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ABSTRACT Supervoxels provide a natural and compact representation of 3D point clouds that enables oper-
ations to be performed on regions rather than on scattered points. However, most supervoxel segmentation
methods generate supervoxels based on geometric dissimilarity among points and cannot preserve accurate
structure boundaries when noise and outliers are present due to the uncertainty in the random sampling of
representative points (RPs). This paper formulates indoor supervoxel segmentation as selecting RPs and
matching each point with its RP simultaneously. The RPs are selected from nonboundary areas instead of
randomly sampled points, guaranteeing the correctness of sampling from the same structure. The best point-
to-RP matching is achieved through iterative refinement/clustering via an energy descent method, which
ensures the optimal overall segmentation. Experimental tests on five publicly available datasets demonstrate
that our method preserves indoor structure boundaries and small structures more effectively than other state-
of-the-art methods, resulting in performance scores of approximately 0.65 for boundary recall.

INDEX TERMS Point cloud, indoor segmentation, indoor structure, supervoxel.

I. INTRODUCTION
Fast and stable oversegmentation of 3D point clouds into
supervoxels is an important preprocessing step in many appli-
cations, such as object detection [1], [2], [3], [4], semantic
segmentation [5], [6], and line extraction [7], [8], because
of its ability to reduce complexity while fully utilizing the
available spatial information. In contrast to the supervoxels
in videos and images, which correspond to 3D voxels in the
spatiotemporal domain [9], a supervoxel in a 3D point cloud
is defined as a cluster of 3D points exhibiting coherence in
both appearance and features [9], [10], [11].

Indoor supervoxel segmentation is a crucial preprocessing
technique, but it remains in the developmental stage due to
the complexity of indoor environments and data restrictions.
Despite recent research efforts, satisfactory solutions for seg-
menting indoor supervoxels have not yet been developed. The
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pioneering voxel cloud connectivity segmentation (VCCS)
method generates supervoxels based on the neighbor rela-
tionships of voxels at fixed resolutions [12]. However, this
method relies on the initialization of seed points and may not
accurately preserve the boundaries of structures, especially
when the density is nonuniform [9]. Later works formal-
ized supervoxel segmentation as subset selection equations
to improve the adherence of supervoxels to structure bound-
aries [9], [13], [14], [15]. However, these methods may not
be suitable for indoor scenes containing noise and outliers
because of the uncertainty in the random sampling of rep-
resentative points (RPs). Therefore, there is a critical need
to develop a method that can accurately segment indoor
supervoxels with awareness of structures, which remains a
significant challenge for indoor supervoxel segmentation.

This paper proposes a novel approach to segment indoor
supervoxels that accounts for the boundaries of structures.
Unlike previous methods that randomly sample points or rely
on fixed-resolution voxel connectivity, our method selects
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RPs from nonboundary areas and iteratively refines their
matching with input points using an energy descent method
that minimizes the point-to-RP fitting residuals with aware-
ness of structure boundaries. Furthermore, the point-to-RP
fitting residuals are evenly divided among the supervoxels,
ensuring optimal overall segmentation.

The rest of this paper is organized as follows. Related
works are introduced in Section II. The proposed supervoxel
segmentation approach is formulated and implemented as
described in Section III. Experiments performed on five real-
world datasets are reported in Section IV. Finally, Section V
outlines the conclusions and future directions of research.

II. RELATED WORKS
Supervoxel is a natural extension of the concept of superpix-
els in image processing [16], [17], [18], [19], [20]. Despite the
thoroughly research andwidespread application of superpixel
segmentation in electronics fields, methods for segmenting
supervoxels from 3D point clouds are still in an early stage of
development.

In video and 3D image segmentation, a supervoxel repre-
sents a stack of 2D image regions, and the related segmen-
tation methods include energy minimization methods [21],
feature clustering methods [10], [22], graph-based meth-
ods [23], and contour optimization methods [24]. However,
these methods are designed for data with regular structures,
for which the primitives are uniformly distributed [8], and
thus cannot be directly applied to unordered and unstructured
3D point clouds.

