
Received 8 June 2023, accepted 21 June 2023, date of publication 10 July 2023, date of current version 24 July 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3293525

PARALLELC-ASSIST: Productivity Accelerator Suite
Based on Dynamic Instrumentation
NACHIKETA CHATTERJEE 1, SRIJONI MAJUMDAR 2, (Student Member, IEEE),
PARTHA PRATIM DAS 3,4, (Member, IEEE),
AND AMLAN CHAKRABARTI 1, (Senior Member, IEEE)
1A. K. Choudhury School of Information Technology, University of Calcutta, Kolkata, West Bengal 700073, India
2School of Computing, University of Leeds, LS2 9JT Leeds, U.K.
3Department of Computer Science, Ashoka University, Sonipat, Haryana 131029, India
4Department of Computer Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India

Corresponding author: Nachiketa Chatterjee (nachiketa.chatterjee@gmail.com)

ABSTRACT Software developers often face challenges in terms of quality and productivity to match
competitive costs. The software industry seeks options to minimize this cost during different phases of
software development and maintenance with improved productivity. Software developers adopt different
tools for different purposes, such as understanding program behavior, debugging memory issues, debugging
concurrency issues, and testing. In this article we study different debugging tools mostly used for program
design analysis, thread debugging, and resource management. Stand-alone tools do track static or dynamic
control flow, thread activities, etc. But these do not specifically identify the thread work-breakdown-
structure, global memory location management, thread-data interaction, etc. to allow good comprehension of
the concurrency model of the program. Similarly for resource management, we observe that the Valgrind
addresses a few required features but does not offer automatic garbage collection. Moreover, to address the
outcomes of different tools, developersmust compile and configure the application in different environments.
This is very time-consuming, requires skills in different software paradigms, and is sometimes not supported
by the tool itself. As a result, they cannot be used in an inter-operable manner to analyze by relating the
different tool’s outcomes. In this study, we conduct a detailed survey of the available tools and techniques and
their limitations in identifying gaps. We address these gaps by implementing the tools for different phases
of software development and maintenance. For example, a concurrency model detector based on thread
behavior, resource debugger with features of automatic garbage collection, etc. can collectively inter-operate
within our designed open-source tool framework PARALLELC-ASSIST to address the common requests of the
developers in one toolset. The tool is built upon open-source dynamic instrumentation tool PIN and supports a
wide variety of IDEs and OS to detect various multi-threaded memory issues and provide additional features
to inject concerns dynamically at run-time to extend it further according to the user’s needs. We verify our
tool with a wide variety of industry-standard benchmarks and compare its features with other similar tools.

INDEX TERMS Multi-threaded issues, memory issues, dynamic instrumentation.

I. INTRODUCTION
While the costs for Software Development Life Cycle
(SDLC) have reduced considerably over the past three
decades, the maintenance cost has gone up significantly and
is amounting tomore than 90%of the total SDLC cost [1], [2],

The associate editor coordinating the review of this manuscript and

approving it for publication was Hui Liu .

[3] now. The National Institute of Standards and Technology,
USA, estimates that 54.33% and 21.42% of the SDLC costs
are related to the efforts of spent by developers to fix bugs
and enhance code in the maintenance phase [4]. The costs
are incurred owing to challenges in Program Comprehension
(PC) of existing code bases, lack of adequate documentation,
improper knowledge transfer from core teams, and incom-
plete and inadequate test strategies [1]. Naturally, this leads

VOLUME 11, 2023 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 73599

https://orcid.org/0000-0002-1109-5063
https://orcid.org/0000-0003-3935-4087
https://orcid.org/0000-0003-1435-6051
https://orcid.org/0000-0003-4380-3172
https://orcid.org/0000-0002-3267-6801


N. Chatterjee et al.: PARALLELC-ASSIST: Productivity Accelerator Suite Based on Dynamic Instrumentation

to lowering of the quality of software and the productivity of
developers.

The manifestation, nature, and complexity of the chal-
lenges of comprehension vary widely on the type of program-
ming languages. For example, the dangling pointer issue in
C is automatically managed by the Java run-time. Hence,
the nature of the support required by the developers also
varies accordingly. C provides low-level access to memory
and hardware, has cross-platform features, and is primar-
ily used to build the firmware, operating systems, and so
on [5]. For effectiveness, the codes written in C must cer-
tainly be multi-threaded in nature. A significant number
of multi-threaded C codes have been developed in the last
decade owing to the rise of cost-effective and energy-efficient
multi-core technologies [6]. Due to this proliferation, many
developers have had to deal with new correctness issues
(like non-deterministic nature, concurrency bugs) and perfor-
mance improvement techniques, without effective and simple
multi-core programming tools, which in turn significantly
added to the maintenance woes and overhead.

The major support areas for multi-threaded program-
ming include analysis of concurrency-induced bugs, concur-
rency related design aspects, and performance improvement,
in addition to the support required for single threaded applica-
tions such as debuggers and resource managers [7]. A survey
conducted byMicrosoft concluded that 66%of the developers
find it difficult to deal with concurrency-induced bugs and
issues and often need help to comprehend the concurrency
models of an application to debug concurrency bugs. For
example, to find the root cause of a deadlock and to fix
the same, concurrency models related to the thread data (or
resource) interaction, lock hierarchy, thread work breakdown
structure, and starving threads need to be known.

Research has been conducted to help developers deal with
the complexities of multi-threaded applications. Debuggers
like Intel Debugger (IDB) [8] and Intel Inspector [9] pro-
vide advanced debugging features for threads (mostly data
race) and memory errors. They provide APIs for integra-
tion with popular IDEs such as Eclipse but mostly through
commercial product suites such as Intel Composer XE or
Intel System Studio [10]. A number of approaches have
been proposed for deadlock and data-race detection through
the analysis of run-time events in [11], [12], and [13].
Apart from debugging, the analysis of thread activities
and synchronized executions has been attempted in [14]
and [15]. Researchers have employed static and dynamic
weaving of code using aspects to understand the behaviour
of the code for designing relevant test cases [16] or for
extracting design elements [17]. Intel provides development
suites like Intel Parallel Studio [18], and Intel System Stu-
dio [19] for debugging, testing, tracing, and monitoring
applications. The design principles of existing tools and
strategies used for multi-threaded debugging, resource man-
agement, design analysis, and dynamic aspect weaving, are
detailed in Section II including the gaps identified in each
area.

We observe that most existing approaches are standalone
tools and address specific issues related to multi-threading.
There is an absence of an integrated inter-operable framework
to provide aid to analyze a multi-threaded application in
its totality. Owing to the non-deterministic nature of multi-
threaded applications, it is important to understand the design
of the application to fix or to enhance them. In addition,
the framework needs to be integrated with IDEs, to reduce
the learning overhead of developers and facilitate easy dif-
fusion [20]. An integrated framework would reduce the
cross-transportation of data, overheads in learning new devel-
opment environments, andmultiple installations, and the like.
Intel, and Microsoft, have tried to address this to a certain
extent and have created development suites for bug-fixing,
quality assurance, and testing strategies of multi-threaded
applications with support for integration to standard IDEs and
debuggers [21]. However, most of these frameworks do not
focus on deducing the concurrency-related design aspects,
are commercial, and cater to the needs of a certain language
(mostly open MP), development environment, or compiler.
They additionally lack the features for supporting customized
tools and features, which might be required apart from the
features supported in the suite.

In this article, we propose PARALLELC-ASSIST tool set to
analyze concurrency-related aspects of design based on
thread-resource interaction [22]. We target to detect dead-
lock, data-race, and possible livelocks using GNU Debugger
(GDB) augmented with new commands [12], to support
interface for dynamic weaving to inject thread functions at
run-time [23], and to automate garbage collection for C appli-
cations [24].

