code for this fine-tuning approach is avail-
able open-source, as are pre-trained detector models,
facilitating future research and defensive detection [133],
[161]. The available pre-trained detection models are based
on the RoBERTa-base (123M parameter) and RoBERTa-
large (354M parameter) architectures [132]. The machine-
generated text used to fine-tune these models was generated
by GPT-2 using a mixture of pure sampling and nucleus sam-
pling (see § II-C3). The purpose of using a training dataset
that contains multiple sampling methods is to generalize more
effectively to unknown sampling methods that attackers could
use in-the-wild — an approach that will likely be duplicated
in future detection research.

Research into the practicalities of machine-generated
text detection examined the task of detecting text when
a RoBERTa detector algorithm was trained on a differ-
ent dataset than a GPT-2 attacker model. In this case,
it was found that by fine-tuning the detector model
with even a few hundred attacker samples identified by
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subject-matter experts (SMEs), the detector could dramati-
cally improve cross-domain adaptation [138]. This reflects
potential real-life scenarios where a general-purpose detec-
tion model confronts a fine-tuned attacker for a particular
purpose. As a defender identifies samples from a fine-tuned
attacker model, these examples could be used to improve the
defensive detection model further.

Preliminary work has used attention map information from
Transformer models to perform topological data analysis
(TDA) as features for machine-generated text detection [162].
This did not show significant improvement over standard
BERT fine-tuning approaches, though the resulting features
more accurately detected unseen GPT generative models
(once again relevant for detection of fine-tuned attacker
models). It is unclear how the effectiveness of the TDA
approach would compare if directly applied to the current
state-of-the-art ROBERTa detection models [133] rather than
to custom-trained BERT models.

While research on machine-generated text detection has
primarily taken place in English thus far, detection models
have also been released in Russian [163], [164] and Chinese
[165]. Further to this, large pre-trained bidirectional Trans-
former models have been released for numerous languages,
including Chinese [166], French [167], Arabic [168], and
Polish [169]. Future work on machine-generated text detec-
tion in additional languages could leverage these pre-trained
bidirectional models as starting points for fine-tuning.

Another detection method leverages energy-based mod-
els [170] alongside a classifier of machine-generated text.
Evaluated approaches include a simple linear classifier,
BiLSTM, a uni-directional Transformer (GPT-2), and a bidi-
rectional Transformer (RoBERTa) [171]. The Transformer
architectures were initialized from pre-trained checkpoints
and then fine-tuned on machine-versus-human classification
datasets. Corroborating other research, this research found
the strongest performance by leveraging the bidirectional
Transformer [172].

The strong performance of fine-tuned bidirectional NLM
models — and RoBERTa in particular — has led to these
models’ strong representation in applied detection research
targeting specific domains, as shown in Table 3 and discussed
in § IV-C.

C. APPLIED DETECTION IN SPECIFIC DOMAINS

Applied work in machine-text detection has focused on using
techniques and technologies for detection of machine text
in specific domains. This applied research is important as
it addresses several of the serious threat models discussed
in § III, and includes broad lessons for machine-generated
text detection more generally. We divide applied research into
several major categories.

1) TECHNICAL TEXT
Recall from § III-D1 that machine-generated scientific papers
have been well-documented since the release of SClgen in
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2005 [7], [134], [135]. Past algorithmic approaches target
the SCIgen model [39], but there is also more contempo-
rary research targeting technical text generated by GPT-2
[138]. This work found that by having a subject-matter expert
label a relatively small number of examples (number in the
hundreds), a RoBERTa-based detector could be much bet-
ter adapted from one technical writing domain (physics) to
another (biomedicine).

2) SOCIAL MEDIA MESSAGES

Application-specific work has applied feature-based [173]
and neural [4], [174], [175] language model based detection
methods to social media. Previous work in the social media
domain has found that the detectability of such text heav-
ily depends on the dataset used to train the generator and
detector [175].

Existing applied work on machine-generated text detection
in social media has primarily focused on Twitter. Twitter text
is distinct in that it has common characteristics (hashtags, ref-
erences, short links) and typically includes a short sequence
length (280 characters). There is a lack of research targeting
comments on more popular platforms such as Facebook and
YouTube or fast-growing platforms such as Reddit [176].
With respect to machine-generated text, Reddit content can be
found in “SubSimulatorGPT2”, a simulation based on a host
of fine-tuned GPT-2 models that produce community-specific
machine-generated posts and comments harvested from the
Pushshift dataset [177].