The VCCS method [12] was proposed as a pioneering
approach to address this issue by voxelizing a point cloud
via octree clustering based on the geometric and contextual
similarity among k-nearest neighbor (kNN) voxels. Although
VCCS is efficient and yields satisfactory results depending on
the voxel resolution, it may violate structure boundaries due
to the fixed resolution in the seed selection, especially in point
clouds with nonuniform densities [9], [14]. To overcome this
limitation, the boundary-enhanced supervoxel segmentation
(BESS) [15] method treats supervoxel segmentation as a
boundary detection issue and solves it in two steps. In the first
step, boundary points are detected based on the discontinuity
of consecutive points along the scanner’s scan-line. In the
second step, nonboundary points are clustered by means
of a generated neighborhood graph. However, the practical
applicability of BESS is limited to datasets with sequential
point ordering along the same scan line, which restricts its
applicability to general point cloud datasets.

To improve the practicality and effectiveness of supervoxel
segmentation, Lin et al. [9], [25] and Xiao et al. [26] formu-
lated supervoxel segmentation as a subset selection problem
and solved it within a heuristic optimization framework.
In their approaches, the RPs for each supervoxel are ran-
domly selected based on a dissimilarity metric among points,
thus achieving superior effectiveness in both indoor and out-
door environments. However, these methods still suffer from

missing structural details due to the uncertainty in the random
selection of RPs based on geometric deviation.

III. METHODS
A. OVERVIEW
Inspired by previous works [6] and [9], the task of segmenting
a raw indoor point cloud P= {p1, p2, . . . ,pN , consisting of
N points, into supervoxels V= {v1, v2, . . . ,vK can be formu-
lated as seeking representative points RP and finding optimal
correspondences between nonrepresentative point pi ∈ P
and its corresponding rli ∈ RP simultaneously. This can be
achieved via an energy minimization algorithm (Eq. 1) based
on a binary indicator matrix x = {0, 1}N×K .

x∗ = argmin
x

(
∑size(RP)

li=1

∑N

i=1
x ∗ D(pi, rli)

+ λ(size (RP)− K )) (1)

whereD(pi, rli) represents the dissimilarity metric between pi
and rli and K represents the number of supervoxels. As RP is
closely related to the supervoxels, in this paper, we first distin-
guish boundary points from all points via a contour detection
method and then select the points in RP from nonboundary
areas.

The entire workflow consists of three main steps: boundary
detection, initial supervoxel generation and boundary refine-
ment, as depicted in Fig. 1. First, the boundary areas are
extracted from the raw point cloud via a 2D contour detection
method. Then, every point in RP is selected from the non-
boundary areas, and the supervoxel corresponding to each RP
is constructed via an energy descent algorithm. Finally, the
boundaries of the supervoxels are further refined via structure
boundary enhancement and refinement processing.

B. BOUNDARY DETECTION
According to the definition of supervoxels, the RPs should
not be selected from the boundary areas of indoor structures.
Therefore, the first step of ourmethod is to detect the structure
boundaries and filter out these points. Each segmented patch
is converted into a binary image via 3D plane projection,
and its contours are extracted via the iterative reweighted
least-squares (IRLS) algorithm. The structure boundary in
each patch is obtained via a 2D contour reprojection method.
Fig. 2 presents an example of the boundary detection results
obtained in this way.

1) RANSAC SEGMENTATION
Because indoor structures are generally man-made and
can be approximately represented by various planes, the
points in the indoor scene are first segmented via the ran-
dom sampling consensus (RANSAC) method [27]. Given
a point cloud P= {p1, p2, . . . ,pN with associated normals
N= {n1, n2, . . . ,nN , the output of our algorithm is a set of
primitive shapes M= {m1,m2, . . . ,mm with corresponding
disjoint point setsDP = dp1, dp2, . . . ,dpm. Each dpi ∈ PC is
associated with one corresponding primitive shape mi ∈ M ,
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FIGURE 1. The pipeline of the proposed boundary-aware supervoxel segmentation method.

FIGURE 2. Boundary detection results: (a) original point cloud, (b) segmentation results, (c) line detection results and (d) detected
boundary points after buffer analysis.

where mi is a planar shape representing a tangent plane. mi
is parameterized as {pc(xc, yc, zc), nc(nxc, nyc, nzc)}, where
pi and ni of mi represent the center point and normal, respec-
tively, of the fitted plane.

The most important parameters are the maximum point-
to-distance threshold, α1; the normal angle threshold, α2; the
minimum number of supporting points per plane, α3; and
the probability of missing the next largest plane candidate in
each iteration, α4. These parameters are chosen based on the
characteristics of the dataset, as described in Section IV-A.3.
Given that the density of the point cloud plays an important
role in the RANSAC segmentation algorithm, we subsampled
all point clouds in our experiments to a minimum point

distance of 1 cm during preprocessing to ensure reliable
results.

