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ABSTRACT A decision-making system is an essential component of an autonomous tram. The decision-
making system uses information on the surrounding area to recognize the traffic situation and determine
appropriate actions to maintain safety and passenger comfort. However, guaranteeing reliable performance
and safety remains challenging in all driving situations. The development of autonomous trams involves
iterative engineering-related tasks. Therefore, proper architecture to facilitate the flexibility of engineering
development is required. This paper proposes a modular architecture for a decision-making system for
autonomous trams. The decision-making system can serve as a high-level controller for autonomous trams.
The architecture consists of risk assessment and decision & planning modules. It also integrates several
key functions, such as trajectory prediction, safety assessment, adaptive cruise control (ACC), collision
avoidance (CA), and emergency braking system (EBS). In the decision and planning module, a finite-
state machine is devised as part of the decision-making system. This module provides a speed reference
for low-level speed controllers. In addition, the decision-making system architecture was implemented and
its implementation was validated using a Carla simulator. Under a mixed-traffic scenario, simulation results
showed that the decision-making system has a high percentage of mission successes. Out of 50 simulations
in mixed-traffic scenarios, the tram reached its destination with an 80% success rate in which the success
rates of ACC, CA, and EBS executions to avoid collisions were 96.94%, 100%, and 100%, respectively.
In addition, the system works well in real-time to recognize the surrounding environment and determine
actions. Although beyond the scope of the decision-making system, the simulation results also indicate that
an improving performance of the tram’s low-level speed controller may provide more reliable performance
of the decision-making system.

INDEX TERMS Autonomous tram, Carla simulator, collision avoidance, decision-making system.

I. INTRODUCTION
O ver the years, the growth of private transport has continued
and traffic flow has become increasingly congested, impact-
ing community productivity and risking safety. Congestion is
an unresolved problem in large cities in Indonesia. The fear
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of total congestion (deadlock) has led to the implementation
of mass public transportation, namely tram and light rail
transit (LRT) [1]. Tram is a type of light rail vehicle (LRV)
that operates on urban roads by obeying traffic signals [2]
and interacting with other road users [3]. In Indonesia, the
tram is an uncommon mode of mass transportation for the
public. In the analysis issued in [4], it is pointed out that
there are differences between public transport situations in
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Indonesia and European cities. In Indonesia, most road users
are less aware of safety and discipline [4]. Meanwhile,
tram lines are more likely to mix with other vehicles and
burdensome traffic conditions should be considered [4].
These conditions cause safety assurance problems because
they affect the driver’s fitness and cause human error [5], [6].
Data analysis [7] shows that accidents involving trams are
caused more by negligent road users, such as misinterpreting
tram line signs, miscalculating tram stop times, and passing
without paying attention to tram lines.

Several studies on autonomous trams have been conducted.
The study in [8] proposed a collision avoidance system for
trams using Light Detection and Ranging (LiDAR). This
proposal used the speed of the tram and the distance to an
object to determine how fast the tram could brake and how
long a braking distance would be. Thus, the necessity of
braking is determined deterministically based on the braking
distance and the distance to the object as a risk assessment.
In addition, the proposed system provides an emergency
braking signal if the distance to the object is minimal or if the
object does not react to a given warning. A similar study was
conducted in [9] using a Sick Ladar Digital-Multilayer Range
Scanner (LD-MRS) laser scanner. The proposal includes a
system architecture that comprises laser scanner sensors,
object recognition, and risk assessment. The risk assessment
estimates the time to collision based on the knowledge of
relative velocities and the shortest distance. It then initiates
a tram’s stop if the tram driver does not react after being
given a warning. Instead of using the deterministic approach,
another study [10] utilized a probabilistic threat assessment
that considers position, velocity, and classes for each of the
road users. This study also did not implement active control
of the tram but used a warning. However, the risk assessment
method in [8], [9], and [10] would not properly handle the
dynamic motion of objects as none of these studies have
predicted the future movement of an object.

Unlike the studies in [8], [9], and [10], the framework
proposed in [11] built a model that considered the status
of trams and objects, restrictions, and safety qualification
rules. The model was optimized for safety, energy cost,
convenience, parking accuracy, and timeliness. Risk quantifi-
cation was performed by quantifying four types of hazards:
forward collision, rear-end collision, lateral collision, and
overspeed. However, the proposed framework has not been
studied further.

Another study proposed an autonomous tram with a
signaling system, as in [2]. This proposal includes a sys-
tem architecture comprising of localization, signal handling,
obstacle handling, and vehicle control. The signal handling
is used to detect tram signals and determine the movement
authority limit (MAL) for compliance with these signals.
Meanwhile, the obstacle handling detects and responds to
dynamic objects by determining the MAL required to avoid
dangerous objects. The proposed autonomous tram was suc-
cessfully demonstrated on Germany’s 6 km long Potsdam
tram network in which crossing animals are frequently

encountered in this network. In addition, the network
included several signalized and non-signaled road crossings.
However, this proposal did not consider the predicted future
movement of an object. Instead, free-space detection is used
to determine whether an area is free or occupied. The use of
free-space detection is challenging owing to the growing veg-
etation on the track, and this requires a trade-off between the
ability to detect objects close to the ground without detecting
tall vegetation. It is noted that driving trams based on MAL
require a signaling system.