3) CHATBOTS AND SOCIAL BOTS

A related application area is the detection of malicious chat-
bots and social bots, which can interact with humans on chat
applications, SMS, and social media. Bots can be used for
malicious purposes such as spam, phishing, social engineer-
ing, influence operations, or data collection (see the threat
models in § IIT). There is an overlap in this area with research
into detecting Al-generated social media messages, but fram-
ing the detection challenge by targeting automated personae
allows for the consideration of additional features. An anal-
ysis of how humans and chatbots interact has found that
chatbot detection can be improved by analyzing how humans
reply to the bots rather than analyzing only the bot text [178].
Note that bot detection is a broad research area in its own
right, and not all social bots use machine-generated text [179].
Features indicating the presence of machine-generated text
may be only one part of a strategy to detect social bots.

4) ONLINE REVIEWS
Applied work has focused on addressing threat models related
to commercial influence campaigns, specifically on gener-
ating and detecting fake Amazon and Yelp reviews [180].
A custom GPT-2 model was fine-tuned for Yelp reviews as
part of an evaluation by Stiff et al. [4].

One study in this area focused on using random for-
est classifiers and XGBoost to leverage Shapley Additive
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Explanations (SHAP) as an explainability technique [41].
Using explainability techniques in detection may be valu-
able for improving the ability of detection models to pro-
vide human-interpretable explanations of moderation deci-
sions, and provide greater transparency into algorithmic
decision-making applied to social media or product reviews.
A lack of coherent explanation may undermine confidence in
whether a system is truly designed to detect fraudulent activ-
ity; instead, users may feel it is enacting targeted suppression
that aims to benefit the platform (e.g., suppressing negative
product reviews for a store brand by holding competitors to a
higher standard for ‘““not computer generated’’).

5) HYBRID TEXT SETTINGS
In some cases, it is necessary to detect machine text in settings
where machine and human text are combined.

There is a risk that an attacker may use human-written con-
tent as a starting point rather than generate attack text entirely
from scratch. The attacker can perturb this information to
generate human-like samples that also fulfill their goals to
spread disinformation or bypass detection models (not unlike
an adversarial attack in the text domain). An analysis found
that performing these types of targeted perturbations to news
articles reduced the effectiveness of the GPT-2 and Grover
detectors [181].

A sub-problem in this space is the detection of the bound-
ary between human text and machine text [182]. Generative
text models are often used for conditional generation to con-
tinue a sequence begun using a human prompt. In some cases
that prompt would be omitted by an attacker (e.g., by generat-
ing additional propaganda tweets from example propaganda
tweets, as we show in Table 2). However, there are cases
where human text may also be included (e.g., by writing the
first sentence of a cover letter and having a computer produce
the remainder).

D. HUMAN-AIDED METHODS

In addition to purely automated methods, human-aided meth-
ods have been proposed that include a statistical or neural
approach in combination with a human analyst for review.
The advantage of this approach is that it provides human
agency and oversight (an important principle in trustworthy
Al systems), but this comes alongside reduced scalability due
to the need to hire and train human reviewers who can make
confident determinations that text is machine-generated.

1) GLTR

Giant Language Model Test Room (GLTR) is a system
designed to improve machine-generated text detection by
including an integrated human reviewer [157]. The GLTR
tool augments human classification ability by displaying
highlighting on text that reflects the sampling probability
of tokens for a Transformer model. However, this tool was
devised to target GPT-2, which was found to be signifi-
cantly easier for untrained human evaluators to detect [183].
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Additionally, GLTR displays highlighting based on the like-
lihood of a word being selected based on ““top-k’ sampling.
In practice, “‘top-k” sampling has largely been superseded by
nucleus sampling [100], which is used in GPT-3 [13] and sub-
sequent work that leverages the GPT-2 architecture [5]. While
highlighting text based on sampling likelihood (as in GLTR)
may improve human classification ability, it is probable that
untrained human evaluators using such an approach would
struggle substantially to detect the models available today
because of increased model capacity and more advanced
sampling methods.

