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ABSTRACT This paper mainly focuses on the equilibrium problem of predefined-time stability and control
energy consumption in nonlinear neural networks with time-varying delays. A new criterion for one global
composite switching controller to assure predefined-time stability is provided by employing inequality
technologies and Lyapunov stability theorem. Under the constructed controller, it is proved that the system
is predefined-time stable when the initial conditions are inside and outside the unit sphere. Then, the energy
consumption required for the system to reach the control target is estimated, which is related to the preset
control time. Moreover, the equilibrium problem of the control energy consumption and the settling time is
investigated by constructing an evaluation index function, and the optimal preset control time is obtained.
The results show that a suitable preset control time can better balance the energy consumed by the controller,
which has practical implications. Finally, a simulation example has clearly verified the theoretical results.

INDEX TERMS Equilibrium analysis, delayed neural networks, predefined-time stability, energy
consumption.

I. INTRODUCTION
In past 20 years, neural networks dynamics has caused
extensive concern due to its broad application in the area
of nonlinear dynamic systems, including machine learning,
biological, engineering, and thus generates a group of typi-
cal theoretical results and applications [1], [2], [3], [4], [5],
[6], [7], [8], [9], [10], [11], [12]. As an important research
topic, several stability concepts of neural networks have been
proposed, for example exponential stability and asymptotic
stability. It should be noted that the control time of asymp-
totic stability or exponential stability is infinite. In actual
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applications, it is envisaged to hasten the stabilization of the
system. In consideration of this, various conclusions about
finite-time stability(FTS) have been presented [13], [14],
[15], [16], [17]. FTS demonstrates faster convergence and
improved disturbance rejection properties [18]. The main
issue of FTS is that the settling time function depends on
the initial conditions and it is often an unbounded function.
In order to solve this problem, an improved form of stability
called the fixed-time stability(FxTS) is proposed [19], [34],
[38], [39], in which the settling time function is indepen-
dent of the system’s initial conditions. FxTS improves the
classical finite-time stability in a sense, but it is generally
difficult to estimate the settling time function, because the
relationship between the tuning parameters and convergence
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time is not specific. Many estimations of the upper bound
of the fixed stability time are often much larger than the
actual true convergence time. For some problems, it will be
very convenient if the upper bound of settling time function
can be determined in advance, such as state estimation and
dynamic optimization [21]. To accomplish this, a new class of
finite-time stability notion known as predefined-time stability
has been developed. References [20] and [40], in which the
settling time is a predefined constant and explicitly set as a
function of system’s parameters.

When control a differential system, an important and
unavoidable issue is the control cost. In order to achieve
the control goal, the controller needs to consume a certain
amount of energy [22]. For example, in order to control
an electronic or mechanical network, some energy must be
consumed to drive some components. If the system’s sta-
bilization time is finite but the control energy consumption
is infinite, application in practice is not possible. Therefore,
it is necessary to evaluate the energy consumption in the
process of system control. In general, shorter control time
means more energy consumed by the system. Therefore, how
to coordinate the control time and control energy consump-
tion is a very meaningful topic. In [22], the expression of
control energy consumption was given. In two time scales,
the different scaling behaviors of control time of general
neural networks were analyzed. On this basis, a closed-loop
control framework for complex networks to ensure FTS of
the system was developed, and a trade-off between time and
energy was investigated [23]. Inspired by this, the method
was extended to neural networks [24]. A composite switching
controller was developed to ensure the FxTS of a class of
nonlinear neural networks without delays, and the effect of
modifying parameters on the stability time and energy was
thoroughly investigated. The specific control parameter to
guarantee trade-off between them was given [25].

It should be noted that the above conclusions on control
energy consumption is for the system without time delays.
Time delays are often one of those factors that must be con-
sidered in neural networks. For example, there are time delays
in information transmission and signal conversion. It is there-
fore a challenge to establish the criteria for FxTS of delayed
systems, which motivates our present work. Analysing the
balance between stabilization time and energy cost of delayed
system naturally becomes a topic of research. To handle the
effect of time delays, two compound switching controllers
u(t) = −kx(t) − psign(x(t)) and u(t) = −ksign(x(t))α −

psign(x(t)) have been developed to ensure FTS of nonlin-
ear delayed system, and the switching controller’s control
energy consumption was estimated [35]. For general non-
linear differential systems, the control energy consumption
of proposed controller in FTS is estimated with and without
delays [26].

The settling time’s upper bound in predefined-time sta-
bility can be chosen arbitrarily in advance, but the energy
consumption is associated with the initial states and is
dependent on the parameters of the system, the control

parameters and the settling time. This is different from
the cases of FTS and FxTS. Up to now, the research on
the equilibrium between predefined-time control and con-
trol energy consumption of delayed system has not been
discovered. Overall, the fundamental goal for this research
is to analyze the relationship of predefined-time control and
control energy consumption of delayed system. To facil-
itate readers, the main contributions and innovations are
summarized as follows:

1. To handle the effect of time delays, a novel composite
switching controller is constructed to assure predefined-time
stability of delayed neural networks. In practical applications,
such a controller design would have more selectivity and
flexibility. A sufficient condition has been introduced based
on the constructed Lyapunov function.

