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ABSTRACT This paper investigates the simultaneous design of a controller and Luenberger state observer
for systems with time-delays, external disturbances, uncertainties, modeling errors, and unknown nonlinear
perturbations. The state-feedback control approach and state-observer existence conditions are formu-
lated using the Linear Matrix Inequalities (LMIs). By defining the estimation error, the equations of the
closed-loop system are rewritten. External disturbances, uncertainties, unknown nonlinear perturbations,
and constant time-delays are considered in system modeling. By using LMI techniques, the estimation error
is converged to zero. Therefore, the time-delays, uncertainties, and external disturbance effects on the system
output, which have not been considered simultaneously before, are minimized, and the closed-loop system
is stabilized. The performance of the proposed approach is verified by simulation of two examples, Flexible-
Link Manipulator (FLM) dynamics, and Continuous Stirred Tank Reactor (CSTR) system. These examples
illustrate the reliability of the suggested method.

INDEX TERMS Linear matrix inequality, controller design, state-observer, external disturbance, time-delay,
flexible-link manipulator.

I. INTRODUCTION
A. BACKGROUND AND MOTIVATION
Disturbances can cause significant disruptions and unwanted
effects in the control process. In recent decades, researchers
have suggested various methods to reduce the effects of
external disturbances on the control system. It is generally
impossible to eliminate external disturbances completely;
however, many papers have been trying to reduce the effects
of disturbances by applying various methods [1], [2], [3],
[4], [5], [6]. Significant efforts have been made for the
robust stability of linear systems with input disturbances.
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Another problem in controller design is the lack of accurate
or complete information about the states of the system [7],
[8]. Therefore, the uncertainty has bad effects on control
performances, and it can reduce the accuracy of the designed
controller [9]. In many systems, the state-feedback control
cannot ensure system stability due to the unavailability of all
control system states. For this reason, in feedback control, it is
essential to design a state observer [10], [11]. In real industrial
processes, there is a time-delay in addition to external dis-
turbances and uncertainties [12], [13]. The time-delay makes
non-minimum phase behavior in the system [11], [12]. There-
fore, this term should be considered in system modeling.
Therefore, many methods have been designed to overcome
the time-delay effects [14], [15], [16]. Some research studies
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have been done to decrease the impacts of disturbance, uncer-
tainty, and nonlinear function, but their controller is designed
for special systems [14], [15], [17]. In [14], the perturba-
tion observer-based control is designed for voltage converter
systems. The impact of disturbance, uncertainty, nonlinear
function, and state estimation are considered. The output
feedback controller is designed to compensate for the impacts
of perturbations; however, time-delay is not considered in
[14]. In [18], the observer-based controller is designed for
nonlinear systems with unknown time-delay, but the effect
of uncertainty has not been considered. In [19], the combi-
nation of high gain state observer and LMI is investigated
for nonlinear systems. The estimation error stability has been
proved. However, time-delay, uncertainty, nonlinear pertur-
bation, output disturbances effects have not been considered.

The main task in controller design is to check the stabil-
ity of the system. One of the mathematical tools is linear
matrix inequalities (LMIs), which can prove system stability
[53], [54]. In recent research, the LMIs method is considered
an effective tool to help researchers control design and is
widely used in different applications [18], [20], [21], [22],
[23], [24]. This approach is used to convert the consid-
ered problem to an optimization problem. The techniques
of convex or quasi-convex optimization problems, involving
LMIs, are used to construct Lyapunov stability function,
Linear quadratic regulator, optimal system realization, obtain
state-feedback gain and Luenberger observer gain via Yalmip
and other solvers, numerically. These solvers use effective
algorithms to fulfill inequalities’ conditions and convex con-
straints [25], [26]. The fundamental theory in designing
controllers by LMIs is the Lyapunov stability theorem, which
is used to prove the asymptotical stability of the closed-loop
system. Using LMIs can reduce the constraints of system
conditions. In the last research, many algorithms have solved
LMIs; many papers apply LMIs techniques to various control
theories [27], [28]. The design of the controller for electrome-
chanical systems can be formulated as an LMIs problem.
Because the optimal values for controller and observer gains
are obtained from LMIs, therefore, they can improve sys-
tem’s behavior such as tracking performance, steady state
response, etc.

B. LITERATURE REVIEW
In [29], the simultaneous design of the observer and controller
is presented in the presence of a nonlinear term using LMIs.
In order to design the state-feedback control law, the observer
is introduced then the controller is designed. Nevertheless,
it does not guarantee system stability in the existence of
external disturbances [30]. In [31], the authors present a
solution for linear systems observer-based stabilization in the
presence of uncertainty. Less restrictive LMIs condition is
the result of proper use of the Young relation. In [16] and
[32], the sliding mode controller (SMC) and observer are
designed, and then the validity of the proposed SMC is proved
by using LMIs. The observer-based controllers are useful to
stabilize various classes of systems and improve the system’s