2) CONTOUR DETECTION
Following segmentation, the points in each segmented region
are projected onto occupancy bitmaps on their respective
planes. Each point pj∈dpi is projected onto its associated
planar shape mi via Eq. 2, as shown in Fig. 3.{

xj =
−→
p′jpc · vx

yj =
−→
p′jpc · vy

(2)

−→
p′jpc =

−→pjpc −
(
−→pjpc · nc

)
· nc (3)
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FIGURE 3. Illustration of the procedure for converting a 3D point into 2D.

where p′j represents the point after pj is projected onto its

shape mi.
−→
p′jpc is the x-axis, denoted by vx ; thus, the y-axis

vy can be calculated as vx × nc.

C. INITIAL SUPERVOXEL GENERATION
As described in the previous section, the indoor scene is
transformed into boundary pointsBP and nonboundary points
NP, and the RPs are selected from NP through iterative
refinement/clustering via an energy descent method. All non-
boundary points are initially assigned to supervoxels such
that each RP corresponds to its own supervoxel, and then the
points are sorted in ascending order according to the curvature
of each RP. Then, inspired by [9], when merging two adja-
cent supervoxels si and sj would reduce the overall energy,
these two supervoxels are merged into one supervoxel. This
process is repeated until the energy no longer decreases or
the supervoxel size approaches Tmin. The details are shown
in Algorithm 1, and the supervoxel merging process and
point-to-supervoxel similarity computation are described in
Sections III-C.1 and III-C.2, respectively. The settings of R
and λ are discussed in Section IV. The initial supervoxels and
RPs are shown in Fig. 4.

1) SUPERVOXEL MERGING
Given two adjacent supervoxels si and sj, if these two super-
voxels were to be merged into one supervoxel si′, the merging
energy E1 would equal

E1 = Enew − Eold =
(∑

pn∈si
D (pn, ri)

+

∑
pm∈sj

D
(
pm, rj

)
−

∑
pt∈s′i

D (pt , ri)
)
− λ (4)

To reduce the time complexity of O(size
(
sj
)
∗2),

we assume that the dissimilarity D between si and sj is a
metric that satisfies the triangle inequality. Therefore, Eq. 4
can be written as

E1 ≤

∑
pm∈sj

D
(
pm, rj

)
− (
∑

pm∈sj
D (pm, ri)+

∑
pm∈sj

D
(
rj, ri

)
)−λ

= size
(
sj
)
∗ D

(
rj, ri

)
− λ (5)

Algorithm 1 Initial Supervoxel Generation
1 Input: nonboundary points NP
2 Output: supervoxel set S and RP set RP
3 Set R and λ

4 Initialize: S←NP; RP←NP
5 Compute the RP number size(RP) by R 6 while size (S) ≥

size(RP)
7 Sort S by curvature
8 for each si ∈ S
9 for each sj ∈ neighbor(si)
10 if λ> size (si) ∗ D

(
rj, ri

)
//Section III-C.1

11 Merge sj into si
12 Delete rj from RP
13 end if
14 end for
15 end for
16 λ← λ ∗ 2 17 end while
18 Return S and RP

Thus, if size
(
sj
)
∗ D

(
rj, ri

)
− λ < 0, then E1 < 0, which

means that merging si and sj will reduce the total energy, and
therefore, these two supervoxels should be merged.

2) SUPERVOXEL SIMILARITY METRIC D
(
ri , rj

)
Given two supervoxels si and sj with respective representative
points ri and rj, the supervoxel similarity can be computed as
shown in Eq. 6.

D
(
ri, pj

)
= w1Dgeo (i, j)+ w2Dspt (i, j)+ w3Dbou (i, j)

(6)

where Dgeo (i, j) is the geometric deviation between ri and
rj and is computed as the normalized distance from rj and
pi defined in Eq. 7; Dspt (i, j) is the normal deviation, which
measures the normal similarity between these two points,
as shown in Eq. 8; Dbou (i, j) penalizes supervoxels contain-
ing too many boundary points with varying normals and is
computed as the ratio between the number of boundary points
and the total number of points in these two supervoxels,
which is proposed to control the segmentation conform to
the structure boundaries and ensur that points in the same
supervoxel cannot cross shape structures; and w1, w2 and w3
are corresponding scalar weights, which are introduced in
Section IV-A.3.

