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ABSTRACT Aiming at the problems of low efficiency and difficulty in constructing acceleration devices
in traditional interval optimization algorithms (IOAs), this paper constructs a valid acceleration device
based on a more concise point evolutionary strategy (ES), and then proposes a novel hybrid IOA (HIOA)
with no requirement on the derivative of the objective function. The HIOA first divides the initial search
area into N equal parts, randomly selects multiple point individuals in each subinterval to represent their
information, and performs the optimization with fewer iterations using ES for all point individuals to make
them closer to the optima; then selects reliable subintervals containing more point individuals to split, and
deletes unreliable subintervals without any point individuals; finally, provides a reliable upper bound to direct
the pruning operation to further improve the search efficiency. Furthermore, the convergence property of the
proposed algorithm is analyzed. Extensive numerical experiments on several typical test functions and the
application to the bounded error parameter estimation demonstrate the superiority of HIOA by comparing it
with the existing conventional algorithms, which confirms the effectiveness and applicability of the suggested
algorithm.

INDEX TERMS Interval optimization algorithm (IOA), evolutionary strategy (ES), global optimization,
bounded error parameter estimation.

I. INTRODUCTION
The interval optimization algorithm (IOA) is a deterministic
global optimization method based on the interval analysis
theory, using interval variables instead of point ones for inter-
val calculations and combining branch-and-bound algorithm
with Moore-Skelboe algorithm [1], [2], [3], [4]. The IOA
can find all the global optima of a problem with a given
accuracy in a limited time no matter how large the search
space is, even for the multi-peak function optimization prob-
lems. The excellent performance of IOA has attracted many
scholars, and a lot of research works were carried out in this
field [5], [6], [7], [8], [9], [10], [11]. However, the tradi-
tional IOA based on branch-and-bound principles faces two
dilemmas: the correlation and the curse of dimensionality.
The first is related to the properties of interval operations
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and the nonlinear factors of the objective function, that is,
the more obvious the correlation of the variables, the greater
the difference between the result of the function calculated
by the interval expansion and the actual result, which will
reduce the accuracy of the calculation result. The second
means that the number of intervals splitting and the calcu-
lation amount of the algorithm increase exponentially with
the dimension increasing. For example, for high-dimensional
optimization issues, the search efficiency depends on the
objective function and the construction method of interval
extension of the gradient and constraints, making the curse of
dimensionalitymore prominent and causing problems such as
low computational efficiency and high computational cost.

An effective way to combat the curse of dimensional-
ity is to construct acceleration devices [12], which aim to
ensure efficient branching and correct pruning, and further to
accelerate the branching and pruning process of the interval,
so as to improve the operational efficiency of IOA. At present,
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most acceleration devices delete intervals by using the mono-
tonicity principle and convexity principle based on first or
second order interval expansion through Lipschitz constant
or natural interval expansion of the objective function and its
derivatives. However, most accelerated methods are invalid
for black-box problems whose explicit equations are not to
be used or when the objective function is non-differentiable,
so it is tough to construct acceleration devices.

To settle the existing problems, some researchers have
combined the evolutionary algorithm with IOA [13], [14],
[15], [16], [17], trying to enhance its search efficiency. The
most typical one is the work of Zhang et al. [17], who com-
bined the genetic algorithm (GA) with IOA and developed
an interval GA (IGA), in which GA is considered as an
acceleration device. The main idea is to apply GA to guide
interval deleting and splitting. Moreover, IOA delimits the
search range of GA [17]. Compared with the classical interval
dichotomy, IGA has higher search efficiency and relieves the
curse of dimensionality to a certain extent. Whereas IGA
utilizes the single point to express an interval, which leads
to limited expressed information; meanwhile, the evolution
process of GA is cumbersome, and there is no pruning
operation among it, so it is generally necessary to combine
the monotonicity principle to improve the search efficiency.
In general, the performance of IGA is not ideal, e.g., tak-
ing a long time for high-dimensional complex optimization
problems. In [18] and [19], an interval particle swarm opti-
mization (IPSO) algorithm and its improved version were
proposed, which employed interval computation and PSO.
Although the proposed IPSOs improve the search efficiency
of high-dimensional problems, they completely abandon
the branch-and-bound idea in interval dichotomy, resulting
in partially losing the ability of IOA to obtain all global
optima.

Aiming at the low efficiency of IGA to deal with the
high-dimensional problems while avoiding the loss of global
search ability like IPSO, this paper proposes a new point
evolutionary strategy (ES) based hybrid IOA (HIOA) to solve
the existing problems. The main process is that HIOA first
divides the initial search area (expressed as an interval) into
N equal divisions and randomly selects multiple points in
each subinterval, which can represent the information of the
interval more comprehensively and judge the superiority of
the subinterval faster; then HIOA constructs an acceleration
device based on a more concise point ES, avoiding the deriva-
tive requirement of the objective function; next, HIOA selects
and splits the interval using the property of point individuals
tending to the optimal point, deletes the unnecessary inter-
vals by truncation selection to reduce the number of interval
expansions, so that the branching and pruning operations of
the interval are more accurate and efficient.

