IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received 10 June 2023, accepted 27 June 2023, date of publication 10 July 2023, date of current version 8 August 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3293647

== RESEARCH ARTICLE

New FXLMAT-Based Algorithms for Active
Control of Impulsive Noise

ALINA MIRZA1, FARKHANDA AFZAL "2, AYESHA ZEB3, ABDUL WAKEEL "1,
WAQAR SHAHID QURESHI4, AND ALI AKGUL “/5:67

! Department of Electrical Engineering, Military College of Signals (MCS), National University of Sciences and Technology, Islamabad 44000, Pakistan
2Department of Humanities and Basic Sciences, National University of Sciences and Technology, Islamabad 44000, Pakistan

3Department of Mechatronics Engineering, College of Electrical and Mechanical Engineering (CEME), National University of Sciences and Technology,
Islamabad 44000, Pakistan

“Centre for Sustainable Digital Technologies, School of Computer Science, Technological University Dublin, Dublin 7, D07 H6KS Ireland

SDepartment of Computer Science and Mathematics, Faculty of Arts and Science, Lebanese American University, Beirut, Lebanon

6Depa.rtment of Mathematics, Faculty of Arts and Science, Siirt University, 56100 Siirt, Turkey

7TMathematics Research Center, Department of Mathematics, Near East University, 99138 Nicosia, Mersin, Turkey

Corresponding author: Wagar Shahid Qureshi (waqar.shahid @tudublin.ie)
This work was supported by the Open Access funding provided by the IReL Consortium.

ABSTRACT In the presence of non-Gaussian impulsive noise (IN) with a heavy tail, active noise control
(ANC) algorithms often encounter stability problems. While adaptive filters based on the higher-order
error power principle have shown improved filtering capability compared to the least mean square family
algorithms for IN, however, the performance of the filtered-x least mean absolute third (FXLMAT) algorithm
tends to degrade under high impulses. To address this issue, this paper proposes three modifications to
enhance the performance of the FXLMAT algorithm for IN. To improve stability, the first alteration i.e.
variable step size FXLMAT (VSSFxLMAT)algorithm is suggested that incorporates the energy of input and
error signal but has slow convergence. To improve its convergence, the second modification i.e. filtered x
robust normalized least mean absolute third (FXRNLMAT) algorithm is presented but still lacks robustness.
Therefore, a third modification i.e. modified filtered-x RNLMAT (MFxRNLMAT) is devised, which is
relatively stable when encountered with high impulsive noise. With comparable computational complexity,
the proposed MFxXRNLMAT algorithm gives better robustness and convergence speed than all variants of
the filtered-x least cos hyperbolic algorithm, and filtered-x least mean square algorithm.

INDEX TERMS Adaptive signal processing, non-Gaussian, mean noise reduction.

I. INTRODUCTION

In recent years, researchers have extensively employed a sim-
ple filtered-x least mean square (FXLMS) based active noise
control (ANC) system to effectively reduce low-frequency
noises [1], [2]. However, the performance of the FXLMS
algorithm suffers when encountered with impulsive noise
(IN), especially in the applied applications i.e. engines,
punching, stamping machines, IV pumps, and all types of
man-made noises [3], [4]. Impulsive noise exists with large

in Eq. 1 [6]:
o(t) = exp V" (1

The scale constraint (y) of the SaS distribution is set to 1,
to make the standard distribution. In Eq.1, characteristic
exponent () controls the expansion of probability density
function (PDF) by varying its value between 0 and 2, i.e.
value closer to zero represents noise with more impulsive case
and labels as a normal distribution for « = 2. The effect of

amplitude for a shorter duration and can affect human health
and communication systems [5]. Impulsive noise is formu-
lated as symmetric alpha-stable distributions (S«.S), defined
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varying o on PDFs of S«a.S distribution is depicted in Fig. 1.
Minimization of a certain cost function is the elementary
principle of adaptive filters [7]. In the FXLMS algorithm, the
cost function is the mean square error supposing the error
produced is Gaussian, i.e. variance is finite. Nevertheless,
when faced with impulsive input, the FXLMS algorithm is not
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Symmetric «:-stable densities, 3=0,~=1,6=0

FIGURE 1. Symmetric alpha stable distributions with varying alpha («).

optimal for reducing impulsive noise (IN) due to its instability
caused by an infinite variance.