2. The specific formula of control energy consumption is
present. By analyzing the equilibrium problem of the settling
time function and control energy consumption, the optimal
settling time function is given, which will facilitate the appli-
cation of the conclusion in practice. The remainder of this
paper is organized as follows. Section II will present some
assumptions, definitions, and lemmas. Section III describes
the main outcomes of our research. A numerical example is
provided in the fourth part to validate our theoretical results.
Finally, the thesis is outlined in Section V.
Notations: Throughout this article, let n > 0 denote an

integer, sig(·)a = |·|
asign(·) with signum function sign(·).

C([a, b],R) symbolizes the continuous function family from
interval [a, b] to real number set R, R+

= {x|x > 0}. The
notation xT denotes the transpose of x. The L2 norm of x is
denoted by ∥x∥ =

√
xT x, and |x(t)| = [|x1(t)|, · · · , |xn(t)|]T .

For f (t) = [f1(t), · · · , fn(t)]T , fi(t) ∈ C([a, b],R),
∥f (t)∥c = supt∈[a,b]

√
f T (t)f (t).

II. PROBLEM FORMULATION
Consider a class of nonlinear delayed neural networks
described by:

ẋi(t) = −dixi(t) +

n∑
j=1

aijfj(xj(t))

+

n∑
j=1

bijgj(xj(t − τ (t))) + ui(t), (1)

where x(t) = [x1(t), · · · , xn(t)]T ∈ Rn is the system state,
D = diag(d1, · · · , dn) ∈ Rn×n, di ≥ 0 and A = (aij) ∈

Rn×n are connection strength matrices. B = (bij) ∈ Rn×n

symbolizes constant connection weight matrices at t − τ (t).
τ (t) symbolizes the time-varying delay, meeting 0 ≤ τ (t) ≤

τ , where the constant τ is known. fj(xj(t)), gj(xj(t − τ (t)))
represent the activation functions at t and t − τ (t). ui(t) is
the controller we will design later. The initial values related
to DNNs (1) are given by xi(0) = ϕi(s), where ϕi(s) ∈

C([−τ, 0],R), ϕ(s) = [ϕ1(s), · · · , ϕn(s)]T .
To get the main results, we present some basic lemmas and

assumptions.
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Assumption 1: For fj and gj, there are two constants
Lj > 0, Mj > 0 such that |fj(y)| ≤ Lj|(y)|, |gj(y)| ≤ Lj|(y)|,
|fj(·)| ≤ Mj, |gj(·)| ≤ Mj,∀y ∈ R. Additionally, fj(0) =

gj(0) = 0.
Definition 1 [20]: Given a constant Tc > 0 in advance,

system (1) is said to be predefined-time stable if it is FxTS and
the settling time function T0(ϕ) is such that T0(ϕ) ≤ Tc,∀ϕ ∈

�, of which the open set � ⊆ C([−τ, 0],Rn) contains 0.
In this case, Tc is called a predefined time.
Lemma 1 [27]: Assume ζ1, ζ2, · · · , ζn ≥ 0 and 0< p1 ≤ 1,

p2 > 1, then

m∑
i=1

ζ
p1
i ≥ (

m∑
i=1

ζi)p1 ,
m∑
i=1

ζ
p2
i ≥ m1−p2 (

m∑
i=1

ζi)p2 .

Lemma 2 [28]: Assume that there exist two numbers
k1, k2 ∈ R+, such that ∀0 < a1 ≤ a2, k1 ∥.∥a1 ≤ ∥.∥a2 ≤

k2 ∥.∥a1 , where ∥.∥a1 is the La1 norm for Rn, and ∥.∥a2 denotes

the La2 norm for Rn. In particular, k1 = 1 and k2 = n
1
a1

−
1
a2 .

In previous literatures [30], [31], the switching controller
design has been well used. In addition, one of our goals in
this paper is to design a delay-independent controller. The
usual approach is to restrict the activation function [32], [33].
Inspired by this, a global composite switching controller is
constructed as follows:

ui(t) =

{
u(1)i (t), ∥x(0)∥c ≥ 1,

u(2)i (t), ∥x(0)∥c < 1.

where u(1)i (t) = −kxi(t) −
2n

β−1
2

(β−1)Tc
sig(xi(t))β − hisig(xi(t)),

u(2)i (t) = −kxi(t) −
2

(1−α)Tc
sig(xi(t))α − hisig(xi(t)), β >

1, 0 < α < 1, u(t) = [u1(t), · · · , un(t)]T , u(1)(t) =

[u(1)1 (t), · · · , u(1)n (t)]T , u(2)(t) = [u(2)1 (t), · · · , u(2)n (t)]T , H =

[h1, · · · , hn]T , and k > 0, hi > 0, Tc is a predefined positive
constant.