Autonomous driving in the automotive and railway sec-
tors takes a different approach. Autonomous driving in the
train railway sector requires trains to run on dedicated tracks
and continuously communicate with the train control room.
By contrast, autonomous driving in the automotive sector
must interact with a mixed traffic environment [7]. Even
though a tram operates on a railway, the tram needs to interact
with a mixed traffic environment, and an autonomous vehicle
architecture is, therefore, more suitable for use in autonomous
trams. From an architectural perspective, the work in [12]
described an overall autonomous vehicle architecture that
includes perception, understanding, decision-making, and
actuation capabilities. A recent review of architecture for
autonomous vehicles was conducted by [13], in which
the architecture was divided into three types: sequential,
behavior-aware, and end-to-end planning. An example of a
sequential planning approach was used for urban driving,
as in the DARPA urban challenge [14]. This approach decou-
ples the perception, mission planning, motion planning, and
vehicle control. Although the sequential planning approach
has resulted in the successful implementation of DARPA’s
urban challenges, it does not consider the modeling of vehi-
cle interactions. Unlike in [14], the work in [15] used a
behavior-aware planning architecture that considers human-
like driving behavior in real traffic scenarios. Meanwhile,
advanced approaches, such as in [16], that use learning-
based methods have been studied for several end-to-end
autonomous vehicle architectures. These approaches make
use of sensor data directly to generate control commands
through a control model trained using machine learning.
However, there have been no actual implementations or tests
of these end-to-end approaches. Instead, most implemented
prototypes use a sequential planning architecture [17], which
has modular characteristics.

Decision-making is crucial for taking over the tram driver’s
complex tasks in an urban setting by providing an appropriate
response to changes in traffic situations and an appropriate
architecture for autonomous trams may be needed. Building
an autonomous tram also engages in engineering work in
which an agreed architecture of the decision-making system
shall be available to refer to in the development process.
Currently, there are many available choices and combinations
of technology to implement the complex functions of an
autonomous tram; hence, a modular architecture, such as
sequential planning architecture, may be a suitable choice to
facilitate implementation flexibility.
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The autonomous tram reported in [2] was successfully
demonstrated with the support of a signaling system, which
was not the case in Indonesia with current infrastruc-
ture support. In this infrastructure context, the approaches
in [8], [9], [10], and [11], which use risk assessment methods,
are considered suitable for deployment in Indonesia. A risk
assessment of the traffic environment using a new concept in
the traffic safety field was proposed in [18]. However, the new
concept is suitable for road vehicles within a straight road sce-
nario, which is a different scenario from the case of the tram
situation. In terms of the level of autonomous driving assis-
tance (known as ADAS in the automotive industry [12]), the
approaches in [8], [9], [10], and [11] achieved good results.
However, it is clearly insufficient for an autonomous tram to
rely on warnings, wait for the tram driver to react, or stop the
tram if no action has been taken by the driver. In addition,
in mass public transportation, making trams autonomous is
not only about safety but also the convenience and quality of
service (i.e. keeping to the timetable), as considered in [19]
and [20]. Hence, more features should also be performed,
including railway cruising, collision avoidance, and emer-
gency braking. Predicting the future trajectory of an object
is also essential for achieving those features, which have not
been included in previous studies. Moreover, tram-restricted
conditions in a railway provide common tram situations such
as vehicle crossings, pedestrian crossings, and vehicles block-
ing a part of the railway. Therefore, cruising on a railway
while maintaining a distance when an object partially or fully
blocks the railway and anticipating object crossing must be
ensured.

This paper presents a modular decision-making architec-
ture of autonomous trams containing risk assessment and
decision & planning modules in which a risk assessment
method combined with a state machine to switch between
predefined behaviors is employed. This architecture enables
modular autonomous trams design to consider unknown situ-
ations as new states if it is necessary. This study enhances an
autonomous tram architecture without the need of signaling
infrastructure. The main contribution of this study is the
development of a simple, safety and performance-achieving,
and feasible decision-making architecture for the tram to
cruise on its railway, maintain distance to in-front object,
and anticipate crossing objects. Both the risk assessment and
the decision & planning modules are designed to achieve
safety and intended performance. In the risk assessment
module, trajectory prediction for the surrounding objects,
railway and the tram information are used to assess any
risk. Meanwhile, the decision and planning module covers
three actions: adaptive cruise control, emergency braking, and
collision avoidance. Following to the action taken, an appro-
priate speed reference is planned based on perceived risk
level. The proposed architecture is also implemented using
a Carla simulator to validate its feasibility, performance, and
reliability.

The remainder of this paper is organized as follows. Fol-
lowing an introduction in this section, section II presents

FIGURE 1. Autonomous tram architecture.

FIGURE 2. Architecture of decision-making system implemented in Carla
simulator.

the architecture of the proposed decision-making system.
An in-depth explanation of the risk assessment module is
provided in Section III. Section IV presents the detailed
architecture of the decision and planning module, and
Section V presents the actuation necessary to complete
the implementation in Carla simulator. Section VI presents
the simulation results of the implemented architecture and the
decision-making system tested using Carla simulator. Finally,
Section VII presents conclusions and potentials for future
work.

II. THE DECISION-MAKING ARCHITECTURE
In the autonomous tram architecture shown in Fig. 1, the
decision-making system depends on the performance of other
systems because it requires information regarding the object’s
state and the tram’s state itself. Fig. 1 shows the position of the
decision-making system in the autonomous tram architecture.
It can be seen that the decision-making system obtains input
from the perception, localization & mapping systems. The
outputs generated by the decision-making system are then fed
to the actuator and warning modules.