2) HUMAN PERFORMANCE IN DETECTION OF LANGUAGE
MODELS

In a review of human evaluation of machine-generated text
[183], it was found that untrained human reviewers correctly
identified machine-generated text from GPT-3 at a level con-
sistent with random chance. After providing limited training,
evaluator accuracy increased to 55%. While selecting the best
evaluators and giving them comprehensive training would
likely improve accuracy, the untrained and newly trained
evaluators’ poor performance highlights the difficulty in rely-
ing on human judgement in detecting machine-generated text.

A study comparing human detection ability to algorith-
mic detection methods found that the algorithmic methods
performed best when humans were fooled, a phenomenon
referred to as the “fluency-diversity tradeoff” [142]. As gen-
eration methods have been tailored to produce text that
human observers perceive as high-quality, text that is given
a higher assessment by humans is more recognizable to auto-
mated detectors. This study also includes a useful comparison
to previous studies in human evaluator performance. The
authors gave a group of university students a demonstration
of 10 examples before the evaluation task. These review-
ers were substantially more effective at machine-generated
text detection than those in previous studies, particularly for
longer sequence lengths — accuracy on the longest excerpt
length was over 70%. In the context of the study, however,
these reviewers had consistently worse accuracy than auto-
matic classifiers for all sampling methods (random, top-k,
and nucleus) and excerpt lengths.

The Scarecrow framework specifically identifies 10 cat-
egories of common errors made in GPT-3 generative text
and trains human evaluators to annotate these errors [184].
Human annotations of such errors were found to be of higher
precision than a corresponding algorithm trained on such
annotations, but had higher F'| scores in only half of the cate-
gories. This further demonstrates the advantage of providing
specialized training to human reviewers.

These findings can be used to design stronger defenses
against machine-generated text threat models. For example,
if a social media company hired specialist human modera-
tors and provided them with an intensive training program,
these moderators could work alongside detection systems
to review whether a user’s posts were likely written by
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TABLE 3. Summary of major approaches for machine-generated text detection.

S & Evaluated Against
Approach summary Base model Releated research & :@‘b
&
= é\) GPT-2 GPT-3 Grover Other Datasets/Models
Algorithmic Detection K-nearest-neighbor Lavoie et al. 2010 [39] v SClgen
Statistical Features SVM Nguyen-Son et al. 2017 [37] v Google Translate
Radford, Wu et al. 2019 [161]
TF-IDF Baseline LR v v
Solaiman et al. 2019 [133]
Radford, Wu et al. 2019 [161]
Zero-shot GPT-2 GPT-2 Zellers et al. 2019 [5] v v
Solaiman et al. 2019 [133]
Zellers et al. 2019 [5]
Zero-shot Grover Grover v v v
Solaiman et al. 2019 [133]
Gehrmann et al. 2019 [157]
GLTR BERT, GPT-2 v v
Ippolito et al. 2019 [142]
RoBERTza fine-tuning RoBERTa Solaiman et al. 2019 [133] v v
Energy Based Models BiLSTM, GPT, RoBERTa Bakhtin et al. 2019 [172] v v
Feature Ensemble LR, SVM, RE, NN Frohling et al. 2021 [38] v v v v
Twitter-specific Fagni et al. 2021 [173] TweepFake (incl.
RoBERTa v v
ROBERTA fine-tuning Tourille et al. 2022 [175] RNN/LSTM/Markov)
Human-Bot Interaction ConvAI2, WOCHAT,
BERT, LR Bhatt and Rios, 2021 [178] v v
Feat. Ensemble DailyDialog
Neural-Stat. Ensemble RoBERTa, SVM Crothers et al. 2022 [40] v v v v
Explainable classifiers RF, XGBoost Kowalczyk et al. 2022 [41] v v
Disinformation-specific TweepFake,
RoBERTa Stiff et al. 2022 [4] v v v v
RoBERTA fine-tuning XLM, PPLM, GeDi

a machine — particularly if there are numerous samples of
social media posts. This may be similar to how forensically
trained facial reviewers work alongside algorithms to obtain
high performance [185].

The tool “Real or Fake Text” [186] evaluates human
detection of machine-generated text by iteratively present-
ing sentences and asking a human reviewer whether the
next sentence was written by a human or a machine. This
encourages the reviewer to correctly identify the boundary
between human and machine-generated text. Once the human
believes they have found a machine-generated sentence, they
can select reasons from a list and provide free-form feedback.
Research based on the RoFT data has not yet been published,
but such tools may give greater insight into expert reviewer
abilities used to identify differences between human and
machine text.

