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ABSTRACT Classifying network traffic is important for traffic shaping and monitoring. In the last two
decades, with the emergence of privacy concerns, the importance of privacy-preserving technologies has
risen. The Tor network, which provides anonymity to its users and supports anonymous services known
as Onion Services, is a popular way to achieve online anonymity. However, this anonymity (especially
with Onion Services) is frequently misused, encouraging governments and law enforcement agencies to
de-anonymise them. Therefore, in this paper, we try to identify the classifiability of Onion Service traffic,
focusing on three main contributions. First, we try to identify Onion Service traffic from other Tor traffic.
The techniques we have used can identify Onion Service traffic with >99% accuracy. However, there
are several modifications that can be done to the Tor traffic to obfuscate its information leakage. In our
second contribution, we evaluate how our techniques perform when such modifications have been done
to the Tor traffic. Our experimental results show that these conditions make the Onion Service traffic less
distinguishable (in some cases, the accuracy drops by more than 15%.) In our final contribution, we identify
the most influential feature combinations for our classification problem and evaluate their impact.

INDEX TERMS Traffic classification, machine learning, onion services, tor, anonymity, feature selection.

I. INTRODUCTION
Tor [1] is an anonymity network that hides the identity of
its users by routing the traffic through multiple intermediary
nodes. Tor also supports the provision of anonymous services
known as Onion Services (also known as hidden services)
with .onion as the top-level domain name. Tor’s ability to act
as a censorship circumvention tool has encouraged security
experts, network defenders, and law enforcement agencies to
identify Tor traffic from other encrypted and non-encrypted
traffic [2], [3]. For example, [3], [4] tried to classify Tor traffic
from non-Tor Traffic, [2], [5] tried to classify the application
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types in Tor traffic, and [6] tried to classify Tor traffic from
other anonymity network traffic such as I2P traffic and Web-
mix Traffic. However, in this work, we intend to explore
the distinguishability of Onion Service traffic from standard
Tor traffic using traffic analysis. We formulate three research
questions to act as a foundation for our work.

First, we try to answer the question, RQ1: Is it possible
to classify Onion Service Traffic from other standard Tor
traffic? A standard Tor circuit that is created to visit a web
service on the Internet via Tor consists of three Tor nodes.
An Onion Service circuit, which is the only way to access an
Onion Service, consists of six Tor nodes. As the traffic in both
these circuits (standard Tor and Onion Service) is encrypted,
we assume that we can use the information leaked from the
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metadata (e.g. direction, timestamps, packet size) to identify
unique patterns that can distinguish them. Onion Services
have been used to host illegal websites, and more recently,
they have been used as Command and Control (C&C) servers
for botnets [7], [8]. Therefore, from the perspective of gov-
ernments and law enforcement agencies, they want to track
and shut down such services and regulate the Onion Service
traffic [9]. Even businesses might find it useful to restrict
access to such websites in order to protect their systems from
potential bad actors (e.g. hackers) and attacks. As a result,
having techniques for identifyingOnion Service traffic can be
useful for two main reasons; 1. Such techniques can act as a
stepping stones for fingerprinting of Onion Services. 2. They
can be useful to restrict Onion Service traffic in sensitive and
confidential systems.

Second, we try to investigate the same problem under
different settings. Specifically, we try to investigate RQ2:
How do our results for RQ1 hold when we use modified
Tor traffic? There are certain techniques that can be imple-
mented in Tor to change its traffic patterns. Introducing
padding [10], using dummy bursts and delays [11], and split-
ting the traffic [12] are a few examples of such techniques.
These techniques1 have been developed with the intention of
obfuscating the information leakage of Tor traffic. The main
importance of answering RQ2 is that we can confirmwhether
our findings from RQ1 will hold true as and when such modi-
fications are introduced to the Tor traffic. If we are able to still
distinguish Onion Service traffic, it is an indication that these
modifications are not effective in masking Onion Service
traffic, if they are realised in the future. If themodifications do
affect the Onion Service classifiability, it opens up questions
about the validity of prior works, such as [3] and [6] in a
setting with those modifications implemented. As outcomes
of RQ2 can open up further research avenues on Tor traffic
classification, we argue RQ2 is worth evaluating.

In order to investigate RQ1 and RQ2, we employ passive
network analysis, in which we utilise traces of network traffic
captured at points between the client and the Tor entry node.
We first extract fifty features from each traffic trace, which
creates a unique fingerprint of that trace. A traffic trace refers
to a set of consecutive packets transmitted between the client
and the entry node in a given duration. We use three machine
learning classifiers that have shown promising results in net-
work traffic classification in the past and evaluate how they
work in our scenarios.

As our third research question, we investigate RQ3: What
features impact Onion Service traffic classification most,
and what level of performance do they provide? We con-
sidered two factors when crafting the fifty features used in
this work. (i) We mentioned that the standard Tor traffic
passes through three Tor nodes, while the Onion Service
traffic passes through six. Intuitively, this difference should

1These techniques are commonly identified as Website Fingerprinting
defences. Website Fingerprinting refers to a passive de-anonymisation attack
executed on Tor users, where an adversary tries to identify a user’s online
activity. More information is provided in Section II.

lead to major differences in latency. Therefore, we focused
on features that are focused on timing statistics. (ii) Also,
we use features that have a proven track record of working
well in revealing patterns in network traffic [13]. However,
we use three feature selection techniques to infer which fea-
tures have a better relationship with the traffic types used in
our work and conduct experiments to evaluate the classifier
performance with different feature combinations.