The architecture of the decision-making system is shown
in Fig. 2. In the first layer, the architecture of the decision-
making system is divided into risk assessment and decision &
planning modules. In the second layer, the risk assessment
module consists of a railway estimator, trajectory prediction,
and safety assessment. Meanwhile, the decision and planning
module comprises adaptive cruise control (ACC), collision
avoidance (CA), and emergency braking system (EBS). The
risk assessment module identifies traffic conditions and pre-
dicts hazards, whereas the decision and planning module
handles action determination. Fig. 2 also shows the decision-
making system implemented in Carla simulator. In Carla
simulation scenarios, data from the perception and localiza-
tion systems were obtained using Python API provided by
Carla simulator, and the railway coordinates of the mapping
were substituted by waypoints stored in a file. The actuation
task was performed using a low-level controller. Notably,
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FIGURE 3. Illustration of rail horizon.

no warning task was included in the implementation due to
limitations in the simulator.

A. RISK ASSESSMENT
This module aims to recognize traffic and predict possible
collisions based on information obtained from the perception,
localization & mapping systems. First, traffic situations are
recognized by predicting the motion trajectory of all detected
vehicles and pedestrians (referred to as objects) by trajectory
prediction based on the historical information of the objects.
The prediction of possible collisions for all detected objects
is then performed using a safety assessment, which compares
the predicted motion trajectories of these objects to a rail
horizon, as depicted in Fig. 3. The rail horizon is the zone
in front of the tram that must be monitored. Its length is
calculated using a railway estimator. After calculating the
collision probability for all the objects, the object with the
most significant collision risk can be determined. This infor-
mation is then forwarded to the decision and planningmodule
to determine the required action.

B. DECISION AND PLANNING
The decision and planning module aims to plan actions based
on changes in traffic situations identified and predicted by
the risk assessment module. Information from the risk assess-
ment module, that is, the position and speed of the tram, speed
of the object, predicted location and time of the collision,
is considered by the decision and planning module to yield
effective and safe actions. In each frame, the decision and
planning module selects one of the three states: emergency
braking system (EBS), collision avoidance (CA), and adap-
tive cruise control (ACC). A tram speed profile was produced
to accelerate, decelerate, or instantly stop the tram in each
state. The speed profile is passed to a lower-level controller
in the actuation system, which is beyond the scope of the
decision-making system.

III. RISK ASSESSMENT MODULE
A. RAILWAY ESTIMATOR
The railway estimator uses the tram speed information to
determine the current rail horizon. The railway estimator’s
basic concept was modified from traffic alerts and braking
commands in a rail collision avoidance system (RCAS) [21].

SH = Salert + Sbrake + Sguard . (1)

The rail horizon SH in (1) comprises three parameters:
warning distance Salert , maximum braking distance Sbrake,
and minimum braking distance Sguard . Salert is the approx-
imate distance to the warned objects, allowing objects that

will cause collisions to get out of the way, and the tram
does not have to slow down. Although a warning is not yet
involved, it is still necessary to consider Salert to describe
natural conditions. Sbrake is the farthest distance required to
stop using minimum deceleration. However, Sguard estimates
the shortest distance for a complete stop at the operating
speed in mixed-traffic using maximum deceleration. Com-
bining these three parameters can be used to determine the
required viewing distance for each change in the tram speed.

B. TRAJECTORY PREDICTION
For each object perceived by the perception system, trajectory
prediction predicts the object’s attributes when moving or
stopping based on its historical position and speed. The actual
output of the trajectory prediction contains trajectory points
that include time and speed information. Trajectory predic-
tion constructs the object’s motion trajectory by following
a sequence of predicted paths. A simple method is to use
physical rules with suitable assumptions.

In this study, a Kalman filter was used to predict the
motion trajectories of objects. The Kalman filter uses the
feedback control principle to estimate the state at a certain
point in time and receives feedback in the form of noise
measurements [22]. Kalman filter prediction is equivalent
to filtering when the measurement data are unavailable or
unreliable [23]. In this context, the Kalman gain is consid-
ered zero, which means that the calculated value is close to
the actual value. The Kalman filter formula is divided into
time-updated andmeasurement-value-updated formulas [22].
The time-updated formulas estimate the state and covariance
for the next time step using the transition matrix and pro-
cess noise. By contrast, the measured value-updated formula
inserts a new measurement into the previous state estimate to
obtain a new but better estimate.

C. SAFETY ASSESSMENT
In general, without knowing the exact position and direction
of objects on a map, the safety assessment relies on attributes
provided by the trajectory prediction, such as moving and
stopping. The safety assessment has 2 (two) assessment con-
ditions: moving objects and non-moving objects. The safety
assessment checks whether the object’s position is within the
rail horizon for objects that are predicted to stop moving.
As for moving objects, the safety assessment checks whether
there is an intersection between the object’s predicted motion
trajectory and the rail horizon. The results of the assessment
are time-to-region (TTR), as in (2) and (3), and the distance-
to-collision (DTC), as in (5). Then, TTR becomes TTC if it
satisfies (4), where α is the contention parameter [24].

TTR1 =
|cp− ptram|

vtram
(2)

TTR2 =
|cp− pOV |

vOV
(3)

|TTR1 − TTR2| ≤ α (4)

DTC = vtramTTC (5)
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where TTR1 : time to tram region. TTR2 : time to region for
object. TTC : time to collision. cp : crossing point. ptram : tram
position vector. pov : object position vector. α : contention
parameters.