performance [16]. The state observer is used because some
states of the system may not be available in real systems. In
most research studies, the state observer structure is usually
designed with Luenberger form. In [20], the state feedback
controller and the state observer combination are designed
for systems with stochastic noise and polytopic parameters.
An iterative LMIs approach is suggested for solving nonlinear
matrix inequalities when the separation principle is not valid.
This approach has been able to reduce noise effects, but they
haven’t been eliminated. In [21], a robust nonlinear controller
is designed for uncertain nonlinear discrete time-invariant
systems. The fault-tolerant control law is designed by using
LMIs toolbox and iterative process. The amount of external
disturbances is not clearly expressed in this paper, and the
delay effects are not considered and tested by the suggested
approach. In [22], an observer-based H∞ output feedback
controller is designed for uncertain interconnected nonlinear
systems. The gain matrixes of observer and controller are
obtained by LMIs procedure. The proposed approach has the
output tracking well, but the system can’t consider the delay
effects. In [27], the observer-based controller is designed for
time-varying delay systems. The stabilization of the close
loop system is proved via LMIs method. In this paper, the
effects of uncertainty and disturbances aren’t considered. In
[28], the extended state-observer-based control is investigated
for systems with locally Lipschitz uncertainties and expo-
nential stability is proved. The effects of time-delay, output
disturbances, and uncertainties are not considered. In [29],
it has been attempted to prove asymptotical stability using
the H∞ -based observer using LMIs. The recommended
gains are calculated with the help of H∞; then, H∞ is
transformed into LMIs. After solving LMIs, the presented
H∞ controller and observer can guarantee the robustness
of systems with uncertainties and disturbances. The effects
of time-delay and output disturbances have not been con-
sidered in this research. In [4], an adaptive control strategy
with full error constraints is designed for nonlinear systems.
In this method, the adaptive back-stepping control scheme
is combined with the nonlinear filter. Like all of previ-
ous papers mentioned in this manuscript, the simultaneous
effects of time-delay, uncertainty, and nonlinear perturbation
have not been considered in the nonlinear system model of
[4]. In [33], a fixed-time fuzzy controller is designed for
nonlinear multi-agent systems with unmeasurable states and
unknown dynamics, and the linear state-observer and fuzzy
logic systems are utilized to identify the unknown internal
dynamics. It can control the unmanned vehicle well, but the
unknown nonlinear perturbations and time-delays are not
considered in the system equations. In [34], a finite-time
fuzzy adaptive prescribed performance control technique is
proposed for non-strict-feedback nonlinear MIMO systems,
and a dynamic surface controller is suggested by combin-
ing the adaptive back-stepping control algorithm and the
nonlinear filters. The proposed method can deal with the
computational complexity and improve the control perfor-
mance. The Luenberger observer is one of appropriate tools
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to estimate the information of the internal system variables,
noise and disturbances which are unknown, and they have
bad effects on performance of system such as lower tracking
accuracy. Therefore, the Luenberger observer gain should be
designed carefully. Using LMI approach can be useful to
improve accuracy of system performance. The Luenberger
observer is one of the most applicable observers in practice,
because of using continues function, clear structure, simple
implementation, and excellent steady-state performance; but
it can make the system unstable in high gains [35]. Consid-
ering the above-mentioned researches, to the best authors’
knowledge, the design of the LMI-based Luenberger observer
for uncertain nonlinear systems with external disturbances
and time-delays is still an open problem. No research study
has been done suggesting an LMI-based Luenberger observer
in the presence of interval time-delays, unknown nonlinear
perturbation, and minimizing effects of disturbances.

C. CONTRIBUTION
Motivated by the above discussion, our goal is to design an
observer-based controller to stabilize the linearizable systems
in the presence of disturbances, unknown nonlinear perturba-
tion, and time-delay. The main contributions of this paper are
as follows:

• An approach that enables the simultaneous design of the
observer and controller gains;

• A design that combines the estimation properties of
state observers with the optimization properties of linear
matrix inequalities for systems in the presence of uncer-
tainties, disturbances, unknown nonlinear perturbation,
and time-delay, the effects of these parameters have not
been solved by LMI approaches before.

• An approach is suggested for controlling and stabilizing
systems with interval time-delays, unknown nonlinear
perturbation, and minimizing effects of disturbances;

• The state observer is designed to estimate unmeasured
states and guarantee the stability of the closed-loop sys-
tem with and without parametric uncertainties.

• The exponential stability of a closed-loop system in the
presence of uncertainties, disturbances, unknown non-
linear perturbation, and time-delay is proved.

• New Lyapunov functions are considered for the stability
analysis of time-delay systems.

D. PAPER ORGANIZATION
The remainder of the paper is organized as follows.
Section I-A, the problem formulation, includes system
description, assumptions, and preliminaries. The proposed
controller/observer approaches are derived in section I-B,
main results, which include exponential stability analysis,
design of controller design for systems without uncertainty,
and in another subsection with uncertainty, unknown non-
linear perturbations, and disturbances. Their performance
is assessed by implementing them to two examples in
Section I-C. Some concluding remarks are finally drawn in
section I-D.

II. PROBLEM FORMULATION
Consider a class of nonlinear state space systems with uncer-
tainties, unknown nonlinear perturbations, time-delays, and
disturbances as

ẋ (t) = (A+ 1A (t)) x (t) + (Ad + 1Ad (t)) x (t − d)

+ (B+ 1B (t)) u (t) + f1 (x (t)) + f2 (x (t − d))

+ Bωω (t)

y (t) = Cx (t) + Dωω (t) (1)

where x (t) ϵRn, u (t), y (t), and ω (t) are the states of the
system, the input signal, the output, and the input disturbance
of the system including noise, respectively. d is time-delay
value, f1 (x (t)), and f2 (x (t − d)) are unknown nonlinear
perturbations. The constants of A,Ad ,B,C,Dω and Bω

are matrices with proper dimensions. 1A (t) ,1Ad (t), and
1B (t) are uncertainties assumed to be norm-bounded with
appropriate dimensions satisfying the following condition:

1A (t) = EF (t)H1,

1Ad (t) = EF (t)H2,

1B (t) = EF (t)H3 (2)

where E and Hi, i = 1, 2, 3 are the constant matrices with
appropriate dimensions and F (t) is the unknown continuous
time-varying matrix function, satisfying

FT (t)F (t) ≤ I . (3)

Equation (3) is utilized to obtain the following results
[10], [30]:

1T (t) 1 (t) ≤ 0TMMT0, (4)

where

1 (t) = F (t) [(H1 + H3K1)x (t) + (H2 + H3K2) x (t − d)

− (H3K1)e (t) − (H3K2)e(t − d)]

and

0 =


x (t)

x (t − d)

e (t)
e (t − d)

 ,M =


(H1 + H3K1)

T

(H2 + H3K2)
T

− (H3K1)
T

− (H3K2)
T


The model (1) can be an electromechanical system such as
a robot, which has low accuracy and delay in the modeling
of its state variables. It is also affected by environmental
disturbances such as damage to actuators and low accuracy
of sensors. For the Lyapunov functions and stability analy-
sis, it is important to carefully consider the limitations and
validity of the obtained results. This requires taking into
account the specific assumptions made in the analysis, as well
as the computational requirements of the chosen Lyapunov
function.
Assumption 1 ( [30]): The nonlinear functions f1 (x (t)),

and f2 (x (t − d)) are unknown perturbations that satisfy
f1 (t, 0) = 0, f2 (t, 0) = 0, and

f T1 (x (t))f1(x (t)) ≤ β2
1x

T (t) x (t) , (5)
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f T2 (x (t − d)) f2 (x (t − d)) ≤ β2
2x

