
Received 20 June 2023, accepted 4 July 2023, date of publication 10 July 2023, date of current version 14 July 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3293644

Millimeter Wave SAR Imaging Denoising and
Classification by Combining Image-to-Image
Translation With ResNet
PHAM THE HIEN AND IC-PYO HONG , (Member, IEEE)
Department of Smart Information and Technology Engineering, Kongju National University, Cheonan 31080, South Korea

Corresponding author: Ic-Pyo Hong (iphong@kongju.ac.kr)

This work was supported in part by the Basic Science Research Program under Grant 2020R1I1A3057142, in part by the Priority Research
Center Program through the National Research Foundation under Grant 2019R1A6A1A03032988, and in part by the Research Grant of
Kongju National University in 2022.

ABSTRACT Synthetic aperture radar (SAR) imaging has recently attracted considerable attention due to
its variety of applications in both military and civilian aspects. However, a SAR image scheme can be
affected by various elements that can lead to poor image reconstruction performance, especially for the target
recognition mission; for instance, the complex environment, irregular sampling intervals, sample scarcity,
imaging parameters, etc. The rapid development of deep learning currently makes it a great solution to
deal with the aforementioned problems. In this paper, we propose a SAR image model based on conditional
generative adversarial networks (cGAN), which combines image-to-image translation (pix2pix) and residual
networks (ResNet) in order to diminish the noise and artifacts on SAR images, increase their signal-to-clutter-
noise ratio (SNCR) of the images, and improve the short-range target recognition rate. Unlike conventional
cGAN, we employ a ResNet-based discriminator (RbD) to effectively improve the SAR image denoising
ability of the model. On the other hand, another similar discriminator is simultaneously trained to classify
14 familiar metallic object types with high accuracy and avoid the over-fitting problem. This discriminator
is built by replicating the RbD one, and then we replace the last layer with the standard softmax function to
classify multiple objects based on class probability outputs. The experiment results in this paper illustrate
that the proposed scheme achieves higher image denoising performance and SNCR enhancement than the
other conventional approaches. Besides, the target recognition rate of the proposed scheme outperforms the
other common classification models.

INDEX TERMS Automatic target recognition, frequency-modulated continuous wave, generative adversar-
ial networks, millimeter wave radar, residual networks, synthetic aperture radar.

I. INTRODUCTION
Synthetic aperture radar (SAR) utilizes the capability of
electromagnetic (EM) waves to generate images without
the influence of visually opaque elements coming from the
weather, light, clouds, fog, walls, etc. Compared to other tech-
niques, for instance, optical sensors, infrared sensors, etc.,
SAR can perform in all types of weather conditions to accom-
plish continuous observation with its high penetration ability.
It was first introduced as an effective method in the remote
sensing field to reconstruct aerial images supporting ground
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or sea detection [1]. Furthermore, in recent years, SAR
has also been widely adopted in short-range applications,
including indoor detection [2], [3], non-destructive testing
(NDT) [4], [5], structure health monitoring (SHM) [6], [7],
and medical imaging [8], due to its valuable characteristics.
Especially when working with higher frequencies, high-
resolution image results can be achieved.

However, there are several challenges that SAR has to
encounter to generate high-quality images. First, the high-
frequency EM wave is sensitive to complex environments
including occlusion, stacking, concealment, EM interfer-
ence, etc., bringing about the low signal-to-clutter-noise ratio
(SNCR) [9]. Secondly, SAR imaging has been supposed
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to work in the regular space domain with free-space prop-
agation [10], [11]. Nevertheless, recent researchers have
extended their SAR scheme to operate in harsh situations by
using UAV and freehand imaging to detect landmines [12]
or using smartphones as handheld scanners [13] where irreg-
ular sampling is unavoidable [14], [15]. Although these
approaches improve the flexibility of SAR imaging in
extreme circumstances, the irregular sampling combinedwith
the existing limitations of conventional SAR imaging leads to
clutter and artifacts in the image results [16], [17]. Next, the
sample scarcity is caused by the variation of the targets or
even the difference of the same target; for example, different
observation angles, variations of structure, or their variants
come from the target damage, which results in weak target
recognition ability [18]. Last but not least, the influence of
configuration parameters of a SAR imaging scheme, includ-
ing the frequency, imagingmode, incident angle, target range,
signal-to-noise ratio (SNR), resolution, etc., makes the object
classification performance of one SAR scheme hard to apply
to other objects quickly. Therefore, a method to improve
denoising and recognition performances needs to be stud-
ied to enhance the effectiveness and adaptability of a SAR
imaging scheme.

In terms of denoising, compressed sensing (CS) algo-
rithms are widely utilized as an effective method to restore
SAR data from sparse representation. As a result, this
approach reduces the amount of required measurement data
and achieves high resolution and image quality more effi-
ciently than other traditional deterministic techniques, such
as low-pass filters and singular value decomposition (SVD).
In [19], the authors propose a peak search and CS (PS-CS)
to alleviate the computational complexity of conventional
CS as well as generate the super-resolution image results
by extrapolating the parameters of scattering along with the
observing angle and frequency dimensions. Another research
employs scaled CS adopting the basis pursuit denoising
(BPDN) algorithm to reconstruct low-frequency informa-
tion from randomly sub-sampled raw signals [20] collected
by using a Ku-band frequency modulated continuous wave
(FMCW) SAR scheme mounted on an automobile platform.
The authors in [21] reduce the speckle noise in the original
image using the CS with BM3D as a non-local mean as well
as improve performance parameters such as peak signal-to-
noise ratio (PSNR) and SNR values. The main problem of
the CS approach is that it requires accumulatingmeasurement
data following a pre-defined observation matrix (Gaussian
random matrix, Bernoulli random matrix, discrete cosine
transform matrix, etc.), which is slightly difficult in practice.
Besides that, the CS also needs a solver algorithm to solve the
l1 or l2 − norm problems, which are usually computationally
complex and consume a considerable amount of time for
finding optional solutions.