Numerical simulation experiments show that the HIOA
proposed in this paper has higher search efficiency than
the conventional IOA and the typical IGA. For functions
with multiple global optima, HIOA can split and search
the area near the optimum with fewer iterations and less

running time, so it always converges to the optimum faster.
For high-dimensional problems, HIOA effectively allevi-
ates the curse of dimensionality caused by high-dimensional
interval variables and dramatically reduces the calculation
amount. In addition, the proposed HIOA is applied to the
bounded error parameter estimation of the interval system
based on the idea of interval variable optimization. Com-
pared with the typical SIVIA (Set Inversion Via Interval
Analysis) algorithm [20], it is shown that the estimation
result is compelling. Therefore, this provides an effective
means for the application of HIOA algorithm to a wider
range of practical optimization problems, such as com-
plex process parameter identification [21], neural network
parameter optimization [22], complex industrial process
set point optimization [23], communication beamforming
optimization [24], [25], [26], [27], etc.

The main contributions of this paper can be summarized as
follows.

1) The proposition of using multi-point information to
express an interval and using the concise ES to optimize
point individuals is conducive to judging the perfor-
mance of the interval variables quickly.

2) As an acceleration device, ES makes IOA not need to
use monotonicity test, nor does it require the deriva-
tive of the objective function, so it is suitable for
optimization problems where the objective function is
non-differentiable.

3) The optimization operation of interval variables is car-
ried out by using the property of point individuals,
which effectively avoids various problems faced by
the operations on interval variables in the conventional
IOA to mitigate the curse of dimensionality better.

4) Applying HIOA to bounded error parameter estimation
of the interval system is suggested, which provides
a new way to deal with the modeling of uncertain
systems.

The remainder of this paper is organized as follows.
Section II briefly introduces the interval calculation rules
and conventional IOA. Based on the brief description of ES,
a new HIOA is proposed in Section III, and the conver-
gence of the algorithm is analyzed. In Section IV, numerical
simulation experiments on several test functions are imple-
mented and the compared performance analysis is developed.
In Section V, the application of the proposed algorithm to
bounded error parameter estimation is given. Section VI con-
cludes this paper and provides some suggestions for future
research.

II. PRELIMINARIES
According to the interval analysis theory [28], if there is a
form such as A = [a, a], with a, a ∈ R, then A is called
an interval number, a and a are the lower and upper bounds
of A, respectively. When a = a, A degenerates to a point
value, which is called a degenerative interval, so the point
can be considered as a special case of interval number. In this
paper, IR denotes a set of intervals over R, IRn denotes a set of
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interval vectors on Rn, and IRm×n represents the set of interval
matrices over Rm×n. Lowercase letters such as a, b for real
numbers, uppercase letters such as A, B for interval numbers;
bold lowercase letters such as a, b for real vectors or matrices,
bold uppercase letters such as A, B for interval vectors or
matrices.

A. INTERVAL ARITHMETIC
For intervals A = [a, a], B = [b, b], some concepts and
operation rules commonly used are introduced as follows.

Lower bound: a = inf(A);
Upper bound: a = sup(A);
Midpoint: m(A) =

1
2 [a+ a];

Width: w(A) = a− a;
Absolute value: |A| = max(|a|, |a|);
Interval distance: d(A,B) = max(|a− b|, |a− b|);
Addition: A+ B = [a+ b, a+ b];
Subtraction: A− B = [a− b, a− b];
Multiplication:

A · B = [min(ab, ab, ab, ab),max(ab, ab, ab, ab)];

Division(0 /∈ B):

A/B = [min(a/b, a/b, a/b, a/b),max(a/b, a/b, a/b, a/b)];

If A and B satisfy A ∩ B ̸= ∅, then the intersection and
union of the interval are defined as:{

A ∩ B = [max(a, b),min(a, b)]
A ∪ B = [min(a, b),max(a, b)];

Note that the containment relation A ⊆ B holds if and only
if b ≤ a and a ≤ b.

Let f : D ⊆ Rn → R be a real-valued function,
if there is a mapping F : I (D) ⊆ IRn → IR, for any
X = (X1, . . . ,Xn)n ∈ I (D), xi ∈ Xi(i = 1, . . . , n), there
is F([x1, x1], . . . , [xn, xn]) = f (x1, . . . , xn), i.e., {f (x) : x ∈

X} ⊆ F(X) holds for all X ∈ I (D), then F(X) is said to be an
interval extension of f (x) on X.

Obviously, the interval extension F(X) where X ∈ IRn

is an interval-valued function from n-dimensional interval
vectors to intervals, and the form is not fixed. For a given
f (x), replace the variable x with the interval X containing it,
standard functions (like sin, exp, etc.) by corresponding inter-
val extension, and real arithmetic operators by corresponding
interval operators, then the natural interval extension of f (x)
is obtained, denoted as F(X).

B. INTERVAL OPTIMIZATION ALGORITHM
Consider the following optimization problem:

global min
x∈�⊂R

f (x) (1)

where the objective function f : Rn → R is continuously
differentiable and the feasible domain � is defined by � :
n∏
[l, u] with l, u ∈ R and l ≤ u.
Let I denote the set of all interval solution vectors of

the form Ii = (I i1, . . . , I
i
j , . . . , I

i
D) ∈ IRD, where I ij ∈ IR

Algorithm 1 The Interval Optimization Algorithm
1: Initialize the working list I = � and the solution set S =

∅.
2: Calculate the minimum upper bound of the natural inter-

val extension τ = U (I).
3: Let V = Ii, I = I − Ii, where i = {j|L(Ij) ≤ L(Iq), 1 ≤

j, q ≤ N }.
4: Divide V into V1 and V2; add V1 and V2 into I.
5: Caculate τ ′

= min{U (V1),U (V2)}. If τ ′ < τ , then
update τ .