The tools related to concurrency models and dynamic
weaving are of one type, and there are not many equivalent
tools that analyze these aspects of the multi-threaded appli-
cations. Hence, integrating these tool sets with the concurrent
bug detection and resource management tools makes the
framework more effective. We have tested PARALLELC-ASSIST

using the pthread CDAC [25] benchmark. We ran all the
tools individually, repeated the process through the integrated
architecture, and obtained correct results for all the programs
in the test suite. PARALLELC-ASSIST can be extended to other
OS, debuggers, or compilers based on the availability of
suitable interconnectionAPIs. Hence, themajor contributions
of this study are as follows.

• Study of the various open source instrumentation tools,
IDE’s, and debuggers and their possible interactions

• An inter-operable framework of tools, integrated with
common IDE’s, to assist in developing and maintaining
multi-threaded applications

• Unique combination of tools that deduce concurrency-
related design aspects along with concurrency bugs

The remainder of this paper is organized as follows. Section II
presents a literature survey. We discuss the architecture of
PARALLELC-ASSIST in Section III, and individual tools and
some case studies are discussed in Section IV. Finally,
we conclude with directions for future work in Section V.

73600 VOLUME 11, 2023



N. Chatterjee et al.: PARALLELC-ASSIST: Productivity Accelerator Suite Based on Dynamic Instrumentation

TABLE 1. Thread and Resource Debugging Support in various tools in
different IDEs or Product Suites shown in comparison with the features of
parallel C-Assist. Further comparative information are given in Table 5.

II. RELATED WORK
The tools in our PARALLELC-ASSIST framework are designed
for single as well as multi-threaded native C applications
with focus on four major functionalities – debugging concur-
rency bugs, discovering design models, automating resource
management, and providing a handle to weave code using
aspects. Hence, we review the integrated product suites, IDE-
supported features, and standalone tools and utilities that
target to provide similarly functional support.

A. DEBUGGING
Standard debuggers provide support for breakpoints in
memory-related errors, such as overflow and uninitialized
access, in addition to data control and monitoring of related
breakpoints. Further, some of the debuggers support break-
points to trace thread data interactions and concurrency bugs
(deadlock and datarace). We enumerate the standard debug-
gers provided as part of the IDE’s or as product suites in
Table 1.

Stand-alone tools have been designed to specifically
support advanced debugging features, such as concur-
rency bugs. The authors of [13], [33], and [34] sug-
gested approaches to detect data races by constructing
happens-before graphs on runtime event traces. To detect the
data-race, Christiaens et al. [35] employed different logical
clocks over the collected run-time traces of send-receive
events. In [36], Moiseev et al. detected data races in SystemC
designs by static analysis of every program construct and
event notifications.

Gaps: None of the stand-alone tools leverage and integrate
the support from standard debuggers. We address this issue

by extending the open-source gdb [27] debugger in [12]
to detect data races and deadlocks for multi-threaded C
applications using PIN [37]. Hence, we re-use the standard
debugging features of the gdb [27] and add support to
concurrency related debug features.

B. RESOURCE MANAGEMENT
Detecting errors such as uninitialized memory, dangling
pointers, unreachable locations, and leaks in the stack and
heap memory are common supports required in all phases of
the SDLC. The resource management tools available as part
of the IDE or as product suites are listed in Table 1 (Resource
Debuggers).

Most of the tools discussed in Table 1 are com-
mercial and require recompilation with specific libraries.
Valgrind [38], however, is free and has multiple features to
detect several memory management and threading bugs and
is also used for program profiling.

As part of stand-alone tools, Windbg [39] provides com-
plete memory statistics (address, length, and freed size) for
the heap-allocated locations. ccmalloc [40] is a memory
profiler that detects memory leaks and detects repeated deal-
location of the same memory location. LeakTracer [41]
extended gdb to print the allocated memory locations that
have not been freed. Memdebug [42] tracks and logs
(if desired) memory allocations and deallocations to infer
memory leaks.

Gaps: Among the open-source and commercial resource
management tools, Valgrind [38] provides most of the
required features including detection of several memoryman-
agement and threading bugs. It is also used for program
profiling. However, it does not provide a comprehensive inter-
face consisting of functionalities such as automatic garbage
collection. We address the same in [24] based on PIN [37],
wherein we extend the features provided by Valgrind.

C. DESIGN
Comprehending the design is essential for any code fixing /
enhancement task. For example, while fixing a performance
issue, developers must understand the control flow on the
relevant code lines along with the design of the code.

Research has mostly focused around standalone tools,
where approaches have been suggested for constructing
control-flow graphs and detecting design patterns. The
authors in [43], [44], and [45] constructed a set of cogent
relationships between the components of a program and the
elements extracted from the application domain ontology
based on a static analysis of the source code. The design pat-
terns (Gang of Four) were extracted from the source code for
object-oriented languages, using source code parsing in [46]
and [47].

In the case of a multi-threaded program, the design is
defined additionally in terms of the aspects of concurrency
ingrained in the application. These aspects of design are
difficult to infer because of their non-deterministic nature

VOLUME 11, 2023 73601



N. Chatterjee et al.: PARALLELC-ASSIST: Productivity Accelerator Suite Based on Dynamic Instrumentation

and cannot be directly understood from the extracted control
flow. In [48], [49], [50], and [15], the sequence of the pro-
gram execution is transformed, and the relevant sequences are
extracted, such as event control flows, thread, routine, and
class mapping using static analysis and dynamic profiling.
In [51], the authors estimated inactive threads to comprehend
the effectiveness of parallelism in programs using dynamic
profiling. The runtime patterns for thread behavior in the
case of shared data locations were deduced by inspecting
synchronized executions in [14] and [15].

Gaps: The tools proposed so far track static and dynamic
control flow graphs, thread activities, execution sequences
but do not aid to comprehend the concurrency-related design
issues in totality. For example, understanding thread work-
breakdown-structure, global memory location management,
thread-data interaction, and thread scheduling is as important
as understanding the design of a multi-threaded application.
We address the same in [22], where we build a concurrency
model detector based on thread behavior.

D. CODE WEAVING AND INSPECTION
Approaches have been explored for building an Aspect-
Oriented Programming (AOP) framework using Java to help
weave code, enhance or observe program behavior, and write
relevant test cases [16]. AspectC++, an extension of AOP
for C++, was created [52] based on AspectJ [53] of Java,
to enable the static weaving of code. AspectC++ has been
used in multiple scenarios; however, static weaving requires
recompilation after every code change. These methods do
not implement weaving-on-the-fly (without recompilation),
that is, aspect weaving at runtime. We propose dynamic
aspect weaving for C programs in [23], wherein we use
dynamic instrumentation framework to attach, detach, and
modify concerns during the execution of the programwithout
modifying the program. Using the observations from code
weaving, we can design effective test cases.We also observed
that research related to code weaving has mostly focused on
standalone tools.

E. INTEGRATED DEVELOPMENT ENVIRONMENT,
PRODUCT SUITES
The Eclipse CDT [54] is a commonly used IDE that
supports multiple features, such as call graphs, code high-
lighter, code generation, and debugging facilities, to help
developers write correct and efficient code. IBM extended
Eclipse to Hyades [55] with an integrated test and ver-
ification module. Microsoft has developed PREfix [21],
an integrated framework that helps to detect logic and coding
errors based on pattern matching with a pool of com-
mon errors. PREfast [21], another integrated tool from
Microsoft, detects discrepancies in the coding conventions
used. In [56] Microsoft presented SLAM for model checking,
along with detecting common errors such as buffer overruns.
SUN extends Netbeans to develop jackpot source code
metrics to examine codes and detect structural issues [21].

