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ABSTRACT The fundamentals of nonlinear constraint optimization are exploited in this paper to design a
decentralized PID controller for variable area coupled tank systems.Maintaining the tanks at the desired level
is the main objective of the proposed decentralized control algorithm. The benchmark coupled tank systems
are modeled to the first order plus dead time (FOPDT) model by designing decoupled subsystems. The
control law is designed for decoupled systems to attain the servo response by minimizing loop interactions.
Further, the overshoot is reduced by imposing constraints on the maximum closed-loop amplitude ratio
of the system. Furthermore, the robustness of the controller is analyzed and stability is verified with the
Kharitonov-Hurwitz theorem. A concise comparison is carried out between the proposed control law with
existing methods in order to highlight the productive application of the proposed control algorithm. From the
results, it envisaged that the proposed controller shows better responses compared to the existing methods.
Besides, the efficacious nature of the proposed control scheme is validated by considering a wide range of
closed-loop amplitude ratios.

INDEX TERMS Coupled tank systems, decouplers, FOPDTmodel, model uncertainty, PID control, stability
analysis.

I. INTRODUCTION
Automatic liquid level regulation is essential in process con-
trol industries. An interacting tank system is a nonlinear
multi-input multi-output (MIMO) system. Hence, regulating
the level is a difficult task. Cross couplings and interaction
between the variables are phenomenal characteristics of the
MIMO systems. In addition, the closed-loop performance
will be affected by time delays and parameter uncertain-
ties. Hence, compared to single-loop systems, regulating
the necessary parameters with interactions is very difficult.

The associate editor coordinating the review of this manuscript and

approving it for publication was Laura Celentano .

The following literature describes different control tech-
niques for coupled tank systems.

Article [1] exploits the stability analysis of the quadruple
tank system (QTS). Further, the PI controller is designed
to achieve the design specifications. A hybrid controller
(combination of state feedback and sliding mode controller)
for the QTS is presented in [2]. The steady-state error is
reduced by the state feedback controller while the sliding
mode controller guarantees a transient response. The design
specifications of the QTS can be achieved with the slid-
ing mode controller as reported in [3]. Albeit, the servo
response can be achieved, the system fails to attain reg-
ulatory response. As discussed in [4], the servo response
is ensured with a PI controller. The controller parameters
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for the QTS are derived from bond-graph prototyping. The
design specifications of the QTS are attained with a linear
quadratic Gaussian regulator as described in [5] The control
law is realized with a model predictive technique. Article [6]
reports a fuzzy controller for maintaining the level of a con-
ical tank system (CTS). Besides, Kalmann algorithm was
used to define the fuzzy rules. Further, the desired servo
response was attained by adjusting the controller parameters
with the defined algorithm. As described in [7], a frac-
tional order passivity-based control law is implemented for
the CTS. The overshoot is reduced and the design criteria
are attained. The level of the CTS is regulated with a smart
controller as discussed in [8]. The control law is based on a
reinforcement learning algorithm. Further, the system is rep-
resented by the Markov decision process and the Q-learning
algorithm is used to realize the control law. A fractional-
order-proportional-integral-derivative controller (FOPID) for
the CTS is addressed in [9]. A fault tolerant control system for
an interacting CTS is exploited in [10]. The controller gains
were obtained from the Takagi-Sugeno (T-S) fuzzy model.
Further, a cost function was defined to minimize the error.
Furthermore, the particle swarm optimization techniques
were used to determine the FOPID controller parameters.
Various optimization methods are presented in [11] for con-
trolling the level of the CTS. However, it was inferred that the
bubble-net whale optimization algorithm can satisfy design
requirements. The desired level can be attained in a spher-
ical tank system (STS) with a sliding mode controller as
described in [12]. As discussed in [13], the level of STS
was maintained with a PI controller. The control parameters
were obtained from the root locus method and the design
criteria are satisfied. Articles [14], [15], [16], [17], and [18]
report different control strategies for controlling the level
of STS. A PI controller tuned with the genetic algorithm is
addressed in [19] for maintaining the level of STS. From the
aforementioned literature, it can be inferred that in a cen-
tralized control structure, the system performance is affected
by loop interactions. Albeit the interactions can be reduced
with the off-diagonal controller or full controller structure,
the design procedure is complicated since the tuning need to
be performed individually for loop controllers. On the other
hand, decentralized controllers have a simple structure as the
tuning needs to be performed only for diagonal elements.
The recent advancements in decentralized control schemes
are given below.