Overall, we make the following specific contributions in
this work.

1) First, we try to classify standard Tor traffic and Onion
Service traffic. We evaluate the applicability of three
supervised machine learning algorithms, namely K-
Nearest Neighbor, Random Forest, and Support Vector
Machines, for our evaluations. We also extract fifty
different features, which are given as input to the
machine learning classifiers. Our results show thatmost
of these algorithms can identify Onion Service traffic
from other Tor traffic with a high degree of accuracy
(given that we use effective features and sufficient
samples). We find Random Forests can predict the
results more than 100 times faster than other tech-
niques, making it an ideal candidate for real-world
online implementations.

2) Second, we further evaluate the identifiability of
Onion Service traffic, when certain modifications (e.g.
padding, traffic splitting) are introduced to Tor traf-
fic. We use Tor traffic generated with two techniques,
WTFPAD [10], and TrafficSliver [12] in our experi-
ments. Our experiments show that the accuracy values
we obtained for RQ1 drop considerably (in some cases,
even by more than 15%) when these modifications are
introduced. This provides a strong indication that such
modifications can affect the results obtained in prior
Tor traffic classification works (listed in Table 1).

3) Then, we use different feature selection metrics (Infor-
mation Gain, Pearson Correlation, and Fisher Score) to
select different feature combinations that have the most
effect on the classification and investigate the perfor-
mance of the classifiers. Our results provide insights
into the importance of different features and suggest
that the higher performance of the classifiers is, in fact,
highly dependent on the selection of features.

The rest of the paper is organised as follows. In Section II,
we provide background and related work for Tor traffic clas-
sification. We describe our dataset and features in Section III.
In Section IV, we explain the experimentation process with
the results. In Section V, we discuss several insights we
obtain from our work along with potential future directions.
We conclude in Section VI.

II. BACKGROUND AND RELATED WORK
In this section, we provide background information on the
Tor network and Onion Services, which is useful in under-
standing our work and present the related work on Tor Traffic
Classification.
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FIGURE 1. Connections to a normal web service and an Onion Service via
Tor.

A. TOR NETWORK AND ONION SERVICES
The Tor network is comprised of multiple relays as shown
in Figure 1. When a user connects to a destination service,
their traffic is encrypted and routed through a selected set
of intermediary relays. In the case where a user connects to
a normal web service through Tor, the Tor circuit generally
consists of three relays known as the entry, middle, and exit.
Although this setup adds some latency to the communication,
it provides strong anonymity to the user. An entity that has
the ability to monitor the traffic at any point of the Tor
circuit is unable to link a user with their destination (e.g.
finding their IP addresses). However, in this scenario, the web
service is not anonymous. Its IP address or the domain name
is public knowledge. Tor has introduced Onion Services to
overcome this problem. An Onion Service is simply a normal
web service that can only be accessed via the Tor network.
A user accessing an Onion Service does not know the actual
IP address (hence the location) of the Onion Service. When a
user connects to an Onion Service, the circuit generally con-
sists of six relays and is created as follows. The Onion Service
first selects a few random relays from the Tor network as its
Introduction Points. Then it advertises a service descriptor
containing the addresses of the introduction points and the
Onion Service’s public key in another Tor node called the
Hidden Service Directory (HSDir). Next, the Onion Service
operator advertises the .onion address of the Onion Service
to potential users, normally via other Onion Services, blogs,
and social media. A user requires a Tor client (a small piece
of software that can manage Tor-related operations) to search
for this Onion Service. The Tor client retrieves the service
descriptor of the Onion Service from the relevant HSDir.
The Tor client then selects a random Tor relay known as the
Rendezvous Point (RP), establishes a circuit to it and sends
a message to the Onion Service via the introduction points.
This message contains the address of the RP and a one-time
cookie. Finally, the Onion Service initiates a Tor connection
to the RP and completes the circuit [1].

B. MODIFIED TOR TRAFFIC
As mentioned previously, Website Fingerprinting is a passive
de-anonymisation attack that can be executed with minimal
resources. In a conventional Website Fingerprinting attack,
the attacker trains a machine learning classifier to identify
the websites visited by a user. Tor traffic collected between

the Tor client and the entry node is used to extract features
for the classifier. Once the attacker has an effective model,
they can use it to determine the websites a Tor user is visiting
by intercepting the traffic and feeding its fingerprint to the
model. The success of this attack depends on the information
leakage of Tor traffic (usually inferred using metadata as the
payload is encrypted). Therefore, several defences such as
WTFPAD [10], and TrafficSliver [12] have been proposed to
obfuscate the information leakage in Tor traffic.

• WTFPAD: This defence uses adaptive padding and tries
to conceal traffic bursts and other traffic features. Here
adaptive padding refers to padding when the channel is
not being used. That way, there will be fake traffic during
channel idle times, affecting the formation of unique
patterns.

• TrafficSliver: This technique uses a traffic splitting and
multipathing strategy. It means that the network traffic
is split and sent over multiple entry nodes. As this tech-
nique does not add any additional packets or delays, it is
more efficient than other defences.

In this paper, we aim to understand how these modifica-
tions affect the classifiability of Tor Traffic.