6: If L(Vi) > τ or 0 /∈ F ′(Vi), then remove Vi from the list
I for i = 1, 2.

7: If w(F(Vi)) ≤ δ, holds for i = 1, 2, then let S = S ∪ Vi,
I = I − Vi and go to 9.

8: Go to 3.
9: End.

and D is the dimension of the problem, which forms I =

{I1, . . . , Ii, . . . , IN }, where N is a positive integer. Ii repre-
sents the i-th interval vector in the set I, and I ij represents the
j-th interval of the i-th interval vector for i = 1, 2, . . . ,N ,
j = 1, 2, . . . ,N . By replacing the independent variable
x in the objective function (1) with the interval vector Ii,
the natural interval extension F(Ii) of f (x) can be obtained.
In what follows, F(Ii) is referred to as the natural interval
extension of Ii for short. Let U (Ii) and L(Ii) denote the upper
and lower bounds of F(Ii), respectively. Denote the natural
interval extension of the gradient of f (x) on Ii by F ′(Ii) and
the minimum upper bound of the natural interval extension
by τ = min

i=1,··· ,N
{U (Ii)}.

For the optimization problem (1), assuming that f ∗ is the
global minimum, then f ∗ must satisfy:

min
i=1,...N

{L(Ii)} ≤ f ∗
≤ max

i=1,...N
{U (Ii)} (2)

The branch-and-bound idea based IOA can be simplified
into several processes: branching, bounding, pruning, split-
ting and termination, including interval branching rules, prun-
ing rules, and splitting rules. Different interval algorithms
can be derived depending on the methods of processing these
rules [29].

The processes of branching and splitting mean that when
L(Ii) ≤ τ , where τ is the minimum upper bound of
natural interval extension, if the width of interval satisfies
w(F(Ii)) ≤ δ, where δ is a given precision value, then move
the interval Ii into the solution set S, otherwise, choose and
bisect the subinterval with the smallest lower bound of F .
Bounding refers to calculating the minimum upper bound of
the interval after dichotomy and denoting it by τ ′, if τ ′ < τ ,
then update τ . Pruning means that when L(Ii) > τ , the
interval Ii is removed from I. In addition, the monotonic
test is also applied to the deletion rule of the multivariate
objective function, that is, when 0 /∈ F ′(Ii), remove Ii

from I.
The steps of IOA are shown in Algorithm 1.
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III. HYBRID INTERVAL OPTIMIZATION ALGORITHM
This section introduces a novel hybrid approach called
Hybrid Interval Optimization Algorithm (HIOA), which
combines a point ES with IOA. HIOA addresses the low
efficiency of IGA in handling high-dimensional problems and
avoids the loss of global search ability observed in IPSO.
By incorporating ES as an acceleration mechanism, IOA
eliminates the need for monotonicity tests and derivative
information, making it suitable for optimizing problems with
nondifferentiable objective functions. Moreover, the integra-
tion of IOAwith the embedded point ES leveragesmulti-point
information to represent intervals and employs a concise ES
for optimizing individual points. This combination facilitates
efficient evaluation of the interval variables’ performance.

Evolutionary algorithms usually include genetic algorithms,
genetic programming, ESs, and evolution programming [30].
The idea of ES is similar to that of the genetic algorithm,
but there are many changes in the mode of evolution, such as
selection, crossover, mutation, population control and so on.

The ES developed by German scientists Rechenberg and
Schwefel in 1964 [31], is a type of evolutionary algorithm
that simulates evolutionary laws of nature to solve optimiza-
tion problems. The simplest form of ES which is called
(1 + 1)−ES was investigated by Schwefel in 1965 [32], but
the study found out that the process could get stuck in some
cases. Therefore, (µ + 1)−ES with recombinant operators
was proposed [33]. Subsequently Schwefel introduced two
further versions of multimembered ES, i.e., (µ + λ)− ES
and (µ, λ)− ES [34], both of which adopt three operators:
recombination, mutation, and selection, which significantly
improve the performance of ES. Traditional ESs based on
real number coding often use a truncation selection method,
making the algorithm simple, efficient and easy to implement.

An ES algorithm using (µ + λ)− ES combined with trun-
cation selection operators can be described as:

1) Initialize population: randomly generate µ individuals
in the feasible solution space to form the parent gener-
ation.

2) Recombination and mutation: the parent generation
through recombination and mutation to generate λ

offspring individuals.
3) Selection: truncation selection is used to select indi-

viduals with low fitness among parent and offspring
generation to evolve to the next generation.

4) Termination: If the termination criteria are met, the
algorithm ends; otherwise, go to step 2).

Here we choose the (µ + λ)− ES with constant mutation
step size σ because its global convergence has been proven.
Suppose that each individual consists of n components and
is represented by x, then the mutation operation can be
described by the following formula:

xi′ = xi + σN (0, 1) (3)

where xi and xi′ stand for the i-th component of individuals
before and after mutation, respectively. N (0, 1) represents a
random number that obeys standard normal distribution.

The specific operation of truncation selection in step 3) is
as follows [35]:

1) Set the truncation threshold T , where T ∈ [0, 1] is the
selected percentage, and the number of individuals in
the populationM .

2) Sort the fitness values of individuals in ascending order,
and take the first T × M individuals as the new popu-
lation.