T (t − d) x (t − d) , (6)

where β1≥ 0, andβ2≥ 0, are constants [30].
Assumption 2: The nonlinear functions f1(x) and f2(x(t −

d)) are called Lipschitz functions if the constants �1, �2 >

0 exist and satisfy

||f1(x) − f1(x̂)|| ≤ ||�1(x − x̂)|| (7)∣∣∣∣f2 (x (t − d)) − f2
(
x̂ (t − d)

)∣∣∣∣ ≤ ||�2(x(t − d)

− x̂(t − d))|| (8)

This assumption is used in many papers such as [36]
and [37].
Lemma 1: [10], [38]: Consider M1 (x) and M2(x) two

quadratic matrix functions over Rn, and M2(x) ≤ 0 for all
x∈Rn − {0}. Then, M1 (x) < 0 holds for all x∈Rn − {0} if
and only if the constant ε ≥ 0 exists such that

M1 (x) − εM2 (x) < 0, ∀x ∈ Rn − {0} . (9)

The state observer and the state feedback controller are
considered as

˙̂x (t) = Ax̂ (t) + Ad x̂ (t − d) + Bu (t)

+ L
(
y (t) − ŷ (t)

)
+ f1

(
x̂ (t)

)
+ f2

(
x̂ (t − d)

)
ŷ (t) = Cx̂ (t)

u (t) = K1x̂ (t) + K2x̂ (t − d) (10)

where x̂(t) is the estimation of x(t), L is the state observer
gain, ŷ(t) is the estimation of y(t), andK1 andK2 are the gains
of the controller. The error of estimation is defined as e(t) =

x(t)− x̂(t), where using (1) and (10), the following Equation
is attained:

ė (t) = (A− LC) e+ Ade (t − d) + Bωω (t)

+
(
f1 (x (t)) − f1

(
x̂
))

+
(
f2 (x (t − d)) − f2

(
x̂ (t − d)

))
+ 1A (t) x (t) + 1Adx (t − d)

+ 1B (t)
(

K1 (x (t) − e (t))
+K2(x(t − d) − e (t − d))

)
(11)

Substituting u (t) fromEquation (10) into Equation (1), and
considering equation (2), we will have:

ẋ (t) = (A+ BK1) x (t) + (Ad + BK2) x (t − d)

− BK1e (t) − BK2e (t − d)

+ f1 (x (t)) + f2 (x (t − d))

+ Bωω (t) + E1 (t) (12)

where 1 (t) is defined in equation (4). From Equations
(11) and (12), the closed-loop system is represented as:[
ẋ (t)
ė (t)

]
=

[
A+ BK1 −BK1

0 A− LC

] [
x (t)
e (t)

]
+

[
Ad + BK2 −BK2

0 Ad

] [
x (t − d)

e (t − d)

]
+

[
Bω

Bω

]
ω (t)

+

[
f1 (x (t)) + f2 (x (t − d))(

f1 (x (t)) − f1
(
x̂
))

+
(
f2 (x (t − d))−f2

(
x̂ (t − d)

))]
+

[
E
E

]
1 (t) (13)

It should be noted that Equations (7) and (8) can be rewrit-
ten as follows:

(f1(x) − f1(x̂))T I (f1(x) − f1(x̂)) ≤ eT (t)�T
1 �1e(t)

(f2(x(t − d)) − f2(x̂(t − d)))T I (f2(x(t − d))

−f2(x̂(t − d))) ≤ eT (t − d)�T
2 �2e(t − d) (14)

Lemma 2 (Schur Complement [38], [39]): For a
Hermitian matrix M , the following inequalities are
established:

M : =

[
M11 M12
MT

12 M22

]
< 0

M11≺ 0,M22 −MT
12M

−1
11 M12< 0

M22≺ 0,M11 −M12M
−1
22 M

T
12< 0 (15)

III. MAIN RESULTS
A. EXPONENTIAL STABILITY ANALYSIS
In this part, the sufficient conditions for exponential stability
of the following system with unknown nonlinear perturba-
tions, time-delay, and disturbances are considered.

ẋ (t) = Ax (t) + Adx (t − d) + Bu (t) + f1 (x (t))

+ f2 (x (t − d)) + Bωω (t)

y (t) = Cx (t) + Dωω (t)

x (t) = ϕ (t) , ∀t ∈ [−d, 0] , (16)

where ϕ (t) is a continuous function for the initial state of the
system.
Theorem 1: For the model of the system with unknown

nonlinear perturbations and disturbances in Equation (16),
if the following LMI is true[

A1 B1
C1 D1

]
< 0 (17)

where

A1=

αP+ ATP+ PA+ Q+ β2
1 I PAd PBω

∗ −e−αdQ+ β2
2 I 0

∗ ∗ −γ −1I

,
B1 =

P P CT

0 0 0
0 0 DTω

 ,C1 =

PT 0 0
PT 0 0
C 0 Dω

 ,

D1 =

−I 0 0
0 −I 0
0 0 −γ −1I

 ,

for α > 0, the symmetric matrices P > 0 and Q > 0 exist,
then the system is exponentially stable, and the disturbance
effect on the system output is minimized as follows:

sup
ω(t)̸=0

∥y(t)∥L2
∥ω(t) ∥L2

≤ γ −1 (18)
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Proof: From Equation (16), we have:

sup
ω(t)̸=0

∥y(t)∥L2
∥ω(t) ∥L2

≤ γ −1

≡ ∥y(t)∥L2 ≺ γ −1
∥ω(t) ∥L2

≡ ∥y(t)∥2L2 ≺ γ −2
∥ω(t) ∥

2
L2

≡ γ ∥y(t)∥2L2
≺ γ −1

∥ω(t) ∥
2
L2

≡

∫ t→∞

0

× (γ yT (τ )y(τ ) − γ −1ωT (τ )ω(τ ))dτ ≺ 0 (19)

The Lyapunov function is considered as

V (t) ≜ xT (t)Px (t) +

∫ t

t−d
eα(s−t)x

T
(s)QxT ds (20)

Now, wewant to show that the following inequality is correct:

V̇ (x (t)) + αV (t) + γ yT (t) y (t)

− γ −1ωT (t)ω(t) < 0. (21)

Therefore, by comparingwith Equation (19), the inequality
(21) is true. By substituting Equation (16) into (21), the
following relation is obtained:

x(t)
x (t − d)

ω(t)
f1 (x (t))

f2 (x (t − d))


T

H


x(t)

x (t − d)

ω(t)
f1 (x (t))

f2 (x (t − d))

 < 0 (22)

where

H =


31 PAd PBω + γCTDω P P
∗ −e−αdQ 0 0 0
∗ ∗ γDTD− γ −1I 0 0
∗ ∗ ∗ 0 0
∗ ∗ ∗ ∗ 0

 ,

31 = αP+ ATP+ PA+ Q+ γCTC .