C. MACHINE LEARNING
Machine learning is a major sub-area under artificial intelli-
gence and is widely adopted for applications such as network
traffic classification and malware detection. In general, when
using amachine learning system for encrypted traffic classifi-
cation tasks, first, it is necessary to collect traffic traces under
relevant (and realistic) conditions. Then, important features
such as packet sizes, inter-arrival times, and the number of
packets are extracted from these traffic traces. After obtaining
this data, it is important to process and clean the data before
evaluation through machine learning algorithms. Checking
for missing values, removing duplicates, and handling cate-
gorical values are some steps used in the data pre-processing
stage. Once there is a processed dataset, it is split into two
main parts; training and testing. The next step is to use a
suitable machine learning classifier on the training dataset
and build a model. Finally, the model is evaluated on the
testing dataset using metrics such as accuracy, precision,
and recall (these metrics will be detailed in Section IV).
Moreover, it can be useful to investigate the performance of
a model in terms of training and prediction times. There are
two main types of problems handled by machine learning;
regression and classification. In this work, we focus on the
classification capabilities of machine learning and use three
traditional machine learning algorithms in our experiments.
We use the term traditional to describemachine learning algo-
rithms that do not use Artificial Neural Networks (ANNs).
While these traditional machine learning algorithms need
more human intervention, especially with preparing data and
tuning hyper-parameters compared to ANNs, they have their
advantages. For example, traditional machine learning algo-
rithms can work well with fewer data than ANNs in general,
and the results are much more interpretable.
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• K-Nearest Neighbour (KNN): This algorithm selects
the K (an integer) number of nearest data points for a
new data point and classifies the new data point into the
most common category of the K nearest points.

• RandomForest (RF):RF builds multiple decision trees
by using randomly selected features and combining
them together. A decision tree refers to a model that
learns from training data while developing decision rules
for different outcomes. During the prediction phase,
these rules help to determine the target outcome for a
given input. Having multiple decision trees enable RF
to provide more accurate predictions.

• Support Vector Machines (SVM): SVM tries to find
the best hyperplane that can separate multiple classes.
It tries to find the hyperplane, which divides the classes,
while having the largest distances between the hyper-
plane and the nearest elements of each class.

D. RELATED WORK
There are prior works that tried to address other questions
related to classifying Tor traffic. For example, classifying
Tor traffic from non-Tor traffic, classifying Tor traffic from
other anonymity networks’ traffic, etc. Different works in the
literature have employed different machine learning-based
classification methods with different sets of features. We will
describe these works as related work in this section.

Bai et al. [14] attempted to identify Tor traffic andWeb-mix
traffic [15] by using a stepwise matching technique. They
extracted different types of fingerprints, including informa-
tion in the packet header, specific strings in the packets, and
some statistical features such as packet length and frequency.
Their approach could identify Tor traffic with an accuracy of
95.98%.

AlSabah et al. [2] tried to classify Tor traffic into the type
of application that is being used. They considered interactive
web browsing and bulk downloading (mainly BitTorrent and
streaming applications) as the application types in their work.
They identified that bulk downloading takes up a large band-
width while contributing to a very small percentage of the
total connections. The aim of the authors in [2] was to provide
different Quality of Service (QoS) to different traffic classes.
They used features such as cell Inter-Arrival Times (IAT), cir-
cuit lifetime, amount of data sent upstream and downstream,
and classification algorithms such as Naive Bayes, Bayesian
Networks, and Decision Trees. The experiments of [2] show
an accuracy of over 95% in classifying the application type
of Tor circuits on a live Tor network.

He et al. [5] also tried to determine the application
type the encrypted Tor Traffic contained. In contrast to
AlSabah et al.’s work, He et al. considered the following
application types; P2P, Web, File Transfer Protocol (FTP),
and Instant Messaging (IM). They used Profile Hidden
Markov Models (PHMM) as their classifier and flow-based
features such as burst volumes and direction of packets as

features. They obtained accuracy figures up to 92% in their
experiments.

Lashkari et al. [3] evaluated how Tor traffic can be dis-
tinguished from non-Tor traffic by only using time-based
features. They extracted 23 time-based features from the traf-
fic they captured and used machine learning algorithms such
as K-Nearest Neighbor, Decision Trees and Random Forests.
Their techniques could classify Tor traffic from non-Tor traf-
fic with a precision and recall of more than 95%. In addition,
they tried to classify Tor traffic into different applications,
includingVoIP, Video-streaming, audio-streaming, browsing,
chat, FTP, and P2P and achieved precision and recall values
of around 80%.

Deep Learning (DL) is a subset of machine learning, which
is widely used in applications such as image classification
and speech recognition. Generally, algorithms that consist
ANNs fall under this category. Kim and Anpalagan [4]
applied Convolutional Neural Networks (CNN) to classify
Tor traffic from non-Tor traffic. They used hexadecimal raw
packets with a CNN and obtained an overall accuracy of
99.3% in identifying different application types. They used
the same dataset used by Lashkari et al. [3] and showed that
their method outperformed the techniques in [3].

Although Tor is very popular as an anonymity network,
it is not the only anonymity system that is currently in use.
Montieri et al. [6] carried out experiments to classify traffic
from different anonymity systems, including Tor, I2P [16],
and JonDonym (formerly known as Web- Mix) [15]. They
used four sets of features, including flow-based statistics
(e.g. flow direction, duration, inter-arrival time statistics),
histogram representations of packet lengths and inter-arrival
times, and sequence of packets. Bayesian classifiers and
tree-based classifiers were used in their work. Their results
show an accuracy of 99.87% for classifying traffic belonging
to different networks and 73.99% for determining the appli-
cation type by using flow-based features.