Various model predictive control schemes for the QTS
are presented in [20]. However, it was inferred that the
desired servo and regulatory response was achieved with the
multi-parametric model decentralized PI controller. In [21],
a relay-based control law for the QTS is reported. The PID
controller gains are obtained from the relay-based tuning
method. Sliding mode controllers were designed to attain the
design criteria for the QTS as discussed in [22] and [23].
Albeit, the servo response is achieved, the robustness of the
system is not verified. A nonlinear disturbance-observer for

the QTS is presented in [24] wherein the coupling character-
istics are used to design the controller. Further, the Lyapunov
theorem was used to verify the stability of the system.
A decentralized control technique for the CTS is addressed
in [25]. The servo response was attained with the decen-
tralized PI controller. Further, a multi-variable Nyquist plot
was used to analyze the stability of the system. A dynamic
matrix controller that ensures the design specifications of
a CTS is exploited in [26]. A fractional-order controller
for the interacting CTS is presented in [27]. The control
structure is implemented with simplified decouplers and an
equivalent-transfer function model. Besides, the PID control
parameters were derived from the bat optimization algorithm.
Article [28] reports a fuzzy-fractional-order PI controller for
the coupled CTS. The controller gains are derived from the
metaheuristic algorithm. Further, the Lyapunov theorem is
used to analyze the stability. A gain scheduled PI controller
is discussed in [29] for maintaining the level of the STS.
As described in [30], a comparative analysis based on the
Performance Indexes was made with different controllers for
an interacting spherical tank system. However, it was inferred
that with fractional order fuzzy PID controllers, the design
specifications can be attained. A fuzzy PI controller for STS
is addressed in [31]. The decouplers were designed with
an inverted decoupling structure. The level of the coupled
STS is maintained with a multi-model-cascade-control struc-
ture as exploited in [32]. A decentralized PID controller for
interacting tank systems is presented in [33]. The controller
is designed based on the frequency domain specifications.
Articles [34] and [35] reports various optimization-based
techniques for attaining the design specifications. An adap-
tive controller based on the neural network to stabilize the
maglev vehicle is discussed in [36]. The stability of the
system is analyzed with Lyapunov stability theorem.
The sensor error compensation of a magneto-resistive
material employing geometry-constraint-contour scaling is
described in [37]. Besides, the article provides a description
about various parameter estimation methods. A closed-loop
parameter identification algorithm for second-order non-
linear systems is addressed in [38]. The algorithm employs
least squares and state estimation to estimate the system
parameters. Besides, the robustness is verified with Monte-
Carlo analysis.

Thus, from the aforementioned literature, it is very clear
that albeit the servo response is attained with various con-
trollers, there exists a trade-off between the performance of
the controller and robustness. The design specifications are
attained with the reported controllers however, the stability
needs to be compromised. Thus, the main objective of the
work is to design a decentralized control algorithm based on
nonlinear constraint optimization. The crucial performance
criteria can be achieved from the parameters like bandwidth
and closed-loop amplitude ratio (AR). The settling time can
be considerably reduced with a higher value of bandwidth.
Similarly, a faster response can be obtained with a high value
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for AR. However, the performance of the system will be
degraded. Hence to achieve the desired closed-loop perfor-
mance, the values of bandwidth and AR must be properly
chosen. Further, by imposing constraints on AR, the over-
shoot can be reduced. Furthermore, robustness can be ensured
by considering the frequency domain specifications. The
robustness of the controller is analyzed with input, output
noise signals and a range of parameter uncertainties. Besides,
the stability is analyzed with the Kharitonov theorem. The
controller performance is verified for interacting coupled tank
systems. Thus, the main contributions of this paper can be
summarized as

• Design of decentralized PID controller to attain the
design requirements of the coupled tank systems.

• The regulatory response is analyzed with input and out-
put disturbances.

• The robustness analysis of the system is verified by
considering input and output uncertainties.

• Analyze the response of the controller to parameter
uncertainties.

• Analysis of the robust stability is carried out by the
Kharitonov-Hurwitz theorem.