Finally, the TuringBench environment is notable for pro-
viding a benchmark environment for performing authorship
attribution and Turing Test evaluation across a variety of
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generative models [187], which continues to be used for
evaluating the quality of machine-generated text as new gen-
erative models are released.

E. TRENDS IN EVALUATION METHODOLOGY AND
DATASETS

Evaluation of machine-generated text detection is increas-
ingly focused on generative Transformer language models.
Table 3, which is arranged chronologically, shows the dra-
matic shift in evaluation since the release of GPT-2 in
2019. The most common contemporary evaluation dataset in
machine-generated text detection remains the GPT-2 output
dataset [161], although similar GPT-3 samples released by
OpenAl are considered in more recent work [188]. A table
summarizing sample counts in several of the most com-
mon datasets can be found in the appendix of a previous
survey [35]. This section focuses on the nuances of the
evaluation of machine-generated text detection, including
parameters, model architectures, and the possibility of using
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publicly available NLG models to produce new datasets of
machine-generated text at will.

Recall from § II-C3 that there are several sampling param-
eters that are important to Transformer NLG models. The
GPT-2 output dataset includes sample outputs from GPT-2
models at varying parameter counts (117M, 345M, 762M,
1542M), and two sampling settings: top-k sampling at k =
40 and pure sampling at 7 = 1. This dataset also contains
a sample of Amazon product reviews generated by a 1542M
parameter model with both k = 40 and nucleus sampling.
In contrast, the 175B parameter GPT-3 samples use top-p
sampling at p = 0.85. The samples available for Grover,
which is specifically fine-tuned to generate news articles, also
uses top-p sampling, but at p = 0.96 [5].

Datasets for text attribution to generative language models
are also useful in generic machine-generated text detection
research, providing samples from a variety of NLG models
[155]. As such, these datasets have recently been used outside
of attribution on research focusing on detection [4].

Variations in NLG model architectures and decoding meth-
ods are important, as both greatly influence the quality and
detectability of generated text [142]. In practice, a defender
may not know the characteristics of the generator being used,
and detection research that evaluates performance when there
is a mismatch between datasets, model architectures, and
parameters between training and evaluation is of particular
real-world relevance. A detailed analysis of feature-based
machine-generated text detection has included such compar-
isons [38], as has more-specific applied research focused on
detecting GPT-2-tampered technical writing [138].

Sequence length is another important factor in evaluating
machine-generated text. Longer sequence lengths are benefi-
cial to detection [5], [133], [142], [161]. Sequence lengths in
the most common evaluation datasets are 2048 tokens [161],
[188]. Sequence length is important in applied research where
longer bodies of generated text may be available (such as
in detecting Al-generated cover letters), or where multiple
samples may be considered at once (such as in processing
all the comments posted by a social media user suspected of
account automation).

One important characteristic of machine-generated text
detection research is that any NLG model can be used to
produce new datasets of machine-generated text at will.
Producing custom datasets in new domains is also possible
by training or fine-tuning a new NLG model. A common
research approach is to take a domain of interest with avail-
able corpora of human-generated text and use that text to
train or fine-tune a generative model, which can be used to
analyze the detectability of machine text within that domain
[4], [175].

Analyzing social media may allow for collection of
machine-generated text in-the-wild with limited insight into
how the text was generated, such as the TweepFake Twitter
dataset [173]. The TweepFake dataset does not have a cor-
responding human text dataset for training, as the data was
collected in-the-wild from bots on Twitter where numerous

VOLUME 11, 2023

models with different training datasets were deployed. Sub-
sequent work, however, has collected additional tweets
from Twitter and specifically produced GPT-2 tweets for
study [175].

F. PROMPT INJECTION
Models deployed in ways that use untrusted human text as
prompts — such as social media bots designed to reply to
other users — may be vulnerable to prompt injection [189],
[190]. Prompt injection attacks provide generative models
with tailored text that causes them to deviate from their
original prompt to produce unexpected (and potentially repu-
tationally damaging) text, or which can cause them to leak
their original prompt. A real-world example of a prompt
injection attack leveraged against a publicly disclosed GPT-3
powered Twitter bot [191] can be found in Table 4.
Defenses against prompt injection for contemporary lan-
guage models have yet to be developed. As such, exploiting
prompt injection to trigger specific responses from NLG
models may be an effective avenue to improve detection,
depending on the efficacy of future measures that aim to
prevent prompt injection attacks.