In recent years, deep learning has demonstrated its great
potential in image processing for both image quality improve-
ment and image target detection, which has been well utilized

not only in optical but also SAR images. For instance, in the
study [22], the authors proposed a SAR sea-ice image clas-
sification method in which the ResNet and long short-term
memory (LSTM) networks are combined to classify seven
ice types from the spatial and temporal input features with
an accuracy rate of 95.69%. Another approach adopting
ResNet is introduced in [23] for the semantic segmenta-
tion of high-resolution polarimetric SAR (PolSAR) images.
The method reported in this paper defines a multipath
ResNet (MP-ResNet) to enlarge the valid receptive fields
(VRFs) to learn the semantic contexts of the 500 pairs of
512 × 512 pixels PolSAR images in the open dataset from
the Gaofen contest to archive high segmentation accuracy.
The authors in [24] define a model comprising a denoise sub-
network and a classification one where the classifier employs
the denoised images produced by the despeckling subnet-
work as the training data to reach 82.19% recognition rate
of ten ground target classes at the highest noise level. After
first being introduced by Ian Goodfellow [25], conditional
generative adversarial networks (cGAN) have become an
effective method to enrich data for a classification model
due to their excellent performance in translating images to
other potentially similar features. For example, researchers
in [26] and [27] adopted cGAN to generate high-quality
SAR aerial images before using them as a source for ground
target recognition. The authors in [28] and [29] used cGAN
as an effective tool to convert SAR images from their opti-
cal versions or generate realistic optical images from SAR
images [30], [31], [32].

Furthermore, the study in [33] shows another excellent per-
formance of cGAN in mitigating speckle noises and artifacts
in near-field SAR images. The denoised SAR image of an
object is generated from its noisy SAR image via the image-
to-image translation (pix2pix) model using its real-shape
image as the reference. The reference image is one of the
main elements of the pix2pix model to generate as realistic
images as possible. However, using the real-shape image as
the reference without considering SAR imaging parameters
including the target range, its dimension on the actual SAR
image, and its reflectivity may lead to inaccurately generated
output images. Motivated by it, in our study, we propose
a combined network comprising the pix2pix model along
with ResNet to improve the denoising performance on SAR
images. In our model, we utilize noisy SAR images, which
contain a lot of ghost effects, speckle noise, and low SNR due
to the interference and side lobe effect caused by complex
measurement environments and irregular sampling of SAR
imaging schemes [34], [35]. While a high-quality SAR image
of an object used as the reference image is reconstructed
from 100% radar data, the corresponding noisy SAR image
is formed by randomly taking 10% of that radar data, which
represents the irregularly sampled data. Additionally, additive
Gaussian noise is added to the noisy images as interference.
Besides that, we combined three loss functions, namely GAN
adversarial loss, mean absolute error (MAE), and structural
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similarity index (SSIM), to update the model over training
iterations for generating high-quality SAR images. AResNet-
based discriminator (RbD) is set up to improve the denoising
ability of the model. Moreover, our model also simulta-
neously trains the ResNet-based object classifier with the
involvement of 14 metallic object classes, which supports
improving the accuracy rate in the concealed object detection
mission. So in this paper, we can accomplish the following:

• Generate high-quality denoised SAR images;
• Enhance the SNCR of the generated SAR images by the
model;

• Concurrently attain the ResNet-based object recognition
model;

The rest of the paper is organized as follows: In Section II,
the FMCW SAR imaging and some of the main sources of
noise on SAR images are presented. The concept of cGAN
in SAR image denoising is illustrated in section III. After
that, section IV demonstrates the performance results of the
proposed approach, followed by section V as the conclusion.

FIGURE 1. Mono-static measurement of a target by radar on aperture
plane.

II. FMCW SAR IMAGING AND NOISE SOURCES
A. FMCW SAR IMAGING
In this paper, we adopt the range migration algorithm (RMA)
to reconstruct the SAR image from the acquired signal data,
as it works with motion compensation and requires a one-
dimensional (1-D) interpolation to completely compensate
for the curvature of the wavefront [36], [37]. To achieve
high-resolution images, a low-cost FMCW radar working
in the millimeter wave band is utilized. Assuming that the
signal measurement is continuously acquired at all points on
a synthetic aperture plane as shown in Fig. 1. The emitted
signal from the radar can be expressed as:

stx(t) = e

(
j2π(f0t+ 1

2αt2)
)
, (1)

where f0 is the carrier frequency at t = 0 and α is the
slope frequency over time, which is indicated as α =

BW
Tc

,

with the bandwidth BW over the chirp duration Tc. The
reflected signal from a target received by the radar can be
formulated as the delayed version of the transmitted one:

srx(t − τ ) =
ρ

R2
e

(
j2π

(
f0(t−τ )+ 1

2α(t−τ )2
))

, (2)

where τ is the delay between the transmitted signal and its
echo, which is proportional to the range from the radar to
the scatter point (R) as τ =

2R
c with c being the speed of

light, and ρ is the target reflectivity of the reflector over
range R. Then, by multiplying the transmitted and received
signals through the frequency mixer (IQ mixer) and passing
the output through the low-pass filter, the intermediate fre-
quency (IF) signal can be obtained:

sIF (t) = stx(t)srx(t − τ )

=
ρ

R2
e

(
j2π

(
ατ t+f0τ−

1
2ατ 2

))
, (3)

The IF signal can be recognized here as the sinusoidal signal
with the beat frequency fb = ατ consisting of the time
delay so that it can provide the range information of the
scatterer. For near-field imaging, the residual video phase
(RVP) which is the last term of (3) can be approximated as
f0τ −