The remaining paper is organized as follows: Section II
describes the problem statement. The decoupler design is
explained in Section II-A. The necessary steps for the
controller design is given in Section III. The Stability
and Robustness property of the controller is discussed in
Section IV. Simulation results are presented in Section V
followed by conclusion in Section VI.

II. DESCRIPTION OF PROBLEM
The modeling of decouplers for the two input two output
(TITO) system is described in this section. The TITO system
P(s) can be represented as Equation (1)

P(s) =

[
p11(s)e−µ11s p12(s)e−µ12s

p21(s)e−µ21s p22(s)e−µ22s

]
(1)

where the plant parameters are given by p11(s)e−µ11s,
p12(s)e−µ12s, p21(s)e−µ21s, p22(s)e−µ22s and µii is the delay.
Designing decouplers will decrease the loop interactions.
Decoupler input is the output of controller, while the process
input is the output of decoupler. Further, the control scheme
is implemented to attain the design specifications.

A. DECOUPLER DESIGN
This subsection describes the decoupler design technique.
The inverted decoupling method is described in [41] and [42].
Figure 1 presents the schematic of the TITO system. Further,
for the TITO system, the decoupler matrixD(s) is defined by

D(s) =

[
0 −

p12(s)
p11(s)

−
p21(s)
p22(s)

0

]
(2)

The process transfer matrix Z(s) is

Z(s) = P(s) ∗D(s) = diag{z11(s), z22(s)} (3)

The decoupled elements zii (i = 1, 2) needs to be controlled
by the proposed controller.

B. MODEL REDUCTION
Designing of the decoupled controller is difficult because of
the complex dynamics of Equation (3). Besides, model reduc-
tion techniques are essential in addressing computational
challenges, facilitating system understanding and design,
enabling efficient control and optimization, and improving
uncertainty analysis. By simplifying complex models while
retaining essential dynamics, model reduction helps to over-
come practical limitations and gain valuable insights. Hence
suitable model reduction techniques are used to derive the
FOPDT model structure as reported in [54] and [56]. The
process dynamics Gii(s) are given by

Gii(s) =
Kiie−8iis

Tiis+ 1
, j = 1, 2 (4)

where, Kii is the process gain, 8ii is the time constant,
and Tii is the effective dead time. Further, to determine the
unknown parameters, frequency response fitting is obtained
at two points ω = 0 and ω = ωCii, where ωCii is phase
crossover frequency.

Gii(0) = Zii(0) (5)

|Gii(jωCii)| = |Zii(jωCii)| (6)
̸ {Gii(jωCii)} = ̸ {Zii(jωCii)} (7)

The FOPDT parameters described in Equation (4) are deter-
mined as

Kii = Zii(0) (8)

Tii =

√
K2
ii − |Zii(jωCii)|2

|Zii(jωCii)|2ω2
Cii

(9)

8ii =
π + tan−1(−ωCiiTii)

ωCiiTii
(10)

The FOPDT models can be derived by solving
Equations (8) - (10) with phase crossover frequencies.

III. CONTROLLER DESIGN
This section deals with the realization of the controller
algorithm. The decentralized PID controller is designed by
considering the nonlinear constraints. Further, the overshoot
is reduced by imposing constraints on constraints on max-
imum amplitude closed-loop ratio Ar . The FOPDT model
G(s) can be expressed as

G(s) =
KP l
T s+ 1

e−8s (11)

The transfer function of the PID controller C(s) is

C(s) = KCl
(
1 +

1
TIs

+ TDs
)

(12)

where KCl , TI , TD corresponds to the proportional gain,
integral and derivative time constants respectively. Further,
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FIGURE 1. Decoupled TITO system.

from Equations (11) and (12), the open loop transfer function
WO(s) is obtained as

WO(s) =
KClKP l(TITDs2 + TIs+ 1)e−8s

TIs(T s+ 1)
(13)

The phase change (∅O) and amplitude ratio (ϑO) are
obtained with frequency analysis to Equation (13), and is
given as

ϑO(s) =

KClKP l
√
(1 − ω2TITD)2 + (ωT 2

I )

ω
√

ω2T 2 + 1TI
(14)