Obviously the controller ui(t) is discontinuous, leading
to the discontinuity on the right hand side of system (1).
Therefore, we consider the solutions of system in Filippov
sence [36], [37].
Remark 1: Compared with the method in existing stud-

ies [34], It is more convenient to estimate settling time and
energy consumption using the global composite switching
controller above. we only choose the term of α < 1 inside the
unit ball ⊖ = {∥x∥ ≤ 1} and only choose the term of β > 1
outside the unit ball. Different controllers are selected inside
and outside the unit ball ⊖ = {∥x∥ ≤ 1}, and the control
time can be estimated separately. It should be noted that we
can also choose other controllers in complementary regions
above to achieve the same control target, which means the
design of the controller has more selectivity and flexibility.

III. MAIN RESULTS
In this section, we will prove that DNNs (1) is
predefined-time stable and give the specific formula of con-
trol energy consumption of the designed controller.

A. PREDEFINED-TIME STABILIZATION OF SYSTEM
In this part, we give the sufficient condition of predefined-time
stabilization of DNNs (1) under global control protocol u(t).
Theorem 1: Assume the assumption 1 is satisfied, the con-

trol strength k and matrices A,B,D satisfy the inequality k >

LλA − λD and hi ≥ ∥B∥Mi, the DNNs (1) is predefined-time
stable under u(t), where L = max{Lj|j = 1, · · · n}, λD,λA
denote the smallest and largest eigenvalue of matrices D, A
separately, and ∥B∥ =

√
r(BTB), r(BTB) = max{|λ(BTB)|}.

Tc is the predefined control time.
Proof: We formulate the Lyapunov function V (x(t)) =

xT (t)x(t). Combining definition of the switching controller,
we consider the initial conditions in two cases: ∥x(0)∥c ≥ 1
and ∥x(0)∥c < 1.
Case A:When ∥x(0)∥c ≥ 1.
Step 1: we first calculate the settling time before trajec-

tories enter the unit ball. Before the trajectories enter the
interior of the unit ball ⊖, the controller u(1)i (t) = −kxi(t) −

2n
β−1
2

(β−1)Tc
sig(xi(t))β − hisig(xi(t)) works. The differentiation of

V (x(t)) along the solution of the DNN (1) leads to

dV (x(t))
dt

= (
n∑
i=1

x2i (t))
′

= −2xT (t)Dx(t) + 2xT (t)Af (x(t))

+ 2xT (t)Bg(x(t − τ (t))) − 2|x(t)|TH

−
2n

β−1
2

(β − 1)Tc
xT (t)sig(x(t))β

− 2kxT (t)x(t). (2)

In accordance with the lemma 1, we have

xT (t)sig(x(t))β ≥ n
1−β
2 V

β+1
2 (x(t)).

Since k > LλA − λD, ∥B∥Mi − hi ≤ 0, (2) can be further
reduced to

dV (x(t))
dt

≤ −2(k + λD − LλA)V (x(t))

−
4

(β − 1)Tc
V

β+1
2 (x(t))

≤ −
4

(β − 1)Tc
V

β+1
2 (x(t)). (3)

Obviously, from (3), we can get a constant t∗ such that
∥x(t∗)∥ = 1. Simplifying (3) and integrating it from 0 to t ,
one can have ∫ t

0

dV

V
β+1
2

≤

∫ t

0
−

4
(β − 1)Tc

dt,

Solving this inequality, we can obtain t ≤
TC
2 V

1−β
2 (x(t)).

Further, since V
1−β
2 (x(t)) ≤ 1, we can get the upper bound of

t∗, that is t∗ ≤
TC
2 . Next, using the method of contradiction,

we will prove ∥x(t)∥ < 1 ∀t ∈ (t∗, +∞). Suppose the
trajectories of the system cross the unit sphere again, which
means there is at least a constant satisfying ∥x(t)∥ = 1 on the
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interval (t∗, +∞). We record the smallest moment when the
trajectories cross the sphere again as

t ′ = inf{t ∈ [t̂, t1)| ∥x(t)∥ = 1},

where t∗ < t < t̂ < t1 < +∞ and ∥x(t)∥ < 1. All
the constants in inequality can be obtained because x(t) is
continuous. For t ∈ [t̂, t ′), differentiating V (x(t)) along (1)
yields

dV (x(t))
dt

= −2xT (t)Dx(t) + 2xT (t)Af (x(t))

+ 2xT (t)Bg(x(t − τ (t))) − 2|x(t)|TH

−
4

(1 − α)Tc
xT (t)sig(x(t))α − 2kxT (t)x(t)