1
2ατ 2 ≈ f0τ . Hence, the IF signal in (3) becomes:

sIF (t) =
ρ

R2
e(j2π(fbt+f0τ)), (4)

the IF signal peaks at the beat frequency fb which is projected
to carry the target distance from the radar (z0). In order
to reconstruct the two-dimensional (2-D) target image, the
reflected signal acquisition for all scatter points in the volume
under test is required. Assuming that themeasurement system
adopts the single-input-single-output (SISO) technique and
continuously captures the signal over the synthetic aperture
planeOxy (as shown in Fig. 1), the IF signal of the target plane
located at (x ′, y′, z0) can be inferred by taking the integral
of (4) as:

s(x, y, t) =

∫∫
ρ(x ′, y′)

e(j2π(fbt+f0τ))

R20
dx ′dy′, (5)

where R0 =

√
(x − x ′)2 + (y− y′)2 + z20. By getting the

received signal at all positions on the target plane, the reflec-
tivity of the target ρ(x ′, y′) on that plane can be characterized.
The time-domain IF signal in (5) can be written in the
wavenumber domain as:

s(x, y, k) =

∫∫
ρ(x ′, y′)

e(j2kR0)

R20
dx ′dy′, (6)

with 2π f0
c ≤ k ≤

2π fb
c . For near-field SAR, a spherical wave

can be represented as a superposition of plane waves by using
the method of stationary phase [38]:

ej2kR0

R0
≈

j
2π

∫∫
ej(kx (x−x

′)+ky(y−y′)+kzz0)

kz
dkxdky, (7)
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where kx , ky and kz are three components of k in the Cartesian
coordinate system and obey the following dispersion relation:

kz =

√
4k2 − k2x − k2y , k2x + k2y ≤ 4k2. (8)

The signal data becomes as below by submitting (7) to (6):

s(x, y, k) =
j
2π

∫∫ [∫∫
ρ(x ′, y′)e−j(kxx

′
+kyy′)dx ′dy′

]
×

ejkzz0

kz
ej(kxx+kyy)dkxdky. (9)

By applying discrete Fourier transform, s(x, y, k) can be
expressed as:

s(x, y, k) =
j
2π

∫∫
F2D[ρ(x ′, y′)]

×
ejkzz0

kz
ej(kxx+kyy)dkxdky, (10)

where F2D [·] denotes the 2-D Fourier transform operation.
The equation (10) gives:

s(x, y, k) = F−1
2D

[
F2D

[
ρ(x ′, y′)

ejkzz0

kz

]]
, (11)

whereF−1
2D [·] denotes the inverse 2-D Fourier transform oper-

ation. Hence, the target complex reflectivity can be inferred
as:

ρ(x ′, y′) = F−1
2D

[
F2D[s(x, y, k)] × kze−jkzz0

]
. (12)

The detailed process of SAR image reconstruction using
RMA is revealed in the Algorithm 1

B. NOISES ON SAR IMAGES
SAR imaging creates a radar image with coherent radiation
from a small area of the image scene (cell resolution). The
speckle noise mainly comes from the random interference of
several scatters within a resolution cell. The high differences
in the phases of back-scattered signals from those scatters
produce light and dark pixels (or speckle noise) [39], [40].
In contrast, there might only be one scatter in the resolution
cell if the resolution is high. Hence, the image is considered
to not suffer from speckle noise [41].

In the previous section II-A, the imaging scheme works
under the assumption that the radar continuously captures
echo signals over the synthetic plane. Nevertheless, in prac-
tice, the radar cannot perform all measurements at all points
on the synthetic aperture plane. Instead, the signals from the
grid of the target plane are discretely sampled. In the first
step of the image reconstruction algorithm, to improve the
efficiency of the 2-D Fourier transform, uniform spatial sam-
pling is required. However, discrete data capturing requires
equal sampling, which is hard to accomplish, especially
when using some imaging schemes with flexibility sam-
pling techniques such as freehand imaging [42] or unmanned
aerial vehicle (UAV) SAR imaging schemes [43]. Hence,
the spectrum data obtained by the Fourier transform over-
lapped due to undersampling, resulting in the side lobe effect.

Algorithm 1 SAR Image Reconstruction Using RMA
Input: The 3-D data cube S of the FMCW echo in the time

domain is accumulated by measuring at all measurement
points on the aperture plane.

Output: Image reconstruction results
1: Applying the 2-D Fourier transform to attain the wave

number domain data, denoted as:

M = F2D [S] (13)

2: Define kz as in equation (8), and phase factor (PF) at
distance z0 as:

PF = e−jz0kz (14)

3: Using the approach in (12) to reconstruct the image
by taking the inverse 2-D Fourier transform on the
Hadamard product of the wave number domain data, kz
and phase factor:

M̂ = F−1
2D [M⊗ kz ⊗ PF] , (15)

where the ⊗ represents the Hadamard (or element-wise)
product. The image of the target area can be achieved by
taking the modulus display.

Moreover, the side lobes of scatters interference with other
nearby scatters can lead to an increment of the speckle noise
and the loss of radiometric information [34], [35]. Addi-
tionally, the SAR imaging process pursues extracting the
reflectivity using approximations behind each step that yield
some artifacts in the image results.

III. DENOISING SAR IMAGE BY CGANS WITH RESNET
GAN is a generative framework that can generate new outputs
through adversarial processes according to a certain distribu-
tion learned from the system [25]. In GAN, two models are
trained at the same time to compete with each other in a min-
max game. The first model is known as the generator (G),
which tries to generate the output from a latent space input
based on a data distribution. The other model is referred to
as the discriminator (D), whose binary output is the probabil-
ity estimation of the generator output following the desired
distribution.