III. DATASET AND FEATURE SELECTION
In this section, we present the details of the datasets we used
in our study. Also, we provide information on the features and
feature selection metrics we used.

A. DATASETS
We use two publicly available datasets, which we refer to in
this paper as TOR (representing standard Tor traffic) and OS
(representing Onion Service traffic), in our experiments. The
TOR [17] dataset consists of 95000 traffic traces collected
by accessing 95 websites (1000 traces per site) over the
Tor Network. The OS [18] dataset contains 41503 traces
from 539 Onion Services (77 traces per site). Both these
datasets have been collected using a similar approach from
the real Tor network and do not contain any modifications
we need for our experiments in RQ2. We also created four
new simulated datasets using the techniques proposed in [10]
and [12]. We refer to these as ‘WTFPAD-TOR’, ‘WTFPAD-
OS’, ‘TrafficSliver-TOR’, and ‘TrafficSliver-OS’. We refer
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TABLE 1. Summary of related work.

readers to the original papers for more information regarding
the data collection process [17], [18] and the simulation of
traffic modifications [10], [12].

B. FEATURE EXTRACTION
Each packet’s timestamp and direction (incoming or outgo-
ing) are included in the datasets we have available. From
that information, we extract fifty statistical features from each
traffic trace to be used in our experiments. We selected many
features which involve timing statistics, and used insights
and features identified from prior works, [13]. We then carry
out a set of experiments to identify which of those features
works best for our research question (see next subsection).
The details of these features are provided below, where we
assign a number (1-50) to each feature so as to easily identify
them in Figure 2.

1) THIRTEEN FEATURES BASED ON INTER-ARRIVAL TIMES
(IATS)
IAT is the time difference between two successive packets
to arrive at a particular point. We extract the maximum (1),
mean (2), Standard Deviation (SD) (3), and the 75th per-
centile (4) of the IATs for all incoming packets (from the entry
node to the Tor client), max (5), mean (6), SD (7), and the
75th percentile (8) of IATs for outgoing packets (from the Tor
client to the entry node), andmax (9), mean (10), SD (11), and
the 75th percentile (12) for all packets. Finally, we calculate
the sum of all the IAT-related features (13).

2) THIRTEEN FEATURES BASED ON THE FLOW DURATION
Here, we calculate features related to the duration of the flow
with respect to the starting time of that flow. For example,
let us take the 25th percentile duration for incoming packets.
To calculate this feature, we first separate all the incoming
packets from that flow. Then we find the 25th percentile
packet in the incoming packet sequence, and calculate the
time that packet was received since the start of the flow (14).

Similarly, we calculate the 50th percentile (15), 75th per-
centile (16), and the total duration (17) for incoming packets.
Then, we calculate the same features for the outgoing packets
(25th (18), 50th (19), 75th (20), total (21)) and finally for all
packets (25th (22), 50th (23), 75th (24), total (25)). Finally,
we calculate the sum of those duration-related features (26).

3) EIGHT FEATURES BASED ON THE NUMBER OF PACKETS
The number of incoming packets (27), outgoing packets (28)
and the total number of packets (29) in a flow were extracted
from the dataset. In addition, we calculated the number of
incoming (30) and outgoing packets (31) among the first
30 packets and last 30 packets (incoming (32), outgoing (33)).
Finally, the sum of the values of these latter seven features
(34) was calculated.

4) FIVE FEATURES BASED ON THE PACKET
CONCENTRATION
When calculating these features, we first divided a trace into
segments of 20 successive packets. Then we calculated the
number of outgoing packets in each of the segments and
recorded the values sequentially. Finally, we calculated the
mean (35), min (36), max (37), SD (38), and median (39) of
those values.

5) FIVE FEATURES BASED ON THE PACKET FREQUENCY
Defining the packet frequency as the average number of
packets transmitted per second, we calculated the mean (40),
max (41), min (42), SD (43), and median (44) of the packet
frequencies.

6) FOUR FEATURES BASED ON THE PACKET ORDER
These are a set of features where we first separate the incom-
ing and outgoing packets in a flow. Then we number the
packets in each group from zero and create two separate lists.
For example, if there are 5 incoming packets and 3 outgoing
packets in a flow, we number the incoming packets as 0,1,2,3
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and 4 and the outgoing packets as 0,1,2. Finally, we calculate
the mean (45) and the SD (46) of the incoming packet list and
the outgoing packet list (mean (47), SD (48)).

7) TWO FEATURES BASED ON THE PACKET PERCENTAGE
These last two features simply provides the number of incom-
ing (49) and outgoing packets (50) as a fraction of the total
number of packets in the flow.

C. FEATURE SELECTION
We use three metrics that help quantify the importance of
a feature: Information gain, Pearson correlation, and Fisher
Score. More details about these metrics and how we use them
are described below.

• Information gain (IG) evaluates the importance of a
particular feature bymeasuring its information gain with
respect to the class [19]. It is calculated as the difference
between the entropy of the class before and after splitting
the dataset on the feature as shown by Equation 1.

IG (Class, Feature) = H(Class) - H(Class | Feature), (1)

where H (Class) is the entropy of the class and
H (Class|Feature) is the conditional entropy of the class
given the feature. In general, the entropyH (X ) of a class
X is calculated as shown in Equation 2.