Intel provides development suites like Intel Parallel
Studio XE [57], and Intel System Studio [58],
with support for tracing programs, analyzing execution
sequences, detecting memory and thread errors, etc. The Intel
frameworks also provide extension APIs for integration into
standard IDEs, such as Eclipse CDT, Visual Studio,
and debuggers, such as gdb.

The integrated frameworks, however, are mostly com-
mercial and targeted to managed languages, such as Java
and Python. Additionally, they focus on bug checking and
program tracing and not on other crucial support, such as
extraction of the design. Similarly, standalone tools focus
only on specific aspects, incur a huge installation and learning
overhead, and do not allow the facilities from other tools
to be used in an inter-operable manner. For example, while
debugging an application for a memory error, the developer
may need to know the thread work-breakdown-structure or
the likely threads that start in execution for a particular input.
In another scenario, the developer may want to debug the
program after dynamically weaving some code at runtime.

We address these challenges in PARALLELC-ASSIST, where
we integrate the support for debugging, design extraction,
and code inspection into a singular framework and extend
the same with a standard IDE such as Eclipse CDT.
In the next section, we discuss the various open-source
frameworks explored to conclude on a set for developing
PARALLELC-ASSIST.

F. SURVEY OF OPEN SOURCE FRAMEWORKS
As several design aspects ofmulti-threaded applicationsman-
ifest only at runtime, we focus on open-source dynamic
instrumentation tools to trace and extract runtime events. Fur-
ther, there should be support for plugins for the integration of
the instrumentation framework with a common development
environment and debuggers. These plugins / interconnections
must be re-targeted in order to develop an integrated frame-
work. We review the tools and their support for extensibility
into other frameworks in Table 2.
We see that PIN [37], [59] and Valgrind [38], [62] are

both well-accepted and widely used dynamic instrumenta-
tion frameworks. However, PIN is lightweight, is 3.3x times
faster [59] than Valgrind, has support for integration with
multiple debuggers and IDEs, and is available for several
operating systems. As our focus is on creating a framework
that can benefit parallel developers working with multiple
OSs, compilers, IDEs, and debuggers, the PIN is well-suited
for our requirements. We use the PIN to build our analysis
tools and re-target its remote extensions to Eclipse CDT,
gdb, and LLDB debuggers to develop an integrated architec-
ture. We explain the process of re-targeting and analysis tools
in Sections III and IV, respectively.

III. ARCHITECTURE
Our aim is to develop an integrated architecture to sup-
port all features from a single screen without the need
for cross-transportation of information and manual linking.

73602 VOLUME 11, 2023



N. Chatterjee et al.: PARALLELC-ASSIST: Productivity Accelerator Suite Based on Dynamic Instrumentation

TABLE 2. Availability of plugins/interconnections for dynamic
instrumentation tools for C, C++. We use PIN as shown in Figure 1.

Wefirst discuss a common scenario in the workplace as learnt
frommultiple developers of companies working in Electronic
Design Automation extensively using C.

A. CASE STUDY OF INDUSTRY PRACTICES
We enumerate and analyze the problems faced by devel-
oper Sandra (name changed) while fixing a deadlock bug or
analyzing function exit and entry points in a multi-threaded
application, as shown in Table 3. Sandra starts the analysis to
detect potential deadlocks in the application and tries to sim-
ulate various other run-time facts during program execution.
She is challenged with a suitable toolset for the OS, or IDE
she is working with. The case studies help in designing our
architecture according to the developers’ needs.

B. ARCHITECTURE
We design an architecture to fit all the individual tools
together and integrate them to extend the assistance from a
single window so that developers may benefit from using
the tools simultaneously, such as detecting memory issues in
addition to parallel debugging.

We present an overview of the architecture of the plugin
toolkit in Figure 1. Our toolkit is based on concept extrac-
tors that are built using a PIN framework coupled with an
inference engine. We integrate the toolkit with the Eclipse
IDE using its plugin interface. Figure 2 shows the architec-
ture of the Eclipse IDE [64]. The IDE has a workbench
containing editors, consoles, and sits on a Java run-time
for its utilities. Project management is also conducted using
WorkSpace [64]. The plugin interface is available to add
separate menus to the editors to support the additional fea-
tures we are integrating.

To model the components of the architecture and develop
an analytical framework, we define the following domains:

• IG: Domain of APIs for Image Instrumentation
• RT : Domain of APIs for run-time Instrumentation
• IN : Domain of APIs for Instruction Instrumentation
• D: Domain of various data structures in C Programs
• OP: Domain of various data structures related to the
operations in C

FIGURE 1. Integrated Architecture of PARALLELC-ASSIST framework showing
interactions between the components of IDE [Eclipse], Plug-ins, PIN
Dynamic Instrumentation tools, and its run-time instance.
Component-wise details are given in Figures 2, 3, and 4.

• AS: Domain of analyzed aspects
An instrumentation process registers callbacks to either the

image, routine, or instruction APIs and passes the pointer to
the current object (image, routine, etc). It is defined as:
I = (AP, O), where AP is the API for image, routine, and

instruction and O is the pointer to the current object.
The domain for AP is Dap = IG ∪RT ∪ IN
The inference process can thus be modeled as:
An : Dap×OP×D×PIN → AS where PIN symbolizes

the just-in-time compiler.
The equation focuses on the domain dependencies of the

analysis process and generalizes the domains that must be
considered for any inferences using the proposed framework.

In the next few sections, we explain the general working of
the following sub-components:

C. THE PLUGIN INTERFACE
Our tool use the plugin interface (Figure 3) to act upon the
executable from the editor of Java Workbench [64] and
obtain the results. Hence, we partition the architecture into
the following components to handle the various sub-tasks.

1) Creation of graphical menu: This is created as a new
extension in the Plugin.xml file of the JDK pack-
age. Each new menu is an action set for extension. The
menu is characterized using the functions of the label
and icon class of the Java plugin.

2) Link of menu to Pintools: Each menu has a script at
its back-end, which fires a Pintool that works on the
current executable from the editor. Eachmenu first calls
the required function from the action set class, which
then fires the script.

3) The plugin of Pintools with executable: The Pintool
Action class [64] is called when the script is fired for
each menu. This class takes the source code as input
and the required arguments from the editors, and com-
piles the program into an executable. It then traverses
the pin executable engine through a script and plugs the
relevant Pintool (analysis tool) with the executable.

D. PIN FRAMEWORK
We describe the PIN framework as re-targeted and cus-
tomized for PARALLELC-ASSIST in Figure 4. We use PIN to

VOLUME 11, 2023 73603



N. Chatterjee et al.: PARALLELC-ASSIST: Productivity Accelerator Suite Based on Dynamic Instrumentation

TABLE 3. Case studies for detecting potential deadlocks and analysing function entry and exit points. These studies were conducted with C developers
from companies working in electornic design automation.

extract the primitives of the program and further analyze
the same for higher-level features. Using the APIs of this
framework, we created Pintools to extract and analyze the
run-time traces of an application. The PIN [37] API’s sit on a
PIN run-time with the support of just-in-time compiler (JIT),
an emulator, and a dispatcher.

1) PINTOOLS
Every Pintool has two major components:

1) Instrumentation routines: This specifies the uniformity
at which run-time traces are collected. The avail-
able granularities include images, traces, routines, and
instructions.

2) Analysis Routines: For every instrumentation granular-
ity, there can be multiple analysis tools that store the
traces collected in a data structure and analyze the same
based on algorithms designed by us.