Due to the presence of zero on the main diagonal of the
matrixH , it is impossible to prove thatH is a negative definite
matrix. From Assumptions 1 and 2, the equations (5) and (6)
can be rewritten as below:

f T1 (x (t))f1(x (t)) − β2
1x

T (t) x (t) ≤ 0,

f T2 (x (t − d)) f2 (x (t − d)) − β2
2x

T (t − d) x (t − d) ≤ 0,

(23)

where β1andβ2 are two positive constants. From Equa-
tions (22) and (23), we will have:

x(t)
x (t − d)

ω(t)
f1 (x (t))

f2 (x (t − d))


T

H̄


x(t)

x (t − d)

ω(t)
f1 (x (t))

f2 (x (t − d))

 < 0 (24)

where

H̄ =


3̄1 PAd PBω + γCTDω P P
∗ −e−αdQ+ β2

2 I 0 0 0
∗ ∗ γDTD− γ −1I 0 0
∗ ∗ ∗ −I 0
∗ ∗ ∗ ∗ −I

 ,

3̄1 = αP+ ATP+ PA+ Q+ γCTC + β2
1 I . (25)

If the matrix H̄ is negative-definite, then Equation (24) is
satisfied. Using Schur complement lemma on H̄ < 0, it yields
Equation (17).
By defining γ −1

= ϑ in (25) and D1 matrix of
Equation (17), the final LMI is obtained as

[
A1 B1
C1 D1

]
< 0

Q > 0

≡ LMI (ϑ,Q) (26)

After solving the LMI (26), the optimal values of ϑ∗, P∗

and Q∗ are obtained and γ ∗ is calculated as γ ∗
= ϑ∗−1.

Therefore, the effect of external disturbance on the output of
the system is reduced.

B. ROBUST STABILIZATION BASED ON OBSERVER
FEEDBACK CONTROLLER
In this subsection, we will design an observer-based feedback
controller for the nonlinear system (1) under two conditions:
(A) regardless of uncertainty, (B) considering disturbance,
unknown nonlinear perturbations, and uncertainty.

C. WITHOUT UNCERTAINTY
The state-space model of a nonlinear system with unknown
nonlinear perturbations, time-delay, and disturbance is con-
sidered as

ẋ (t) = Ax (t) + Adx (t − d) + Bu (t) + f1 (x (t))

+ f2 (x (t − d)) + Bωω (t)

y (t) = Cx (t) + Dωω (t)

x (t) = ϕ (t) , ∀t ∈ [−d, 0] , (27)

The following theorem supplies the stabilization of the sys-
tem (27) by the observer-based control.
Theorem 2: Consider the system model (16) and the state

observer (10). If there exist symmetric matrices P > 0,
Q > 0, and constants α, ε1, ε2, ε3, ε4, β1, β2 > 0 such that
fulfilled LMIs (29), then the system is stabled asymptotically
and disturbance effects on system output are minimized as
follows:

sup
ω(t)̸=0

∥y(t)∥L2
∥ω(t) ∥L2

≤ γ −1 (28)
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The following LMIs should be fulfilled:

[
411 412

∗ 422

]
< 0,

P =

[
P1 0
0 P2

]
> 0,

Q =

[
Q1 0
0 Q2

]
> 0,

(29)

where

411 =


811 Ad + BK2 −BK2 −BK2 N1
∗ −e−αdQ1 0 0 0
∗ ∗ 833 P2Ad 0
∗ ∗ ∗ 844 0
∗ ∗ ∗ ∗ −N 2



412 =


Bω I I 0 0 N1(CT

+ CT
d ) N1CT ε1N1 0

0 0 0 0 0 CT
d CT

d 0 ε2I
P2Bω 0 0 P2 P2 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

 ,

422 = diag
(

−γ −1I , −ε1I , −ε2I , −ε3I , −ε4I , −γ −1I ,
−γ −1I , −ε1β

−2
1 I , −ε2β

−2
2 I

)
811 = αN1 + N1AT + AN1 + XTBT + BX ,

833 = αP2 + ATP2 + P2A− CTY T − YC + Q2 + ε3�
T
1 �1

844 = −e−αdQ2 + ε4�
T
2 �2

Proof: From equation (28), we have sup
ω(t)̸=0

∥y(t)∥L2
∥ω(t) ∥L2

≤

γ −1, or equivalently ∥y(t)∥L2 ≺ γ −1 ∥ω(t)∥L2 . If both sides
of this expression are squared, then we obtain ∥y(t)∥2L2 ≺

γ −2 ∥ω(t)∥2L2 . Then, multiplying both sides of the last term
by γ yields γ ∥y(t)∥2L2 ≺ γ −1 ∥ω(t)∥2L2 . Finally, we can find∫ t→∞

0
(γ yT (τ )y(τ ) − γ −1ωT (τ )ω(τ ))dτ ≺ 0 (30)

The estimation error is defined with the following
Equation:

e(t) = x(t) − x̂(t). (31)

Using (30), (27), and (31), we will obtain:[
ẋ (t)
ė (t)

]
=

[
A+ BK1 −BK1

0 A− LC

] [
x (t)
e (t)

]
+

[
Ad + BK2 −BK2

0 Ad

] [
x (t − d)

e (t − d)

]
+

[
Bω

0

]
ω (t)

+

 f1 (x (t)) + f2 (x (t − d))(
f1 (x (t)) − f1

(
x̂
))

+

(
f2 (x (t − d))

−f2
(
x̂ (t − d)

) )


(32)

The Lyapunov function is considered as

V (t) ≜
[
xT (t) eT (t)

]
P
[
x (t)
e (t)

]
+

∫ t

t−d
eα(s−t) [ xT (s) eT (s)

]
Q
[
x (s)
e (s)

]
ds (33)

where P =

[
P1 0
0 P2

]
> 0, and Q =

[
Q1 0
0 Q2

]
> 0 are

positive definite matrix which should be found.
Now, we want to show that the following inequality is

correct:

V̇ (x (t)) + αV (t) + γ yT (t)y(t) − γ −1ωT (t)ω(t) < 0.