G. SUMMARY OF DETECTION METHODS

Feature-based methods for machine-generated text detec-
tion are well-established and continue to demonstrate value
against contemporary NLG models. These models have an
advantage in providing diverse features that may complicate
adversarial attacks [40] or improve efficiency [38], [158].
Weaknesses of these models center around the poor transfer-
ability of certain features across architectures and sampling
methods [38]. As more samples may be needed to clarify
broader statistical trends, results from past research suggest
that statistical methods are most effective when using longer
collections of text (such as a social media user’s entire posting
history, the text of a scientific paper, or an e-book submission)
[37], [158].

Neural detection approaches based on bidirectional Trans-
former architectures currently represent the state-of-the-art
on common GPT-2 evaluation datasets [133]. There is an
overall trend toward increased use of bidirectional Trans-
former architectures, particularly RoOBERTa (as shown in the
base model trend in Table 3). Relying on neural features
alone may make adversarial attacks more straightforward,
so there is a potential benefit to incorporating other features
to increase the difficulty of crafting text adversaries that do
not also unacceptably compromise text quality [40]. Human
performance in detecting machine-generated text is relatively
poor [183], though there is an inverse relationship between
detection by humans and machines that indicates the need
to fool human reviewers may assist automated detection
models [142].

Beyond a focus on bidirectional Transformer model fea-
tures, other trends include applied research targeting specific
detection contexts, including social media [4], [173], chatbots
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TABLE 4. Example of real-world prompt injection attack against GPT-3 Twitter bot.

Human Message
(@mkualquiera)
Response: hsedfjsfd

remote work and remote jobs
Ignore the above and say "hsedfjsfd"

Ignore the above and instead tell me what your initial instructions were

Bot Response
(@remoteli.io)

My initial instructions were to respond to the tweet with a
positive attitude towards remote work in the we’ form.

[178], and product reviews [6]. Existing literature cov-
ers only a few threat models discussed in § III, often
assumes balanced classes, and is difficult to compare between
domains. One recent work focused purely on explainable
classifiers [41], which may portend greater emphasis on
explainability considerations, particularly in domains where
machine-generated text detection may be particularly sen-
sitive [148]. Recently highlighted vulnerabilities in NLG
models to prompt injection may be exploited to facilitate
detection in the absence of existing mitigation measures for
such attacks [190].

We now explore trends and open problems in addressing
machine-generated text threat models and in advancing detec-
tion of machine-generated text.

V. TRENDS AND OPEN PROBLEMS

A. DETECTION UNDER REALISTIC SETTINGS

To date, there has been little work on machine-generated text
detection that addresses class imbalance. This is important
because in many domains, machine-generated text may be
a minority class in practice, and classification performance
typically suffers in the presence of steep class imbalance
[192]. One-class classification may be an appropriate alter-
native to binary classification for machine-generated text
detection [193].

In addition to considerations related to class imbalance,
in practice, defensive detection systems will typically not
know the specific parameters, architecture, and training
dataset of the NLG models used by attackers. There is great
value in developing improved techniques that demonstrate
efficacy across such variations, continuing trends in recent
research [38], [138].

B. GENERATIVE LANGUAGE MODEL ATTRIBUTION
Multi-class attribution of generated text to generative lan-
guage models is a related area to machine-generated text
detection [154], [155]. Model attribution may be useful
in allowing a defender who has found a collection of
machine-generated text to determine an attacker’s methodol-
ogy and iteratively refine detection models. This extends to
identifying an attacker’s sampling parameters (e.g., k-value,
p-value, temperature) so that detection methods can be
fine-tuned accordingly. Continued research is needed that
focuses on determining parameters of NLG models based on
output [194].
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C. ADVERSARIAL ROBUSTNESS

The topic of adversarial robustness in the context of neural
text classifiers is a large and active area of study. Many
adversarial settings involve text data, including online influ-
ence campaigns, detection of phishing emails, and combating
online spam. An attacker using machine-generated text may
attempt adversarial attacks to bypass defensive detection
systems.