≤ −2(k + λD − LλA)V (x(t))

−
4

(1 − α)Tc
V

α+1
2 (x(t)), (4)

where

xT (t)sig(x(t))α ≥ V
α+1
2 (x(t)),

Apparently, V (x(t)) is a monotonically decreasing when t̂ ≤

t < t ′. Then, 1 = V (x(t ′)) ≤ V (x(t̂)) < 1 can be gotten.
Clearly, this is untenable. Therefore, ∥x(t)∥ ≤ 1, ∀t ∈ (t∗, t1),
and we can extend the open interval (t∗, t1) to (t∗, +∞).
Step 2: Estimate control time when trajectories enter

sphere. Clearly, V (x(t)) ≤ V
α+1
2 (x(t)) holds when t ∈

(t∗, +∞). From (4), we have
dV (x(t))

dt
≤ −

4
(1 − α)Tc

V
α+1
2 (x(t)). (5)

Based on lemma 3 [29], [35], we have J (x(t)) ≥ V (x(t))
when t ∈ (t∗, +∞), where dJ (x(t))

dt = −
4

(1−α)Tc
J (x(t))

α+1
2 ,

J (x(t∗)) = V (x(t∗)). Integrating it, one has 1
1−α

J
1−α
2 (x(t)) =

−
4

(1−α)Tc
t + c0, t > t∗, where c0 =

4
(1−α)Tc

t∗ +
2

1−α
. Thus,

we can get V (x(t)) ≤ J (x(t)) = [(1−α)(− 2
(1−α)Tc

t+ c0
2 )]

2
1−α .

Taking J (x(t)) = 0, we have

Tf ≤ t∗ +
Tc
2

≤ Tc.

Case B:When ∥x(0)∥c < 1.
In this case, u(2)i (t) = −kxi(t) −

2
(1−α)Tc

sig(xi(t))α −

hisig(xi(t)) works. Similar to the proof in step 2 above,we
have

Tf ≤
Tc
2

≤ Tc.

To sum up, for the two cases above, the stabilization time
is less than the predefined constant Tc. According to defini-
tion 1, the DNNs (1) is predefined-time stable.

This is all proof.
Remark 2: From the proof process, it can be found that

once trajectories of the system enter the unit ball, they will
remain in the ball, and the controller will not switch repeat-
edly. The system considered is predefined-time stable inside
and outside the unit ball under the controller u(t). Further-
more, if ∥x(0)∥c < 1, the control time is only half the preset
time Tc. We will still use Tc

2 when calculating the energy.

B. ESTIMATION OF ENERGY
Based on the result in [22], the control energy consumption
was defined as4c =

∫ Tf
0 ∥u(t)∥2 dt . For convenience, wewill

also denote 4c as the upper energy bound. Then, the control
energy cost is given as follows.
Theorem 2: For DNNs (1), the upper bound of the energy

cost 4c can be estimated as

4c =



3k2Tc ∥ϕ(s)∥2c +
12n

2β−1
2 ∥ϕ(s)∥2βc

(β2 − 1)(β − 1)Tc
+

6n1−α

(1 − α2)Tc

+
3k2(1 − α)Tc
2(3 − α)

+
6n1−α

(1 − α2)Tc
+3 ∥H∥

2 Tc, ∥x(0)∥c ≥ 1,

3k2(1 − α)Tc ∥ϕ(s)∥3−α
c

2(3 − α)
+

6n1−α ∥ϕ(s)∥1+α
c

Tc(1 − α2)

+
3
2

∥H∥
2 Tc, ∥x(0)∥c < 1.

(6)

where these parameters k, α, β are the same as in
theorem 1. Tc is the predefined stabilization time. ∥H∥ =

max{h1, . . . , hn}.
Proof: Corresponding to theorem 1, we still prove theo-

rem 2 in two scenarios.
Case A:When ∥x(0)∥c ≥ 1
In view of the definition of the switch controller u(t), u(1)(t)

works when t < t∗, while it is u(2)(t) when t ∈ (t∗,Tf ). The
control energy consumption 4c can be calculated as follows

4c =

∫ Tf

0
∥u(t)∥2 dt

=

∫ t∗

0

∥∥∥u(1)(t)∥∥∥2 dt +

∫ Tf

t∗

∥∥∥u(2)(t)∥∥∥2 dt, (7)

when t < t∗, we have∥∥∥u(1)(t)∥∥∥2
≤

(
∥kx(t)∥ +

∥∥∥∥∥ 2n
β−1
2

(β − 1)Tc
sig(x(t))β

∥∥∥∥∥
+ ∥Hsig(x(t))∥

)2

≤ 3k2 ∥x(t)∥2 +
12nβ−1

(β − 1)2T 2
c

∥x(t)∥2β2β + 3 ∥H∥
2 .