In conventional GANs, due to the excessive freedom of
the output from the G, unreasonable samples are generated
to deceive the D. To deal with this problem, cGAN, which
is a special version of GAN, comes into play. In cGAN, the
outputs are conditioned by certain inputs, which are aimed at
minimizing the distance between the generated outputs and
their corresponding inputs. In this paper, we utilize the noisy
SAR images as the input condition of G, which can reduce
the degree of freedom of the output images. This approach
is known as pix2pix, which is one of the most successful
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FIGURE 2. Architecture diagram of cGAN in denoising SAR image.

applications of cGAN [44], [45]. The architecture of the
model is described in Fig. 2.

As shown in Fig. 2, the model employs three types of
different images. The input images are referred to as Iin which
are the SAR images containing artifacts and alias areas com-
ing from the conventional imaging scheme without applying
any further processing. These images are utilized by the G
during the training phase to generate the corresponding clean
SAR images Igen. In general, the G can be trained using one
or two channels of the input images, including the real and
imaginary parts of the reflectivity. However, in this paper,
we only take the magnitude information as the input channel
to the model, as the SAR images are simply reconstructed
from the magnitude of the reflectivity. It is important to
note that the model requires a large amount of input image
data during the training phase, but it may not be possible to
accumulate a complete dataset from measurements. There-
fore, we need to generate SAR images (e.g., via simulation)
taking into account the imaging configuration parameters to
reasonably achieve the SAR image outputs Igen. The last term
of the images used in the model is real SAR images, which
are related to Ireal . These SAR images are the clean version
of the corresponding input images, which are also simulated
with careful consideration of imaging parameters. The model
employs these images as a reference for idea representations
that need to be reconstructed.

A. IMAGE TRANSLATION MODEL DESIGN
First, the structure of the discriminator is presented. Unlike
conventional GAN models, in which the discriminator is
formed by convolutional neural networks (CNN) [30], [33],
we employ a ResNet-based structure to build it up. The
residual blocks in the ResNet architecture have been shown
to effectively mitigate the problem of vanishing gradients

during training, which can occur in traditional deep neu-
ral networks (DNN) with many layers, leading to slow or
stalled training progress [46]. In addition, ResNet allows for
the construction of very deep neural networks to capture
fine-grained features and patterns in data that can help the
discriminator in GANs make more accurate and confident
decisions. In general, the discriminator works during the
training phase only to distinguish whether the input image
is the real image or the artificially generated image, but in
this research, we also construct another similar discriminator
structure for the multi-classification objective, which will be
introduced in the next subsection.

The structure of the RbD in our model is illustrated in
Fig. 3a. The input layer is followed by a 2-D convolutional
(Conv2D) layer, a batch normalization (BN) layer, and a rec-
tified linear unit (ReLU) activation layer. The kernel size of
3 × 3 and the kernel stride of 1× 1 are applied to all Conv2D
layers in the RbD model. Furthermore, this RbD comprises
four similar-structure residual blocks, as shown in Fig. 3b.
Each block contains a standard feed-forward CNN stacked on
five layers, including two Conv2D layers, two BN layers, and
one ReLU activation layer. A shortcut connection identically
maps the input of the residual block xin, then its output is
added to the outcomes of the stacked layers f (xin) before
going through the ReLU layer. This identity shortcut link
does not add calculation complexity or parameters, which
can enable the deeper network to be effectively and implicitly
tuned over the course of training. The dimensions of the input
and output xout of each block are the same, and the output
of each residual block takes the contributions of the residual
function and the shortcut connection:

xout = ReLU (f (xin) + xin) with ReLU(x) = max(x, 0).

(16)
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FIGURE 3. The architectures of (a) ResNet-based discriminator of denoising model, (b) the residual blocks, and (c) the classification layers of the object
recognition model.

The input layer of our RbD model takes two input images
corresponding to the number of channels: the first one is the
noisy image Iin, and the second one is the image that needs to
be classified as a real image Ireal or a generated image Igen.
It is expected to correctly determine whether Ireal and Igen
are real or generated images. If the input images are Iin and
Ireal , then the discriminator output should beD(Iin, Ireal) = 1.
On the other hand, its output should be D(Iin, Igen) = 0 for
the input images of Iin and Igen. Therefore, the output of this
network is the sigmoid activation layer, which only brings
about the probability of real or fake (artificially generated)
images. Consequently, the following objective function is
utilized for training the D to teach the G to generate images
Igen as close to the scenes of Ireal as possible [44]:

LcGAN (G,D) = max
D

(
EIreal

[
logD(Iin, Ireal)

]
+ EIgen

[
log (1 − D(Iin,G(Iin)))

] )
, (17)

where G(Iin) represents the image (Igen) generated by G,
which takes only one latent space input (Iin), and E denotes
the mathematical expectation output from the discriminator.
While D tries to maximize the loss function, generator G
strives to minimize it by generating images that can fool
the discriminator. During the training process, the generator
should pursue the minimization of the loss function (17)
i.e. G∗

= argmin
G

max
D
LcGAN (G,D). Eventually, the model

distribution can be learned through this adversarial min-max
optimization.

In the regular pix2pix model, MAE loss is used as the
regression function constraint to not only reduce the degree
of freedom of the output of G but also minimize the distance

between the Igen and Ireal , and thus enhance the SNCR of the
output SAR images. It can be expressed as:

LMAE (G) = EIreal ,Igen
[
∥Ireal − Igen∥1

]
, (18)

where ∥·∥1 is the ℓ1−norm. Using theMAE loss can decrease
the distance between the output image and the real one, but
it tends to blur the output. Therefore, in our pix2pix model,
we combine the cGAN loss, MAE loss, and another SSIM
loss to train the generator. The use of SSIM loss aims to adjust
the G for generating the SAR image with better structural
information. The SSIM loss between the Ireal and Igen can
be defined as:

LSSIM (G) =
1
N

∑
p∈Ireal ,
p∈Igen

1 −
2µmµn + C1

µ2
m + µ2

n + C1

×
2σmn + C2

σ 2
m + σ 2

n + C2
, (19)

where N is the number of pixels in each image; m and n are
the pixels at the position p in Ireal and Igen, respectively; µm
and µn represent the mean values of pixels in Ireal and Igen;
σmn is the covariance of the pixels in two images; σm and σn
denote the standard deviation values of pixels in Ireal and Igen.
C1 and C2 are the constants to stabilize the division with a
weak denominator.