H (X ) = −

N∑
i=1

pi log2 pi, (2)

whereN is the number of classes and pi is the proportion
of instances of the ith class.
In a machine learning context, entropy is used to mea-
sure the degree of impurity (degree of uncertainty) in a
dataset with respect to the class labels. As suggested by
Equations 1 and 2, a high information gain indicates that
the entropy of the class labels is significantly reduced
after the splitting of the dataset compared to the original
dataset’s entropy. It shows that the split has reduced the
degree of uncertainty and suggests that the feature is
important in distinguishing the different classes of the
dataset.

• Pearson’s correlation shows how strongly two vari-
ables are correlated linearly and is defined as follows.

r =

∑n
i=1(xi − x̄)(yi − ȳ)√∑n

i=1(xi − x̄)2
√∑n

i=1(yi − ȳ)2
, (3)

where r is the Pearson’s correlation coefficient, xi and yi
are the ith data points of the variables x and y, x̄ and ȳ
represents the sample means of the same variables, and
n is the number of data points in the dataset. When using
this coefficient for feature selection, there are a couple
of adjustments that are being considered. For one, the
absolute value of the coefficient is considered instead of
the exact value. The values of r range from -1 to 1, where
-1 indicates a strong negative correlation, 1 indicates a

strong positive correlation, and 0 indicates no correla-
tion. When doing feature selection, we want to identify
the features with a strong relationship with the class, and
it does not matter whether it is positive or negative as
long as that feature improves the classification accuracy.
Therefore, when selecting the features, if a feature has a
high correlation with the class, that means they have a
stronger relationship and can be considered as a more
important feature. Second, we can only calculate r for
numerical values. When we have categorical variables
such as the ones we use as labels in our dataset, they
have to be first converted into nominal values. Nominal
values are discrete values that do not have any numerical
relationships. Therefore, when calculating r , each value
of the nominal variable is considered a separate category,
and a binary indicator variable is created for each value.
For example, in our case, we have OS and TOR as
classes, which act as indicator variables. Therefore, for
every data point, the value of each indicator variable is
set to 1 if that variable is present and 0 otherwise. Then
the individual correlation is calculated for each indicator
variable, and finally, the weighted average is taken. The
weight is usually proportional to the frequency of the
indicator variable in the dataset [19].

• Fisher Score is also a widely used metric in supervised
learning which simply tells how much information a
feature can reveal about the class (e.g., OS/TOR). The
Fisher Score can be defined as below [20] and [21].

Fk =

∑c
i=1 ni(x̄ki − x̄k )2∑c

i=1 ni(σki)2
, (4)

where Fk is the Fisher Score of the k th feature, c is the
number of classes, ni is the number of instances in the ith

class, x̄k is the mean of the k th feature in all classes, and
x̄ki and σki are the mean and variance of the k th feature
in the ith class, respectively. In the above Equation 4,∑c

i=1 ni(x̄ki − x̄k )2 refers to the between-class scatter
of the k th feature, which is the variation of data points
within each class. If this is high, it means the classes can
easily be separated. Likewise,

∑c
i=1 ni(σki)

2 represents
the within-class scatter. If this number is low, it means
that the data points of the class are situated close to
each other and easy to separate. Overall, a high Fisher
Score implies that a feature can be used to easily sepa-
rate classes and hence can be used to identify the most
important features.

IV. ANALYSIS
For all experiments, we divide the dataset percentage wise
80:20 into training and testing. Then we do a grid search
with 10-fold cross-validation on the training dataset, and
evaluate the best model (best hyperparameter combina-
tion) on the testing dataset. We used the Scikit Learn
(https://scikit-learn.org/stable/) library for machine learning
and Pandas (https://pandas.pydata.org/) for data analysis and
manipulation.
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TABLE 2. Performance of machine learning classifiers to distinguish Onion Service traffic from other Tor traffic.

A. CLASSIFYING ONION SERVICE TRAFFIC FROM OTHER
STANDARD TOR TRAFFIC
Here, we answer RQ1: Is it possible to classify Onion Ser-
vice Traffic from other standard Tor traffic? To identify the
classifiability of Onion Service traffic from other Tor traffic,
we used the TOR and OS datasets. It gave us a dataset of
136,503 samples, labelled either as TOR or OS, depending
on the original dataset. We used three machine learning algo-
rithms on the dataset, namely, K-Nearest Neighbor (KNN),
Random Forests (RF), and Support Vector Machine (SVM),
and evaluated their performance. We have provided more
information on these algorithms in Section II. Table 2 shows
the results we obtained when we evaluated the classifiers with
the testing dataset.

For evaluating the machine learning classifiers, we used
a few metrics, including accuracy ( TP+TN

TP+TN+FP+FN ), preci-
sion ( TP

TP+FP ), recall ( TP
TP+FN ), training time, and testing

time. Here, TP, TN, FP, and FN refer to true positives, true
negatives, false positives, and false negatives, respectively.
Generally, if the dataset is balanced (the same number of
samples available for each class), the accuracy is enough
to provide a good assessment of a classifier’s performance.
However, as the TOR-OS dataset we use here is imbalanced,
we are using precision and recall as additional metrics to
assess the performance. The reason for this is that precision
and recall are not affected by the number of true negatives,
which can provide misleading insights in an imbalanced data
setting. In Table 2, we show results for classiying Onion
Service traffic from other Tor traffic by using all fifty features
we have extracted.

From Table 2, we can get the answer to our first research
question - RQ1 from the experiments we did with the original
(no defence) dataset. We can clearly see that Onion Service
traffic is highly distinguishable from other Tor traffic.
All three classifiers we used performed with 99% accuracy.
It could be argued that such good accuracy is not surprising,
given the clear differences that are present in the datasets for
each class of traffic. Non machine learning-based algorithms
would likely provide for similar outcomes, with the machine
learning classifiers we have listed adding improvement at
the 10% level (see later discussion). The importance of our
machine learning-based approach is perhaps more forthcom-
ing in the next section, where we discuss the same problem
under more difficult circumstances.