Dgeo (i, j) = −ln(
1
√
2πR

exp(−

(∥∥rj − ri∥∥2
2R2

)
)) (7)

Dspt (i, j) = 1− (nj · ni)2 (8)

Dbou (i, j) =
size(si ∪ sj ∩ BP)

size (si)+ size
(
sj
) (9)

where ni and nj represent the normals of ri and rj, respectively,
and size(·) is the function for computing the number of points
in a set.
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FIGURE 4. Initial supervoxel generation results: (a) each supervoxel is colored according to its label, and (b) the RPs are colored red.

D. BOUNDARY REFINEMENT
As described in the previous section, the indoor scene is
segmented into various supervoxels with noncompact shape
patterns, as shown in Fig. 1c, since the energy descent
algorithm does not consider the spatial coherence among
supervoxels. Therefore, it is necessary to apply bound-
ary enhancement and refinement to smooth the supervoxel
boundaries while preserving sharp indoor structures. For each
point pt∈NP, we extract its RP rt as shown in Algorithm 2.

Algorithm 2 Structure Boundary Enhancement
1 Input: S, RP and NP
2 Initialize: Q← ∅ 3 for each pi ∈ NP
4 for each neighboring supervoxel sj of pi
5 Compute D(i, j) for each supervoxel sj
6 Find a supervoxel st with minimal D
7 Assign pi to st 8 end for

Then, if pi∈P and its neighboring point pj satisfy
D (pi, ri) > D

(
pj, rj

)
, where ri and rj are the RPs of pi and pj,

respectively, the boundary of sj can be further compacted by
assigning pi to sj. This process is iterated until no additional
such enhancements can be made. The example illustrated in
Fig. 1d highlights that exchanging supervoxel boundaries in
this way can yield improved boundaries and more regular
shapes. Further details are provided in Algorithm 3.

IV. RESULTS
A. EXPERIMENTAL SETUP
To evaluate the feasibility and robustness of the pro-
posed supervoxel segmentation method, we conducted both
qualitative and quantitative evaluations on various point
cloud datasets, as depicted in Fig. 5a. The algorithm was
entirely implemented using Point Cloud Library (PCL) and
CloudCompare. We performed all experimental studies on
an Intel(R) Core(TM) i7-12700H @ 3.50 GHz processor
with 64 GB of RAM.

Algorithm 3 Supervoxel Boundary Exchange
1 Input: S and RP
2 Initialize: Q← ∅ 3 for each ri ∈ RP
4 for each pt ∈ neighbor(ri)
5 if pt does not belong to si
6 Add pt and ri into Q 7 while Q ̸= ∅
8 for each pj ∈ neighbor(qi)
9 if size

(
spj
)
∗ D(spj , pj) > size (si) ∗ D(si, pj)

10 Assign pj to si
11 if pi /∈ Q
12 Add pi into Q
13 end if
14 end if 15 end for 16 end while

1) DATA SPECIFICATIONS
The performance of the proposed method was evaluated
using five benchmark indoor datasets, which were colored
and visualized in CloudCompare, as shown in Fig. 6a. The
statistics and parameters for these datasets are provided in
Tables 1 and 2. Datasets 1, 2 and 3 were obtained from the
Matterport3D benchmark [29], [30] and captured using a
Matterport3D scanner. Dataset 4 was captured by a Zeb-Revo
sensor using an MLS device [31]. Dataset 5 was obtained
from the Boston Semantic Interpretation Challenge (Indoor)
Benchmark [32] and captured by a common RGBD sensor.
Dataset 4 is a TLS dataset and has relatively low accuracy
compared to the other four datasets.

2) EVALUATION CRITERIA
The boundary recall (BR) is a commonly used metric for
evaluating supervoxel segmentation performance [9], [12].
It is defined as the number of correctly detected boundary
points divided by the total number of detected boundary
points, as shown in Eq. 10.

BR =
|BT ∩ BG|
|BG|

(10)
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FIGURE 5. Qualitative results of indoor supervoxel segmentation: (a) original data; (b) the extracted boundaries for each point cloud; (c) the generated
initial supervoxels, represented by different colors; and (d) the final results after structure refinement.

TABLE 1. Descriptions of the datasets.

where BT and BG are the sets of boundary points in the super-
voxel segmentation results and the ground truth, respectively,
while |BT | and |BG| are the numbers of boundary points in
the supervoxel segmentation results and the ground truth,
respectively. A higher BR indicates better performance in

capturing the boundaries of the indoor structures in the point
cloud.

3) PARAMETER SETTINGS
The input parameters for our method are presented in Table 2.
Unless otherwise specified, all parameters are applicable for
all experiments reported in this paper.