A threat score (ϕoj ) is computed for each object, the jth

object. The object with the highest risk of collision was then
determined by comparing the threat scores of all objects.
In [25], the threat score was calculated using a conditional
random field algorithm that considers the TTC and time-to-
stop (TTS). In this study, the TTS was calculated based on the
current speed of the tram using the maximum deceleration.
In addition, a non-negative real number as a measure of the
threat score presented in (6) was employed instead, where1te
is the time difference between TTC and TTS, σ is a tuning
constant, and sgn(.) is a signum function. The highest threat
score (δ) is then computed using (7).

ϕoj = e−0.5(1te/σ )2sgn(1te) (6)

δ = argmax
j

{ϕoj} (7)

IV. DECISION AND PLANNING MODULE
In this module, a finite-state machine (FSM) is used to deter-
mine actions of cruising on the railway, maintaining distance,
decelerating, or stopping. The FSM design has three states,
as shown in Fig. 4. The ACC state is related to cruising
on railways and distance-keeping. The CA state is related
to collision avoidance through gradual slowing, whereas the
EBS state is related to collision avoidance through immediate
stopping.

The state selection was performed based on the specified
transition parameters. The first parameter is the safe distance
to the object. The system is in the ACC state only if a safe
distance from the object is achieved. This state is the initial
state when the tram starts to operate. If the safe distance is
not satisfied, then the ACC state moves to the EBS state. The
second and third parameters represent TTC and DTC [25]
with the highest collision risk. When TTC and DTC were
below the specified safe limit, the state moved to the CA state.
The fourth parameter was the tram speed. When the current
state is a CA or an EBS state, a transition to the ACC state
occurs when the tram speed is zero.

Once the current state is determined using the FSM, the
associated reference speed profile is calculated within its
associated state. This associated state acts as a high-level
speed controller; thus, the ACC, CA, and EBS algorithms
do not consider the tram dynamics when calculating the
reference speed profile. Instead, the tram dynamics are con-
sidered in the low-level speed controller, which is discussed
in the next section. The algorithms used by the EBS, CA, and
ACC states to generate the speed profile are as follows.

A. EMERGENCY BRAKE SYSTEM
The speed profiling algorithm of the EBS state provides
emergency braking to stop the tram within the shortest possi-
ble time to avoid highly close collisions. This state generates

FIGURE 4. FSM of decision and planning.

a zero-speed profile if the safe distance calculated using non-
uniform linear motion (8) meets the emergency condition,
as in (9). The notation vmt is the operational speed in mixed
traffic situations and the notation amax is the maximum
deceleration of the tram.

dsafe =
v2mt

2amax
(8)

vref =

{
0 ; drel ≤ dsafe,
otherwise

(9)

In Fig. 4, a transition from either the ACC or CA state to the
EBS state occurs when the ‘Emergency’ condition is True;
that is, the object’s relative distance to the tram is less than
or equal to the safe distance, and output of this transition is
‘EBSF’ (EBS Finished) with a value of False. Thus, the EBS
state remains a priority until the tram stops and no other object
is too close to the tram.

B. COLLISION AVOIDANCE
In Fig. 4, a transition from ACC to CA state occurs when
the ‘Danger’ condition is True, i.e., TTC < 8.5 s and
DTC < 40 m, and the transition output is ‘CAF’ (CA Fin-
ished) condition with a False value.Meanwhile, the EBS state
transition to the CA state occurs when the following three
conditions are met, i.e. the ‘Danger’ condition is True, the
‘Emergency’ condition is False, and the ‘EBSF’ condition
is True. This transition responds to a predicted collision when
a safe distance is met, and the tram has stopped successfully.
The output of this transition is ‘CAF’ with a false value.

As the current state moves to the CA, the speed profiling
algorithm of the CA state provides a zero-speed profile in
which the low-level speed controller (i.e. smooth brake actu-
ation; see the next section) must incrementally execute. This
algorithm uses fuzzy logic to calculate the required speed
reduction. The fuzzy logic is adapted to provide a smooth
transition in speed reduction as a train-braking system in [26].
The adapted algorithm uses the Mamdani inference method
based on the DTC and TTC [27]. The smaller the DTC and
TTC are, the more likely that the tram will hit an object in
front of it. In this fuzzy controller, DTC andTTC act as inputs,
whereas the amount of braking is the output.
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FIGURE 5. Input DTC membership function.

FIGURE 6. Input TTC membership function.

FIGURE 7. Output brake membership function.

The Mamdani fuzzy inference method has 3 (three) pro-
cesses for producing an output: fuzzification, inference, and
defuzzification. In the fuzzification process, the degree of
membership functions of the inputs and outputs are deter-
mined based on the trapezoidal and triangular functions
shown in Fig. 5, 6, and 7 for DTC, TTC, and output,
respectively.

The degree of membership function is on the graph’s y-axis
and ranges from 0 to 1. The degree ofmembershipwas used in
the inference process.WhenDTC is inmeters (m) and TTC in
seconds (s), the brake ranges from 0 to 1. In addition, the rules
depend on DTC and TTC inputs in the inference process.
In turn, the rules determine the braking level of the output.
In particular, the number of rules is obtained by multiplying
with the number of inputs, as shown in (10).

TotalRule = numberof DTC × numberof TTC

TotalRule = 3 × 3 = 9 (10)

The implication function and composition of the rules were
applied during the inference. The implication function is
beneficial for determining the cause-and-effect relationship
between input and output. The implication function is defined
as in (11) [28].