Researchers have suggested various solutions for the
FxLMS algorithm to achieve stability in the presence of IN.
To ensure stability where high peak impulses are encoun-
tered, reformed filtered x least mean M-estimator method [8]
and trimmed mean FXLMS algorithm [9] were proposed in
the literature. In [10], the Volterra filter-x maximum corren-
tropy criterion (VFxMCC) algorithm and Volterra filter-x
recursive maximum correntropy (VFxRMC) algorithm were
utilized in a non-linear active noise control (NANC) system to
improve the stability of the Volterra filter when dealing with
impulsive noise (IN). Furthermore, another feed-forward
ANC algorithm based on an information-theoretic learning
framework, incorporating the data-reuse scheme of affine-
projection-based algorithms, was introduced in a separate
publication [11]. It successfully achieved the robustness
of maximum correntropy criterion-based ANC algorithms
against IN and the rapid fast convergence of AP-based
algorithms.

In [12], a robust modified gain filtered-x recursive least
square (MGFxRLS) algorithm was presented to improve the
robustness of the filtered-x recursive least square (FXRLS)
algorithm [13]. It is well known that for impulsive envi-
ronments, RLS-based algorithms have better convergence
and steady-state error if compared to all LMS-based algo-
rithms [7] but at the cost of increased computational
complexity. A less complex modified filtered-x least cosine
hyperbolic (MFXLCH) algorithm for ANC of IN was sug-
gested to enhance stability and convergence of the FxLCH
algorithm in [14].

Moreover, high-order error power (HOEP) adaptive filters
reduce the higher power of the error signal. In [15], [16],
and [17], the least mean absolute third (LMAT) algorithm
as the name represents decreases the 3" power of the error
signal. The error produced in the LMAT algorithm is a convex
function of filter weights therefore, for various distributions
LMAT algorithm outperforms the LMS algorithm. Similarly,
various modified versions of the LMAT algorithm have been
proposed in the literature to improve its performance under
different applications. One such improvement i.e. a robust
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sparse normalized LMAT algorithm was suggested which
provides robustness against impulsive noise [18]. In [19],
a robust normalized least mean absolute third (RNLMAT)
algorithm was introduced that solves the stability issues of
the LMAT algorithm under different noise environments in
system identification problems. Motivated by such perfor-
mance findings [15], [16], [17], [18], [19], authors in [20]
proposed filtered-x LMAT (FxLMAT) algorithm for ANC of
IN and achieved faster convergence than FXLMS algorithm.
However, the FXLMAT algorithm becomes unstable in case
of high impulses. Further, two threshold-based modifications
i.e. sample ignored FXLMAT and sample clipped FXLMAT
algorithms, were presented to improve the convergence and
stability of the FXLMAT algorithm. One of the concerns
with these modifications was their dependency on an appro-
priate selection of thresholds, which is not possible during
online ANC operation therefore, there is a need to further
investigate threshold-independent solutions for improving the
performance of the FXLMAT algorithm in the ANC domain.