B. IDENTIFYING TRAFFIC CLASSES WHEN WEBSITE
FINGERPRINTING DEFENCES DEPLOYED
Here, we answer RQ2: How do our results for RQ1 hold
when we use modified Tor traffic? In order to obtain answers
to our second research question, we carried out the next set
of experiments. To recall, in RQ2, we intend to find how
certain modifications to Tor traffic, produced by state-of-the-
art Website Fingerprinting defences, namely, WTFPAD [10],
and TrafficSliver [12], affect Onion Service traffic classifi-
cation. We used the simulated datasets we created using the
WTFPAD and TrafficSliver techniques - our experimental
process is as follows.

We first combined the WTFPAD-TOR and WTFPAD-OS
datasets to create the WTFPAD dataset. As the WTF-
PAD technique uses a padding mechanism, it does not
change the number of samples of the original TOR and
OS datasets. Next, we combined the TrafficSliver-TOR and
TrafficSliver-OS datasets to create the TrafficSliver dataset.
As TrafficSliver uses a traffic-splitting strategy, the number
of samples increased in this scenario. We configured Traffic-
Sliver to split a trace into three sub-traces. We also used the
BatchedWeighted Random splitting strategy, which is the best
splitting strategy suggested in [12]. After obtaining the sub-
traces, we removed those with a small number of packets (as
they could not be used to extract some of our features). As a
result, our TrafficSliver dataset consisted of 376,763 traffic
traces (271,778 TOR traces and 104,985 OS traces). We ran
the same experiments (except for the ones with the least
important features) on the WTFPAD and the TrafficSliver
datasets. Table 2 shows our results for these experiments.
We can obtain several insights by analysing these results in
detail.

1) WTFPAD
SVM and RF show a slight reduction (∼0.6%) in accuracy
on the WTFPAD dataset, while KNN shows a considerable
reduction of more than 6%. Both RF and KNN show a
larger reduction in precision and recall compared to SVM.
From these results, we can say WTFPAD does reduce the
classifier performance to some extent but still allows them
to distinguish Onion Service vs standard Tor traffic suc-
cessfully. This behaviour is intuitive given that WTFPAD
does padding to both Onion Service and standard Tor traffic.
Although it may change the number of packets and some
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inter-arrival timing statistics, those changes apply to both
types of traffic, keeping their differences intact.

2) TRAFFICSLIVER
When we ran our experiments on the TrafficSliver dataset,
we observed a significant difference compared to all the
previous results we obtained. For KNN, RF, and SVM, the
accuracy drops are ∼17%, ∼10%, and ∼8%. It implies
that the TrafficSliver modification is actually capable of
reducing the identifiability of Onion Service traffic from
standard Tor traffic. However, we can also observe that
the recall values stay above 90%. It is a result of the mod-
els predicting TOR more often than OS. As TrafficSliver
splits the traffic into multiple sub-traces, these sub-traces can
have contrasting timestamps to the original TOR-OS dataset.
Therefore, we can assume that the split traces for OS and TOR
have similar characteristics to a certain extent. In addition,
we should mention that this performance reduction occurs
despite the number of samples increasing (and that the large
increase in training and testing times is a consequence of this
high number of samples).

C. FEATURE IMPACTS ON TRAFFIC CLASSIFICATION
Here, we answer RQ3: What features impact Onion Service
traffic classification most, and what level of performance
do they provide? We can answer the first part of RQ3 by
looking at Figure 2. From Figure 2a, we can notice that
four features, namely,mean (35) and median (39) outgoing
packet concentrations along with the 2 packet percentage
features (49, 50), have more information gain with the two
classes compared to other features (see Section III for more
information about the features and numbers associated with
them). Similarly, Figure 2b shows that the above four fea-
tures, along with the minimum (36) and SD (38) of packet
concentrations, have a high correlation with the class labels,
while Figure 2c confirms those results using Fisher Scores.
These are the top six features that seem to have a greater rela-
tionship with the traffic type. All three of our feature selection
metrics filter out six features out of the fifty. Our next step is
to investigate the impact of these features on the performance
of the classifiers we used to evaluate RQ1 and RQ2.

1) WHAT LEVEL OF PERFORMANCE DO DIFFERENT
FEATURES PROVIDE FOR RQ1?
In Table 3, we show the results for all three datasets we
obtained when we only used the top six features we iden-
tified (Features 35, 36, 38, 39, 49, and 50). In addition,
we have used the least important features with the original
(no defence) dataset to obtain further insights into their per-
formance impact. These least important features consist of
6 inter-arrival time statistics (Features 2, 3, 4, 10, 11, 12).
The main objective of this experiments is to get an overall
sense about the performance of the classifiers, regardless of
the input features.

We can see some interesting insights on how the classifier
performance change with different (top and bottom) features

from Table 3. We can see that the top six features we selected
contribute to the majority of the classification ability of the
classifiers. Almost all classifiers can classify Onion Service
traffic with similar performance with only the top six features
(all other features seem redundant). However, we can see
that the RF classifier relies more on the feature set compared
to the other two classifiers. RF’s accuracy drops by 9.2%
when using the least important features instead of the most
important ones. For KNN, this number is only 1.6%, and for
SVM, it is 4%. These observations confirm that while the
features we have used here play a major role in a classifier’s
performance, the classifiers themselves have a large impact
on the overall result. We can also conclude that using all fifty
features is redundant for RQ1.