α − predicatei = µA1[x1] ∩ µA2[x2]

= min(µA1[x1], µA2[x2]) (11)

where i is the ith fuzzy rule, A1 is the first input set, A2 is
the second input set, x1 is the first input value, x2 is the
second input value, and µ is the degree of membership. Rule
composition combines the degree of membership of the rule
implication function with the maximum value of the rule. The
merging of membership degrees using the maximum method
is defined in (12).

µsf (xi) = max(µkf (xi), µkf (xi)) (12)

where µsf (xi) is the degree of membership of the fuzzy solu-
tion up to the ith rule, and µkf (xi) is the fuzzy consequence
of the ith rule [27]. The results of the inference process form
a new fuzzy set based on the mergers. In the defuzzification
process, the area of the new fuzzy set is determined using
the centroid method. The calculation of the braking reference
using the centroid method is shown in (13).

brakeCA =

∫
µ(z)zdz∫
µ(z)dz

(13)

where brakeCA is the result of the defuzzification or the mid-
dle value of the fuzzy area, µ(z) is the degree of membership,
and

∫
µ(z)zdz is the moment of the rule area [28].

C. ADAPTIVE CRUISE CONTROL
The speed profiling algorithm of the ACC state provides
a speed profile for cruising on the railway and adapting to
the presence of another tram (or object) ahead. This state
is divided into two substates, ‘normal’ ACC and ‘keep dis-
tance’ ACC. The ‘normal’ ACC generates a speed profile for
cruising on the railway based on operating speed rules if the
situation is safe. The ‘keep distance’ ACC generates a speed
profile that is lower than the current speed of the tram. This
is to ensure that the tram can maintain a safe distance when
approaching another object in front of it.

In Fig. 4, the ‘start’ arrow indicates that the initial con-
dition was the ACC state. The transition from the EBS or
CA state to the ACC state occurs when the ‘Emergency’
and ‘Danger’ conditions are false. This transition implies
that the following three parameters-safe distance, TTC limit,
and DTC limit-are not violated, and the ‘EBSF’ or ‘CAF’
condition is true, which corresponds to an event in which the
tram stopped successfully after executing EBS or CA state.

Model predictive control (MPC) algorithm is used to con-
trol the distance and longitudinal speed of the tram relative
to another object in front, as in [29] and [30]. MPC may be
considered a suitable approach because it can deal with both
input and output constraints and has a smooth output [30].
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Safe distance and passenger comfort were assigned as con-
straints to ensure that the distance was sufficient for a sudden
stop and that the acceleration or deceleration did not exceed
the comfort limit. Furthermore,MPCminimizes cost function
based on predictions, which is the square of the error between
the desired output and actual output. The algorithm is shown
in (14)-(18).

vi+1 = vi + ait (14)

drel,i+1 = drel,i − vrel,it −
1
2
ait2 (15)

vi, drel,i and vrel,i are the tram’s speed, the distance and
speed relative to another tram, respectively, at the ith time
step. ai is the given acceleration/deceleration value of the
tram. t is the change in time between time steps.

C =

N∑
i=0

((wd (drel,i+1 − dsafe))2

+ (wv(vrel,i+1 − vmt ))2

+ (wrate(ai+1 − ai))2

+ (wa(ai+1))2) (16)

The predicted future conditions by MPC may consist of
several steps as needed; however, only the first step’s accel-
eration or deceleration value is used for this purpose. The
cost function used to make predictions is given by (16) [27],
where dsafe indicates the desired safe distance between the
tram and another object, and vmt is the tram operating speed
in mixed-traffic situations. ai is the tram acceleration at
the ith time step, and N represents the number of predic-
tive steps. wd and wv are the weights representing the safe
distance control and speed control. wrate and wa are the
weights representing the change of acceleration/deceleration
and acceleration/deceleration value.

The wd , wv, wrate, and wa can be set to obtain the desired
control behavior. The greater the weight, the more the related
variables are prioritized to approach the desired value. The
cost function is minimized so that the relative distance and
velocity values have less error for the given reference at each
predicted step. Thus, the acceleration or deceleration values
can be obtained.

dsafe =
vmt2

2amax
+ vrel tgap (17)

The safe distance value (dsafe) in (17) is the minimum safe
distance that must be satisfied [31]. Note that tgap is the time
required for the tram to begin realizing the need to maintain
distance. Where amax is the maximum deceleration value that
can be achieved, and vmt is the operational speed in mixed-
traffic situations.

vref = vactual + at (18)

The acceleration or deceleration value obtained from the
MPC algorithm a is used as a reference for speed changes.
Therefore, the low-level controller receives the calculated
speed profile in (18).

V. ACTUATION
The actuation system is a low-level controller for an
autonomous tram. The task of this system is to make the
actual speed of the tram following the speed profile gener-
ated by the decision-making system. Although this system is
beyond the decision-making system, it completes the imple-
mentation of the autonomous tram architecture (Fig. 1) in
Carla Simulator.

As the simulator does not provide a tram model, the
firetruck model is chosen as the tram model because its
dynamics exhibit similar behavior. The predefined firetruck
model of Carla simulator uses NVIDIA PhysX vehicle model
to simulate its vehicle dynamics. In Carla simulator, the actu-
ation system drives the tram by providing throttle, brake, and
steering control signals to its dynamicmodel. This simulation
requires a steering wheel signal to track waypoints assumed
to be tram railways.