Efficient control of IN demands ANC algorithms that
are fast (in terms of steady-state convergence), robust to
noise changes, achieve minimum residual error, and above
all, should have the least computational complexity. In an
attempt to find robust solutions for ANC of IN, initially,
we tested a threshold-independent modification in the FxL-
MAT algorithm to enhance its stability. The proposed
alteration is a variable step size FXLMAT (VSSFXLMAT)
algorithm, which incorporates the energy of the error sig-
nal in calculating the step size of the FXLMAT algorithm.
In addition to that, the RNLMAT algorithm [19] renders
better noise mitigation ability and low complexity. However,
it has never been tested in the ANC domain. Therefore, the
RNLMAT algorithm has been tested in the ANC system in
this paper and is given the name, filtered-x robust normalized
LMAT (FxRNLMAT) algorithm due to its combination with
the filtered reference input. The simulation results indicated
that the algorithm’s robustness is limited in highly impulsive
environments, but it performs well in less impulsive sce-
narios. To further improve both robustness and convergence
speed, a modification is introduced to adjust the step size
of the FXRNLMAT algorithm, resulting in the development
of the MFXRNLMAT algorithm. Extensive simulations con-
ducted during this research demonstrate that the proposed
MEXRNLMAT algorithm outperforms all other investigated
algorithms in terms of stability, convergence, and steady-state
error.

The rest of the paper is summarized as Section II gives
details of newly proposed algorithms, whereas, Section III
provides the proposed algorithm’s complexity analysis. Sim-
ulation results and performance comparisons of the proposed
algorithms with existing solutions are provided in Section IV.
Section V finally concludes the paper.

Il. PROPOSED MODIFICATIONS
The FXLMAT algorithm is based on minimizing the mean
of error third power i.e. the error function is the perfect
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TABLE 1. List of variables employed in ANC system.

[ Symbols | Description |
x(m) Reference noise
X (m) Filtered reference noise

er(m) Error signal received by the error microphone
k(m) Disturbance at error microphone

Py (z) Transfer function of primary path

Sp(z) Transfer function of secondary path

Sp(z) Estimated secondary path

U(m) Adaptive filter coefficients

O(m) Output of adaptive filter

Of(m) Filtered output of adaptive filter

convex function of the filter weights. The cost function and
the weight update equation used for a FXLMAT algorithm
[20] are given in Eq. 2 and Eq. 3, respectively.

J (m) = 3e; (m) sgn[e, (m)]x(m) )
U (m+ 1) = U (m) + pe;(mysgnle,(m)Ixe(m)  (3)

In Eq. 2, J(m) represents the cost function, sgn is the sign
function, and x(m) is the reference noise. Whereas, in Eq. 3,
U(m + 1) refer to the weight at the (m + 1)”’ iteration, p
represents the step size, e, (m) is the error at the m!" iteration,
and x¢(m) is the filtered reference noise, where, xr(m) =
[xf(m), xfm—1),...x (m—Lp+ 1)]T.

In Eq. 3, when a large amplitude impulse is encountered in
the filtered reference signal x¢(m) at instant m, the value of
U(@m + 1)) abruptly increases. This results in the instability
of the algorithm and the algorithm performance is badly
affected due to the existence of IN. Therefore, in this section,
we present our three proficient modifications in the FXLMAT
algorithm which enhances its performance in the presence of
IN. The list of variables used in our proposed model is as
shown in Table 1.

A. PROPOSED VSSFxLMAT ALGORITHM

As previously mentioned, the FXLMAT algorithm’s perfor-
mance deteriorates when faced with impulsive noise (IN).
To address this issue, this subsection introduces the first
modification, namely the variable step size FXLMAT (VSS-
FxLMAT) algorithm, which aims to overcome this limitation.
The proposed VSSFxLMAT algorithm is based on the find-
ings of [21]. The step size of the proposed VSSFxLMAT
algorithm is normalized with respect to the input noise’s
energy and the error signal’s energy. The new weight update
equation along with variable step size is given in Eq. 4-Eq. 6,
respectively.

U(m + 1) = U(m) + p(m)e; (mysgnle, (m)lxs(m) ~ (4)

I

= 5
o = S I mI2 + Tutm ®)
To(m) = ATo(m — 1) + (1 — \)e2(m) ©6)

where &, is a small positive constant being added to the
denominator just to avoid division by zero in Eq. 5. Its value
is chosen to be 0.1. Changing the value of §, does not affect
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the performance of the proposed algorithm as its only role is
to avoid division by zero [21]. A low pass estimator T.(m)
is used to compute the energy of the error signal as given
in Eq. 6, where, )\ is the forgetting factor. The range of A is
defined in the literature as (0.9 < A < 1) [21]. The higher
value of A means more weightage to the past values of the
accumulated error samples and a lower value means more
weightage is given to the current value of the error samples.