A. NEW INTERVAL ALGORITHM DESCRIPTION
This section introduces the idea of the novel interval opti-
mization algorithm with embedded point evolutionary strat-
egy, that is, HIOA. Divide the initial search area into N
equal parts and randomly generate K (K > 1) points from
each subinterval. These K points can represent the infor-
mation of the whole interval more comprehensively, then
the K × N individuals are optimized according to the ES
of point individuals; after cyclic G generations, the point
individuals will tend to gather around theminimum point, and
then count the number of point individuals in each interval.
If a subinterval contains no point individuals, the interval
is deleted, meanwhile, the subinterval containing the most
points is marked I∗; theminimum value of the fitness function
obtained through ES will provide a reliable upper bound
for guiding the pruning operation. Calculate the midpoint
value and the lower bound value of natural interval expansion
of all retaining subintervals, and mark the subinterval with
both minimum values above as Ip, then compare it with the
previously marked subinterval I∗, and if they are the same,
divide the subinterval into five. Otherwise, divide each of
the two subintervals into two. There is no monotonic test in
this process, so the proposed HIOA does not require the first
derivative of the objective function, and can be applied to
more non-differentiable objective functions.

The ES changes the branching, pruning, bounding, and
splitting rules of the traditional interval dichotomy based on
the branch-and-bound idea so that the HIOA can quickly
delete intervals that obviously do not contain the global opti-
mum, select the reliable interval to continue splitting, and
provide a reliable upper bound for pruning, hence the effi-
ciency of the proposed algorithm has been greatly improved.
The flowchart of HIOA is depicted in Figure 1 and its specific
steps are shown in Algorithm 2.

B. PARAMETER SELECTION OF G AND K
It can be seen from Algorithm 2 that the ES cycle is a certain
algebraic optimization on point individuals, making point
individuals tend to move closer to the minimum, which may
be the global minimum or the local minimum, especially
when the number of iterations is excessive. If the point indi-
viduals gather in the interval where the local optimum lies,
the interval containing the global optimum is likely to be
removed. Our goal is not to use point ES for optimization, but
for pruning, in other words, delete some subintervals that do
not contain the optimum, so the number of iterations should
not be too large. However, if the setting value is too small,
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Algorithm 2 The Hybrid Interval Optimization Algorithm

1: Divide the feasible domain � into N (N > 0) equal parts which form the working list I = {I1, · · · , Ii, · · · , IN }, where
Ii = {Ii1, · · · , Iij, · · · , IiD}, and D denotes the dimension of the problem; initialize the population set x = ∅ and the solution
set S = ∅.

2: Enter the ES cycle:
2.1 Set the number of iterations of the ES to G; randomly generate K points in each subinterval of the set I to form a

population set x, namely, x = {x1, · · ·, xi, · · · , xN } = {{x11, · · · , x1k , · · · , x1K }, · · · , {xN1 , · · · , xNk , · · · , xNK }}, where
xi = (xi1, · · · , xik , · · · x

i
K ), x

i
k = (xi1k , · · · , xijk , · · · x

i
Dk ), x

i
jk ∈ Iij, k = 1, · · · ,K .

2.2 Generate new individuals through themutation operation, which form a new population together with the pre-mutation
individuals; calculate and store the fitness value fit(xik ) of each point individual; set the truncation threshold T and
arrange the fitness values of the point individuals in ascending order; delete the point individuals that cannot be the
optimum using the truncation selection operator and retain the excellent point individuals, denoted by x = xrest .

2.3 If the iteration counter g does not reach G, then let g := g+ 1 and go to 2.2; otherwise, go to 3.
3: Count the number of point individuals contained in each subinterval of the set I; if the subinterval contains no point

individuals of x, delete the subinterval, at the same time, mark the subinterval containing the most point individuals of
x as I∗, go to 4.

4: Calculate the natural interval extension of all subintervals in the list I, mark the subinterval with both the minimum lower
bound value of the interval expansion and the function value at the midpoint of the interval as Ip, where p = {i|L(Ii) ≤

L(Ij),fit(m(Ii)) ≤ fit(m(Ij)), 1 ≤ i, j ≤ N }, and compare it with the subinterval I∗. If I∗ = Ip, then the subinterval is divided
into five; otherwise, bisect two subintervals respectively.

5: Calculate the upper bound U (Ii) and the lower bound L(Ii) of the natural interval extension of all subintervals in set I; let
τ = min

i=1,··· ,N
{U (Ii), min

k=1,··· ,K
fit(xik )}, if L(I

i) > τ , then let I = I − Ii.

6: If w(F(Ii)) ≤ δ, then let I = I − Ii, S = S ∪ Ii, the algorithm stops and outputs the solution set S; otherwise, go to 2.

FIGURE 1. Flowchart of HIOA.

the point individuals may not have an apparent trend towards
the optimum, and some unreliable subintervals cannot be
eliminated. Therefore, the number of iterations G should be
set appropriately.

When initializing the population, the ES does not take
a single point individual but randomly takes K points in
each subinterval, representing the subinterval more compre-
hensively so that the initial population is diversified, which
is beneficial to the interval pruning operation. If the value

of K is too large, the subinterval may not need so many
individuals to represent its information, and at the same time,
the calculation amount will increase, leading to decrease the
algorithm’s efficiency. On the other hand, if the value of K is
too small, it may not be able to fully represent the information
of the subinterval, which is not conducive to the optimization
of ES. Therefore, the K value should be set reasonably.