In addition, from the inequality in lemma 2, it can be deduced
that ∥x(t)∥2β2β ≤ ∥x(t)∥2β1 ≤ n

1
2 ∥x(t)∥2β = n

1
2V (x(t))β .

So we can get∫ t∗

0

∥∥∥u(1)(t)∥∥∥2 dt
≤ 3k2

∫ t∗

0
V (x(t))dt +

12n
2β−1
2

(β − 1)2T 2
c

∫ t∗

0
V (x(t))βdt

+ 3
∫ t∗

0
∥H∥

2 dt

VOLUME 11, 2023 70055



Y. Wang, L. Wang: General Equilibrium Analysis of Predefined-Time Control and Energy Consumption

≤ 3k2
∫ t∗

0
[V

1−β
2 (x(0)) +

1
Tc
t]

2
1−β dt

+
12n

2β−1
2

(β − 1)2T 2
c

∫ t∗

0
[V

1−β
2 (x(0)) +

1
Tc
t]

2β
1−β

+ 3 ∥H∥
2 t∗

≤ 3k2Tc ∥ϕ(s)∥2c +
12n

2β−1
2 ∥ϕ(s)∥2βc

(β2 − 1)(β − 1)Tc
+

3
2

∥H∥
2 Tc.

(8)

Similar to the above method, we can get∥∥∥u(2)(t)∥∥∥2
≤

(
∥kx(t)∥ +

∥∥∥∥ 2
(1 − α)Tc

sig(x(t))α
∥∥∥∥ + ∥Hsig(x(t))∥

)2

≤ 3k2 ∥x(t)∥2 +
12

(1 − α)2T 2
c

∥x(t)∥2α2α + 3 ∥H∥
2 .

In addition, based on the inequality in lemma 2, it can be
deduced that ∥x(t)∥2α2α ≤ ξ ∥x(t)∥2α = ξV α(x(t)), where
ξ = (ξ2)2α = [n

1
2α −

1
2 ]2α = n1−α . Thus, when t ∈ [t∗,Tf ),

the control energy consumption is estimated as.∫ Tf

t∗

∥∥∥u(2)(t)∥∥∥2 dt
≤ 3k2

∫ Tf

t∗
∥x(t)∥2 dt +

12
(1 − α)2T 2

c

∫ Tf

t∗
∥x(t)∥2α2α dt

+ 3
∫ Tf

t∗
∥H∥

2 dt

≤ 3k2
∫ Tf

t∗
V (x(t))dt +

12n1−α

(1 − α)2T 2
c

∫ Tf

t∗
V αx(t)dt

+ 3 ∥H∥
2 (Tf − t∗)

≤ 3k2
∫ Tf

t∗

[
(1 − α)(−

2
(1 − α)Tc

t + c0)
] 2

1−α

dt

+
12n1−α

(1 − α)2T 2
c

∫ Tf

t∗

[
(1 − α)(−

2
(1 − α)Tc

t + c0)
] 2α

1−α

dt

+ 3 ∥H∥
2 (Tf − t∗)

≤
3k2(1 − α)Tc
2(3 − α)

+
6n1−α

(1 − α2)Tc
+

3 ∥H∥
2 Tc

2
, (9)

where c0 =
2

Tc(1−α) t
∗
+

1
1−α

. Based on (8) and (9), the upper
bound of energy can be obtained

4c = 3k2Tc ∥ϕ(s)∥2c +
12n

2β−1
2 ∥ϕ(s)∥2βc

(β2 − 1)(β − 1)Tc

+ 3 ∥H∥
2 Tc +

3k2(1 − α)Tc
2(3 − α)

+
6n1−α

(1 − α2)Tc
. (10)

Case B:When ∥x(0)∥c < 1. In accordance with theorem 1,
the control time Tf satisfies Tf ≤

Tc
2 . Thus, we have∫ Tc

2

0

∥∥∥u(2)(t)∥∥∥2 dt

≤ 3k2
∫ Tc

2

0
∥x(t)∥2 dt +

12
(1 − α)2T 2

c

∫ Tc
2

0
∥x(t)∥2α2α dt

+ 3
∫ Tc

2

0
∥H∥

2 dt

≤ 3k2
∫ Tc

2

0
V (x(t))dt +

12n1−α

(1 − α)2T 2
c

∫ Tc
2

0
V α(x(t))dt

+
3
2

∥H∥
2 Tc

≤ 3k2
∫ Tc

2

0

[
(1 − α)(−

2
(1 − α)Tc

t + c0)
] 2

1−α

dt

+
12n1−α

(1 − α)2T 2
c

∫ Tc
2

0

[
(1 − α)(−

2
(1 − α)Tc

t + c0)
] 2α

1−α

dt

+
3
2

∥H∥
2 Tc

≤
3k2(1 − α)Tc ∥ϕ(s)∥3−α

c

2(3 − α)
+

6n1−α ∥ϕ(s)∥1+α
c

Tc(1 − α2)