In Eq. 5, if an impulse is encountered at instant m, the
energy of the filtered input sample x¢(m) as well as the
error signal e,(m) greatly increases, and thus the step size
decreases. This decrease in step size value for that instant
m momentarily halts the adaptation of the weight update
mechanism in Eq. 4, thus preventing an abrupt change in
updated weights U(mm + 1), which in turn results in enhanced
stability of the algorithm.

Extensive simulations indicate that the proposed VSS-
FxLMAT algorithm exhibits enhanced stability performance.
However, its convergence becomes slow due to the weight
update mechanism being frozen. To overcome this issue of
slow convergence, a new algorithm called FXRNLMAT is
devised in the subsequent subsection.

B. PROPOSED FXxRNLMAT ALGORITHM

According to the literature [19], the RNLMAT algorithm
demonstrates improved convergence speed and robustness
across different impulsive noise (IN) environments. The nor-
malization term, which corresponds to the third order of
er(m) [16], effectively controls the unboundedness of the
input reference noise signal and mitigates the increase in
input variance. Whenever the value of error sample e, (m)
increases due to encountered impulses in the reference sig-
nal, the normalization term m approaches zero, thus
controlling the increase in weight U(m + 1) and preventing
the algorithm from diverging. Motivated by these findings,
we, therefore, tested the same algorithm for ANC of IN
by incorporating filtered reference input Xy () in the paper,
thus named as proposed filtered-x RNLMAT (FxXRNLMAT)
algorithm. The block diagram for the proposed FxXRNLMAT
is shown in Fig. 2. P,(z) and S,(z) are used to represent
primary and secondary paths. The reference signal x(m) is
filtered through the secondary estimated path filter S,(z).
The weight update equation of the proposed FXRNLMAT
algorithm is:

UGm + 1) = Um) + p(me; (mysgnle, (m)xe(m) — (7)

“w
1+ Baoley(m)? ®
where B, is greater than zero, i.e. (82 > 0) in Eq. 7 [19].
B> together with step size p can balance the transient
and steady-state performance when an impulse is encoun-
tered [19]. The proposed FXRNLMAT algorithm achieves
better convergence and low steady steady-state error than
that of the proposed VSSFxLMAT algorithm however, in the
presence of more impulsive noise, it lacks robustness. In order
to improve its robustness, a new algorithm is proposed in

u(m) =
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Impulsive Noise

x(m)

Y

gp(z)

FIGURE 2. Proposed FXRNLMAT algorithm-based ANC system.

TABLE 2. Summarized complexity analysis of the observed algorithms.

Algorithm * +- 7
FxLMS [2] 2L, +2Ms 41 2Ly +2Ms — 2 .-
NSSFxXLMS [21] 3Ly +2Ms +4 3Ly +2Ms +1 1
MFxLCH [14] 3Ly +2Ms +5 3Lp +2Ms +2 2
3Ly +2Ms + 7 3Ly +2Ms + 3 2
MGFxRLS [12] AL2 + 4L, +2Ms+3 | 3L2+ Ly +2Ms +1 [ 2
FxLMAT [20] 2L, +2Ms + 3 2Ly +2Ms — 2 —
Proposed VSSFXLMAT 3Lp +2Ms+5 3Lp +2Ms +1 1
Proposed FXRNLMAT 2Ly, +2Ms + 6 2Ly +2Ms —1 1
Proposed MFXRNLMAT 3Ly +2Ms +9 3Ly +2Ms + 4 2
TABLE 3. Set of simulation parameters. 200
ANC System
Parameters Symbols Values
Primary path coefficients L, 256
Secondary path coefficients Mg 12
Adaptive filter coefficients L, 192
Lambda for Proposed VSSFXLMAT 2000 . . . . N
and Proposed MFxXRNLMAT algorithms A 0.9999 = P
Delta for proposed VSSFXLMAT g oF ey, _SP(Z)
and proposed MFXRNLMAT algorithms da 0.1 E’ """"""""""""" & {
Beta for proposed FXRNLMAT & saoal
and proposed MFXRNLMAT algorithms B2 0.1 fE
Impulsive Noise = 4000 - + - ! .
0 0.2 0.4 0.6 0.8
Parameters Symbols Values Normalized Frequency (x rad/sample)
Total samples Ng 40,000
Total realizations Avg 10 FIGURE 3. Frequency response of primary and secondary acoustic paths.
Characteristic exponent « 1.85,1.65,1.45