C. CONVERGENCE ANALYSIS
The ES plays two roles in Algorithm 2: guiding branching and
splitting (Step 4) as well as providing a reliable upper bound
to facilitate pruning (Step 5). When the number of sampling
points in ES tends to infinity, the convergence theorem of
the algorithm is given below and its proof is presented in the
Appendix.
Theorem 1: Assume that f is a continuous function in the

feasible domain �, and F is an interval extension function of
f with the property

w(F(Ii)) → 0 as w(Ii) → 0 (4)

for all subintervals Ii ⊆ I ⊂ �(i = 1, 2, . . . ,N ). Let x∗ be
the global optimum and f ∗

= f (x∗) ≤ f (x) be the global
optimum value. If x∗

∈ Ii, where Ii ⊆ I ⊂ �, then
1) f ∗

∈ F(Ii), that is, if an interval contains the global
optimum, then its natural interval extension must also
contain the global optimum value of the function.

2) when t → ∞, for x∗
∈ I*(t) ⊂ I(t) =

{I1(t), · · · , Ii(t), · · · , IN (t)}, the sequence F(I*(t))
converges to the global optimum value f ∗, where I*
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denotes the interval containing the global optimum x∗

and t represents the t-th iteration of the algorithm.
In fact, in order to make the algorithm operable and prac-

tical, we adopt a limited sampling strategy in HIOA, which
may damage the global convergence to a certain extent.
However, the convergence rate of HIOA to the optimum
is accelerated, which greatly alleviates the curse of dimen-
sionality of IOAs and improves the execution efficiency
of the algorithm. Moreover, it can be seen from follow-
ing experimental results that HIOA is able to provide good
approximations to the global optimizer.

IV. EXPERIMENTS AND ANALYSIS
To verify the effectiveness of the proposed algorithm,
we choose twelve common test functions described in Table 1
for experiments, where D represents the dimension of the
test problem. These functions are difficult to solve, where
functions 1-5 havemultiple local minima and functions 10-12
have multiple global minima. It is a challenge to find the
global minimum among many local minima. For example,
function 1 is characterized by a nearly flat outer region, and
a large hole at the centre, which makes it easy to be trapped
in one of its many local minima for optimization algorithms.
In addition, the global minimum of function 6 lies in a nar-
row, parabolic valley, which makes it difficult to converge
to the minimum. Let D = 2, then functions 1-12 are used
for low-dimensional experiments. Set the dimension D to 5,
10 and 20, and functions 1-7 are used for high-dimensional
experiments.

In the following simulations, divide the initial search area
into fifteen equal parts, i.e., N = 15, randomly select ten
points in each subinterval, i.e. K = 10, and let the number of
iterations of the ES be G = 10, set the desired accuracy to
δ = 1e − 6, and calculate the truncation threshold based on
T = size(x)/K ∗ 0.5, where size(x) denotes the total number
of individuals in the population x.
All programs are coded in Matlab language. In terms of

the simulation environment, all simulation experiments are
implemented on a CPU i7-2.8GHz with 64 GB of RAM and
8 cores.

A. 2-DIMENSIONAL (2-D) SIMULATION
Let D = 2 in functions 1-7, and perform low-dimensional
numerical experiments on test functions 1-12. Three opti-
mization algorithms of IOA, IGA and HIOA are used to
compare and analyze. The final experimental results are
shown in Table 2, in which Time (unit: s) indicates the
average running time of the algorithms after ten independent
runs. Figures 2 - 13 draw the simulation curves of twelve
test functions under the comparison of three optimization
algorithms, in which the x-axis is the number of iterations
and the y-axis is the logarithm of the upper bound of the
interval expansion of the fitness obtained by each iteration.
The upper bound of fitness refers to the maximum value of
the fitness interval obtained as the output of the algorithm,
representing the upper limit of the fitness range. When an

interval algorithm searches for the minimum value, there
exists a relationship between the fitness interval values and
the true minimum of the function as follows: the upper bound
of the fitness interval is greater than or equal to the true
minimum of the function, which is greater than or equal to the
lower bound of the fitness interval. In the convergence curve,
the inflection point where the upper bound of the fitness
interval transitions from a rapid descent to a stable state
indicates the discovery of the minimum value of the function.
The number of iterations required to reach this inflection
point reflects the efficiency of the algorithm. Specifically,
a smaller number of iterations to reach the inflection point
signifies a higher convergence rate and thus a more efficient
algorithm.

We can see from Table 2 that for all test functions in the
table, HIOA has shorter running time and fewer iterations
compared to IGA and IOA. Especially for functions 9-12,
the difference between HIOA and the other two algorithms
is exceptionally high. Taking function 9 as an example, the
iteration number of HIOA is less than 1/23 of IGA and
1/113 of IOA, while the running time is 4.8442 seconds
shorter than that of IGA and 48.4605 seconds shorter than
that of IOA, respectively. In general, the execution efficiency
of HIOA is greatly improved compared to IGA and IOA
in the two-dimensional case because the ES for points in
HIOA plays a crucial role in guiding the subinterval splitting
and deleting more unreliable subintervals. In the process of
solution solving, the inner loop based on ES in HIOA makes
the point individuals gather quickly near an optimum, thus
retaining this subinterval for splitting, which significantly
improves the algorithm efficiency.

For functions with multiple local optima, how to set the
parameterG in HIOA is critical. If the value ofG is too large,
the iteration time of ES is too long, causing the current point
individuals to gather to the local optimum, making it more
difficult for the algorithm to escape from the local optimum
and approach the global optimum. However, if the value of
G is too small, the point individuals in the ES have not yet
emerged a clear tendency to gather, but are still scattered in
each subinterval, which cannot effectively guide the subinter-
val for splitting and pruning. Therefore, the value ofG affects
the performance of the algorithm. Maybe we can set G as
an adaptive parameter, which is one of the future research
issues.