The PIN engine, along with the Pintools, interacts with the
plugin interface and serves as input to the inference engine.
The high-level features analyzed from the primitives in the
analysis routines serve as the input to the inference engine.

E. INFERENCE ENGINE
The inference engine (Figure 1) contains a suite of machine
learning classifiers that work on the features generated from
Pintools and learn and predict a model. The engine also
contains other algorithms based on a set of rules to detect
execution behavior, which works directly on the primitives
extracted from Pintools.

F. USER INTERFACE
Keeping tool usability in consideration, we leverage the
Eclipse IDE and develop plug-ins for our tool assem-
bly. In the plug-ins, the individual tools are designed as

73604 VOLUME 11, 2023



N. Chatterjee et al.: PARALLELC-ASSIST: Productivity Accelerator Suite Based on Dynamic Instrumentation

FIGURE 2. Architecture and interface diagram of Eclipse IDE platform including Workbench and UI
Toolkits containing editors, consoles, and sits on a Java run-time for its utilities. The CDE plugin
interface is available to add separate menus to the editors to support the additional features by
interacting with PIN run-time interface and visualize acquired knowledge about a program from GDB
callbacks thrugh CDI Debugger. This is a component from Figure 1.

FIGURE 3. Flow diagram of Plugin Interface to inject tools on executable from Java Workbench editor
and UI toolkit of Eclipse IDE. Each menu in the UI toolkit will have an associated script to fire a tool in
PIN that works on the current executable from the editor. This is a component from Figure 1.

user menus, as shown in Figure 5. Users can select any
combination of tools according to their needs by clicking
on either icon or menu options. If the user clicks on GC,
PGDB, and then on the tool assembly, the GC and PGDB
execute in parallel to detect the data race or deadlock along
with the detection of memory issues with optional garbage
collection. Based on the selection of plug-ins, the code is

selectively equipped with the required parts of unit tools. The
instrumentation gathers run-time information of the program
execution. The run-time console logs generated from the code
and tool are combined into an Eclipse console. An inference
drawn by the tool assembly is also prioritized, and suitable
assistance, either printed on the console or breakpoint, may be
invoked.

VOLUME 11, 2023 73605



N. Chatterjee et al.: PARALLELC-ASSIST: Productivity Accelerator Suite Based on Dynamic Instrumentation

FIGURE 4. PIN Infrastructure diagram of instrumentation components with Instrumentation API, Features and
run-time interfaces. PIN Instruments the target application based on the Instrumentation policy to extract the
run-time features and are analyzed using the analysis routine. At the highest level, Pin consists of a virtual
machine (VM), a code cache, and an instrumentation API invoked by Pintools. The VM consists of a just-in-time
compiler (JIT), an emulator, and a dispatcher. After Pin gains control of the application, the VM coordinates its
components to execute the application [37]. This is a component from Figure 1.

FIGURE 5. SDLC Suite menu and icons injected in Eclipse IDE as an User
Inference of Tool Assembly to dynamically add or remove different debug
tools or aspects as and when required.

An integrated view of the architecture is shown in Figure 1.
The PIN engine contains various callbacks to functionalities,
such as extracting images, routine, thread, and instruction
level aspects, which are then deployed to the plugin archi-
tecture and work on the current executable of the IDE. The
output from the Pintool is then integrated with a visualization
software to display the run-time event traces. Further-
more, an enhanced debugger with support for additional

concurrency bugs is integrated with the IDE to provide end-
to-end support.

IV. THE TOOL SET
We discuss the various tool supports as provided in
PARALLELC-ASSIST: Debug assistance tool (Section IV-A),
Design tool (Section IV-B), Memory tool (Section IV-C), and
Aspect injection strategy (Section IV-D).

A. DEBUG ASSIST [12]
In the PGDB [12] tool, we designed features to detect and
solve issues such as deadlock and data race with breakpoints
to the source. We augment PGDB [12] with LLDB [67] and
GNU debugger so that developers can leverage the facilities
of PGDB [12] within their existing debuggers.

1) IMPLEMENTATION
Our approach is to identify whether there are memory
references shared among multiple threads. We instrument
RecordLockBefore() tomonitor the locality of accesses with
or without locks by a thread andmaintain an hash tableMem-
Tracker, where the key is a memory reference and the value
contains identification of executing thread and the type of
access (READ/WRITE). We have designed the instrumenta-
tion routines RecordMemRead() and RecordMemWrite()

73606 VOLUME 11, 2023



N. Chatterjee et al.: PARALLELC-ASSIST: Productivity Accelerator Suite Based on Dynamic Instrumentation

before load and store instructions, respectively, including the
thread id to trace memory accesses from concurrent execu-
tion. First-time READ accesses to any memory reference are
captured in MemTracker by analysis routine RecordMem-
Read(). For subsequent accesses to this captured memory
reference that already exists in MemTracker, the following
situations may occur [12].

• Existing READ access: This is a safe access. Thus,
there is no data race in the case of READ-after-READ.

• Existing WRITE Access: For the same thread ID, it is
a safe access case for READ-after-WRITE. For differ-
ent thread IDs, the memory reference is marked as a
shared-exclusive memory.

Similarly write accesses to memory being analyzed
by RecordMemWrite, executes before Store instruc-
tion. First-time memory WRITE access is also captured
by the MemTracker, including the thread ID. Again,
subsequent accesses to the captured memory reference
already exist in MemTracker and the possibilities are as
follows:

• Existing READ or WRITE Access: Unsafe access
in both cases, WRITE-after-WRITE or WRITE-after-
READ. If the threads involved are different, the memory
reference is marked as shared-exclusive memory.

A Boolean variable is introduced here for each thread to
detect the datarace. When a thread, say T1, enters the crit-
ical section, RecordLockAfter() is called, and sets a flag
for thread T1. While leaving the critical section for thread
T1, we reset the flag using RecordUnlockAfter(). We also
instrument the barrier along with thread ids. The inference
block is used to analyze the memory read-write sequences of
each thread. Therefore, access to a shared-exclusive memory
reference is identified as unsafe, where the flag is set to false,
and safe otherwise. Once a memory reference is identified as
shared-exclusive and unsafe access exists, there is a potential
for datarace and datarace breakpoints to be invoked.

Similarly, an algorithm continues to construct an
RAG1 by identifying the waiting and acquired edges as
follows:

• RecordLockBefore() adds an edge to the RAG denois-
ing thread T is waiting for resource (mutex) R, when
another thread already holds the lock on mutex R.

• RecordLockAfter() adds an acquired edge to the RAG
when t acquires a lock on the mutex r. The waiting edge
was removed if an acquired edge was added.

• RecordUnLockAfter() removes the acquired edge from
the RAG when thread t releases mutex r.

The inference block here continues to analyze the RAG,
and once it detects a cycle, then announces a deadlock, and
the breakpoint is invoked.

2) VERIFICATION
We prepared a test suite to determine the correctness of our
tool for the detection of dataraces and deadlocks. The tool

1Resource Allocation Graph.

successfully detects all potential dataraces and deadlock con-
ditions. Detailed test evidence is provided in the PGDB [12]
and extended debugger [68] to verify the PGDB on the
collected set of benchmarks and prove its behavior and
efficiency.

B. DESIGN TOOL
Here, we outline the design to capture the execution
sequences from various PIN events.

1) IMPLEMENTATION
Here the run-time information is stored and grouped logically
into maps, and then into profilers that produce output for a
code related to a specific classified set of problems.

• We capture every important routine executed as part of
a code as an event s with various parameters.

• We need to provide a logical ordering of events that
might be useful for the debugging.

• Only those events that are relevant to debugging should
be tracked, so we instrument only important routines
from the total routine trace.