∅O =

 1(ω) − ω8 − tan−1(ωT ) −
π

2
, if1(ω) ≥ 0

1(ω) − ω8 − tan−1(ωT ) +
π

2
, if1(ω) < 0

(15)

where

1(ω) = tan−1
( ωTI
1 − ω2TITD

)
The closed loop transfer functionWCl is

WCl =
WO

1 +WO
Subsequently, the amplitude ratio ϑCl is evaluated as

ϑCl =
1√

( 1
ϑO

+ cos∅O)2 + sin2∅O
(16)

The phase crossover frequency ϑCl(ωC) can be obtained as

ϑCl(ωC) = 0.707 (17)

The maximum value of closed-loop amplitude ratio Ar is

Ar = max(ϑCl(ω)), ∀ω (18)

The gain (Am) and phase margin (∅m) can be obtained from
Equation (13) as

Am =
1

|WO(jωP )|
(19)

∅m = ̸ WO(jωG ) + π (20)

where ||WO(jωP )|| = 1, ̸ WO(jωG ) = −π and ωP , ωG
are the gain and phase crossover frequencies respectively.
By substituting Equations (14) and (15) in Equations (19)
and (20), the following equations are derived.

Am =
ωPTI
KClKP l

√√√√ ω2
PT 2 + 1

(1 − ωPTITD)2 + ω2
PT

2
I

(21)

∅m=

 1(ωG)− ωG8 − tan−1(ωGT )−
π

2
, if1(ωG) ≥ 0

1(ωG) − ωG8− tan−1(ωGT ) +
3π
2

, if1(ωG) < 0

(22)

KClKP l
ωGTI

√√√√ (1 − ω2
PTITD)

2
+ (ωGTD)2

ω2
PT 2 + 1

= 1 (23)

∅p=

 1(ωP )− ωP8 − tan−1(ωPT ) −
π

2
, if1(ωP ) ≥ 0

1(ωP )+ ωP8+ tan−1(ωPT ) +
3π
2

, if1(ωP ) < 0

(24)

Due to the existence of unknown factorsωG ,ωP ,KCl , TI and
TD, Equations (21) - (24) can not be solved directly. Hence,
a constraint is imposed on maximum closed loop bandwidth,
maximum amplitude ratio, gain and phase margins to formu-
late the optimization problem and is given by
Theorem 1:

max
ωG ,ωP ,KCl ,KP l ,TI ,TD

ωC

subjected to

ϑCl(ωC) = 0.707

Am ≥ A∗
m

∅m ≥ ∅∗
m

Ar ≤ γ ∗
m

whereA∗
m and∅∗

m are lower bounds of gain and phase margin
respectively and γ ∗

m corresponds to upper bound maximum
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amplitude ratio. However,Am and ∅m are related to gain and
phase margin bounds as reported in [51] and are given as

Am ≥ 1 +
1
Ar

(25)

∅m ≥ 2sin−1
( 1
2Ar

)
(26)

Lemma 1: Equations (25) and (26) depicts the dependence
of Ar and gain and phase margins.
Lemma 2: It can be inferred that a low value for γ ∗

m corre-
sponds to a high value for Am and γ ∗

m comparing to A∗
m and

is achieved in a more robust or less aggressive manner.
Lemma 3: The maximum value of ϑCl needs to be deter-

mined to find Ar in the frequency range (0,∞).
Lemma 4: To resolve the optimization problem, a new

term ωMAX needs to be considered as ωC is unknown.
The MatLab optimization tool ‘‘fmincon’’ is used to deter-
mine the unknowns in Equations (21) - (24).

IV. ANALYSIS OF STABILITY AND ROBUSTNESS
This section describes the stability and robustness analysis of
the TITO system.

A. STABILITY ANALYSIS
Due to the nonlinear property, the stability analysis of the
MIMO process is very difficult. The open-loop transfer func-
tion is

WO(s) = C(s)G(s) (27)

Besides, the closed loop characteristics polynomial can be
obtained as

det[I + C(s)G(s)] = 0 (28)

where C(s) is the PID controller with two terms c∗1(s) (control
input to tank 1)and c∗2(s) (control input to tank 2). Further,
Ct (s) can be expressed as

C(s) =

[
c∗1(s) 0
0 c∗2(s)

]
(29)

For the coupled tank systems, the closed-loop characteristics
polynomial described in the Equation (28), is expressed as

As4 + Bs3 + Cs2 + Ds+ 1 = 0 (30)