There are three actuation methods in this system, i.e.
maximum brake, smooth brake, and proportional-integral-
derivative (PID). Each of these functions is a low-level
controller of a particular FSM state. The maximum brake
receives only a simple zero-speed profile from the EBS state
to stop as quickly as possible with maximum braking. Mean-
while, the smooth brake receives the speed profile from the
CA state, and the PID receives the speed profile from theACC
state, as described below.

A. SMOOTH BRAKE
The smooth brake method adjusts the control signal so that
a speed decrease does not interfere with passenger comfort.
This methodwas intended to track the speed profile generated
by the CA state. The initial value of the brake control signal
is zero and then increases, such that the tram stops before the
collision point. The change in the brake control signal (brake)
is calculated using a linear equation, as shown in (19).

brake = brakeCA
d

dDTC
(19)

brakeCA is the brake reference calculated using (13), which
is the value of the intended brake, and d is the distance trav-
eled since the brake was applied. If the brake control signal
reaches brakeCA and d reaches dDTC in a given situation, the
smooth brake applies the maximum brake control signal to
prevent a collision.

B. PID CONTROL
The PID method provides a throttle control signal based on
the speed profile given by the ACC state. The PID calculates
the error between the speed profile (18) and the tram’s actual
speed, as in (20), and then computes the throttle control signal
(throttle), as in (21).

e = vref − vactual (20)

throttle = Kpe+ Ki

∫
edt + Kd

de
dt

(21)

71720 VOLUME 11, 2023



K. S. Suhaimi et al.: Architecture and Decision-Making for Autonomous Tram Development

The PID gains Kp, Ki, and Kd were obtained by manual
tuning. Initial gains were randomly set to a small value, then
they were changed based on observing the speed response of
the tram. Several simulations were run specifically for tuning
by comparing desired speed with the actual speed until the
desired steady-state speed was achieved.

VI. SIMULATION RESULTS AND DISCUSSION
A. SIMULATION SETUP
Carla simulator is an autonomous driving simulator that pro-
vides maps with various characteristics, types of actors, and
accessible information about the actors and their environ-
ments [32]. Town02 map of Carla simulator was selected to
model the urban mixed-traffic environment because it is the
closest simulated city environment to the city environment in
Indonesia. Actors such as vehicles and walkers (or agents)
can spawn and move in autopilot mode using the Carla
simulator traffic manager module. By default, this module
sets agents to follow a dynamically produced trajectory and
randomly chooses a path as they approach a junction with
70% of their current speed limit. Other actors provided by the
Carla simulator are sensors, i.e. LiDAR, radar, IMU, GNSS,
and others, that can be attached to a vehicle to gather infor-
mation about its surroundings. These sensors produce raw
data that can be utilized by localization and perception sys-
tems; however, these sensors are not used in this simulation.
Instead, decision-making in this simulation uses the Python
API class fromCarla simulator, which defines information on
the location and rotation of agents.

Although the environment provided by the simulator was
similar to that in real urban driving, some differences were
observed. The road network in Town02 of Carla simulator
is a single lane in each direction, where one of them is the
lane in which the tram drives. Therefore, no other vehicle
drives in the same direction on the tram side, and no other
vehicle cuts the lane from the side of the tram. In conse-
quence , the behavior of other vehicles remains in their lane.
Moreover, unlike real urban driving in which human drivers
of the other vehicles may cause unpredictable situational
awareness, other vehicles move freely as long as there are
no other agents in front of them in a simulation environment.
Awarning horn for the tram is also not supported, and agents
cannot respond to the warnings by default.

B. PARAMETER SETTINGS
Specific parameters must be defined to simulate the decision-
making system in Carla simulator. In a simulation envi-
ronment, Carla simulator used throttle and brakes with a
scalar value of 0 to 1 for each vehicle type. This scalar value
is a relative value among all vehicles in Carla simulator and
represents the minimum and maximum values of throttle
and braking. The inertial characteristic of a tram is quite
different from the other objects. Therefore, the maximum
throttle value was assumed to be half of the maximum value.

There is a comfort limit, and an assumed operational speed
limit on the algorithm side. The comfort limit is −1 m/s2 to

TABLE 1. MPC algorithm weights.

TABLE 2. Set of membership functions of the input and output for the
fuzzy controller.

1 m/s2, and the operational speed in the station and urban
areas is 2.78m/s and 5.56m/s. Therefore, the tram speed will
not exceed 5.56 m/s in this simulation. Moreover, the tram is
assumed to have a minimum deceleration of 0.5 m/s2 and
a maximum of 1 m/s2. The operational speed, minimum
deceleration, and maximum deceleration are used to com-
pute Equations (1), (8), (16), and (17). In addition, the cost
function of the MPC algorithm in (16) has weights that a tun-
ing process must select to achieve desired control behavior.
The weights used are listed in Table 1. Meanwhile, Fuzzy
logic was designed using the membership function shown in
Table 2.

C. SIMPLE SCENARIOS SIMULATION
We simulated inter-station travel through Town02 using the
Carla simulator, as shown in Fig. 8. A trip consists of several
scenarios that a tram typically encounters. In this simulation,
after the tram leaves the station, the tram encounters object A,
which is moving at a varying speed. Then, objects B and C cut
across the tram’s lane at the first and second T-junction. After
passing the second T-junction, object C moves in front of the
tram and suddenly stops at two different points. Finally, the
tram encounters object D, which cuts across the tram’s lane.

In this simulation, the decision-making system was imple-
mented in Carla simulator to observe the process of recogniz-
ing traffic situations, predicting collisions, and determining
actions to be carried out. The tram must consider these three
scenarios:

1) A scenario where an object cuts through the railway.
2) A scenario where some other trams or objects move at

lower speeds in front of the tram.
3) A scenario in which an object in front suddenly stops.