• To decide on the routines, we consider those related to
thread creation, communication, data variables used in
message passing, thread exit sequence, synchronization
functions, and signaling functions.

• For every routine, we capture all the relevant information
in the form of parameters such as the thread id and the
data variable involved before and after the execution of
the event, along with logical order.

• Storing the information extracted from routines related
to various run-time occurrences, such as global variable
access sequence, creation sequence of threads, commu-
nication statistics among threads, wait time of a thread
to acquire a mutex, etc. by logically grouping them into
distinct maps (data structure). The first level is a detailed
map.

• Logically converting the detailed maps to summarised
maps to extract distinct run time information.

• Weprovide the output to the user in textual and graphical
forms.

2) VERIFICATION
For normal (error-free) execution, models detected from fea-
tures extracted by our analyzer for a classified set of problems
from the test suites are validated by models detected by
manual analysis of the test suites.We also compare the results
with existing analyzers such as Valgrinds, Purify, and
other profilers, and achieve 91% accuracy [22].

C. MEMORY TOOL [69]
We designed a resource management tool for native lan-
guages that may be invoked as and when developers want
to debug memory issues or manage resources. We call it
GC Pintool, as it identifies the memory issues during the
execution. Moreover, it offers optional garbage collection
features in the native application:

VOLUME 11, 2023 73607



N. Chatterjee et al.: PARALLELC-ASSIST: Productivity Accelerator Suite Based on Dynamic Instrumentation

1) IMPLEMENTATION
The GC tool is one of our unit tools used for tool assembly.
The strategy of this tool was designed using two different
components: instrumentation strategy and inference. First,
we construct the instrumentation algorithm as follows:

• main() and user functions are instrumented to track
the entry-exit points.

• On call of memory allocation, experiencing a local
pointer, the reference is logged in the data structure with
local scope. For a global pointer, the reference scope
changed to global. For another assignment, scope is
modified accordingly.

• In the deallocation of memory, the entry of the reference
is removed from the data structure. If no such entry is
found in the data structure, then a double-free error must
be declared.

• The exit of each reference invokes an inference routine.
In the inference routine, the data structure is analyzed to

identify the remaining entries associated with recently exited
scope. Those entries are marked as memory leaks. These
memories may be optionally freed up.

2) VERIFICATION
The efficacy of the GC Pintool was verified using different
benchmark C programs, and the approach was proven to be
correct and precise. From the literature survey, we found that
Valgrind is a winner in comparison to other memory tools;
therefore, using this tool, we offer memory error detection
features, such as memory leak, memory corruption, dou-
ble frees, and uninitialized pointers, along with breakpoints
similar to Valgrind. Valgrind experiences a 10–50
times slowdown,2 whereas GC Pintool always performed
correctly, we find that it runs about 35% faster compared
to Valgrind. Our tool also has optional automatic GC
features. In this tool, we use a map as a core data structure
to hold the scope and memory addresses belonging to a
particular scope. We then devised an algorithm to instrument
the memory allocator and deallocator functions to capture
the allocation / deallocation events. Memory read and write
events are captured by the incoming memory read and write
instructions. We also investigated the function call and return
events of the program scope. Upon entering a new scope, the
new key will be defined in the map as the current scope,
making the earlier scope a parent, and for each success-
ful allocator execution, the allocated memory address will
belong to that current scope in themap. For each deallocation,
the memory reference is removed from the current scope.
The inference block analyzes the allocated memory of a
particular scope at the end of each scope. If any allocated
memory is found to be dereferenced due to the end of scope,
the memory leak is reported, and optionally, a breakpoint
may be invoked or the detected leak may be garbage col-
lected, that is, freed up by this tool. Similarly, the inference

2‘‘2.1. What Valgrind does with your program’’ in
http://valgrind.org/docs/manual/manual-core.html

block also analyzes the reference of memory read or write;
if the reference is outside our recorded memory references
allocated during the execution, it declares this as memory
corruption. In this case, the user could optionally invoke a
breakpoint.

D. AOP - ASPECT-ORIENTED DEBUGGING [23]
In this suite, we added the framework of dynamic aspect
weaving to extend the tool according to user needs. Here, the
framework is flexible for the vanilla deployment of dynamic
aspects in just-in-time.

1) IMPLEMENTATION
This framework works with the components below:

• The configuration XML is available for the user to
define the function / event of the executable, that is,
to be observed–advice names–what to observe, and the
location (after/before)–where to observe.

• The analysis code library is compiled and maintained in
the vanilla scope and is loaded on the fly in execution
time at the placeholder into the desired function/event.

• Our PIN tool reads the configuration from XML
and injects advice at desired locations in the code
under execution by using the dynamic instrumentation
technique.

2) VERIFICATION
We used a testbed to verify the injection of advice
at various desired points. We successfully verified the
location-before and location-after instrumentation for global
functions, static functions, function pointers, and references
in the C program. However, we identified the limitations
of the tool in the case of macros. As we are perform-
ing run-time binary instrumentation, we do not have any
control over the macro during the run-time. On the other
hand, in C++, we successfully injected advice in Construc-
tor, Overloaded Constructor, Copy Constructor, Destructor,
Overloaded Operator, etc. We also validated the injection
of aspects in the Friend Function, Member Function, Over-
loaded Member Function, Virtual Member Function, and
Overridden Member Functions and identified some limita-
tions for the in-line function. We used our tool for system
and user-defined functions in exception scenarios for dif-
ferent hierarchies. The same tool has been used to inject
bits of advice for different thread events, such as cre-
ate, join, lock, and unlock. In all of the above scenarios,
we successfully injected the aspect before or after the events
occurred.

E. TESTING THE INTEGRATED ARCHITECTURE
We tested the integrated architecture of PARALLELC-ASSIST

on the pthread CDAC [25] benchmark for correctness and
robustness. The benchmark set of CDAC contains a varied
set of programs that replicates various concurrency-related
issues and bugs, numerical computations using threads in
parallel, input / output, and other resource management using

73608 VOLUME 11, 2023



N. Chatterjee et al.: PARALLELC-ASSIST: Productivity Accelerator Suite Based on Dynamic Instrumentation

TABLE 4. Concurrency characteristics of the testsuite of PARALLELC-ASSIST
from CDAC Pthread Benchmarks [25]. We achieved an overall precision
and recall score of 98.13% and 98.56%, respectively on these.

threads and the like, and helps us to test PARALLELC-ASSIST

for utility. The results are presented in Table 4. The results
were validated against the benchmark documentation avail-
able with the dataset. We achieved an overall precision
and recall score of 98.13% and 98.56%, respectively (false
positives and false negatives are marked as FP and FN in
Table 4). As PARALLELC-ASSIST also detects a potential dead-
lock, it might happen that the deadlocks do not occur in a
particular run and hence the false positives. We get a false

TABLE 5. Comparison with existing frameworks as outlined in Table 1.

negative in the leak detector as our garbage collector failed to
capture a free function which was called through a wrapper
in certain scenarios. However, all of these cases are related
to individual tools and are not caused by the integration
implemented in PARALLELC-ASSIST.