2) WHAT LEVEL OF PERFORMANCE DO DIFFERENT
FEATURES PROVIDE FOR RQ2?
In Table 4, we have presented the performance of each clas-
sifier on the modified traffic with only the top six features.
For WTFPAD, when we only use the top six features, we can
see a more visible reduction in performance than what we
saw earlier with all fifty features. Previously, we noticed that
the top six features are sufficient to provide an almost ∼99%
accuracy, precision, and recall on the original (no defence)
dataset. However, when implementing the WTFPAD modifi-
cations top six features are not enough to reach that almost
perfect classifier performance. Still, all the classifiers show
precision and recall of more than 95%, which is quite good.

When it comes to TrafficSliver, we can observe a drastic
change in performance when we use only the top six features.
Both accuracy and precision values for all classifiers drop
below 80% in this scenario, while the recall values stays
more than 90%. This observation is quite similar to what we
observed in Table 2. Overall, we can conclude that the top
six features are not sufficient to classify Onion Service traffic
from other Tor traffic, when the modifications to the traffic
are implemented.

D. DETERMINING ONION SERVICE TRAFFIC CHANGES
WHEN DEFENCES APPLIED
Next, we combine three datasets, OS, WTFPAD-OS, and
TrafficSliver-OS, into a single dataset and label each trace
with either ORIG (for original), WTFPAD, and TrafficSliver,
respectively. This new dataset consists of 187,991 traces.
The main reason for doing this experiment is that we want
to determine how similar these modified traces are to the
original Onion Service traffic. As this dataset has three differ-
ent classes, we have to carry out a multi-class classification
experiment to evaluate it.

Table 5 shows the precision and recall for each individual
class when we use all fifty features, and when we use the
top six important features we mentioned in Section III. As all
classes have a different number of samples (traces), precision
and recall are the best metrics for evaluation. From this table,
we can get three important insights; (i) Overall, compared to
KNN and RF, SVM has a slightly better ability to classify
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FIGURE 2. Feature Selection Results for TOR-OS combined dataset. Features 1-13 are based on Inter-Arrival Times. Features 14-26 are based on the
flow duration. Features 27-34 are based on the number of packets. Features 35-39 are based on packet concentration. Features 40-44 are based on
packet frequency. Features 45-48 are based on the packet order. Features 49 and 50 are based on the packet percentage.

TABLE 3. Performance of machine learning classifiers on the original (no defence) dataset with subsets of features.

TABLE 4. Performance of machine learning classifiers with top six features when defences are applied.

FIGURE 3. Confusion Matrix of different classifiers to distinguish various traffic types.

these traffic types in a multi-class setting. (ii) TrafficSliver
traffic seems to have very distinctive features from others,
which supports our previous observations in Table 2 and
Table 4. (iii) The features play a more important role in this
classification task relative to the binary classification experi-
ments we discussed earlier. We can see that the precision and
recall values dropped by more than 20% in some cases when
only the top six features were used.

We also provide the confusion matrices for the three clas-
sifiers (with all fifty features) in Figure 3, which helps us
to get a better understanding of the similarities between the
different traffic types. Out of 37,599 testing samples, there
are 8,346 Original OS samples, 20,961 TrafficSliver samples,
and 8,292 WTFPAD samples. By observing Figure 3, we can
see that all traffic types are largely identified. This suggests
that when modifications are used, Onion Service traffic
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TABLE 5. Distinguishability of Onion Service traffic with different
modifications.

changes significantly from its original version. Another
important observation from Figure 3 is that WTFPAD modi-
fied traffic are more frequently mis-classified as original Tor
traffic compared to TrafficSliver modified traffic, confirming
our earlier observations and conclusions.

V. DISCUSSION
A. INSIGHTS
Earlier, we mentioned that traffic flows through six nodes
in an Onion Service circuit, while in a standard Tor circuit,
this number is three. This can cause a difference in the
packet latency, which is captured by the feature set we use.
Intuitively, the time-related features that should have a higher
classification ability among the features we used. However,
the top six features in our experiments are not directly related
to time, but the number of packets. This shows that although
the outcome of our experiments is as expected, the reasons
behind them are not a direct cause of our initial intuition.
However, we cannot disregard that intuition completely as
the six least-important features, all consisting of IATs, also
provide a significant accuracy, precision, and recall when it
comes to identifying Onion Service traffic.

In addition, we argue that there are three main reasons for
the good results we report for RQ1. These are, the features we
have selected, the number of samples in the datasets we have
used, and the optimized classifiers we use. In order to support
this argument, we conducted a supplementary experiment in
which we vary the number of samples we use with the least
important features for the TOR-OS dataset. Figure 4 shows
the results of this experiment. Here, we can clearly observe
that if we did this experiment with subpar features, we would
not have obtained 95% accuracy even with 10000 samples
per class.

B. RUN TIMES
It is perhaps important we discuss the impact of training and
testing times (refer to Table 2). When it comes to training
time, we have carried out our experiments in an offline
setting, i.e., we are not training the classifier in real time.
Therefore, if our techniques were to be used in a real-world

FIGURE 4. TOR-OS experiment with the six least important features and
different number of samples per class.

application, the training would be carried out offline. There-
fore, the training time may not have much of an impact in a
real-world setting. However, if the dataset is extremely large
and the system requires frequent training, it will be useful
to employ a technique with a low training overhead. KNN
shows the best training time figures for our problem, while
SVM shows the worst.