As discussed in [52], the system stability can be verified from
the Routh array of Equation (30). Further, by considering the
boundary values, Equation (30) is modified as[

p4 q4
]
s4 +

[
p3 q3

]
s3 +

[
p2 q2

]
s2 +

[
p1 q1

]
s+[

p0 q0
]

= 0 (31)

Further, the fourKharitonov polynomialsK1(s),K2(s),K3(s),
K4(s) can be derived as

K1(s) = p0 + p1s+ q2s2 + q3s3 + p4s4 (32)

K2(s) = p0 + q1s+ q2s2 + p3s3 + p4s4 (33)

K3(s) = q0 + p1s+ p2s2 + q3s3 + q4s4 (34)

K4(s) = q0 + q1s+ p2s2 + p3s3 + q4s4 (35)

FIGURE 2. Schematics of multiplicative-input uncertainty.

FIGURE 3. Schematics of multiplicative-output uncertainty.

For the first Kharitonov polynomial K1(s), the Hurwitz
matrix HM and the row reduced Hurwitz matrix HMn is
given by

HM =


p1 p0 0 0

p3 p2 p1 p0
0 p4 p3 p2
0 0 0 p4

 (36)

HMn =


p11 p12 0 0

0 p22 . . . . . .

. . . . . . . . . . . .

0 0 0 p44

 (37)

Similarly, the Hurwitz matrix HM and the row reduced
Hurwitz matrix HMn is derived for the other Kharitonov
polynomials K2(s), K3(s) and K4(s). As reported in [53],
if there is any sign change in the diagonal elements
of HMn, the system is not Hurwitz stable. Besides, if all
four polynomials are Hurwitz stable, the system will be
robustly stable. The analysis is given in the Appendix
section.

B. ANALYSIS OF ROBUSTNESS
The robustness analysis of the controller is essential because
of the unmodeled process dynamics. Uncertainties affect the
system stability and hence, both multiplicative input, as well
as output uncertainties, are considered to analyze the stability.
The schematics of input and output uncertainties are denoted
by Figures 2 and 3 respectively. The T−1 form of the transfer
function of the system is given

TMI = −C(I + GC)−1G (38)

TMO = −GC(I + GC)−1 (39)
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FIGURE 4. Tank system level control.

As presented in [50], [55], and [57], robustness can be
attained only if the following criteria are achieved.

||TMI ||∞ <
1

||1l ||∞
(40)

||TMO||∞ <
1

||1O||∞
(41)

However, more time is required to evaluate Equation (40)
and (41). Hence, to reduce the computational time, an equiv-
alent relationship is formed using the small gain theorem and
the spectral radius stability as reported in [50] as

ρ(C(I + GC)−1G1I ) < 1 ∀ ω ε [0 ∞] (42)

ρ(GC(I + GC)−1G1O) < 1 ∀ ω ε [0 ∞] (43)

The stability is analyzed by evaluating the magnitude plots
Equations (42) and (43) to determine whether it is under unity
or not for ω ε [0 ∞].

V. SIMULATION RESULTS
The simulation results of the proposed control scheme are
analyzed in this section by using Matlab/Simulink environ-
ment. Further, the performance of the controller is evaluated
for robustness. The typical level control system is illustrated
in Figure 4. The objective is to maintain the tank system at the
desired level. The following variable area coupled tank sys-
tems were considered quadruple tank system (QTS) [44], and
coupled spherical tank system (CSTS) [31] coupled conical
tank system (CCTS) [43].

A. QUADRUPLE TANK SYSTEM
The schematic diagram of the QTS is shown in Figure 5. The
levels of tanks 1 and 2 (h1 and h2) need to be controlled.

As reported in [44], the transfer function G(s) is given by

G(s) =

[
0.834e−5s

6.57s+1
1.39e−7s

(10.231s+1)(6.57s+1)
1.271e−9s

(14.05s+1)(11.29s+1)
0.757e−6s

11.29s+1

]
(44)

Referring to Equation (2), the decouplers D(s) can be
obtained as

D(s) =

[
0 −1.67

10.23s+1e
−2s

−1.678
14.05s+1e

−3s 0

]
(45)

FIGURE 5. QTS.

FIGURE 6. Servo and regulatory response.