V. CONCLUSION
We build an integrated architecture – PARALLELC-ASSIST to
support developers in maintaining multi-threaded applica-
tions in C through the detection of concurrency-related bugs,
analysis of concurrency-related design aspects, memoryman-
agement, and logging facilities. The architecture was built
using the dynamic instrumentation framework of PIN [37]
and re-targets its interconnection APIs for integration with
various IDEs and Debuggers. Thus, PARALLELC-ASSIST pro-
vides easy-to-use interfaces, and we demonstrate a prototype
integration with Eclipse CDT. Further, PARALLELC-ASSIST pro-
vides a framework to write various other analysis tools
according to the developer’s requirement to comprehend any
aspect of a C code. We set up the architecture with an
initial tool set for debugging (deadlock, data race, and live-
lock), extracting concurrency-related design elements based
on thread-resource interaction, automated garbage collec-
tion, and dynamic code weaving. We tested the integrated
architecture over the pthread CDAC [25] benchmark and
achieved overall precision and recall scores of 98.13% and
98.56%, respectively. We study readily available tools inte-
grated with the popular plug-ins and compared them in
terms of the offered features listed in Table 5. Visual
Studio Profiler provides many of the features sup-
ported by PARALLELC-ASSIST; however, it is commercial, does

VOLUME 11, 2023 73609



N. Chatterjee et al.: PARALLELC-ASSIST: Productivity Accelerator Suite Based on Dynamic Instrumentation

not support code injection, and does not provide a framework
to write and customizing new tools. We intend to extend our
tool in the future as follows:

• Extend PARALLELC-ASSIST with other IDEs such
as Visual Studio, Code Blocks, and other
debuggers such as Microsoft Visual Studio
debugger, etc.

• Analyse the utility of a compatible PARALLELC-ASSIST

over languages like C++ or Rust.

REFERENCES
[1] S. M. H. Dehaghani and N. Hajrahimi, ‘‘Which factors affect software

projects maintenance cost more?’’ Acta Inf. Medica, vol. 21, no. 1,
pp. 63–72, 2013.

[2] L. Erlikh, ‘‘Leveraging legacy system dollars for e-business,’’ IT Prof.,
vol. 2, no. 3, pp. 17–23, 2000.

[3] J. Koskinen, ‘‘Software maintenance costs,’’ Inf. Technol. Res. Inst., Univ.
Jyväskylä, Jyväskylä, Finland, Tech. Rep., 2015.

[4] H. Krasner, ‘‘The cost of poor quality software in the US: A 2018
report,’’ Consortium for IT SoftwareQuality (CISQ), Needham,MA,USA,
Tech. Rep., 2018.

[5] L. Prechelt, ‘‘An empirical comparison of C, C++, Java, Perl, Python, Rexx
and Tcl,’’ IEEE Comput., vol. 33, no. 10, pp. 23–29, Mar. 2000.

[6] D. Geer, ‘‘Chip makers turn to multicore processors,’’ Computer, vol. 38,
no. 5, pp. 11–13, May 2005.

[7] S.-E. Choi and E. C. Lewis, ‘‘A study of common pitfalls in simple multi-
threaded programs,’’ in Proc. 31st SIGCSE Tech. Symp. Comput. Sci.
Educ., Mar. 2000, pp. 325–329.

[8] C.-P. Chen, ‘‘The parallel debugging architecture in the Intel debugger,’’ in
Proc. Int. Conf. Parallel Comput. Technol. Cham, Switzerland: Springer,
2003, pp. 444–451.

[9] Intel Inspector User Guide for Linux*OS. Accessed: May 3, 2020.
[Online]. Available: https://software.intel.com/en-us/inspector-user-guide-
linux-data-race

[10] G. Zitzlsberger. Using Intel C++ Compiler With the Eclipse* IDE on
Linux. Accessed: May 3, 2020. [Online]. Available: https://software.
intel.com/

[11] W. Zhang, J. Lim, R. Olichandran, J. Scherpelz, G. Jin, S. Lu, and T. Reps,
‘‘ConSeq: Detecting concurrency bugs through sequential errors,’’ in Proc.
ACM SIGARCH Comput. Archit. News, vol. 39, 2011, pp. 251–264.

[12] N. Chatterjee, S. Majumdar, S. R. Sahoo, and P. P. Das, ‘‘Debugging multi-
threaded applications using pin-augmented GDB (PGDB),’’ in Proc. Int.
Conf. Softw. Eng. Res. Pract., 2015, pp. 109–115.

[13] Y. Cai and L. Cao, ‘‘Effective and precise dynamic detection of hidden
races for Java programs,’’ in Proc. 10th Joint Meeting Found. Softw. Eng.,
Aug. 2015, pp. 450–461.

[14] Microsoft. Microsoft Concurrency Visualizer. Accessed: Feb. 1, 2019.
[Online]. Available: https://msdn.microsoft.com/en-us/library/dd537632.
aspx

[15] J. Trümper, J. Bohnet, and J. Döllner, ‘‘Understanding complex multi-
threaded software systems by using trace visualization,’’ in Proc. 5th Int.
Symp. Softw. Visualizat., Oct. 2010, pp. 133–142.

[16] M. Jain and D. Gopalani, ‘‘Use of aspects for testing software applica-
tions,’’ in Proc. IEEE Int. Advance Comput. Conf. (IACC), Jun. 2015,
pp. 282–285.

[17] S. Iqbal and G. Allen, ‘‘Representing aspects in design,’’ in Proc. 3rd IEEE
Int. Symp. Theor. Aspects Softw. Eng., Jul. 2009, pp. 313–314.

[18] Intel Parallel Stdio XE. Accessed: May 3, 2020. [Online]. Available:
https://software.intel.com/en-us/parallel-studio-xe

[19] Intel System Studio. Accessed: May 3, 2020. [Online]. Available:
https://software.intel.com/en-us/system-studio

[20] W. Keller, ‘‘International technology diffusion,’’ J. Econ. Literature,
vol. 42, no. 3, pp. 752–782, 2004.

[21] S. J. Vaughan-Nichols, ‘‘Building better software with better tools,’’ Com-
puter, vol. 36, no. 9, pp. 12–14, Sep. 2003.

[22] S. Majumdar, N. Chatterjee, S. R. Sahoo, and P. P. Das, ‘‘D-Cube: Tool for
dynamic design discovery from multi-threaded applications using PIN,’’
in Proc. IEEE Int. Conf. Softw. Qual., Rel. Secur. (QRS), Aug. 2016,
pp. 25–32.

[23] N. Chatterjee, S. Bose, and P. P. Das, ‘‘Dynamic weaving of ASPECTs
in C/C++ using PIN,’’ in Proc. Int. Conf. High Perform. Compilation,
Comput. Commun., Mar. 2017, pp. 55–59.

[24] N. Chatterjee, S. S. Thakur, and P. P. Das, ‘‘Resource management in native
languages using dynamic binary instrumentation (PIN),’’ in Advanced
Computing and Systems for Security. Cham, Switzerland: Springer, 2016,
pp. 107–119.

[25] CDAC. In House Pthreads Benchmarks. Accessed: Feb. 1, 2019. [Online].
Available: https://www.cdac.in/index.aspx?id=ev_hpc_hypack_pthre
ads_overview

[26] A. Jannesari, K. Bao, V. Pankratius, and W. F. Tichy, ‘‘Helgrind+:
An efficient dynamic race detector,’’ in Proc. IEEE Int. Symp. Parallel
Distrib. Process., May 2009, pp. 1–13.

[27] GNU Free Software Foundation. (2017). GDB: The GNU Project Debug-
ger. [Online]. Available: http://www.gnu.org/software/gdb

[28] R. DeLine, A. Bragdon, K. Rowan, J. Jacobsen, and S. P. Reiss,
‘‘Debugger canvas: Industrial experience with the code bubbles
paradigm,’’ in Proc. 34th Int. Conf. Softw. Eng. (ICSE), Jun. 2012,
pp. 1064–1073.

[29] S. Chakraborty and V. Vafeiadis, ‘‘Validating optimizations of concurrent
C/C++ programs,’’ in Proc. IEEE/ACM Int. Symp. Code Gener. Optim.
(CGO), Mar. 2016, pp. 216–226.