B. HIGH-DIMENSIONAL (HIGH-D) SIMULATION
High-dimensional numerical experiments are carried out on
test functions 1-7 respectively by changing the value of D,
and the results are shown in Table 3.

It can be seen from Table 2 - Table 3 that HIOA has higher
execution efficiency compared to IOA, and the difference is
more evident as the dimension increases. In addition, HIOA
has fewer iterations than IGA to achieve the same solution
accuracy, although the difference is not significant. However,
the running time of HIOA is shorter than that of IGA, and the
gap becomes more pronounced as the value of D increases.
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TABLE 1. Test function and its global optimum.

TABLE 2. Test function experiment results for 2-D.

In other words, as the dimension increases, the disadvantage
of the long running time of IGA has gradually appeared.
At this time, HIOA can achieve better results. Moreover,
we can see from Figures 2 - 13 that for two-dimensional
optimization problems in Table 1, HIOA can provide a linear
convergence order, that is, it can achieve a good convergence
effect.

FIGURE 2. Algorithm Convergence for Fun. 1.

C. COMPARISON BASED ON DIFFERENT EMBEDDED
OPTIMIZATION STRATEGIES
We have noticed that there are some state-of-the-art opti-
mization strategies, such as LSHADE [36], SaDE [37],
CMA-ES [38], etc. We also compare the performance of
HIOA based on different embedded optimization strategies
and the results are illustrated in Table 4 and Figures 14 - 25.

As shown in Figures 14 - 25, HIOA based on three different
embedded optimization strategies can linearly converge to
the optimal solution, but we only need ES to guide the split-
ting direction and provide a reliable upper bound, instead of
applying ES to find an accurate global optimum. In addition,
we can see from the experimental results that HIOA based
on a simple ES can converge to the optimum with fewer
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FIGURE 3. Algorithm Convergence for Fun. 2.

FIGURE 4. Algorithm Convergence for Fun. 3.

FIGURE 5. Algorithm Convergence for Fun. 4.

FIGURE 6. Algorithm Convergence for Fun. 5.

iterations and less running time. Therefore, using a simple
point ES for HIOA is a better selection in this paper.

D. DISCUSSION
The conventional IOA and its improved one of IGA have
some shortcomings. Although the IOA uses the monotonicity
principle and the pruning rule to delete some subintervals
that certainly do not contain the global optimum, it can-
not effectively select a reliable interval for splitting, so the
algorithm runs more iterations and consumes longer time.
Even though IOA always converges, the rate of convergence

FIGURE 7. Algorithm Convergence for Fun. 6.

FIGURE 8. Algorithm Convergence for Fun. 7.

FIGURE 9. Algorithm Convergence for Fun. 8.

FIGURE 10. Algorithm Convergence for Fun. 9.

depends on whether the interval selected to continue splitting
is reliable. If the interval selected at some time is not reliable,
it will lead to an overestimation of the interval. The IGA is
based on IOA, using GA as an acceleration device, combined
with traditional interval dichotomy. The two guide each other
and gradually aggregate to the global optimum. Compared
with IOA, IGA has high search efficiency, alleviates the
curse of dimensionality to a certain extent, and improves the
efficiency of the algorithm. Nevertheless, GA only provides a
guiding direction for interval splitting and pruning, and it still
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FIGURE 11. Algorithm Convergence for Fun. 10.

FIGURE 12. Algorithm Convergence for Fun. 11.

FIGURE 13. Algorithm Convergence for Fun. 12.

FIGURE 14. Algorithm Convergence for Fun. 1.

needs to use the monotonic test to speed up the deletion of the
interval. As the dimensionality of the problem increases, the
computational time to solve it is hard to deal with.

In contrast, HIOA provides a reliable upper bound to guide
interval splitting and pruning and deletes invalid intervals in
the ES process, thus greatly reducing the computational time.
Especially when the dimensionality of the problem is high,
this advantage of HIOA is more pronounced. By comparing

FIGURE 15. Algorithm Convergence for Fun. 2.

FIGURE 16. Algorithm Convergence for Fun. 3.

FIGURE 17. Algorithm Convergence for Fun. 4.

FIGURE 18. Algorithm Convergence for Fun. 5.

the performance of HIOA based on different embedded opti-
mization strategies, HIOA based on a simple point ES has
shorter running time and fewer iterations under the same con-
vergence order. In addition, HIOA does not need to rely on the
monotonicity and convexity of the function, which makes the
algorithm suitable for more non-differentiable optimization
problems.
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FIGURE 19. Algorithm Convergence for Fun. 6.

FIGURE 20. Algorithm Convergence for Fun. 7.

FIGURE 21. Algorithm Convergence for Fun. 8.

FIGURE 22. Algorithm Convergence for Fun. 9.

V. APPLICATION OF HIOA IN BOUNDED ERROR
PARAMETER ESTIMATION
In most practical control systems, there are more or less
uncertain factors existed, so it is usually impossible to estab-
lish an accurate mathematical model for a control system.
In order to describe an actual control system more realis-
tically, the uncertainties are introduced to its mathematical

FIGURE 23. Algorithm Convergence for Fun. 10.

FIGURE 24. Algorithm Convergence for Fun. 11.