(34)

Therefore, by comparingwith Equation (30), the inequality
(34) is true. By substituting Equation (27) into (34), the
following relation is obtained:

x (t)
x (t − d)

e (t)
e (t − d)

ω (t)
f1 (x (t))

f2 (x (t − d))

f1 (x (t)) − f1
(
x̂ (t)

)
f2 (x (t − d)) − f2

(
x̂ (t − d)

)



T

× 5



x (t)
x (t − d)

e (t)
e (t − d)

ω (t)
f1 (x (t))

f2 (x (t − d))

f1 (x (t)) − f1
(
x̂ (t)

)
f2 (x (t − d)) − f2

(
x̂ (t − d)

)


< 0 (35)

where as in (36), shown at the bottom of the next page.
Due to the presence of zero on the main diagonal of the

matrix5, it is impossible to prove that5 is a negative definite
matrix. Equations (5)-(8) can be rewritten as below:

f T1 (x (t))f1(x (t)) − β2
1x

T (t) x (t) ≤ 0, (37)

f T2 (x (t − d)) f2 (x (t − d)) − β2
2x

T (t − d) x (t − d) ≤ 0,
(38)

(f1 (x) − f1
(
x̂
)
)T I

(
f1 (x) − f1

(
x̂
))

− eT (t)�T
1 �1e(t) ≤ 0

(39)

(f2 (x (t − d)) − f2
(
x̂ (t − d)

)
)T

× I
(
f2 (x (t − d)) − f2

(
x̂ (t − d)

))
− eT (t − d)�T

2 �2e(t − d) ≤ 0 (40)

71828 VOLUME 11, 2023



H. Karami et al.: LMI-Based Luenberger Observer Design for Uncertain Nonlinear Systems

From (35), and (37)-(40), Lemma 1 , and Assumptions 1
and 2, we will have:

x (t)
x (t − d)

e (t)
e (t − d)

ω (t)
f1 (x (t))

f2 (x (t − d))

f1 (x (t)) − f1
(
x̂ (t)

)
f2 (x (t − d)) − f2

(
x̂ (t − d)

)



T

5̄



x (t)
x (t − d)

e (t)
e (t − d)

ω (t)
f1 (x (t))

f2 (x (t − d))

f1 (x (t)) − f1
(
x̂ (t)

)
f2 (x (t − d)) − f2

(
x̂ (t − d)

)


< 0 (41)

where as in (42), shown at the bottom of the next page.
If the matrix 5̄ is negative-definite, then Equation (34) is

satisfied. Using Schur complement lemma on 5̄ < 0, it yields
as in (43), shown at the bottom of page 9, where

51 = αP1 + ATP1 + P1A+ Q1 + KT
1 B

TP1 + P1BK1

By pre-and-post multiplying both sides of Equation (43)
by diag(P−1

1 , I , I , I , I , I , I , I , I , I , I , I , I ), we have[
011 012
∗ 022

]
, (44)

where

011 =


θ11 Ad + BK2 −BK2 −BK2
∗ −e−αdQ1 0 0
∗ ∗ θ33 P2Ad
∗ ∗ ∗ θ44

 ,

012 =


Bω I I 0 0 P−1

1 CT P−1
1 C

T
ε1P

−1
1 0

0 0 0 0 0 0 0 0 ε2I
P2Bω 0 0 P2 P2 0 0 0 0
0 0 0 0 0 0 0 0 0

 ,

022 = diag
(

−γ −1I , −ε1I , −ε2I , −ε3I , −ε4I , −γ −1I ,
−γ −1I , −ε1β

−2
1 I , −ε2β

−2
2 I

)
,

θ11 = αP−1
1 + P−1

1 AT + AP−1
1 + P−1

1 Q1P
−1
1 + P−1

1 KT
1 B

T

+ BK1P
−1
1 ,

θ33 = αP2 + (A− LC)T P2+P2 (A− LC)+Q2+ε3�
T
1 �1,

θ44 = −e−αdQ2 + ε4�
T
2 �2

Using Schur complement lemma and defining P−1
1 = N1,

Q−1
1 = N2, X = K1P

−1
1 , and P2L = Y for linearization pur-

pose, the LMI condition (29) is obtained. Therefore, the effect

5 =

[
A2 B2
C2 D2

]
< 0,

A2 =


51 P1Ad + P1BK2 −P1BK2 −P1BK2

(P1Ad + P1BK2)T −e−αdQ1 0 0
(−P1BK2)T 0 53 P2Ad
(−P1BK2)T 0 (P2Ad )T −e−αdQ2



B2 =


χ P1 P1 0 0
0 0 0 0 0

P2Bω 0 0 P2 P2
0 0 0 0 0

−γ −1I + γDTωDω 0 0 0 0

 ,

χ = P1Bω + γCTDω

C2 =


χT 0 (P2Bω)T 0 (−γ −1I + γDTωDω)

T

PT1 0 0 0 0
PT1 0 0 0 0
0 0 PT2 0 0
0 0 PT2 0 0

 ,

D2 =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 ,

51 = αP1 + ATP1 + P1A+ Q1 + KT
1 B

TP1 + P1BK1 + γCTC

53 = αP2 + (A− LC)T P2 + P2 (A− LC) + Q2 (36)
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of external disturbances, time-delay, and unknown nonlinear
perturbations on the system’s output is reduced. □

D. WITH UNCERTAINTY, UNKNOWN NONLINEAR
PERTURBATIONS, AND DISTURBANCES
The following theorem considers designing an observer-
based feedback controller regarding the set of LMIs with
uncertainty, unknown nonlinear perturbations, time-delay,
and disturbances.
Theorem 3: Consider the state-space model of systems

(1) with uncertainties, unknown nonlinear perturbations,
time-delay, and disturbances. Suppose P > 0, Q >

0 and Y > 0 are matrices with proper dimensions and
α, ε1, ε2, ε3, ε4, β1, β2 > 0. If the following LMIs exist:

[
211 212

∗ 222

]
< 0,

P =

[
P1 0
0 P2

]
> 0,

Q =

[
Q1 0
0 Q2

]
> 0,

(45)

where

211 =


F11 Ad + BK2 −BK2 −BK2 N1

∗ −e−αdQ1 0 0 0
∗ ∗ F33 P2Ad 0
∗ ∗ ∗ F44 0
∗ ∗ ∗ ∗ −N 2



212 =


Bω I I 0 0 N1CT N1CT

0 0 0 0 0 CT
d CT

d
P2Bω 0 0 P2 P2 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

ε1N1 0 N1CT
+ XTHT

3
0 ε2I (H2 + H3K2)

T

0 0 − (H3K2)
T

0 0 − (H3K2)
T

0 0 0


222 = diag

(
−γ −1I , −ε1I , −ε2I , −ε3I , −ε4I , −γ −1I ,
−γ −1I , −ε1β

−2
1 I , −ε2β

−2
2 I , −I

)

5̄ =

[
A3 B3
C3 D3

]
< 0,

A3 =


5̄1 P1Ad + P1BK2 −P1BK2 −P1BK2

(P1Ad + P1BK2)T 5̄2 0 0

(−P1BK2)T 0 5̄3 P2Ad
(−P1BK2)T 0 (P2Ad )T 5̄4

 ,

B3 =


χ P1 P1 0 0
0 0 0 0 0

P2Bω 0 0 P2 P2
0 0 0 0 0

−γ −1I + γDTωDω 0 0 0 0



C3 =


(χ)T

(
γCT

d Dω

)T
(P2Bω)T 0

(
−γ −1I + γDTωDω

)T
PT1 0 0 0 0
PT1 0 0 0 0
0 0 PT2 0 0
0 0 PT2 0 0



D3 =


−ε1I 0 0 0
0 −ε2I 0 0
0 0 −ε3I 0
0 0 0 −ε4I


5̄1 = αP1 + ATP1 + P1A+ Q1 + KT

1 B
TP1 + P1BK1 + γCTC + ε1β

2
1 I

5̄2 = −e−αdQ1 + ε2β
2
2 I + γCT

d Cd

5̄3 = αP2 + (A− LC)T P2 + P2 (A− LC) + Q2 + ε3�
T
1 �1

5̄4 = −e−αdQ2 + ε4�
T
2 �2 (42)
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F11 = αN1 + N1AT + AN1 + XTBT + BX ,

F33 = αP2 + ATP2 + P2A− CTY T − YC + Q2 + ε3�
T
1 �1

F44 = −e−αdQ2 + ε4�
T
2 �2

then, the system (1) is exponentially stable.
Proof: The proof is similar to Theorem 2; the following

relation can be written as in (46), shown at the bottom of
page 10, where as in (47), shown at the bottom of page 10.
Due to the presence of zero on the main diagonal of the
matrix6, it is impossible to prove that6 is a negative definite
matrix. From Equations (37)-(40), and following inequality

1T (t) 1 (t) − 0T .MMT .0 ≤ 0,

we will have

x (t)
x (t − d)

e (t)
e (t − d)

ω (t)
f1 (x (t))

f2 (x (t − d))

f1 (x (t)) − f1
(
x̂ (t)

)
f2 (x (t − d)) − f2

(
x̂ (t − d)

)
1 (t)



T

6̄



x (t)
x (t − d)

e (t)
e (t − d)

ω (t)
f1 (x (t))

f2 (x (t − d))

f1 (x (t)) − f1
(
x̂ (t)

)
f2 (x (t − d)) − f2

(
x̂ (t − d)

)
1 (t)


< 0 (48)

where, as shown in the equation at the bottom of the next
page,

6̄1 = αP1 + ATP1 + P1A+ Q1 + KT
1 B

TP1
+ P1BK1 + γCTC + β2

1 I
6̄2 = P1Ad + P1BK2
6̄5 = P1Bω + γCTDω

6̄3 = αP2 + (A− LC)T P2 + P2 (A− LC) + Q2 − e−αdQ2
+ �T

1 �1

Using Schur complement lemma on 6̄ < 0, it yields as in
(49), shown at the bottom of page 11, where

61 = αP1 + ATP1 + P1A+ Q1 + KT
1 B

TP1 + P1BK1

63 =αP2+(A− LC)T P2 + P2 (A− LC) + Q2 + ε3�
T
2 �2

64 = −e−αdQ2 + ε4�
T
1 �1

5 =

[
A4 B4
C4 D4

]
< 0,

A4 =



5̄1 P1Ad + P1BK2 −P1BK2 −P1BK2 P1Bω P1
(P1Ad + P1BK2)T −e−αdQ1 0 0 0 0

(−P1BK2)T 0 5̄3 P2Ad P2Bω 0
(−P1BK2)T 0 (P2Ad )T 5̄4 0 0
(P1Bω)T 0 (P2Bω)T 0 −γ −1I 0
PT1 0 0 0 0 −ε1I



B4 =


P1 0 0 CT CT ε1I 0
0 0 0 0 0 0 ε2I
0 P2 P2 0 0 0 0
0 0 0 0 0 0 0
0 0 0 Dω 0 0 0
0 0 0 0 0 0 0



C4 =



PT1 0 0 0 0 0
0 0 PT2 0 0 0
0 0 PT2 0 0 0
C 0 0 0 DTω 0
C 0 0 0 0 0

(ε1I )T 0 0 0 0 0
0 (ε2I )T 0 0 0 0



D4 =



−ε2I 0 0 0 0 0 0
0 −ε3I 0 0 0 0 0
0 0 −ε4I 0 0 0 0
0 0 0 −γ −1I 0 0 0
0 0 0 0 −γ −1I 0 0
0 0 0 0 0 −ε1β

−2
1 I 0

0 0 0 0 0 0 −ε2β
−2
2 I


(43)
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By pre-and-post multiplying both sides of Equation (49) by
diag(P−1

1 , I , I , I , I , I , I , I , I , I , I , I , I , I ), we have[
31 32
∗ 33

]
, (50)

where, as shown in the equation at the bottom of the next
page. Using Schur complement lemma and defining P−1

1 =

N1,Q
−1
1 = N2z, X = K1P

−1
1 , and P2L = Y z for linearization

purpose, the LMI condition (45) is obtained. Therefore, the
effect of uncertainties, external disturbances, time-delay, and
unknown nonlinear perturbations on the system’s output is
reduced.
Remark 1: By proving the inequalities (35), (41),

(46) and (48) in the mentioned systems, in addition to the

stability proof of systems, the observer estimation error will
also be converged to zero.