[30] Microsoft. Visual Studio Profiler. Accessed: May 3, 2020. [Online]. Avail-
able: http://msdn.microsoft.com/en-us/magazine/cc337887.aspx

[31] A. K. Kolawa and C. E. Byers, ‘‘Modularizing a computer program for
testing and debugging,’’ U.S. Patent 6 895 578, May 17, 2005.

[32] Valgrind Developers. (2021). Memcheck: A Memory Error Detector.
[Online]. Available: https://valgrind.org/docs/manual/mc-manual.html

[33] Y. Chen, Y.-H. Lee, W. E. Wong, and D. Guo, ‘‘A race condition graph for
concurrent program behavior,’’ in Proc. 3rd Int. Conf. Intell. Syst. Knowl.
Eng., vol. 1, Nov. 2008, pp. 662–667.

[34] Y. W. Song and Y. Lee, ‘‘Efficient data race detection for C/C++ programs
using dynamic granularity,’’ in Proc. IEEE 28th Int. Parallel Distrib.
Process. Symp., May 2014, pp. 679–688.

[35] M. Christiaens and K. De Bosschere, ‘‘Accordion clocks: Logical clocks
for data race detection,’’ in Proc. Eur. Conf. Parallel Process. Cham,
Switzerland: Springer, 2001, pp. 494–503.

[36] M. Moiseev, M. Glukhikh, A. Zakharov, and H. Richter, ‘‘A static analysis
approach to data race detection in SystemC designs,’’ in Proc. IEEE 16th
Int. Symp. Design Diag. Electron. Circuits Syst. (DDECS), Apr. 2013,
pp. 54–59.

[37] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wallace,
V. J. Reddi, and K. Hazelwood, ‘‘PIN: Building customized program anal-
ysis tools with dynamic instrumentation,’’ in Proc. ACM SIGPLAN Notice,
2005, pp. 190–200.

[38] (2017). ValgrindDevelopers.Valgrind. [Online]. Available: http://valgrind.
org/

[39] M. Rai. (2008). Memory Leak Detection Using Windbg. [Online]. Avail-
able: https://www.codeproject.com

[40] M. Pool. (2022). CCMALLOC. [Online]. Available: http://cs.ecs.baylor.
edu/~donahoo/tools/ccmalloc/

[41] F. Germain. (2011). LeakTracer—Trace and Analyze Memory Leaks in
C++ Programs. [Online]. Available: http://www.andreasen.org/leaktracer/

[42] Yurikovitch. (2013).MEMDebug. [Online]. Available: https://sourceforge.
net/projects/memdebug/

[43] J. Belmonte, P. Dugerdil, and A. Agrawal, ‘‘A three-layer model of source
code comprehension,’’ in Proc. Indian Softw. Eng. Conf. (ISEC), 2014,
pp. 10–14.

[44] M. Mirakhorli and J. Cleland-Huang, ‘‘Detecting, tracing, and monitoring
architectural tactics in code,’’ IEEE Trans. Softw. Eng., vol. 42, no. 3,
pp. 205–220, Mar. 2016.

[45] D. Djuric and V. Devedzic, ‘‘Incorporating the ontology paradigm
into software engineering: Enhancing domain-driven programming in
Clojure/Java,’’ IEEE Trans. Syst., Man, Cybern., C, Appl. Rev., vol. 42,
no. 1, pp. 3–14, Jan. 2012.

[46] K. Brown, ‘‘Design reverse-engineering and automated design-pattern
detection in smalltalk,’’ North Carolina State Univ., Raleigh, NC, USA,
Tech. Rep., 1996.

[47] H. Lee, H. Youn, and E. Lee, ‘‘Automatic detection of design pattern
for reverse engineering,’’ in Proc. 5th ACIS Int. Conf. Softw. Eng. Res.,
Manage. Appl. (SERA), Aug. 2007, pp. 577–583.

73610 VOLUME 11, 2023



N. Chatterjee et al.: PARALLELC-ASSIST: Productivity Accelerator Suite Based on Dynamic Instrumentation

[48] G. Antoniol and Y.-G. Gueheneuc, ‘‘Feature identification: An epidemio-
logical metaphor,’’ IEEE Trans. Softw. Eng., vol. 32, no. 9, pp. 627–641,
Sep. 2006.

[49] S. P. Reiss, ‘‘Visualizing program execution using user abstractions,’’ in
Proc. ACM Symp. Softw. Visualizat., 2006, pp. 125–134.

[50] J. Quante and R. Koschke, ‘‘Dynamic protocol recovery,’’ in Proc. 14th
Work. Conf. Reverse Eng., Oct. 2007, pp. 219–228.

[51] N. R. Tallent and J.M.Mellor-Crummey, ‘‘Effective performancemeasure-
ment and analysis of multithreaded applications,’’ ACM SIGPLANNotices,
vol. 44, no. 4, pp. 229–240, Feb. 2009.

[52] O. Spinczyk, A. Gal, andW. Schröder-Preikschat, ‘‘AspectC++: An aspect-
oriented extension to the C++ programming language,’’ in Proc. Int.
Conf. Tools Pacific, Objects Internet, Mobile Embedded Appl., 2002,
pp. 53–60.

[53] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and
W. G. Griswold, ‘‘An overview of AspectJ,’’ in Proc. Eur. Conf.
Object-Oriented Program. Cham, Switzerland: Springer, 2001,
pp. 327–354.

[54] D. Geer, ‘‘Eclipse becomes the dominant Java IDE,’’ Computer, vol. 38,
no. 7, pp. 16–18, 2005.

[55] C. Griffin, ‘‘Introduction to the eclipse modeling framework,’’ in Proc.
OMG MDA Implementer’s Workshop, 2003.

[56] T. Ball and S. K. Rajamani, ‘‘The SLAM toolkit,’’ in Proc. Int.
Conf. Comput. Aided Verification. Cham, Switzerland: Springer, 2001,
pp. 260–264.

[57] S. Blair-Chappell and A. Stokes, Parallel Programming With Intel Parallel
Studio XE.. Hoboken, NJ, USA: Wiley, 2012.

[58] A. Kleen and B. Strong, ‘‘Intel processor trace on Linux,’’ Tracing Summit,
vol. 1, pp. 1–18, Aug. 2015.

[59] Intel. Pin 3.2 User Guide. Accessed: Apr. 25, 2020. [Online]. Available:
https://software.intel.com/sites/landingpage/pintool/

[60] QuarksLab. A Dynamic Binary Instrumentation Framework Based on
LLVM. Accessed: Apr. 25, 2020. [Online]. Available: https://github.
com/QBDI/QBDI

[61] Q. Wang, H. Shu, Y. Li, and H.-J. Huang, ‘‘Malicious code behavior
analysis based on dynamorio,’’ Comput. Eng., vol. 37, p. 18, Jan. 2011.

[62] N. Nethercote and J. Seward, ‘‘Valgrind: A framework for heavyweight
dynamic binary instrumentation,’’ ACM SIGPLAN Notices, vol. 42, no. 6,
pp. 89–100, 2007.

[63] A. Almomany, A. Alquraan, and L. Balachandran, ‘‘GCC vs. ICC compar-
ison using PARSEC benchmarks,’’ Int. J. Innov. Technol. Exploring Eng.,
vol. 4, no. 7, pp. 1–13, 2014.

[64] IBM. (2020). Eclipse CDT (C/C++ Development Tooling). Eclipse Foun-
dation. [Online]. Available: https://www.eclipse.org/cdt/

[65] J. Reinders, VTune Performance Analyzer Essentials. Mountain View, CA,
USA: Intel Press, 2005.