At the beginning of the simulation, the tram received way-
points to reach its destination and perceived the surrounding
environment. The railway estimator then determines the rail
horizon distance based on the tram’s current speed; the min-
imum distance is 15 m at 0 m/s, and the maximum distance
is 57 m at 5.56 m/s. These distances are determined by Salert ,
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FIGURE 8. Simulation path: trams (red ), railways (green dots), and
objects (A, B, C, and D).

FIGURE 9. Speed profile of the ‘normal’ ACC state, i.e. State 0 (dotted
line): reference speed (blue) and actual speed (red ).

Sbrake, and Sguard from (1). In this state, there are no objects
within the perception radius, so the safety assessment will
give a safe signal, and the FSM state is in ‘normal’ ACC.
As shown in Fig. 9, when the tram is in the station area,
the MPC algorithm will generate a speed profile for the
recommended speed in the station area and a speed profile
for the operational speed in mixed-traffic when entering an
urban area.

After entering an urban area, the tram meets object A
on the same lane, moving at varying speeds and stops.
In this scenario, a state transition occurs between the ‘normal’
ACC state and the ‘keep distance’ ACC state, as shown in
Fig. 10. When the relative distance between the tram and
the object widens above 30 m, the FSM switches the state
to the ‘normal’ ACC state. The given speed profile is, there-
fore, towards operational speed. However, when the object
decreases its speed and the distance is sufficiently small,
the FSM moves the state to ‘keep distance’ ACC states that
provide a speed profile to reduce the speed. This behavior
is shown in Fig. 10 and 11. The blue line in Fig. 10 shows

FIGURE 10. Speed profile of the scenario involving an in-front object with
a lower speed: speed profile reference from MPC (blue), tram actual
speed (red ), and current state (dotted line), i.e. ‘normal’/’keep distance’
ACC (State 0).

FIGURE 11. Relative distance profile of the scenario involving an in-front
object with a lower speed: relative distance (black) and safe distance
(magenta).

the speed profile generated by the MPC algorithm, and the
red line shows the actual speed that tracks the speed profile.
In Fig. 11, the black line shows the relative distance and the
magenta line shows the safe distance that must be maintained.
From these two figures, it can be observed that the tram
managed to maintain its distance without crossing the safe
distance limit, which varied with its relative speed.

The following scenario occurs when the tram crosses the
T-junction and the perception system detects object B.
The trajectory prediction receives the data, which then pre-
dicts the motion trajectory traversed by object B. Trajectory
prediction using the Kalman filter method depends on the
amount of historical data obtained from the observed object.
Hence, trajectory prediction is relatively accurate when new
historical data are obtained. In trials onCarla simulator, traffic
situation s and dangers can be determined before the tram
reaches the T-junction. The visualization shown in Fig. 12
depicts the intersection between the rail horizon and the
predicted trajectory of the object that will cause a collision.
This situation causes the state to move to the CA state, which
constructs a speed profile to reduce speed using fuzzy logic,
as shown in Fig. 13. Once the situation is safe, the state returns
to ‘normal’ ACC.
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FIGURE 12. Visualization of rail horizon (green line), predicted trajectory
(blue star ), and predicted collision point (red dotted line) of scenarios
with object crossing railways.

FIGURE 13. Speed profile of scenarios with object crossing the railways:
reference speed (blue), actual speed (red ), and current state (dotted line),
i.e. ‘normal’ ACC state (State 0) or CA state (State 1).

FIGURE 14. Speed profile of scenario with suddenly-stopped object:
reference speed (blue), actual speed (red ), and current state (dotted line),
i.e. ‘normal’ ACC state (State 0) or EBS state (State 2).

In the following scenario, object C unexpectedly stops
twice. This situation results in a shorter distance than the safe
distance that must be maintained. In this situation, the FSM
moves to the EBS state and provides a zero-speed profile to
apply the maximum brake. The behavior of the tram in this
scenario is shown in Fig. 14.

At the end of the trip, the tram perceives object D, which
cuts the tram’s lane. However, the decision-making system

FIGURE 15. Speed profiles (upper sub-figure) and state transitions (lower
sub-figure) in mixed-traffic simulation: reference speed (blue), actual
speed (red ), and state (black : 0 = ACC state, 1 = CA state, 2 = EBS state).

does not predict an impending collision, and the tram main-
tains its current speed. In this scenario, object D moves at a
lower speed than the tram and will not meet at the T-junction.
Therefore, the decision to stay in the ‘normal’ ACC state is
valid.

D. MIXED-TRAFFIC SCENARIO SIMULATION
We also simulated the decision-making system in mixed-
traffic consisting of vehicles and pedestrians driven auto-
matically and randomly using Carla simulator server. This
test aims to evaluate the performance and reliability of the
decision-making system in dense and diverse environments.
In this test, the tram ran around Town02 and passed through
four T-junctions. The number of vehicles and pedestrians in
urban areas was set to 40, but this number could change if
another object occupied the spawn point determined by the
simulator.