TABLE 4. Alpha () values for different cases.

[ Cases | Alpha(c) value |
Case 1 a=1.65
Case 2 a=1.45
Case3 | «=1.85,1.45,1.65

with respect to the energy of input noise and error signal,
thus proposing a modified FXRNLMAT (MFxRNLMAT)
algorithm. The updated weight equations for the proposed
MFxRNLMAT along with step size are given in Eq. 9-11,
respectively.

the next sub-section as the last main contribution of this
research work, which modifies the step size of the proposed

FxRNLMAT algorithm.

C. PROPOSED MFxRNLMAT ALGORITHM
The robustness of the proposed FXRNLMAT algorithm is
improved further by normalizing the step size of FxRNLMAT

81282

Um+1) =U@m) + (

u(m)
1+ Bale (m)]3

)

w(m) =

% ey(m)sgnle,(m)]xy(m). ©9)
n
10
8 + lIxp(m)l|I2 + Te(m) {10
To(m) = AT,(m — 1)+ (1 — Nep(m) — (11)
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TABLE 5. Optimum controlling parameters of investigated algorithms for all cases.
Algorithm Controlling | (Case 1) | (Case2) | (Case3) | (Case4) ‘
parameter
NSSFxLMS [21] 1 5x10~2 [ 5x10~2 [ 1x10~ ' [ 5x10~2
MFxLCH [14] 1 5x10~ T | 5x10~T [ 5x10~ ' | 5x10~ T
MGFxRLS [12] 5 1000 10,000 100 1000
FxLMAT [20] 1 1x10~7 | 1x10~7 | 5x10~7 | 1x10—7
Proposed VSSFxXLMAT 1 1x10~% | 1x10=2 | 1x10~3 | 1x10~ %
Proposed FXRNLMAT m 5x10~% | 5x10~% | 1x10~° | 5x10~F
Proposed MEXRNLMAT 1 5x10~1 | 5x10~T | 5x10~T | 5x10~ !

The proposed MFxRNLMAT algorithm gives better
performance in terms of enhanced robustness, faster conver-
gence, and reduced steady-state error than the previously pro-
posed algorithms even in case of high impulses. The enhanced
performance of the proposed MFxXRNLMAT algorithm com-
pared to other proposed and investigated algorithms are vali-
dated through extensive simulations.

Ill. COMPLEXITY ANALYSIS

This paper introduces different variations of the FXLMAT
algorithm to address active noise control (ANC) of impulsive
sources modeled as symmetric «-stable (SaS) distribu-
tions. It is worth noting that for impulsive noise, second-
order moments do not exist [22]. Computing lower-order
moments is more challenging compared to second-order
moments [23], which poses difficulties in theoretical analysis,
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if not rendering it impossible. Therefore, non-Gaussian signal
processing is quite complicated in terms of calculating statis-
tics than Gaussian signals. This may be the reason that recent
research on ANC of impulsive sources (modeled as a stable
process) does not include the theoretical analysis, and in fact,
the simulations are the major tool to prove the effectiveness
of the proposal (see, for example, [21], [24], [25], [26], [27]).
In this paper, we have also used computer simulations as the
evaluation tool and it is observed that the proposed algorithm
outperforms the existing algorithms.