From Equations (8) - (10), the FOPDT model Gii(s) can be
derived as

G11(s) =
2.332

86.35s+ 1
e−0.069s (46)

G22(s) =
2.119

110.65s+ 1
e−0.061s (47)

The decentralized PID controller C(s) satisfying the design
specifications is derived from Equation (25)

C(s) =

[
28 +

0.285
s + 7.82s 0
0 37.5 +

0.305
s + 11.5s

]
(48)

Figure 6 presents the response for maintaining the level of
the QTS. The main aim is to maintain the level of the tank
at 20 cm. The proposed controller is able to meet the design
requirements at a faster rate with minimal control effort
than the controllers reported in the literature: disturbance-
rejection-PID controller (DR-PID) [24], sliding-mode-PI
(SMC-PI) controller [49], decentralized PI controller [47],
and adaptive-SMC-PID (ASMC PID) controller [49]. Fur-
ther, for verifying the regulatory response, a step signal is
injected as input (500 seconds) and output (800 seconds) dis-
turbance respectively. The set-point tracking is illustrated by
Figures 6a and 6c. The corresponding controller outputs are
shown in Figures 6b and 6d. A comparative analysis is pre-
sented in Table 1 by evaluating the performance indexes like
integral time absolute error (ITAE), integral absolute error
(IAE), and integral squared error (ISE). It can be inferred that
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TABLE 1. Quadruple tank system - performance indexes.

FIGURE 7. Servo and regulatory response for various values of γ ∗
m.

FIGURE 8. Spectral radius plot.

the proposed control algorithm is better than the techniques
mentioned in the aforementioned literature.

As mentioned in Lemma 2, the γ ∗
m values affect the

closed-loop response of the system. From Figure 7 it is
inferred that the low values of γ ∗

m result in better servo
and regulatory responses. The servo and regulatory response
for the variation of level in tanks 1 and 2 are shown by
Figures 7a and 7b respectively.

1) ANALYSIS OF ROBUSTNESS
The magnitude plots for analyzing the robustness criteria
described in Equations (42) and (43) are shown in Figure 8.
It can be inferred from the figure that robust stability criteria
is attained. Besides, the transient response of the system
(Figure 9) is considered for the robustness study. Referring
to Figures 2 and 3, a white noise of power 25 is applied.
Figures 9a and 9b denote the response of the system with
input uncertainties while Figures 9c and 9d denote the output
uncertainty. Further, the FOPDT model parameters men-
tioned in Equations (46) and (47) are subjected to a change of
±10%, ±20% and ±30% variations from the normal values
to prove the robustness of the proposed control law. The
response is shown in Figure 10. Figures 10a and 10b shows
the±10%,±20% and±30% variation of Equation (46). Sim-
ilarly, Figures 10c and 10d shows the corresponding variation
of Equation (47).

FIGURE 9. Set-point tracking of input and output uncertainties.

FIGURE 10. Set-point tracking of Equations (46) and (47) for parametric
variations.

FIGURE 11. CCTS.

B. COUPLED CONICAL TANK SYSTEM
Figure 11 presents the schematics of the CCTS where the
levels are denoted as h1 and h2. Article [43] describes the
transfer function G(s) of CCTS as

G(s) =

[
1.8361 e−11.5s

340.7s+1
0.723 e−19.2s

415.4s+1
0.74 e−19.1s

407.3s+1
1.89 e−12.4s

365.6s+1

]
(49)

Further, Equation (2) describes the designed decouplersD(s)
as

D(s) =

[
0 −(246.33s+0.73)

762.72s+1.84 e−s
−(270.55s+0.74)
770.91s+1.89 e−6.7s 0

]
(50)
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FIGURE 12. Servo and regulatory response.

TABLE 2. Coupled conical tank system- performance indexes.