The RANSAC-based boundary detection process relies on
four critical parameters, namely, α1, α2, α3, and α4, which are
determined based on the characteristics of the point cloud,
including the scanner accuracy, density, and noise level. α1
specifies the maximum distance to a compatible point and is
typically set to 0.5% of the width of the input point cloud’s
bounding box. α2 restricts the deviation of a point’s normal
vector from its fitting model [32] and is typically set to 20◦.
α3 denotes the minimum number of points in each segmented
shape, which varies based on the density of the input point
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FIGURE 6. In cases where our method failed, the boundaries of the
supervoxels are colored in black. (a) Undersegmentation on a set of stairs
due to insufficient boundary detection results. (b) Undersegmented cases
violating the boundaries of a thin wall.

TABLE 2. Parameters of the proposed method.

cloud. Finally, α4 is the probability of missing a better candi-
date during sampling and is generally set to 0.001.

The supervoxel generation process depends on two param-
eters, R and λ. R specifies the desired resolution for each
supervoxel and is used to determine the expected num-
ber of supervoxels, as elaborated in Section IV-D. On the
other hand, λ is a regularization parameter that deter-
mines whether two supervoxels should be merged into one,
and it can be set to the median of the lowest dissim-
ilarity distances between each point and its neighboring
points.

The dissimilarity distance computation algorithm involves
three important parameters, w1, w2 and w3. These weights
control the similarity among supervoxels and are associated
with the geometric similarity, normal similarity and boundary
penalty, respectively. The default weights are w1 = 0.4,
w2 = 1, and w3= 0.3.

B. QUALITATIVE EVALUATION
The qualitative evaluation of the results of indoor supervoxel
segmentation on these datasets is presented in Fig. 5. Fig. 5a
displays the five raw point clouds, where the color of each
point is determined by its RGB value. Fig. 5b presents the
extracted boundaries in the selected point clouds. Fig. 5c
illustrates the initial partitioned supervoxels with noncompact
shapes, where each supervoxel is represented by a differ-
ent color. Fig. 5d shows the final results after boundary
refinement.

For structural planes, most supervoxels conform to the
structure boundaries because of the boundary penalty. When
a supervoxel crosses a boundary, causing the number of
boundary points it contains to increase, the boundary penalty
increases significantly. For curved areas, most supervoxels
have compact shape patterns due to the boundary refine-
ment processing; examples include the cylindrical walls in
Dataset 1, the long curved walls of the long corridor in
Dataset 2, and the dome in Dataset 3. However, the pro-
posed method failed to detect relatively small-scale regions
with small numbers of points due to insufficient boundary
detection results, as exemplified by the area in the red box
in Fig. 6a, which depicts a few supervoxels that cross the
boundaries of a set of stairs. Undersegmentation mainly
occurred in areas where the structures were not clearly dis-
tinguished. Despite the structure boundary splitting/merging
penalty, as shown in the case of the thin wall in Fig. 6b,
some supervoxels still cross boundaries due to their geometric
similarity.

In general, most supervoxels adhere closely to the indoor
structure boundaries and exhibit compact shapes, as illus-
trated in Fig. 5d, with the exception of the dome surface in
Dataset 3. The experimental results indicate that the proposed
method achieves outstanding performance in the segmenta-
tion of both a TLS point cloud (Dataset 4) and RGBD point
clouds (Datasets 1, 2 and 3 and 5).

C. PERFORMANCE COMPARISON
We further discuss the effectiveness of our method in com-
parison with other state-of-the-art segmentation algorithms
on the same datasets. The results are shown in Table 4 and
Figs. 7–10. VCCS [12] is the most popular method at
present and has proven to be useful for both indoor and
outdoor scenes. KNNVCCS is a modified version of VCCS
in which VCCS’s voxel-based neighborhood is replaced
with K-nearest neighbor points. KBBS [9] also formulates
the supervoxel segmentation problem as a subset selection
problem, making it the most similar to our method. Accord-
ingly, these advanced methods of supervoxel segmentation
are selected for performance evaluation. The key parameters
of all these methods were set as suggested in their original
papers. Figs. 7–9 visualize the results of these four methods
on three selected datasets (Datasets 2, 3, and 5) for compari-
son. Fig. 10 shows the corresponding metrics on the selected
datasets.
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FIGURE 7. Supervoxel segmentation results on Dataset 2, where each supervoxel is colored differently and the supervoxel boundaries are
displayed in black. The resolution R of a supervoxel is 0.3 m in rows 1 and 2, while it is 0.5 m in rows 3 and 4. The differences between the
boundaries of the supervoxels and the ground-truth boundaries are highlighted in rows 2 and 4, where the detected true boundaries and
incorrect boundaries are depicted as green and red lines, respectively.