In real-time applications, the computational complexity
of any algorithm is very important. Table 2 summarizes the
complexity of the proposed VSSFxLMAT, FXRNLMAT, and
MFxRNLMAT algorithms along with the already existing
algorithms. L, and My represent the number of filter coef-
ficients of the primary and secondary paths, respectively.
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The proposed FXRNLMAT algorithm has nearly the same
complexity as the FXLMS algorithm, whereas the proposed
VSSEXLMAT and MFxRNLMAT algorithms show similar
complexity as the NSSFxLLMS algorithm respectively. The
FxLMS algorithm is widely used in many applications due
to its less complexity. Table 2 reveals that the proposed algo-
rithms can be a good alternative for the FXLMS algorithm in
practical applications owing to their computational compati-
bility with the FXLMS algorithm.

VOLUME 11, 2023

IV. SIMULATION RESULTS

MATLAB platform was used for the simulations of ANC
for IN in this research. Algorithms that are taken into
account for comparison are the FXLMS algorithm [2], NSS-
FxLMS algorithm [21], MGFxRLS algorithm [12], MFxLCH
algorithm [14], FXLMAT algorithm [20]. In this paper, three
cases of impulsive noise [6] using SaS process are consid-
ered. All the statistical parameters of IN and ANC systems are
tabulated in Table 3. Moreover, the secondary path, Sp(z) and
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estimated secondary path, SAp(z) is considered to be equal [8],
[9], [12], [13], [14], [21], [24]. The magnitude and phase
responses of the filters, i.e. primary and secondary, are given
in Fig. 3. The superior performance of the proposed algorithm
among the investigated algorithms is validated through mean
noise reduction (MNR), which is used as the performance
metric and is calculated as:

MNR (m) =E[

Te, (m) ] (12)

Ty (m)
Here, E. defines the expectation of the value

T, (m) = AT, (m— 1)+ (1 = A)le, (m)|  (13)
Tk (m) = AT (m — 1) + (1 = A) |k (m)]| (14)

where T, (m) denotes the estimated absolute values of resid-
ual error. While the estimated absolute values of the distur-
bance signal are denoted by Ty (m). Three values of « are
selected to generate three different cases of IN, which are
given in Table 4, representing a less impulsive environment in
case 1 and gradually moving towards more impulsive cases,
i.e. case 2. Case 3 depicts non-stationary noise, i.e. « is time
varying i.e. « = 1.85 such that m < 13000, « = 1.45,
such that 13000 < m < 26000, and finally « = 1.65 such
that 26000 < m < 39000. Moreover, the behavior of all the
investigated algorithms for varying primary paths is depicted
in case 4.

Fig.4 illustrates the primary noise for the first three cases.
To procure the ultimate values of controlling parameters of
discussed algorithms inclusive simulations are carried out for
all discussed cases, however, the detailed results are shown
only for case 2 in this paper (Fig. 5 (a-h)). The selected values
of controlling parameters from rigorous simulations are listed
in Table 5 of all three noise cases.

Moreover, the evolution of step size and MNR curves are
carried out for the proposed algorithms in Fig. 6. It can be
seen that at the start the step size of investigated algorithms
decreases instantly in an attempt to minimize the error and
afterward minor adjustments in the step size are being carried
out by the algorithm so that minimum error can be achieved.
In Fig. 7, the MNR curve for the FXLMAT algorithm is
compared with the standard FXLMS algorithm. It can be
seen that the FXLMS algorithm diverges for case 1, whereas
the FXLMAT algorithm is stable with a slow convergence
speed. Three algorithms are proposed in this research paper
for improving the performance of the FXLMAT algorithm.