When we consider the testing time, which is representative
of the time taken to predict the class of a previously unseen
traffic trace, we argue that it is vital to have a low value for
that. To further elaborate, let us assume a system designed
to alert Onion Service activity inside a company. Such a
system has to monitor all the network traffic going out of
the company and flag any suspicious traces. If the prediction
time of a single traffic capture takes considerable time, that
system will either require lots of resources (e.g. computing
power, memory) or go into overload. Out of the classifiers
we have used, RF shows the best testing times, which in some
cases are more than 100 times better than the other classifiers.
Therefore, RF would definitely be the ideal candidate to
be used in a real-time application. We can also see another
interesting observation among the testing times. This is that
KNN has higher testing times than training times, which
is quite striking in Table 2. The reason for this is that the
computational complexity for KNN predictions is a function
of the number of samples and the number of features. That is
why when we reduce the number of features, the testing time
drops drastically. This result shows why it is important to find
top-performing features for our classification problem.

C. IMPACT
As we previously mentioned, traffic classification is useful
for traffic shaping and trafficmonitoring (linking user activity
and blocking anonymous traffic). In our case, as we are
trying to classify anonymous traffic, it is more relevant for
traffic monitoring. As Tor is a censorship circumvention tool,
some governments try to restrict access to Tor. If Tor traffic
(and Onion Service traffic, for that matter) can be identified
easily, then it is easy to implement techniques to restrict
that traffic. Also, if there are institutions and businesses that
deal with sensitive information and want to restrict access
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TABLE 6. Hyperparameter Tuning: Optimum values used for experiments
related to RQ1 and RQ2.

to the dark web2 from their computers but do not require
to restrict overall Tor access, having techniques to isolate
Onion Service traffic can be a great starting place to cater for
that requirement. Furthermore, the results from our second
research question shed some light on the validity of this work
when modifications are introduced to the Tor traffic. Our new
results suggest that the results of prior works on Tor traffic
classification might be invalid ([3], [6]) in the event these
modifications are done to the Tor traffic. Finally, our results
highlight that it is important to consider the overall classifia-
bility of Tor traffic when developing (Website Fingerprinting)
defences to mask information leakage in Tor traffic.

D. SELECTION OF CLASSIFIERS AND FEATURES
We used insights from existing literature when selecting our
classifiers and features. For example, Lashkari et al. [3] used
KNN and RF in their work to classify Tor traffic from non-Tor
traffic. In addition, most of our features have been previously
used by Hayes and Danezis [13] for a Website Fingerprint-
ing attack. By evaluating the related literature, we decided
to use these classifiers and features, which ultimately gave
good results for our specific problem. We also had to carry
out experiments to identify the best hyperparameters for our
models. In Table 6, we have mentioned some of the hyperpa-
rameters we selected. It should be noted that we tested other
additional parameters, but the best values we obtained for
them turned out to be the default values used in the Scikit
Learn library. Therefore, we have not mentioned them here.

E. SCALABILITY
In this study, we used a relatively large dataset consisting of
136,503 data samples for the first experiment and 513,266
samples for the second. In Figure 4, we showed that our
results actually get better with more samples. Therefore,
we can argue that our techniques are scalable.

F. FUTURE WORK
Now that we have established Onion Service traffic is
distinguishable, and the modifications can reduce this dis-
tinguishability, we mention potential future work associated
with this line of research. First, the impact of similar modi-
fications on some of the related work could be investigated.
For example, although Lashkari et al. [3] show that Tor traffic
can be easily differentiated from non-Tor traffic, we argue

2dark web simply refers to Onion Services.

that the performance of their classifiers may be reduced
significantly if modifications in WTFPAD or TrafficSliver
are installed in Tor. This argument applies to all other related
work mentioned in Table 1. Second, evaluation of how these
modifications affect the fingerprintability of individual Onion
Services could be attempted. These modifications were orig-
inally proposed as Website Fingerprinting defences, and the
original papers carried out experiments to show that these
changes to Tor traffic do reduce the fingerprintability of
websites. However, none of these latter works attempt to
investigate the impact those changes have on the fingerprint-
ability of Onion Services. This issue may be worth further
investigation.

VI. CONCLUSION
In this work, we answered three research questions focused
on Onion Service traffic classification. We evaluated the
applicability of supervised machine learning models to clas-
sify Onion Service traffic from other Tor traffic. We extracted
fifty features from each traffic trace and used that feature
set as input to the machine learning classifiers. Our results
showed that KNN, RF, and SVM classifiers have the ability to
distinguish Onion Service traffic from Tor traffic with a 99%
accuracy. Then, we tried to identify whether state-of-the-art
Website Fingerprinting defences affect the classifiability of
Tor traffic. These defences introduce different modifications
to try and obfuscate information leakage from traffic, and
we evaluated how those changes affect the Onion Service
traffic classification. Our experiments showed that the above
classifiers, combined with our feature set, reduce the per-
formance for Onion Service traffic classification. However,
we observed that the modified Tor traffic is still distin-
guishable. Moreover, we used three feature selection metrics,
namely, information gain, Pearson’s correlation, and Fisher
Score, to identify the top features for this task. Those top
features were able to provide >98% success for classifying
Onion Service traffic from Tor traffic. However, they could
not provide such good results whenmodified Tor traffic traces
were used.
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