[66] Software Verify. Accessed: Feb. 1, 2021. [Online]. Available: https://www.
softwareverify.com/contact-software-verification.php

[67] The LLDB Team. (2020). The LLDB Debugger. [Online]. Available:
https://lldb.llvm.org/

[68] A. K. Ghoshal, N. Chatterjee, A. Chakrabarti, and P. Das, ‘‘Design
of PIN-augmented debugger for multi-threaded applications,’’ in
Innovations in Computer Science and Engineering, May 2018,
pp. 153–159.

[69] N. Chatterjee, S. Thakur, and P. P. Das, ‘‘Resource management in
native languages using dynamic binary instrumentation (PIN),’’ in Proc.
2nd Int. Doctoral Symp. Appl. Comput. Secur. Syst. (ACSS), 2015,
p. 107.

[70] Microsoft. (2017). Debugging in Visual Studio. Microsoft Developer
Network. [Online]. Available: http://msdn.microsoft.com/en-us/library/
vstudio/sc65sadd.aspx

[71] R. Stanek. (2020). Apache Netbeans. Apache. [Online]. Available:
https://netbeans.org/

[72] MortenMacFly. (2020). Code: Blocks—The Open Source, Cross Plat-
form, Free C, C++ and Fortran IDE. [Online]. Available: http://www.
codeblocks.org/

[73] R. M. Albrecht. (Aug. 2012). IDB: Intel Debugger. Intel Soft-
ware Developer Zone. [Online]. Available: http://software.intel.com/en-
us/articles/idb-linux

[74] IBM. (2019). IBM Rational Rose Enterprise 7.0.0.4 IFIX001. IBM
Rational Rose XDE. [Online]. Available: https://www.ibm.com/support/
pages/ibm-rational-rose-enterprise-7004-ifix001

[75] K. Du Bois, J. B. Sartor, S. Eyerman, and L. Eeckhout, ‘‘Bot-
tle graphs: Visualizing scalability bottlenecks in multi-threaded appli-
cations,’’ ACM SIGPLAN Notices, vol. 48, no. 10, pp. 355–372,
Nov. 2013.

[76] CodePlex. (2017). Visual Leak Detector for Visual C++ 2008–2015.
[Online]. Available: https://vld.codeplex.com/

[77] Free Software Foundation. (2014). GNU Checker. [Online]. Available:
https://www.gnu.org/software/checker/checker.html

[78] The Clang Team. (2020). Free Software Foundation. [Online]. Available:
https://clang.llvm.org/docs/ThreadSanitizer.html

[79] ValgrindDevelopers. (2019).Helgrind: A Thread ErrorDetector. [Online].
Available: https://valgrind.org/docs/manual/hg-manual.html

NACHIKETA CHATTERJEE received the B.Tech.
degree in information technology from the Uni-
versity of Calcutta, West Bengal, India, in 2004,
where he is currently pursuing the Ph.D. degree
with the A. K. Choudhury School of Information
Technology. He has been a Consultant with Tata
Consultancy Services Ltd., Kolkata, India, since
2006. He was with Skytech Solutions Pvt. Ltd.,
India, for 2.5 years in the area of application devel-
opment for airlines and retail domain. His main

research interest includes improve the software development process with
efficient productivity tools, focusing on profiling and analytics. He has
received the Best Performance Improvement and Innovation Pride Award
from TCS for accelerating the process with improved tool strategy for faster
time to market for world’s second DIY retailer, in 2020 and 2021.

SRIJONI MAJUMDAR (Student Member, IEEE)
received the Ph.D. degree in the area of program
analysis and knowledge mining using machine
learning frameworks from the Advanced Tech-
nology Development Centre, Indian Institute of
Technology, Kharagpur, India. She was with
Tata Consultancy Services Ltd., Mumbai, India,
in the area of performance engineering of soft-
ware systems and data analytics. She is currently
a Postdoctoral Researcher with the School of

Computing, University of Leeds, and work in the area of computational
social sciences. She is actively involved with several developers from
the software industry for her research on software maintenance. Her
main research interest includes software maintenance, focusing on build-
ing knowledge mining systems from source code and related metadata
(big code). She is an Executive Member of the IEEE Women in Engi-
neering, Asia Pacific Kharagpur Branch. More information is available at
https://sites.google.com/site/srijonicse/home.

VOLUME 11, 2023 73611



N. Chatterjee et al.: PARALLELC-ASSIST: Productivity Accelerator Suite Based on Dynamic Instrumentation

PARTHA PRATIM DAS (Member, IEEE) received
the B.Tech., M.Tech., and Ph.D. degrees from
the Indian Institute of Technology Kharagpur
(IIT Kharagpur), India, in 1984, 1985, and 1988,
respectively.

He was a Faculty Member with the Depart-
ment of Computer Science and Engineering, IIT
Kharagpur, from 1988 to 1998. In 1998, he moved
to the industry and was in director positions,
until 2011. He is currently a Professor with the

Department of Computer Science and Engineering, IIT Kharagpur. He is
also on long leave from IIT Kharagpur and a Visiting Professor with Ashoka
University, India. He was the Joint Principal Investigator of the National
Digital Library of India Project of the Ministry of Education, Government.
of India, from 2015 to 2022, and led the initiative to integrate the digital
repositories of various institutions and publishers across India. He has
published more than 100 papers in national and international journals and
conferences. His current interests include software productivity and quality,
human–computer interaction, computer analysis of Indian classical dance,
and technology-enhanced learning.

Dr. Das has received several recognitions, including the
UNESCO/ROSTSCA Young Scientist in 1989, the INSA Young Scien-
tist Award in 1990, the Young Associateship of the Indian Academy of
Sciences, in 1992, the UGC Young Teachers’ Career Award, in 1993,
the INAE Young Engineer Award, in 1996, the Interra Special (Pro-
cess) Recognition, in 2009, and the Interra 10 Years’ Tenure Plaque,
in 2011. He was a co-recipient of the mBillionth Awards by the Digital
Empowerment Foundation, in 2017, the Gems of Digital India Award,
in 2019, and the Open Education Award for Excellence in Open Resilience
Category for the National Digital Library of India, in 2020. He is
also the Editor-in-Chief of the Journal of the Institution of Engineers:
Series B.

AMLAN CHAKRABARTI (Senior Member,
IEEE) received the M.Tech. degree from the Uni-
versity of Calcutta and the Ph.D. degree from the
Indian Statistical Institute, Kolkata. He was a Post-
doctoral Fellow with the School of Engineering,
Princeton University, USA, from 2011 to 2012.
He is currently a Professor with the A. K.
Choudhury School of Information Technology,
University of Calcutta. His research interests
include machine learning, computer vision, cyber-

physical systems, reconfigurable computing, quantum computing, and VLSI
CAD. He is a Senior Member of ACM, the IEEE Computer Society
Distinguished Visitor (2020–2022), the Distinguished Speaker of ACM, the
Secretary of IEEE CEDA India Chapter, the Vice President of the Society
for Data Science, and a Life Member of CSI India. He was a recipient of
the DST BOYSCAST Fellowship Award in Engineering Science, in 2011,
the Indian National Science Academy (INSA) Visiting Faculty Fellowship,
in 2014, the JSPS Invitation Research Award, in 2016, the Erasmus Mundus
Leaders Award from European Union, in 2017, and the Hamied Visiting
Professorship from the University of Cambridge, U.K., in 2018. He is the
Series Editor of the Transactions on Computer Systems and Networking
(Springer), an Associate Editor of Journal of Computers and Electrical
Engineering (Elsevier), and the Guest Editor of Journal of Applied Sciences
(Springer).

73612 VOLUME 11, 2023