+
3
2

∥H∥
2 Tc,

where c0 =
V

1−α
2 x(0)
1−α

. Finally, we can obtain the upper bound
4c as

4c =
3k2(1 − α)Tc ∥ϕ(s)∥3−α

c

2(3 − α)
+

6n1−α ∥ϕ(s)∥1+α
c

Tc(1 − α2)

+
3
2

∥H∥
2 Tc. (11)

Therefore, the upper bound 4c is summarized as

4c =



3k2Tc ∥ϕ(s)∥2c +
12n

2β−1
2 ∥ϕ(s)∥2βc

(β2 − 1)(β − 1)Tc
+

6n1−α

(1 − α2)Tc

+
3k2(1 − α)Tc
2(3 − α)

+ 3 ∥H∥
2 Tc, ∥x(0)∥c ≥ 1,

3k2(1 − α)Tc ∥ϕ(s)∥3−α
c

2(3 − α)
+

6n1−α ∥ϕ(s)∥1+α
c

Tc(1 − α2)

+
3
2

∥H∥
2 Tc, ∥x(0)∥c < 1.

(12)

Remark 3: Compared with corresponding conclusions
in [24], [35], the predefined control time can be arbitrarily
chosen in advance, which is different from the finite/fixed-
time stability, the energy cost is related to the initial condi-
tions of system, and is associated with control parameters and
control time. This means that we can attempt to find the best
preset time with minimum control energy consumption.

C. EQUILIBRIUM ANALYSIS
According to the results of the first two sections, it can
be found that although the control time is set in advance,
the control energy consumption is not only relevant to the
control parameters, such as exponents α, β and the control
intensity k , but also relevant to the control time. This means
that different control parameters or control timewill affect the
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control energy consumption. In general, we expect the system
to achieve stability as soon as possible, while the controller
consumes as little energy as possible. How to balance con-
trol time and control energy consumption will be discussed
below. Next, supposing the parameters α, β, and the initial
condition ϕ(s) are set, How does changing parameter k and
preset control time Tc affect control energy consumption
is studied, and the optimal k and Tc that minimize control
energy consumption are found. Specifically, we discuss two
problems. First, when the control time Tc is fixed, we try
to find suitable control strength k to minimize the control
energy consumption 4c. Second, when the control time Tc is
adjustable within one range, we try to discuss the equilibrium
between the stabilization time and energy.

First, when the control time Tc is fixed, we try to
find suitable control parameters to minimize the control
energy consumption 4c. According to the formula of 4c in
section III-B, with respect to the parameter k , the control
energy consumption 4c increases monotonically. According
to theorem 1, we can let k = LλA − λD, and the minimum
energy 4c can be gotten.

Next wewill have a look at the equilibrium between control
time and control energy consumption. When the control time
Tc is adjustable within one range, the control energy con-
sumption is a binary function of k and Tc. It is expected that
the stabilization time and energy are both as small as possible.
Therefore, we study this bi-objective optimization problem:
minTf , min4c. Apparently, the control energy consumption
4c is a monotonically increasing function of the parameter k ,
the control time Tc is independent of the parameter k . Thus,
with respect to the parameter k , the following evaluation
index function is also monotonically increasing. We only
need to discuss the influence of changing the predefined
constant Tc. We discuss the evaluation index function

ϒγ1,γ2 (Tc) = γ10[Tf ] + γ20[4c],

where γ1, γ2 are the adjustable weights, and γ1 + γ2 = 1.
0[.] is a normalization function. For the sake of discussion,
we select linear normalization

ϒγ1,γ2 (Tc) = γ1Tf + γ24c, (13)

andwe still use γ1, γ2 to represent the weights of the objective
function. It is necessary to add that the specific method of
linear normalization is not unique in practical applications.
Depending on the situation, some non-linear normalisation
functions can be selected.

Next, we have a separate discussion of the minimum value
of (14) in two different cases.
Case A:When ∥x(0)∥c < 1.

ϒγ1,γ2 (Tc)

= γ1Tf + γ24c

= γ1Tc + γ2

(
3k2(1 − α) ∥ϕ(s)∥3−α

c Tc
2(3 − α)

+
6n1−α ∥ϕ(s)∥1+α

c

(1 − α2)Tc
+

3 ∥H∥
2 Tc

2

)
, (14)

Differentiating ϒγ1,γ2 (Tc) with respect to Tc, we have

dϒγ1,γ2 (Tc)
dTc

= γ1 +
3γ2k2(1 − α) ∥ϕ(s)∥3−α

c

2(3 − α)
+

3γ2 ∥H∥
2

2

+
6γ2n1−α ∥ϕ(s)∥1+α

c

(1 − α2)T 2
c

.