Fig. 15 shows a plot of the speed profile generated in
the ACC, CA, and EBS states in a 5-minute mixed-traffic
simulation. The upper sub-figure shows reference and actual
speeds, and the lower sub-figure shows the corresponding
state. The figure shows that the tram is in the CA state
12 times, in the EBS state once, and in the ACC state 13 times.
Transition to the CA state often occurs when a vehicle is about
to turn at T-junctions, and several times when a pedestrian
crosses. Meanwhile, the transition to the EBS state occurred
at the T-junction when the vehicle turned near the tram. At
175 s in the simulation, the tram recognized that vehicle
had stopped and maintained its speed. However, when the
tram reached T-junctions, the vehicle moved suddenly and
turned. In this case, a transition to the CA state occurs to
prevent collisions. The transition is followed by an immediate
transition to the EBS state (see the lower sub-figure of Fig. 15
at 175 s) because the distance between the vehicle and tram
is sufficiently small, less than the safe distance.

The corresponding control signal for the speed profile in
mixed-traffic simulation is presented in Fig. 16. It can be
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FIGURE 16. Control signals in mixed-traffic simulation: throttle (green)
and brake (red ).

observed that the control signal was saturated when tracking
the given speed profile. Saturation occurs because the control
signal is limited to a specific value, i.e. throttle and braking
have a minimum value of 0, while the maximum value is
0.5 for throttle and 1 for braking. Signal saturation causes
chattering phenomena as shown in the first 60 seconds of
Fig. 15 when the actual speed oscillates. The other chattering
phenomena are shown in Fig. 9, 13, and 14. In addition,
the control signal at approximately 80 seconds is gradually
braking to maximum (see Fig. 16) because collision points
were quite close. Meanwhile, at 440 s, no braking signal was
provided in the CA state, and only the throttle was reduced.

The mixed-traffic scenario simulation was run 50 times.
The simulation was conducted to test the implementation
of the decision-making system architecture in mixed-traffic
scenarios. In the 50 simulations that involved a tram, vehi-
cles (cars, motorcycles, trucks, buses, and bicycles), and
pedestrians, the following situations emerged: (1) vehicles
traveling on the railway at a lower or higher speed than
the tram, (2) vehicles turning and traveling on the railway,
(3) vehicles crossing the railway, (4) vehicles stopping sud-
denly, (5) traffic jams at the intersection, (6) pedestrians
walking on the railway, and (7) pedestrians crossing the
railway.

The simulation results showed that the tram can maintain
safety by avoiding potential collisions in 40 simulations;
therefore, the success rate of the decision-making system was
80%. It was observed that 14 collisions occurred when the
FSM was in the ACC state, as shown in Table 3. Among
these 14 collisions, three were caused by objects stopping on
the railway and 11 were caused by objects that were about
to cross the railway. In the three collisions caused by objects
stopping on the railway, the ACC state cannot transition to
the EBS state. In this situation, the objects had different
directions from that of the tram. Noting that the distance of
the object on the railway to the tram is calculated only when
the object is in the same direction as the tram, the condition
for the state transition is not met, and collisions consequently
occur. Meanwhile, in the 11 collisions caused by objects that
were about to cross the railway, the CA state was initially

TABLE 3. Simulation results on the mixed-traffic scenario.

active and successfully stopped the tram. The CA state imme-
diately transitioned to the ACC state. However, the ACC state
could not transition back to the CA state to avoid collision
because the calculated TTC was practically very large (the
tram’s zero speed was detected). From this perspective, in
50 simulations, the success rates of the ACC, EBS, and CA
states in avoiding collisions were 96.94%, 100%, and 100%,
respectively. These success rates shall not difficult to improve
using the necessary settings or adjustments in the decision-
making algorithm.

VII. CONCLUSION
A modular architecture for the decision-making system of
an autonomous tram was proposed herein. The proposed
decision-making system has two modules: risk assessment
and decision & planning. In the risk assessment module,
the motion trajectory of an object was predicted using the
trajectory prediction submodule. Then, the trajectory was
compared with the rail horizon determined using the rail-
way estimator submodule. The safety assessment submodule
predicts whether an object may pose a hazard to the tram.
The second module of the decision-making system is the
decision and planning module, which consists of an adaptive
cruise control (ACC) state, collision avoidance (CA) state,
and emergency braking system (EBS) state. The module
determines the actions required to maintain the safety of the
tram based on a designed finite-state machine.

The decision-making system is simulated in Carla sim-
ulator with two different settings: (a) specified scenarios
to observe the state transitions and speed profile of each
state and (b) mixed-traffic scenarios to determine the system
performance and reliability. Based on 50 simulation results
of mixed-traffic scenarios, the success rate of the tram in
reaching its destination was 80%. From another perspective,
the success rates of ACC, CA, and EBS execution in avoid-
ing collisions were 96.94%, 100%, and 100%, respectively.
Collisions that occur in the ACC state are caused by errors
in calculating the TTC (time to collision) when an object
crosses the railway just after the tram stops and by errors in
recognizing the situation as safe if an object on the railway is
not in the same direction as the tram. In addition, the proposed
decision-making system has considered trajectory predic-
tions of objects but with constant-velocity assumptions. This
may limit the performance of the proposed decision-making
system. However, the performance of trajectory predictions
may be enhanced by considering maneuvering objects with
dynamic velocities.

The simulation results indicated that the proposed
decision-making system architecture could perform collision
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avoidance and autonomous operations in real-time. In our
future work, it will be necessary to develop a strategy and
fine-tune the system to improve the performance of the
decision-making system. The improvement is considering the
size of the object, devising trajectory prediction for maneu-
vered objects, extending safety assessments to recognize and
predict various hazardous situations, and improving speed
profiling. With many choices of available technology for
engineering realization of the decision-making system on
a target hardware or platform, having a modular system
architecture as proposed will make its implementation easier.
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