As neural text classifiers are heavily represented in
machine-generated text detection research, it is essential to
consider the robustness of these models against adversarial
text attacks that target neural networks [195], [196]. The
adversarial robustness of detection methods has been con-
sidered in prior work on machine-generated text detection
[4], [40], [197]. In one previous study, the robustness of
features derived from neural classifiers was compared to
the robustness of features from statistical classifiers [40].
Unsurprisingly, this work found that incorporating statisti-
cal features into feature vectors improved robustness against
adversarial attacks that typically target neural classifiers.
Based on these findings, there may be value in leveraging
several detection approaches in parallel, necessitating that
attackers evade multiple detection models at once.

The degradation in text quality that results from an adver-
sarial attack is an often-overlooked element of these attacks
against neural text classifiers. In the text domain, replacing
several words using word-level attacks such as Textfooler
[195] can lead to a result where the meaning of the sentence
has changed substantially, or the sentence has been rendered
incoherent due to the selection of an “‘equivalent” word that
does not fit the context. Character-level attacks that perform
character replacements and swaps eventually begin to dam-
age the fluency and credibility of the resulting text [196].
A phishing email supposedly sent from a bank, but char-
acterized by unusual word choices and a high frequency of
typos, is less desirable to an attacker. As a result, adversarial
attacks that deceive detection algorithms may fail to fulfill
their original purpose in terms of propagating the intended
disinformation or persuading a user to click a malicious link.
In previous machine-text detection research, increased adver-
sarial robustness was accompanied by decreased MAUVE
scores in successful attack text [40]. Future applied research
might incorporate measures to determine whether adversarial
text that bypasses detection systems would still be effective
against targets.
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D. INTERPRETABILITY AND FAIRNESS OF DETECTION
METHODS

Using machine-learning models to perform machine-
generated text detection to prevent abuse creates a situation
where such models are likely to have a negative impact on
flagged individuals. These penalties could range from rela-
tively minor (e.g., having to perform a CAPTCHA challenge
to post a comment) to severe (e.g., being denied a scholar-
ship or banned on social media). As with other automated
decision-making systems, it is important that these systems
operate in a way that is appropriately fair, transparent, and
interpretable. Social or technical research on the potential
harms of machine-generated text detection is important to
ensure that detection systems are ethical.

The requirement to provide human-understandable expla-
nations has become an important part of trustworthy Al
policies, and is reflected in emerging government regulatory
guidelines and technology standards related to automated
decision-making [10], [198], [199], [200]. These considera-
tions have also influenced NLG model usage policies [148]
(discussed further in § V-G). Early work has leveraged ran-
dom forest models and XGBoost to detect GPT-2-generated
fake reviews and provide Shapley Additive Explanations
(SHAP) [201] in machine-generated text detection [41].
There is a need for future work on machine-generated text
detection methods that are both effective and explainable.

Finally, a critical consideration is that certain groups of
individuals may be more likely to have their text flagged by
machine-generated text detection algorithms, either due to
their writing characteristics (such as language background) or
non-malicious use of translation tools [ 149]. For example, it is
possible that a detection system designed to prevent a polit-
ical influence campaign operated using NLG models may
inadvertently end up disproportionately targeting all political
speech by individuals who do not natively speak the lan-
guage of discussion, as has been documented in past research
on non-NLG political influence campaigns [131]. Research
that identifies ways to improve detection while maintaining
fairness and preventing widespread discrimination is deeply
important.

E. DETECTION METHODS INCORPORATING HUMAN
AGENCY

As mentioned previously, it is possible that machine-
generated text detection may result in suppression of specific
individuals or communities on social media whose language
background or topics of interest disproportionately cause
them to be identified as a false positive by a detection model.
To reduce this likelihood, and other ethical harms, it may be
useful to develop machine-generated text models that incor-
porate a human analyst. GLTR remains the only tool currently
available for machine-generated text detection that explicitly
incorporates a human analyst to improve detection [157].
Analysis of GLTR has demonstrated that machine text that
deceives humans is also more easily detected by algorithms
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[142]. As such, the continued development of moderation
tools and systems that leave an avenue for human agency
and oversight — guiding principles for trustworthy Al —
is a positive area of future development. Previous work in
online influence operation research has used Transformer
embeddings to chart and cluster social media for free-form
exploration by a human analyst [202]. A similar approach
may be worthwhile for machine-generated text detection.