It is evident from the literature that NSSFXLMS [21] out-
performs all other algorithms in the FXLMS family. It can
be gauged on its stability and convergence speed. More-
over, faster convergence and low steady-state error of the
MGFxRLS algorithm are also proved in [12]. The MFXLCH
algorithm is a good tradeoff between NSSFxLMS and
MGFxRLS algorithm in terms of computational complexity,
steady-state error, and convergence speed [14]. Therefore,
a comparison of all proposed i.e. VSSFXLMAT, FxRNL-
MAT, and MFXRNLMAT algorithms is carried out with
NSSFxLMS, MFxLCH, and MGFxRLS algorithms for all
three cases.
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A. CASE-1 AND CASE 2

Fig. 8 (a-b) presents the comparison of MNR curves of
the proposed algorithms with already existing algorithms
i.e. NSSFxLMS, MGFxRLS, and MFxLCH algorithm for
more impulsive environment « = 1.65 and ¢ = 1.45,
respectively. It can be seen that the FXLMAT algorithm
becomes unstable and diverges at 15000 iterations in the pres-
ence of high impulses, whereas the proposed VSSFXLMAT
algorithm does not diverge but rather shows very slow con-
vergence. The other proposed FXRNLMAT algorithm shows
better convergence than that of the proposed VSSFXLMAT
algorithm and attains steady-state error of the MGFxRLS
algorithm after almost 25,000 iterations for case 1, but still
encounters robustness issues in case 2. However, the pro-
posed MFXRNLMAT algorithm outperforms the other two
proposed variants in terms of enhanced robustness, low
steady-state error, and fastest convergence. Furthermore, the
convergence speed and robustness of the proposed MFxRNL-
MAT algorithm are much better than that of the NSSFXLMS
and MFxLCH algorithm and also acquires steady-state error
of the MGFxRLS algorithm at about 1000 iterations. More-
over, it is worth mentioning that the performance of the
proposed MFXRNLMAT algorithm approaches that of the
MGFxRLS algorithm in terms of stability, convergence
speed, and robustness with remarkably low computational
complexity as compared to the MGFxRLS algorithm.

B. CASE-3 AND CASE-4

In order to further compare the stability and robustness of pro-
posed algorithms with the investigated algorithms, case 3 and
case 4 are designed to depict a non-stationary environment
during run time application. For a fixed alpha case, all the
investigated and proposed algorithms are initialized with the
optimum step size value for each particular alpha value.
If during run time application noise level changes then the
algorithms cannot be reinitialized with the corresponding
optimum value of step size for that particular alpha. Hence,
serves as a challenging noise environment for the algorithms.
It can be seen from Fig. 8 (c) that after 10000 iterations
when noise becomes relatively more impulsive, FXLMAT
and proposed VSSFXxLMAT algorithms become unstable and
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FIGURE 8. MNR curve evaluation of proposed algorithms (a) case-1 (b) case-2, (c) case-3 (d) case-4.

thus diverge. The proposed FXRNLMAT algorithm tends
to converge however, relatively less robust as compared
to NSSFxLMS, MFxLCH, proposed MFxRNLMAT, and
MGFxRLS algorithms. Furthermore, when the primary path
is varied at 2000 iterations in Fig. 8 (d), it can be seen that
all the investigated and proposed algorithms initially diverge
but start converging again to achieve minimum MNR value.
However, the proposed MFXRNLMAT algorithm is quite
stable and robust even under time-varying characteristics of
noise and primary path changes. Moreover, the proposed
MFxRNLMAT algorithm attains the convergence speed of
the MGFxRLS algorithm with reduced computational com-
plexity as compared to the MGFxRLS algorithm.

V. CONCLUSION

This paper explores the application of high-order error power
(HOEP) adaptive filters in active noise control (ANC) for
impulsive noise (IN). It is observed that the filtered-x least
mean absolute third algorithm (FXLMAT) exhibits instability
when confronted with high levels of IN. To address this issue,
a robust algorithm is proposed, called the modified filtered-x
robust normalized least mean absolute third (MFXRNLMAT)
algorithm. This algorithm incorporates the utilization of noise
and error signal energy to dynamically adjust the step size
for each iteration. Rigorous simulations are conducted to
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evaluate the performance of the proposed MFxRNLMAT
algorithm, and the results demonstrate its superiority in terms
of convergence speed, stability, and robustness compared to
other algorithms investigated in the study.
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