FIGURE 25. Algorithm Convergence for Fun. 12.

model, which can be expressed as interval numbers. A system
with interval parameters to describe the uncertainties is called
an interval system.

A. PROBLEM OF BOUNDED ERROR PARAMETER
ESTIMATION
The problem studied in this paper is to estimate the interval
parameters of a nonlinear interval system under the condi-
tion of unknown-but-bounded (UBB) errors [39], [40], [41],
which can be described as follows.

For the nonlinear system y(t) = f (x,p) + e(t), where x ∈

Rm and y(t) ∈ Rm denote the actual system input and output,
respectively, ŷ(p, t) = f (x,p) denotes the prediction output
by the system model, p ∈ Rn is the unknown parameters, and
e(t) is the estimated error, then the relations of them can be
expressed by

y(t) = ŷ(p, t) + e(t) (5)

Suppose e(t) and ē(t) are the lower and upper bounds of the
estimated error, respectively, then p is said to be feasible if
and only if e(t) ∈ E = {e(t)|e(t) ≤ e(t) ≤ ē(t)}. The purpose
of bounded error parameter estimation is to determine the
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TABLE 3. Test function experiment results for high D.

TABLE 4. Comparison of HIOA based on different optimization strategies
for 2-D.

feasible parameter set P, i.e.,

P = {p ∈ Rn|y(ti) − ŷ(p, ti) ∈ [e(ti), ē(ti)], i = 1, . . . , k}

(6)

where y(ti) and ŷ(p, ti) represent the corresponding values at
the moment ti (total k time), respectively.

The SIVIA algorithm, proposed by L. Jaulin and E. Wal-
ter [20], is a common method to obtain the set P, which
is compatible with the UBB errors as (6). However, in this
paper, we will adopt another approach to determine the set P.
The main idea is as follows: 1) transform the interval parame-
ter estimation problem into an optimization one with a certain
interval objective function; 2) use an interval algorithm to
optimize this interval objective function to obtain the set P.
In the context, a glutamate bacterial growth model is taken
as an example, where the proposed HIOA is used to esti-
mate its interval parameters, i.e., the set P. The simulation
results demonstrate the advantages of the proposed method
compared with the SIVIA.

B. BACTERIAL GROWTH MODEL
The bacteria will grow and reproduce according to the natural
laws after they are put in a fermenter. During the entire
fermentation process, if there is no invasion of miscellaneous
bacteria and bacteriophages, as well as large-scale bacterial
migration inside and outside the tank, then the growth and
reproduction process of the bacteria can be described by the
Verhulst model [42]:

dŷ(t)
dt

= rŷ(t)(1 −
ŷ(t)
k

),

ŷ(0) = ŷ0
(7)

where ŷ(t) is the momentary number of the bacterial at time
t , ŷ0 is the number of bacteria at the initial moment, r is the
growth rate, and k is the habitat’s carrying capacity, quantified
as the number of bacteria that it can support.

When bacteria are added to a new medium, they require
time to adapt to the new environment before dividing. Hence,
a lag time term denoted by τ̄ is introduced, and the modified
Verhulst model is as follows:

dŷ(t)
dt

= rŷ(t)(1 −
ŷ(t)
k

),

ŷ(t) = ŷ0, 0 ≤ t ≤ τ̄ (8)

The solution to the differential equation (8) is as (9), which
is the growth model of the bacteria in the fermenter.

ŷ(t) =
k

1 + ea−rt
(9)

where a is a constant with respect to the initial condition ŷ0.
For the nonlinear system model (9), k , a, and r are

the parameters to be estimated. For a fermentation process,
total twenty samples of the actual observed data y(t)(t =

2, 3, . . . , 21, unit:hour) are obtained and shown in Table 5,
each one is expressed as yi(i = 1, 2, . . . , n, n = 20).
Similarly, the corresponding prediction data ŷ(t) is expressed
as samples ŷi(i = 1, 2, . . . , n, n = 20).
Assume that the error between y(t) and ŷ(t) is:

e(t) =

{
y(t) − ŷ(t) ∈ [−0.1, 0.1] t = 2, . . . , 7

y(t) − ŷ(t) ∈ [−0.05, 0.05] t = 8, . . . , 21
(10)
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TABLE 5. Actual observed data.

TABLE 6. Parameter estimation results.

The priori feasible set of the parameters k , a, and r to be
estimated is [P] = [0, 6] × [0, 6] × [0, 5].

C. ESTIMATED RESULTS
The least square algorithm is used to define the objective
function as the form of sum of squared deviations, as follows:

min j(t) =

n∑
i=1

(yi − ŷi)
2 (11)

In the problem of UBB parameter estimation, the actual
observed y(t) is not a specific point value, but is an interval
composed of the actual value plus a bounded error, namely,
Y (t) = [y(t) − ē(t), y(t) − e(t)]; meantime, the prediction
output ŷ(t) is the natural interval extension of function (9),
denoted by Ŷ (t) with interval parameters K , A, R, where
k ∈ K , a ∈ A, r ∈ R. Then the objective function (11)
becomes the following (12) according to the rules of interval
arithmetic.

min J (t) =

n∑
i=1

(Yi − Ŷi)
2

(12)

The root mean square error (RMSE) is used to be an
evaluation indicator tomeasure the estimated accuracy, which
is defined as:

RMSE =

√√√√1
n

n∑
i=1

(Yi − Ŷi)
2

(13)

Set the width precision of the interval parameter to 0.001,
use the proposed HIOA to solve the UBB parameter estima-
tion problem of the bacterial growth model (9), we can obtain
the parameter estimation results shown in Table 6. Then take
the estimated interval parameters back to the model (9) to
calculate the prediction data Ŷ (t), combined with the actual
data Y (t), the RMSE can be calculated as [0, 0.3684].