The final loss function to update the weights of the discrim-
inator and the generator is defined as:

argmin
G

max
D
LcGAN (G,D) + λ1LMAE (G) + λ2LSSIM (G),

(20)
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FIGURE 4. Generator with U-Net structure.

where the λ1 and λ2 denote the weights of the MAE and
SSIM losses. This min-max game allows the discriminator
to evolve during training and, thus, improves the genera-
tor’s ability to produce more natural outputs over iterations.
Nevertheless, the discriminator is not used after the training
phase, as the generated SAR images from the generator now
are expected to resemble the real ones (clean SAR images),
which are not able to be distinguished by the discriminator.

The architecture of the generator is designed by utilizing
the U-Net structure [44] as shown in Fig. 4 in which the skip
connections are added between the ith layer and the n − ith

layer of the generator so that it enables the input feature
information at each downsampling layer to be directly trans-
ferred to its corresponding upscaling layer. This approach
is projected to provide clean SAR images of the targets as
lots of low-level information, such as structure and detail
information, is shared between output and input. Specifically,
the first layers of encoder blocks can detect low-level features
(e.g., corners, edges, etc.), while the later layers can detect
the complex shapes of the targets. On the decoder blocks, the
transposed convolutions are combined with the transferred
information from the skip connection to upscale the image
to the final output Igen.

B. OBJECT CLASSIFICATION MODEL
In this paper, we deploy another discriminator for metallic
object classification by replicating the RbD in the previous
section III-A. However, unlike the discriminator in our cGAN
model, which only has two outputs, 0 and 1, for the real and
generated images, respectively, this discriminator performs
its classification ability on multiple object types. Therefore,
we replace the last output sigmoid activation layer of the orig-
inal one with the softmax activation function, whose output
is a vector of class probabilities. Specifically, the structure of
the classification layers of the object classifier is depicted in
Fig. 3c. After the final residual block of the RbD, we added
an average pooling layer, a flattening layer, and dense layers.

In addition, to avoid the overfitting problem,we add a dropout
layer with a rate of 0.5 before the output layer. Besides that,
the L2 regularizer is also applied to all 2-D convolutional
layers in all the residual blocks.

During the training phase, this classification model only
takes pairs of Iin and the Igen as the input features. It is
different from the RbD of the denoising model, which also
takes the Ireal into discrimination. Therefore, although two
discriminators simultaneously learn similar input features
of Igen for each iteration, their network parameters are
always dynamically different. Furthermore, the local recep-
tive domain of this classifier uses features without taking
into account the translation, scaling, and rotation of the
image; hence, it can directly work as SAR automatic target
recognition (ATR).

IV. RESULTS AND DISCUSSION
To validate the performance of the proposed method in SAR
image denoising and ATR, we take the flexible measurement
SAR approach into consideration, whose main noise source
comes from the irregular spatial sampling of data acquisition
and sparse measurement observations. As stated in the early
aforementioned section III, only the magnitude of the reflec-
tivity images are utilized as inputs to the networks, whose size
is 128 × 128. A similar output size is achieved for the output
images after denoising. To handle that size of input and output
data, the generator is designedwith six encoder blocks and six
corresponding decoder blocks of the U-Net structure, along
with a 2-D convolution layer at the bottom. The numbers of
filters in the encoder block are, respectively, 64, 128, 256,
512, 512, and 512 from the top to the bottom. In the first
encoder block, the batch normalization layer is not required
as the input data have already been normalized to the range
of [−1, 1]. On the other hand, the same number of filters are
applied to the corresponding decoder blocks. Whereas the
RbD is built up with four residual blocks whose filter sizes are
64, 128, 256, and 512 to bring about deeper learning but avoid
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the vanishing gradient problem. The network parameters of
the model are summarized in Table 1.

TABLE 1. The system parameters of the denoising model.

FIGURE 5. Measurement system: a) the TI AWR1443Boost and b) the
motion platform.

In this paper, since we aim to detect the shape of the
target at short range, the FMCW SAR imaging topology
is utilized [47]. This topology exploits the SISO technique
since the distance between transmitted and received antennas
is close enough to be represented as a single full-duplex
antenna. Thus, our SAR imaging scheme employs the Texas
Instrument AWR1443Boost, which is the evaluation module
using a single-chip AWR1443 millimeter wave (mmWave)
sensor [48]. The device supports 4 GHz bandwidth sweeping
from 77 GHz to 81 GHz, and it is configured to interface
with the data card DCA1000EVM to stream the captured data
from the radar to the host PC over an Ethernet connection.
Two of these devices are mounted on a 2-D motion platform
to perform the measurements on the aperture plane. Fig. 5
shows our measurement system containing the radar, data
card device, and motion platform with two orthogonal linear
actuators. The measurement setup of the imaging scheme
is depicted in Fig. 5b. In this setup, the radar is moved on
the 200 mm × 200 mm aperture plane to cover the target
dimension. The object is placed at a distance z0 = 200 mm
from the radar. To reconstruct the real SAR image of an

object Ireal , we take the involvement of all captured signal
data within the aperture plane with a movement step of 2 mm
in both horizontal and vertical directions, resulting in a total
of 10,000 measurement points. The imaging parameters are
shown in Table 2.

TABLE 2. FMCW SAR imaging parameters.