Taking
dϒγ1,γ2 (Tc)

dTc
= 0 and noting that Tc > 0, we have

Tc =

√
12γ2(3 − α)n1−α ∥ϕ(s)∥1+α

c

(1 − α2)δ̄
≜ Ť1 > 0,

where δ̄ = (6−2α)γ1+3γ2k2(1−α) ∥ϕ(s)∥3−α
c +3γ2 ∥H∥

2,
then 

dϒγ1,γ2 (Tc)
dTc

< 0, Tc ∈ (0, Ť1),

dϒγ1,γ2 (Tc)
dTc

= 0, Tc = Ť1,

dϒγ1,γ2 (Tc)
dTc

> 0, Tc ∈ (Ť1, +∞).

(15)

Obviously, when Tc = Ť1, objective function ϒγ1,γ2 (Tc)
reaches the minimum, Ť1 is optimal choice to reach equilib-
rium between the stabilization time and energy.
Case B:When ∥x(0)∥c ≥ 1.

ϒγ1,γ2 (Tc) =γ1Tf + γ24c

=γ1Tc + γ2

(
(3k2 ∥ϕ(s)∥2c +

3k2(1 − α)
6 − 2α

+ 3 ∥H∥
2)Tc + (

12n
2β−1
2 ∥ϕ(s)∥2βc

(β2 − 1)(β − 1)

+
6n1−α

1 − α2 )
1
Tc

)
≜θ1Tc + θ2

1
Tc

,

where θ1 = γ1 + γ2(3k2 ∥ϕ(s)∥2c +
3k2(1−α)
6−2α + 3 ∥H∥

2),

θ2 = γ2(
12n

2β−1
2 ∥ϕ(s)∥2βc

(β2−1)(β−1)
+

6n1−α

1−α2 ).

Taking
dϒγ1,γ2 (Tc)

dTc
= 0 and noting that Tc > 0, we have

Tc =

√
θ2

θ1
≜ Ť2 > 0.

then 

dϒγ1,γ2 (Tc)
dTc

< 0, Tc ∈ (0, Ť2),

dϒγ1,γ2 (Tc)
dTc

= 0, Tc = Ť2,

dϒγ1,γ2 (Tc)
dTc

> 0, Tc ∈ (Ť2, +∞).

(16)

Obviously, when Tc = Ť2, ϒγ1,γ2 (Tc) achieves the min-
imum value, Tc = Ť2 is the optimal choice to reach
equilibrium between the stabilization time and energy.
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Theorem 3: To summarise, for the linear evaluated
indexed function (13), the predefined settling time Tc ensur-
ing the equilibrium between the stabilization time and energy
satisfies {

Tc = Ť1, ∥x(0)∥c < 1,
Tc = Ť2, ∥x(0)∥c ≥ 1,

(17)

where Ť1 =

√
12γ2(3−α)n1−α∥ϕ(s)∥1+α

c
(1−α2)δ̄

, Ť2 =

√
θ2
θ1
,

δ̄ = (6 − 2α)γ1 + 3γ2k2(1 − α) ∥ϕ(s)∥3−α
c + 3γ2 ∥H∥

2,
θ1 = γ1 + γ2(3k2 ∥ϕ(s)∥2c +

3k2(1−α)
6−2α + 3 ∥H∥

2),

θ2 = γ2(
12n

2β−1
2 ∥ϕ(s)∥2βc

(β2−1)(β−1)
+

6n1−α

1−α2 ).

Remark 4: In predefined-time stability, although the con-
trol time can be arbitrarily preset as a constant, a smaller
control time often means more energy consumption in con-
trol process. As analysed above, we can find an optimal
preset time by studying the equilibrium between the sta-
bilization time and energy cost, which is meaningful in
practical applications. In addition, since the control time in
the predefined-time stability is a preset constant and has
no direct relationship with the control parameters, it is not
possible to discuss the equilibrium of these two indicators
about the control parameters, which is different from the
finite/fixed-time stability.

IV. SIMULATION EXAMPLES
In this section, we will have a simulation example as an

illustration of our theoretical results.
Consider this delayed system with two nodes:

ẋ(t) = −Dx(t) + Af (x(t)) + Bg(x(t − τ (t))) + u(t), (18)

where x(t) = [x1(t), x2(t)]T , u(t) = [u1(t), u2(t)]T D =[
2 0
0 2

]
;A =

[
2 1
2 −0.5

]
;B =

[
−0.2 −0.8
0.1 −0.05

]
.

FIGURE 1. Trajectories of the DNNs (18) with [ϕ1(s) , ϕ2(s)] = [−0.6, 0.7],
∀s ∈ [−1, 0).