IV. SIMULATION RESULTS
Over the past few decades, there has been tremendous growth
in flexible-link manipulator usage in various industrial and
medical applications [40], [41]. Conventional robotic arms
are designed to achieve a minimum vibration [42]. As a
result, these robotic arms require heavymaterials, high power
drives, and huge parts [43], [44]. However, FLMs have
more advantages than rigid arms: low power consumption,
faster-operating speed, more excellent mass loading capa-
bility, lower arm motion, easier transportation, lower cost,
and greater safety for operators. In addition, it is easier to
maintain and repair these arms. Themost common challenges



x (t)
x (t − d)

e (t)
e (t − d)

ω (t)
f1 (x (t))

f2 (x (t − d))

f1 (x (t)) − f1
(
x̂ (t)

)
f2 (x (t − d)) − f2

(
x̂ (t − d)

)
1 (t)



T

6



x (t)
x (t − d)

e (t)
e (t − d)

ω (t)
f1 (x (t))

f2 (x (t − d))

f1 (x (t)) − f1
(
x̂ (t)

)
f2 (x (t − d)) − f2

(
x̂ (t − d)

)
1 (t)


< 0 (46)

6 =



61 P1Ad + P1BK2 −P1BK2 −P1BK2 P1Bω + γCTDω P1 P1 0 0 P1E
∗ −e−αdQ1 0 0 0 0 0 0 0 0
∗ ∗ 62 P2Ad P2Bω 0 0 P2 P2 P2E
∗ ∗ ∗ −e−αdQ2 0 0 0 0 0 0
∗ ∗ ∗ ∗ −γ −1I + γDTωDω 0 0 0 0 0
∗ ∗ ∗ ∗ ∗ 0 0 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ 0 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0


61 = αP1 + ATP1 + P1A+ Q1 + KT

1 B
TP1 + P1BK1 + γCTC

62 = αP2 + (A− LC)T P2 + P2 (A− LC) + Q2 (47)

6̄ =



6̄1 6̄2 −P1BK2 −P1BK2 6̄5 P1 P1 0 0 P1E (H1 + H3K1)
T

∗ −e−αdQ1 + β2
2 I 0 0 0 0 0 0 0 0 (H2 + H3K2)

T

∗ ∗ 6̄3 P2Ad P2Bω 0 0 P2 P2 P2E − (H3K2)
T

∗ ∗ ∗ −e−αdQ2 + �2
T�2 0 0 0 0 0 0 − (H3K2)

T

∗ ∗ ∗ ∗ −γ −1I + γDTωDω 0 0 0 0 0 0
∗ ∗ ∗ ∗ ∗ −I 0 0 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ −I 0 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ −I 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −I 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −I 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −I


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and problems in the control of FLMs are vibration control in
the presence of external disturbances [45], [46]. The flexible
arm’s vibration can affect the end effector’s final position
and reduce its accuracy. The control of these systems is
always subject to various disturbances, including climatic
and environmental conditions, data errors, uncertainties, and
variations in some system parameters. Therefore, the system
dynamic of example 1 in the simulation part is FLM. The
second example is the continuous stirred tank reactor system
at the presence of time-delay, disturbance, uncertainty, and
nonlinear perturbations. This system is used in chemical pro-
cesses, and it is an irreversible and exothermic reaction. The
dynamicmodel is highly nonlinear with external disturbances
and uncertain parameters; this process cannot be controlled
robustly by traditional controllers [47], [48]. Therefore, lots
of research studies have been done to control this system

accurately [49], [50], [51]. In this part, the feasible solutions
of parameters of state feedback controller and Luenburger
observer K and L are obtained via MATLAB YALMIP tool-
box. These gains are found by calculating the values of P,
Q and Y in the mentioned theorems via YALMIP solver
satisfying LMI of Eq. (45). In Fig.1, the algorithm of this
approach is demonstrated.
Example 1 (Without Uncertainty): To assess the per-

formance of the proposed controller/ observer designs,
we implement them to the flexible-link manipulator system,
which is demonstrated in Fig., and described by the following
equations [52]:

θ̇m = ωm

ω̇ =
k
Im

(θl − θm)−
Cvf
Im

ωm +
Kτ

Im
u



61 P1Ad + P1BK2 −P1BK2 −P1BK2 P1Bω P1 P1 0 0 CT CT ε1I 0 (H1 + H3K1)
T

∗ −e−αdQ1 0 0 0 0 0 0 0 0 0 0 ε2I (H2 + H2K2)
T

∗ ∗ 6̄3 P2Ad P2Bω 0 0 P2 P2 0 0 0 0 − (H3K2)
T

∗ ∗ ∗ 6̄4 0 0 0 0 0 0 0 0 0 − (H3K2)
T

∗ ∗ ∗ ∗ −γ −1I 0 0 0 0 Dω 0 0 0 0
∗ ∗ ∗ ∗ ∗ −ε1I 0 0 0 0 0 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ −ε2I 0 0 0 0 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ −ε3I 0 0 0 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −ε4I 0 0 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −γ −1I 0 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −γ −1I 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −ε1β

−2
1 I 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −ε2β
−2
2 I 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

(49)

31 =


311 Ad + BK2 −BK2 −BK2
∗ −e−αdQ1 0 0
∗ ∗ 333 P2Ad
∗ ∗ ∗ 344

 ,

32 =


Bω I I 0 0 P−1

1 CT P−1
1 C

T

0 0 0 0 0 0 0
P2Bω 0 0 P2 P2 0 0
0 0 0 0 0 0 0

ε1P
−1
1 0 P−1

1 (H1 + H3K1)
T

0 ε2I (H2 + H3K2)
T

0 0 − (H3K2)
T

0 0 − (H3K2)
T

 ,

33 = diag
(

−γ −1I , −ε1I , −ε2I , −ε3I , −ε4I , −γ −1I ,
−γ −1I , −ε1β

−2
1 I , −ε2β

−2
2 I , −I

)
311 = αP−1

1 + P−1
1 AT + AP−1

1 + P−1
1 Q1P

−1
1 + P−1

1 KT
1 B

T
+ BK1P

−1
1 ,

333 = αP2 + (A− LC)T P2 + P2 (A− LC) + Q2 + ε3�
T
1 �1,

344 = −e−αdQ2 + ε4�
T
2 �2
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θ̇l = ωl

ω̇l = −
k
Il
(θl − θm)−

mgh
Im

sin(θl). (51)

TABLE 1. Parameters values [52].