FIGURE 8. Supervoxel segmentation results on Dataset 3, where each supervoxel is colored differently and the supervoxel boundaries are
displayed in black. The resolution R of a supervoxel is 0.3 m in rows 1 and 2, while it is 0.5 m in rows 3 and 4. The differences between the
boundaries of the supervoxels and the ground-truth boundaries are highlighted in rows 2 and 4, where the detected true boundaries and
incorrect boundaries are depicted as green and red lines, respectively.

The VCCS-based algorithms obtained relatively lower BR
values than KBBS and our method on the three datasets. This

lower performance can be attributed to the fact that VCCS
segments indoor scenes with a fixed resolution, making it
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FIGURE 9. Supervoxel segmentation results on Dataset 5, where each supervoxel is colored differently and the superpixel boundaries are displayed in
black. The resolution R of a supervoxel is 0.3 m in rows 1 and 2, while it is 0.5 m in rows 3 and 4. The differences between the boundaries of the
supervoxels and the ground-truth boundaries are highlighted in rows 2 and 4, where the detected true boundaries and incorrect boundaries are depicted
as green and red lines, respectively.

FIGURE 10. Quantitative evaluation of the four methods on Datasets 2,
3 and 5.

less robust to varying densities [9] and high levels of noise,
resulting in missing structural details. Supervoxel segmenta-
tion may be better formulated as a subset (or RP) selection
problem to balance the geometric fitting errors and spatial
coherence among supervoxels, which significantly improves
performance.

The proposed method also achieved better performance
than KBBS, especially for curved structures with small devi-
ations in curvature, as shown by the long corridor in Dataset
2 and the dome in Dataset 3. This is because KBBS randomly
selects RPs based on geometric deviation, which significantly

reduces its BR on Datasets 2 and 3. Our method uses the
extracted boundaries as constraints and introduces a boundary
penalty to select splitting/merging operations for supervoxels
in the boundary areas, which in turn improves the perfor-
mance of indoor supervoxel segmentation.

D. PERFORMANCE COMPARISON
To investigate the effect of the resolutionR on supervoxel seg-
mentation, we conducted additional experiments with varying
resolutions using our method. The number of generated
supervoxels increases with decreasing resolution, as shown
in Figs. 11 and 12. The run times in this experiment are
shown in Table S1 in the supplementary file. Notably, even
when the supervoxel resolution is larger than the width of
certain structures, our method can still accurately preserve the
boundaries, as illustrated by the regions marked with black
boxes in Figure 11. The experimental results demonstrate
that the optimal resolution R for supervoxel segmentation
depends on the density and accuracy of the point cloud data.
Specifically, for input data with high density and accuracy
and few occluded areas, as in Dataset 4, R= 0.5 achieves the
best performance. On the other hand, for point clouds with
low density or accuracy, such as RGBD point clouds (e.g.,
Datasets 1, 2, 3 and 5), a lower resolution of R= 0.3 yields
better results. Therefore, the appropriate choice of resolution
should be determined in accordance with the characteristics
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FIGURE 11. Supervoxel segmentation results on Dataset 2 with different resolutions, where each supervoxel is colored differently and the boundaries
are colored black. The figures in rows 2 and 4 are magnifications of the point clouds corresponding to the black boxes in rows 1 and 3, respectively.

FIGURE 12. Numbers of supervoxels with different resolutions in
Dataset 2.

of the input data to ensure the best possible performance of
the proposed method.

V. CONCLUSION
Existing methods for the segmentation of supervoxels
from indoor point clouds rely on geometric dissimilarity
to distinguish the structure boundaries and show obvi-
ous defects in the intersection regions of curved struc-
tures. To address this issue, we propose a boundary-
aware supervoxel segmentation method and evaluate its

performance on five point clouds. Our comprehensive exper-
iments demonstrate that our approach achieves superior
performance compared to other state-of-the-art methods
across various types of point clouds.

Despite the promising results, our approach also has some
limitations. For instance, it may fail in relatively small-scale
regions due to insufficient boundary extraction, as illustrated
by the region marked with the red box in Fig. 6a. In addi-
tion, our method still produces some noncompact supervoxel
shapes, as observed in the dome area in Dataset 3. The
supervoxel segmentation of domes and orbicular structures
will be further considered in future work.
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