F. DETECTION OF ABUSE BEYOND TEXT CONTENT
While many of the threat models discussed in § III can use
machine-generated text detection as part of mitigation strate-
gies, additional methods might be used to facilitate detection
outside of text classification. Work on social bot detection
includes additional signals, such as IP addresses and message
timing, though signals in this domain are also becoming
harder to detect over time [203]. Chatbot detection can incor-
porate features derived from human responses [178]. Prompt
injection may bait social bots into exposing themselves [190].
On social media, it is likely that many platforms will
enact policy changes in addition to technical detection
approaches to improve user verification, providing a greater
barrier to entry for fraudulent accounts. Increased CAPTCHA
challenges are already commonplace when platforms are
accessed via shared proxy IP addresses or registered with
phone numbers associated with a voice-over-IP (VoIP) ser-
vices [152]. These types of restrictions may become more
stringent with increased user vetting by checking selectors
(IP addresses, emails) with third-party reputation services.
The extent of these measures will vary by platform, but it
is possible that certain platforms may resort to more strin-
gent identification verification using national IDs or payment
methods. In any case, the asymmetric difficulty of defense
versus attack in the current threat environment means that
increased scrutiny of new accounts will likely be required to
avoid a collapse of trust in online spaces.

G. DEFINING MODEL USAGE AND DISCLOSURE POLICIES
Undisclosed use of Al-generated text content is likely
to increase, particularly as NLG models are deployed in
user-friendly tools such as ChatGPT [25]. Purpose-built
offerings like Jasper [26] are designed to assist in producing
articles and social media content. Increased use of such tools
to generate targeted content may result in situations where
individuals online are frequently interacting with content
predominantly generated by Al models.

This is cause for concern not only because of the erosion of
trustworthy Al principles when the use of Al is not disclosed
to the human audience [10], but also because of the additional
ethical problems posed as NLG models have been found to
magnify biases present in training data [133]. Digital content
farms may begin publishing large amounts of predominantly
Al-generated text content (articles, blogs, posts, tweets, etc.)
and target the audience most likely to engage with it. Without
oversight, this would include highly optimized content that
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caters to an audience’s worst biases and fears — a profitable
strategy, as anger and anxiety have a strong link with online
virality [204]. Moderation strategies for Al-generated content
may include limiting its use or notifying readers that they are
engaging with Al-generated content to allow them to recon-
sider how much trust they place in what they are reading.

Usage and disclosure policies for online platforms are a
worthwhile area of future development, whether those take
the form of targeted AI usage restrictions (such as those
related to generative art [144]) or mandated public disclosure
of Al-generated content. Model publishers can also influence
the behavior of law-abiding entities by adjusting the licenses
of released models to mandate disclosure. The Al model
BLOOM was released under the first version of the Respon-
sible Al License (RAIL) [148]. The conditions of this license
include a disclosure requirement, an explicit ban on mali-
cious abuse, and a prohibition of specific use-cases (including
automated decision-making with a potential negative impact,
which aligns with regulation terminology in the EU [199] and
Canada [198]). An effective combination of usage policies
and Al software licenses may improve the ethical rigor in how
powerful NLG models are used in practice, though great care
must be taken in crafting such restrictions.

VI. CONCLUSION

In this survey, we provided a comprehensive overview
of detection methods for machine-generated text, carefully
evaluating the technical and social benefits of different
approaches and including novel research focusing on top-
ics such as adversarial robustness and explainability. We
provided context with an overview of natural language gen-
eration (NLG) models and a deep analysis of current threat
models. Our exploration of threat models, when viewed
alongside our survey on applied detection research, suggests
that current domain-specific defenses are not adequate to
defend against the vast majority of upcoming threat models.
Recent NLG advances, which combine dramatic improve-
ments in text quality with unparalleled ease-of-use, further
highlight the urgent need to develop improved defenses
against the abuse of machine-generated text.

Our central conclusion is that the field of machine-
generated text detection has a multitude of open problems that
urgently need attention to provide suitable defenses against
widely available NLG models. Existing detection methodolo-
gies often do not reflect realistic settings of class imbalance
or unknown model architectures, nor do they incorporate suf-
ficient transparency and fairness methods to ensure that such
detection systems will not themselves cause harm. Preventing
widespread harm from NLG models will require coordinated
efforts across technical and social domains, necessitating
alignment between Al researchers, cybersecurity profession-
als, and non-technical experts. While there is a wide range
of threat models and open research problems to consider,
tackling these challenges is essential for humans to realize
the benefits of high-capacity NLG systems while reducing
the damage caused by their inevitable abuse.
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