To generate the dataset for training the model, we simulate
the SAR images of 14 common metallic objects by using
electromagnetic simulation using the above radar and SAR
configuration parameters, which take into consideration the
target distance, the electromagnetic wave propagation, and
the target reflectivity. For each type of target, there are several
different target samples taken into the simulation, and the
shapes of all target samples in one specific target class are
different from the others in that class. In addition, there
are eight Ireal and eight corresponding Iin images for each
target sample according to eight different rotation angles.
Additionally, to form the corresponding noisy SAR image
Iin of a target, we randomly take 10% of the data from
the simulated measurement, corresponding to 1000 random
measurement points, which represent the irregular spatial
sampling. Besides that, we also add different levels of addi-
tive Gaussian noise to those images (with SNRs of 5, 10,
15, and 20 dB), which would properly model the noise
source described in the section II-B. Consequently, combin-
ing the rotation angles and different SNR levels produces
16,400 simulated images. 70% of the data is taken into
the training phase, and the remaining 30% is used to test
the model. The problem is simulated using MATLAB [47]
adopting the simulation parameters as shown in Table 2. The
detailed information on 14 targets for SAR image simulation
is depicted in Table 3.

During the training phase, to quantify the error between
the real image (Ireal) and the denoised image (Igen), the mean
square error (MSE) is derived as:

MSE(Igen, Ireal) =

∑M ,N
i=1,
j=1

[
Igen(i, j) − Ireal(i, j)

]
M × N

2

, (21)

where M and N are the number of rows and columns in the
input images. Fig. 6 illustrates theMSE between the denoised
images and the ground truths during the training phase. It is
important to note that the image quality is steadily improving
as the MSE of generated images decreases over iterations
with a fast convergence rate. On the other hand, Fig 7 shows
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TABLE 3. Object information for simulating SAR images.

FIGURE 6. Mean square error of generated images during training.

the simulated SAR images at the SNR of 5 dB used for train-
ing and testing the model, including the noisy images Ireal
(Fig 7a-b), the ground truth Iin (Fig 7c-d) and the denoised
images through the proposed method Igen (Fig. 7e-f). Addi-
tionally, we also adopted the PSNR as a metric to quantify
the reconstructed image quality, whose higher value indicates
a better-quality image with less distortion or noise. It is
expressed as:

PSNR(I ) = 20 log10

(
maxI

√
MSE

)
, (22)

where maxI is the maximum valid value of image I . After
finishing the training phase, the PSNRs of the noisy images
(Fig. 7a-b) are significantly improved by the proposed
denoising method from 11.22 dB and 9.80 dB to 20.28 dB
and 21.82 dB, respectively.

The denoising performance of the proposed approach is
validated in the testing phase, which first employs only the
simulated synthetic data at a SNR level of 5 dB for 14 target
types with different rotation angles; none of the data were

FIGURE 7. Different target simulation results of (a) scissors and (b) pliers
noisy images, (c)-(d) the ground truths, and (e)-(f) the denoised images.

TABLE 4. Results of different denoising methods on simulated SAR
images.

used during the training phase. The ground truth SAR images
(Ireal) of the targets are illustrated on the first row of Table 4
while the corresponding denoised images (Igen) through the
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FIGURE 8. Denoising performances of different methods.

proposedmethod are in the last two rows with and without the
involvement of different loss functions of the generator. It can
be seen that the proposed approach can remove most of the
noise in the SAR images as well as improve their contrast.
Besides that, the MAE loss significantly contributes to the
performance of the proposed model. It is shown in the 5th row
of Table 4 that without MAE loss, the reconstructed images
still contain the artifacts, while the PSNR is also very low,
resulting in the low contrast images. On the other hand, with
the involvement of the MAE and SSIM losses, the model
produces clean images, less noise, and higher PSNR, as in the
6th row of Table 4. Furthermore, a comparison between the
proposed approach and other additional denoising methods is
also conducted for the sake of completeness. The compressed
sensing algorithm is first taken into consideration. It also
employs 10% of the original data for reconstructing an image.
The random Bernoulli matrix is adopted as the observation
matrix, and the optimization problem to recover data from
sparse representation is solved by using the basis pursuit

denoising (BPDN) solver. It can be seen in the second row
of Table 4 that although the CS-BPDN approach can slightly
improve the image quality, it is less effective than the pro-
posed method as a lot of noise remains in the image results.
In addition, the shapes of the targets are blurred, and they are
not well reconstructed since there is lost information in the
small details. Another method that is taken into comparison is
the deep convolutional GAN (DCGAN), whose discriminator
is a CNN network [33]. The model adopts the same dataset
for both the training and testing phases as the proposed one.
Although this approach achieves better denoising ability than
the CSmethod, in general, it is less efficient than the proposed
one as lower contrast images are achieved, as well as little
distortion in the shapes of the targets as depicted in the third
and fourth rows.

In order to achieve a detailed assessment of the perfor-
mance among the employed methods, we also evaluate three
image parameters, namely MSE, PSNR, and SSIM, of the
denoised images, as shown in Fig. 8. These parameters are
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FIGURE 9. SAR image results from (a) the experiment and the corresponding denoised images by (b) compressed sensing, (c) DCGAN, (d) DCGAN
with MAE loss, (e) proposed method without losses, and (f) proposed method with losses.

derived using the denoised images from different SNR levels
and their corresponding ground truths. In general, denoising
performance is proportional to the SNR. It can be seen that,
by adopting the RbD, our method outperforms its counter-
parts as the images generated by the model attain less MSE
(Fig. 8a) but higher PSNR (Fig. 8b) and SSIM (Fig. 8c) which
results in higher quality images with less deformation and
higher contrast. Again, we can also witness the significant
contribution of MAE loss to denoising ability. Without the
support of MAE loss, the model works worse than other
DCGAN models.