Furthermore, Equations (51) and (52) presents the FOPDT
model Gii(s) as

G11(s) =
1.54

268.99s+ 1
e−1.54s (51)

G22(s) =
1.598

211.9s+ 1
e−1.85s (52)

Thus, the proposed decentralized PID controller C(s)is

C(s) =

[
35 +

1.151
s + 2.03s 0
0 23 +

1.123
s + 3.03s

]
(53)

In order to prove the effectiveness of the proposed con-
trol algorithm for the CCTS, simulations were conducted.
Figure 12 presents the servo and regulatory responses of the
CCTS system. It can be inferred from the figure that the pro-
posed controller exhibits better set-point tracking by reducing
the overshoot and settling time than multiloop PID [25],
multivariable-centralized FOPID (MCFOPID) [25], PI con-
trollers based on particle-swarm-optimization (PSO) [46]
and genetic-algorithm (GA) [43]. Similarly, the regulatory
response is verified with a step signal as input (500 seconds)
and output (800 seconds) disturbance. The set-point tracking
is shown in Figures 12a and 12c and Figures 12b and 12d
presents the corresponding controller outputs. Further,
the Performance Indexes of the controllers are listed
in Table 2.
Subsequently, the dependency of the γ ∗

m in the transient
response is shown in Figure 13. Figures 13a and 13b show
the level variations of tanks 1 and 2 respectively.

FIGURE 13. Servo and regulatory response for various values of γ ∗
m.

FIGURE 14. Spectral radius plot.

FIGURE 15. Set-point tracking of input and output uncertainties.

1) ANALYSIS OF ROBUSTNESS
Similarly, the robustness criteria described in Equations (42)
and (43) is presented in Figure 14. The stability criteria is
satisfied. Further, Figure 15 verifies the robustness of the
proposed controller with the white noise of power 35. The
input uncertainties are shown by Figures 15a and 15b while
Figures 15c and 15d show the output uncertainty. Further, the
model parameters mentioned in Equation (51) and (52) are
varied by ±10%, ±20% and ±30%. Figures 16a and 16b
show the ±10%, ±20% and ±30% variation of (51) while
Figures 16c and 16d shows the variation of (52).

C. COUPLED SPHERICAL TANK SYSTEM
The schematics of the CSTS are illustrated in Figure 17where
h1, h2 needs to be regulated. The process transfer function of
CSTS G(s) as presented in [31] is

G(s) =

[
0.143e−0.996s

236.25s+1
0.13e−82.305s

723.305s+1
0.13e−82.305s

723.305s+1
0.16e−0.996s

314.47s+1

]
(54)

Subsequently, the designed decouplers D(s) are

D(s) =

[
0 −

(30.72s+0.13)
103.43s+0.143e

−81.31s

(40.88s+0.13)
115.73s+0.16 e

−81.31s 0

]
(55)
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FIGURE 16. Set-point tracking of Equations (51) and (52) for parametric
variations.

FIGURE 17. CSTS.

FIGURE 18. Servo and regulatory response.

TABLE 3. Coupled spherical tank system - performance indexes.

Besides, the FOPDT model Gii(s) is

G11(s) =
0.1056

160.5s+ 1
e−0.108s (56)

G22(s) =
0.118

203.6s+ 1
e−0.091s (57)

FIGURE 19. Servo and regulatory response for various values of γ ∗
m.

FIGURE 20. Spectral radius plot.

FIGURE 21. Set-point tracking of input and output uncertainties.

FIGURE 22. Set-point tracking of Equations (56) and (57) for parametric
variations.

The proposed decentralized PID controller C(s) is

C(s) =

[
12.5 +

0.8
s + 1.5s 0
0 32.1 +

5.5
s + 2.3s

]
(58)

Similarly, Figure 19 shows the set-point point tracking for the
CSTS. The design specifications can be easily attained when
compared to [12], [30], and [31]. Similarly, Table 3 highlights
the efficiency of the proposed control law. Besides, the effect
of the γ ∗

m is shown by Figure 19.
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1) ANALYSIS OF ROBUSTNESS
Subsequently, the robustness criteria described in
Equations (42) and (43) is shown in Figure 20.The robust sta-
bility criteria is satisfied. Besides, the robustness is analyzed
in Figure 21 wherein a noise signal of power 45 is applied as
input and output disturbance. Further, the model parameters
mentioned in Equations (56) and (57) are changed by ±10%,
±20% and ±30%. The corresponding reference tracking is
shown in Figure 22.