According to the above values, we have λD = 2.
We choose gj(x) = fj(x) =

|x+1|−|x−1|
2 , j = 1, 2 which satisfy

lemma 1. f (x(t)) = [f1(x1(t)), f2(x2(t))]T , g(x(t − τ (t))) =

[g1(x1(t−τ (t))), g2(x2(t−τ (t)))]T , τ (t) =
et

1+et . then we can
take L = diag[1, 1], 0 < τ (t) < 1, M = [1, 1]T . By simple
computation, one obtains ∥B∥M = [0.84, 0.84]T ,hi = 0.84.

FIGURE 2. Phase portrait of the DNNs (18) with
[ϕ1(s) , ϕ2(s)] = [−0.6, 0.7], ∀s ∈ [−1, 0).

FIGURE 3. The energy consumption curve of the DNNs (18) with
[ϕ1(s) , ϕ2(s)] = [−0.6, 0.7], ∀s ∈ [−1, 0).

FIGURE 4. The curve between the function ϒγ1,γ2 and control time Tc .

Select k = 3, α = 0.5, β = 2 in controller u(t). Next,
consider two initial conditions.
Case A: Let the initial condition be ϕ1(s) = −0.6,

ϕ2(s) = 0.7, ∀s ∈ [−1, 0). For a preset control time Tc = 1,
we can obtain 4c = 13.3 from theorem 2. Trajectories of
DNN (18) are shown in Figure 1, where it is clear that state is
converging to zero within 1. This shows that our conclusion
is accurate. The phase portrait of the DNNs (18) is shown in
Figure 2. The simulation results of corresponding energy con-
sumption by controller is shown in Figure 3.When the control
time is 1, the required energy cost is 9.16 < 4c = 13.3 from
Figure 3, which is a test of the validity of Theorem 2.

Based on the formula (14), Figure 4 shows the curve
between the functionϒγ1,γ2 and control time Tc with different
weights, where Tc ∈ [0.1, 5]. From (15) we calculate the
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FIGURE 5. Trajectories of the DNNs (18) with [ϕ1(s) , ϕ2(s)] = [−1, 2],
∀s ∈ [−1, 0).

FIGURE 6. Phase portrait of the DNNs (18) with [ϕ1(s) , ϕ2(s)] = [−1, 2],
∀s ∈ [−1, 0).

FIGURE 7. The energy consumption curve of the DNNs (18) with
[ϕ1(s) , ϕ2(s)] = [−1, 2], ∀s ∈ [−1, 0).

values of Tc = Ť1 as

Ť1 =


1.2633, γ1 = 1/2, γ2 = 1/2,
1.4991, γ1 = 1/3, γ2 = 2/3,
1.0052, γ1 = 2/3, γ2 = 1/3.

They are consistent with the corresponding values of Tc when
ϒγ1,γ2 takes the minimum value in Figure 4.
Case B: In this case, let the initial condition be ϕ1(s) =

−1, ϕ2(s) = 2, ∀s ∈ [−1, 0). According to theorems 2, for
a preset control time Tc = 1, we can have 4c = 433.97.
Trajectories of DNN (18) are shown in Figure 5, where it is
clear that state is converging to zero within 1. This shows
that our conclusion is accurate. The phase diagram of the
DNNs (18) is shown in Figure 6. The simulation results of
corresponding energy consumption by controller is shown in
Figure 7. When the control time is 1, the required energy

FIGURE 8. The curve between the function ϒγ1,γ2 and control time Tc .

consumption is 160.35 < 4c = 433.97 from Figure 7, which
is a test of the validity of Theorem 2.

Based on the formula (13), Figure 8 shows the curve
between the functionϒγ1,γ2 and control time Tc with different
weights, where Tc ∈ [0.1, 8]. From (17) we calculate the
values of Tc = Ť2 as

Ť2 =


1.4453, γ1 = 1/2, γ2 = 1/2,
1.4487, γ1 = 1/4, γ2 = 3/4,
1.4352, γ1 = 3/4, γ2 = 1/4.

They are consistent with the corresponding values of Tc when
ϒγ1,γ2 takes the minimum value in Figure 8.

V. CONCLUSION
This paper mainly focuses on the equilibrium problem

of predefined-time stability and control energy consumption
in nonlinear neural networks with delays. A new criterion
for one global composite switching controller to assure
predefined-time stability is provided by employing inequality
technologies and Lyapunov stability theorem. Under the con-
structed controller, it is proved that the system is predefined
time-stable when the initial conditions are inside and outside
the unit sphere. Then, the energy consumption required for
the system to reach the control target is estimated, which is
related to the preset control time. Moreover, the equilibrium
problem of the control energy consumption and the settling
time is investigated by constructing an evaluation index func-
tion, and the optimal preset control time is obtained. The
results show that a suitable preset control time can better
balance the energy consumed by the system, which has prac-
tical implications. Finally, a simulation example has clearly
verified the theoretical results.
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