The effectiveness of the model is then assessed by
involving it in denoising the actual noisy SAR images recon-
structed from the experiments using the same aforementioned
radar and imaging parameters as in the beginning of this
section. We also conducted measurements of common metal-
lic objects, namely scissors, pliers, spanners, and knives. It is
shown in Fig. 9a that the original SAR images contain a
lot of artifacts due to the aliasing coming from the irreg-
ular spatial sampling intervals and the speckle noises from
the environmental interference. Generally speaking, a sim-
ilar phenomenon in the denoising ability of all considered
methods applied to simulated data can also be witnessed in
measured data. Although there are still artifacts remaining on
the denoised images of all methods, the models employing
RbD produce cleaner images with less noise and distortion
than the others while improving contrast and image quality
and keeping object information without distortion (as illus-
trated in Fig. 9f). On the other hand, a lot of speckle noise
is still present in the images provided by the CS-BPDN
algorithm (Fig. 9b) while the images produced by DCGAN
models consist of object shape distortions due to losing
detailed information (Fig. 9c-d).
The target recognition performance of the RbD model in

the aforementioned section III-B is also trained by taking

two input channels: the noisy image (Iin) and the ground
truth (Ireal). This classification model is simultaneously
trained with the denoising model using the same input dataset
of 14 target types at four SNR levels in the training phase. The
test set for this discriminator is built up by taking the noisy
SAR images (Iin) into the denoising model to get correspond-
ing denoised images (Igen), then all pairs of those images are
input to the classifier to detect the recognition rate. By using
both the noisy and the denoised images as two input channels,
the classification rate can be improved compared to using
only one input channel for the images without denoising.

TABLE 5. Recognition rate of different classification models.

To validate the efficiency of the proposed model, we take
into account the involvement of three other deep learning
image classification models, namely ResNet30, ResNet50,
and CNN. These models are updated to adopt two input chan-
nels during the training and testing phases. The classification
rates of these models are also accumulated by employing the
same training and testing dataset. The recognition results of
all models are depicted in Table 5 which shows that the RbD
classificationmodel achieves higher accuracy rates than other
models at all SNR levels. The denoising model enhances the
data as it reduces the noise and improves the SNR, achieving
better effectiveness in target recognition of SAR images.

V. CONCLUSION
In this paper, we investigate a deep-learning model that com-
bines the pix2pix model with the ResNet models to both
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denoise the SAR images and improve ATR. The RbD model
is built up to provide deeper learning on the two-channel input
data that guides the generator to improve its performance in
producing cleaner SAR images and getting over the short-
coming of the low SNR of the noisy images. The proposed
model employs data, taking into account the influences of
imaging parameters and noise sources, which significantly
impact the quality of the SAR images. The noisy SAR images
reconstructed from both simulated and measured data suffer
considerable speckle noise and artifacts due to the sparse
sampling and the approximation procedure of the imaging
procedure. Nevertheless, the image results show that the
proposed scheme has appreciably decreased the noise and
artifacts on the images as well as considerably enhanced
the PSNR of the input data. Additionally, the contributions
of various loss functions to the model’s capacity for image
denoising are taken into account, and MAE loss effectively
boosts the imaging scheme’s performance. The ability of the
proposed scheme is validated along with other well-known
denoising methods, namely CS-BPDN and DCGAN. The
better results of imaging metric evaluation prove that the pro-
posed method can efficiently contribute to image-denoising
missions.

A similar multi-classification RbD model is designed and
concurrently trained for target recognition, which takes two
input channels for training and testing, including the denoised
images provided by the denoising model and the noisy image.
The denoised images become a valuable source of data that
significantly improves the classification accuracy rate of the
ATR model. Although this pix2pix RbD scheme demon-
strates its beneficial abilities, it also exhibits some drawbacks.
The first one is inherent in traditional machine learning
approaches, which require a large amount of data. Another
disadvantage could emerge when the number of targets under
measurement becomes large. In this situation, the model
would not correctly generate the features as the object distri-
bution could be blurred. Therefore, future denoising models
integrating innovative despeckling methods that require less
training data would be studied to overcome the limitations
mentioned.

REFERENCES
[1] H. J. Kramer. (2019). SeaSat Mission-the World’s First Satellite Mis-

sion Dedicated to Oceanography. eoPortal Directory–Satellite Missions.
[Online]. Available: https://directory.eoportal.org/web/eoportal/satellite-
missions/s/seasat

[2] A. Batra, V. T. Vu, Y. Zantah, M. Wiemeler, M. I. Pettersson,
D. Goehringer, and T. Kaiser, ‘‘Sub-mm resolution indoor THz
range and SAR imaging of concealed object,’’ in IEEE MTT-S
Int. Microw. Symp. Dig., Linz, Austria, Nov. 2020, pp. 1–4, doi:
10.1109/ICMIM48759.2020.9299034.

[3] A. Batra, T. Hark, J. Schorlemer, N. Pohl, I. Rolfes, M. Wiemeler,
D. Göhringer, T. Kaiser, and J. Barowski, ‘‘Fusion of optical andmillimeter
wave SAR sensing for object recognition in indoor environment,’’ in Proc.
5th Int. Workshop Mobile Terahertz Syst. (IWMTS), Duisburg, Germany,
Jul. 2022, pp. 1–5, doi: 10.1109/IWMTS54901.2022.9832438.

[4] M. ELsaadouny, J. Barowski, J. Jebramcik, and I. Rolfes, ‘‘Millimeter
wave SAR imaging for the non-destructive testing of 3D-printed samples,’’
in Proc. Int. Conf. Electromagn. Adv. Appl. (ICEAA), Granada, Spain,
Sep. 2019, pp. 1283–1285, doi: 10.1109/ICEAA.2019.8879272.