VI. CONCLUSION
A decentralized PID controller for various variable
area-coupled tank systems based on non-linear constraint
optimization is presented in this paper. Albeit, the robustness
can be analyzedwith the specifications of gain and phasemar-
gin, design flexibility is the main highlight of the proposed
control law. Further, the PID controller parameters were
derived by imposing constraints on the closed-loop amplitude
ratio thereby ensuring reference tracking and robustness.
The FOPDT models were derived for different coupled
tank systems. Besides, the loop interactions were reduced
by designing decouplers. Further, the robustness is verified
with multiplicative input and output uncertainties. Further-
more, the effect of parametric variations is also studied.
Additionally, the stability is analyzed with the Kharitonov-
Hurwitz theorem. From the simulation results, it can be
inferred that the proposed controller is able to attain the
design specifications and exhibits more robust characteristics
than the existing techniques presented in the aforementioned
literature.

APPENDIX
QUADRUPLE TANK SYSTEM
The FOPDT model of the plant G(s)

A(s) =

[
2.332

86.35s+1e
−0.069s 1

1 2.119
110.659s+1e

−0.061s

]
(59)

The designed PID controller C(s) is

C(s) =

[
28 +

0.2985
s + 7.82s 0
0 37.5 +

0.305
s + 11.5s

]
(60)

Hence, as per Equation (27), the open-loop transfer function
W0(s) can be obtained as

W0(s) = C(s) ∗ G(s) =[
28 +

0.2985
s + 7.82s 0
0 37.5 +

0.305
s + 11.5s

]
∗[

2.332
86.35s+1e

−0.069s 1
1 2.119

110.659s+1e
−0.061s

]
(61)

where, the time delays can be expressed by neglecting the
higher order terms as e−0.069s

= 1 − 0.069s and e−0.061s
=

1−0.061s. Further, Equations (59) and (61) can be rearranged

as

A(s) =

[
2.332−0.16s
86.35s+1 1

1 2.119−0.3s
110.65s+1

]
(62)

W0(s) =

[
7.82s2+28s+0.285

s 0

0 11.5s2+37.5s+0.305
s

]
∗[

2.332−0.16s
86.35s+1 1

1 2.119−0.3s
110.65s+1

]
(63)

=

[
−1.25s3+13.73s2−65.25s+0.66

86.35s2+s
7.82s2+28s+0.285

s
11.5s2+37.5s+0.305

s
−1.5s3+19.57s2−79.4s+0.65

110.65s2+s

]
(64)

As described in Equation (28),

det[I + C(s)A(s)] = 0 (65)

On substituting, Equations (64) into (65), the characteristics
Equation can be obtained as

859.2s6 + 589.7s5 + 101.9s4 + 408.5s3 + 485.8s2+

129.9s+ 0.3421 = 0 (66)

The four Kharitonov polynomials K1(s),K2(s),K3(s),K4(s)
are derived from Equations (32) - (35) as

K1(s) = s6 + 31.06s5 + 116.18s4 + 119.09s3 + 297.86s2

+ 141.035s+ 205.585 (67)

K2(s) = s6 + 46.409s5 + 173.56s4 + 119.0s3 + 297.86s2

+ 210.779s+ 307.109 (68)

K3(s) = s6 + 37.97s5 + 173.56s4 + 145.44s3 + 173.56s2

+ 379.7s+ 307.109 (69)

K4(s) = s6 + 37.97s5 + 116.18s4 + 97.68s3 + 297.86s2

+ 172.376s+ 205.85 (70)

The Hurwitz matrix and the row-reduced Hurwitz
matrices for the Kharitonov polynomials described in
Equations (67) - (70) are given by Table 4. The elements in the
matrix are positive and there is no sign change. The positive
values of the diagonal elements are verified and the proposed
controller is robust stable.

TABLE 4. Hurwitz matrix and row reduced Hurwitz matrix - QTS.
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TABLE 5. Hurwitz matrix and row reduced Hurwitz matrix - CSTS.

TABLE 6. Hurwitz matrix and row reduced Hurwitz matrix - CCTS.

COUPLED SPHERICAL TANK SYSTEM
Similarly, Table 5 presents the Hurwitz matrix and the
row-reduced Hurwitz matrix for the Kharitonov polynomials
for the CSTS. The proposed controller is robust stable as the
diagonal elements are positive.

COUPLED CONICAL TANK SYSTEM
Subsequently, the Hurwitz matrix and the row-reduced Hur-
witz matrix for the Kharitonov polynomials for the CCTS are
presented in Table 6. The proposed controller is robust stable
as the diagonal elements are positive.
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