The parameters of the system are given in Table 1. The
sinusoidal disturbance is added to E, and its coefficient matrix
is Bω = [0 1 0.05 0]T . Using the parameter values pro-
vided in Table 1, we can rewrite system (51) is the state-space
form (1), with:

A =


0 1 0 0

−48.6 −1.26 48.6 0
0 0 0 10

1.95 0 −1.95 0

 ,B =


0

21.6
0
0

 ,

C =

[
1 0 0 0
0 1 0 0

]
.

The results of Theorem 2 are used to obtain the controller and
the observer gains so as to stabilize the flexible-link manip-
ulator system. The initial values of the system are chosen as:
x(0) =

[
1.5 −1 2 −0.2

]T and x̂(0) =
[
1.5 1 −2 −0.2

]T .
The optimal values of controller and observer gains are
obtained using MATLAB solver as:

L =


5390 −5580
43.4 43.4
5460 5510
58.1 58.1


k =

[
−0.2 −0.6 −0.2 − 0.02

]
Figs. 3 and 4 depict the dynamics of the system states along
with their estimates in 2.5 seconds, it is clear that if the
states are inaccessible, the suggested method can estimate
states well. Fig. 5 shows the estimation errors converge to
zero before 2 seconds, and it shows the good performance
of Luenberger observer which its gain is obtained from LMI,
and Fig. 6 illustrates control input with appropriate overshoot,
respectively. In order to show the validation of this approach,
the results are compared with [5]. In [5], an observer-based
composite nonlinear feedback controller is designed for sys-
tems with uncertainty, nonlinear function, disturbance and
time-delay; but, as it is obvious in example 1, it cannot make
the system stable.

It is shown in the simulation results that the system states,
as well as system state estimates, converge to zero, and the
system is asymptotically stable. The method of paper [5]
cannot make the system stable and the response of system is

FIGURE 1. LMI-based observer and controller algorithm.

FIGURE 2. Flexible link manipulator.

oscillating; but, the Luenberger observer estimates the states
of the system suitably. To evaluate the performance of sug-
gested method and method of paper [5], the following table
contains steady state error Ess, settling time Ts, maximum
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FIGURE 3. Time responses of the system states.

FIGURE 4. Time trajectories of the state’s estimates.

value of control input umax , minimum value of control
input umin.
Example 2 (With Uncertainty, Unknown Nonlinear Per-

turbations and Disturbances): In this part, to demon-
strate the validity of the performance of the proposed

FIGURE 5. Time histories of the estimation errors.

FIGURE 6. Control input.

TABLE 2. Comparison of performance parameters of example 1.

controller/observer, we implement them to the continuous
stirred tank reactor system according to Fig.7, which is
described by the following state-spacemodel coefficient [48]:

A =

[
0.6 0
0 −0.24

]
,
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E = I2×2,F = cos (0.2t) × I2×2,

H1 =

[
−0.9444µ1 −0.002µ1

−2.3331µ1µ2 −0.916µ1µ2

]
,

Ad =

[
0.16 0
0 0.16

]
,B =

[
0

0.8368

]
,

Bw =

[
0.02
0.4

]
,C =

[
1 0
0 1

]
,

Cd = Dw = 0,w = sin(t +
π

4
), (52)

where µ1andµ2 are uncertainty parameters, the time-delay is
d = 1 sec. It should be mentioned that we assume H2 =[
0.1 0
0 0.1

]
, H3 =

[
0.1
0.1

]
.

The results of Theorem 3 are used to obtain the controller
and the observer gains so as to stabilize the continuous stirred
tank reactor system when the initial values of the system are

chosen as x(0) =

[
0.5
2

]
and x̂ (0) =

[
0.5
5

]
.The optimal

values of controller and observer gains are obtained using
MATLAB solver as:

L =

[
200 0
0 200

]
K =

[
1.1 −51

]
By applying these gains to the system results of simula-
tion are shown in Figs. 8 to 11. Figs. 8 and 9 depict the
dynamics of the system states with uncertainty parameters
and their estimations, it is clear that the suggested method
can estimate states well if the states are inaccessible. Fig. 10
shows the estimation errors in uncertain modes converge
to zero in 5 seconds, and it shows the good performance
of Luenberger observer which its gain obtaining from LMI
and Fig. 11 illustrates control input of uncertain system,
respectively.

FIGURE 7. Schematic of continuous stirred tank reactor control.

As it is obvious from Figs. 8-11, in [6], the system states
converge to zero in 45 sec, the response of system is oscillat-
ing, the estimation error is not equal to zero, the steady-state
error is more than that of our suggested approach, and the
amplitude of control signal is more than that of our pro-
posed method. The comparison of performance parameters
of example 2 is shown in Table 3.

FIGURE 8. Time responses of the system states.

FIGURE 9. Time trajectories of the state’s estimatesx̂1, x̂2.

TABLE 3. Comparison of performance parameters of example 2.

According to the two examples mentioned above, when
the uncertainties are not considered, the simulation worked
well, and in the presence of uncertainty, the theory had a good
performance, and in special circumstances 1Ad = 1Bd= 0,
this theory is responsive.
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FIGURE 10. Time histories of the estimation errors.

FIGURE 11. Control input.

V. CONCLUSION
The simultaneous design of controller and observer for a class
of systems in the presence of uncertainties, unknown nonlin-
ear perturbations, constant time-delays, and disturbances is
considered in this paper. The observer-based state-feedback
controller is proposed. Using the Lyapunov theory and LMIs
techniques, the exponential stability of the close loop system
is proved. Both observer and controller gains are calculated.
The proposed controller is successfully implemented into two
examples. The obtained simulation results showed that the
estimation errors and the system states converge to the origin

and that system stability was guaranteed. In this study, the
effects of input saturation and time varying delay have not
been investigated. Thus, future studies could be focused on
how to stabilize the nonlinear systems in the presence of
uncertainties, unknown nonlinear perturbations, time-delays,
disturbances, sensor fault, cyber-attack, input saturation and
time varying delay using LMIs.
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