Similarly, the SIVIA algorithm is used to estimate the
parameter sets of k , a, and r with the same actual data in
Table 5, and the estimation results are shown in Table 7
together with the estimation ones of HIOA. Compared with
SIVIA, the width of each parameter interval obtained by
HIOA is smaller when both meet the accuracy requirements,
and the estimated error (here denoted as ê(t) = y(t) − ŷ(t))
is completely contained in the assumed error e(t) shown in
(10), thereby ensuring that the estimated parameter is within
the bounded error range and is closer to the actual value.

From the perspective of RMSE, it is evident that the RMSE
value of HIOA is smaller, demonstrating that the fitting
degree is higher when the parameters are brought back to
the original model (9), while the RMSE value of the SIVIA
is somewhat larger and the fitting degree is slightly worse.
The simulation results indicate that HIOA can be used to the
interval parameter estimation for a nonlinear system with a
satisfactory accuracy.

TABLE 7. Comparison of SIVIA and HIOA.

VI. CONCLUSION
This paper improves the performance of the traditional IOA
by combining with the ES as an acceleration device, to form
a novel HIOA. The ES not only helps to delete some invalid
intervals, but also provides a reliable upper bound to guide the
splitting direction so that the reliable interval containing the
global optimum continues to split. In addition, since HIOA
does not require the monotonicity of the objective function,
it is more suitable for black-box and non-differentiable opti-
mization problems. The solution processes of twelve typical
test functions show that the HIOA has higher search effi-
ciency than IOA and IGA; meanwhile, the compared result
with SIVIA indicates that the HIOA can be used to the
interval parameter estimation for an interval system with a
satisfactory performance.

It can be seen from the HIOA that it still has some limita-
tions and needs further research, such as the selection of the
number of individuals K in the subinterval, the setting of the
number of cycles G in the ES, the selection of the truncation
threshold T and so on, which will directly affect the algorithm
performance. So how to set these parameters reasonably to
deal with different types of functions is the focus of our future
work.

APPENDIX
This appendix gives the proof of Theorem 1 in the Section C
of Section III.
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Proof:
1) Divide the feasible domain � into N subintervals

which form the set I(t) = {I1(t), · · · , Ii(t), · · · , IN (t)}.
Assume the global optimum is x∗, then x∗ must belongs
to a certain interval. Without loss of generality, suppose
that x∗

∈ Ii(t).
Since the (µ + λ)− ES we choose in this paper con-
verges to the global optimum in probability, the small
cycle of the ES in Algorithm 2 will always make the
point individuals move closer to the reliable subinterval
that may contain the global optimum. In contrast, the
subintervals not containing the global optimum will
contain very few even no individuals of the population
in the ES. Therefore, the subinterval I∗ containing the
most points will contain the global optimum x∗. Divide
the subinterval Ii(t) containing the most points into
Ii1(t + 1) and Ii2(t + 1), then x∗

∈ Ii1(t + 1) or x∗
∈

Ii2(t+1) holds. It is assumed that x∗
∈ Ii1(t+1) ⊂ Ii(t)

with 1 ≤ i ≤ N , and continue to split this interval into
two new subintervals Ii11(t + 2) and Ii12(t + 2).
Assume x∗

∈ Ii11(t + 2) ⊂ Ii1(t + 1) and continue to
split this interval, keep doing this to get nested intervals
{Ii1 · · · 1︸ ︷︷ ︸

n

(t+n)}(n = 1, 2, . . .). Obviously, according to

the nested intervals theorem, there must be:

x∗
= lim

n→∞
Īi1 · · · 1︸ ︷︷ ︸

n

(t + n) = lim
n→∞

Ii1 · · · 1︸ ︷︷ ︸
n

(t + n)

(14)

where Īi1 · · · 1︸ ︷︷ ︸
n

(t+n) is the upper bound of Ii1 · · · 1︸ ︷︷ ︸
n

(t+n)

and Ii1 · · · 1︸ ︷︷ ︸
n

(t+n) is the lower bound of Ii1 · · · 1︸ ︷︷ ︸
n

(t+n),

i.e.,

lim
n→∞

Ii1 · · · 1︸ ︷︷ ︸
n

(t + n) = x∗ (15)

Since f (x) is continuous, then

f (x∗) ∈ f ( lim
n→∞

Ii1 · · · 1︸ ︷︷ ︸
n

(t + n))

= lim
n→∞

f (Ii1 · · · 1︸ ︷︷ ︸
n

(t + n))

⊂ lim
n→∞

F(Ii1 · · · 1︸ ︷︷ ︸
n

(t + n)) (16)

where F(Ii1 · · · 1︸ ︷︷ ︸
n

(t+n)) is the natural interval extension

of Ii1 · · · 1︸ ︷︷ ︸
n

(t + n).

2) According to the literature [43], w(I∗(t)) → 0 as
t → ∞. And because of x∗

∈ I*(t), I*(t) → x∗

holds. By (4), also w(F(I*(t))) → 0 as t → ∞. Since
f ∗

∈ F(I∗(t)), there is F(I∗(t)) → f ∗.
Complete the proof.
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