[5] B. Wu and L. He, ‘‘Multilayered circular dielectric structure SAR imag-
ing based on compressed sensing for FOD detection in NDT,’’ IEEE
Trans. Instrum. Meas., vol. 69, no. 10, pp. 7588–7593, Oct. 2020, doi:
10.1109/TIM.2020.2980801.

[6] M. Fallahpour and R. Zoughi, ‘‘Fast 3-D qualitative method for
through-wall imaging and structural health monitoring,’’ IEEE Geosci.
Remote Sens. Lett., vol. 12, no. 12, pp. 2463–2467, Dec. 2015, doi:
10.1109/LGRS.2015.2484260.

[7] P. Giordano, Z. Turksezer, M. Previtali, and M. Limongelli, ‘‘Dam-
age detection on a historic iron bridge using satellite DInSAR data,’’
Struct. Health Monitor., vol. 21, no. 5, pp. 2291–2311, Sep. 2022, doi:
10.1177/14759217211054350.

[8] D. Oloumi, R. S. C. Winter, A. Kordzadeh, P. Boulanger, and K. Rambabu,
‘‘Microwave imaging of breast tumor using time-domain UWB circular-
SAR technique,’’ IEEE Trans. Med. Imag., vol. 39, no. 4, pp. 934–943,
Apr. 2020, doi: 10.1109/TMI.2019.2937762.

[9] X. Chen, J. Guan, X. Li, and Y. He, ‘‘Effective coherent integration
method for marine target with micromotion via phase differentiation
and Radon-Lv’s distribution,’’ IET Radar, Sonar Navigat., vol. 9, no. 9,
pp. 1284–1295, Dec. 2015.

[10] Z. Chen, Z. Xiong, and D. Lewis, ‘‘Direct wave removal in anechoic
chamber range imaging from planar scanned data,’’ inProc. 14th Eur. Conf.
Antennas Propag. (EuCAP), Copenhagen, Denmark, Mar. 2020, pp. 1–5,
doi: 10.23919/EuCAP48036.2020.9135194.

[11] Z. Wu, L. Zhang, and H. Liu, ‘‘Generalized three-dimensional imaging
algorithms for synthetic aperture radar with metamaterial apertures-
based antenna,’’ IEEE Access, vol. 7, pp. 59716–59727, 2019, doi:
10.1109/ACCESS.2019.2912169.

[12] M. Garcia-Fernandez, G. Alvarez-Narciandi, Y. Alvarez-Lopez, and
F. L. Heras, ‘‘Comparison of subsampling strategies for UAV-mounted
subsurface radar imaging systems,’’ in Proc. IEEE Int. Symp. Antennas
Propag. USNC-URSI Radio Sci. Meeting (AP-S/URSI), Denver,
CO, USA, Jul. 2022, pp. 1162–1163, doi: 10.1109/AP-S/USNC-
URSI47032.2022.9887155.

[13] G. Álvarez-Narciandi, J. Laviada, and F. Las-Heras, ‘‘Towards turn-
ing smartphones into mmWave scanners,’’ IEEE Access, vol. 9,
pp. 45147–45154, 2021, doi: 10.1109/ACCESS.2021.3067458.

[14] G. Álvarez-Narciandi, J. Laviada, and F. Las-Heras, ‘‘Freehand mm-wave
imaging with a compact MIMO radar,’’ IEEE Trans. Antennas Propag.,
vol. 69, no. 2, pp. 1224–1229, Feb. 2021, doi: 10.1109/TAP.2020.3013745.

[15] C. Vasileiou, J. Smith, S. Thiagarajan, M. Nigh, Y. Makris, and M. Torlak,
‘‘Efficient CNN-based super resolution algorithms for mmWave mobile
radar imaging,’’ in Proc. IEEE Int. Conf. Image Process. (ICIP), Oct. 2022,
pp. 3803–3807, doi: 10.1109/ICIP46576.2022.9897190.

[16] X. Zeng, Y. Ma, Z. Li, J. Wu, and J. Yang, ‘‘A near-field fast time-
frequency joint 3-D imaging algorithm based on aperture linearization,’’
in Proc. IEEE Int. Geosci. Remote Sens. Symp. (IGARSS), Brussels,
Belgium, Jul. 2021, pp. 5163–5166, doi: 10.1109/IGARSS47720.2021.
9553669.

[17] J. Wang and A. Yarovoy, ‘‘NUFFT-based range migration for 3-D
imaging with irregular planar array,’’ in Proc. Int. Conf. Electromagn.
Adv. Appl. (ICEAA), Granada, Spain, Sep. 2019, pp. 0671–0675, doi:
10.1109/ICEAA.2019.8879356.

[18] Y. Tai, Y. Tan, S. Xiong, Z. Sun, and J. Tian, ‘‘Few-shot transfer learning
for SAR image classification without extra SAR samples,’’ IEEE J. Sel.
Topics Appl. Earth Observ. Remote Sens., vol. 15, pp. 2240–2253, 2022,
doi: 10.1109/JSTARS.2022.3155406.

[19] K. Wu, W. Cui, and X. Xu, ‘‘Superresolution radar imaging via peak
search and compressed sensing,’’ IEEEGeosci. Remote Sens. Lett., vol. 19,
pp. 1–5, 2022, doi: 10.1109/LGRS.2022.3184067.

[20] D. Jung, H. Kang, C. Kim, J. Park, and S. Park, ‘‘Sparse scene recovery for
high-resolution automobile FMCW SAR via scaled compressed sensing,’’
IEEE Trans. Geosci. Remote Sens., vol. 57, no. 12, pp. 10136–10146,
Dec. 2019, doi: 10.1109/TGRS.2019.2931626.

[21] K. R. Mamatha, S. A. Hariprasad, P. Saranya, S. Shahi, S. Poddar, and
V. Srivastava, ‘‘A non local approach to de-noise SAR images using
compressive sensing method,’’ in Proc. IEEE Int. Conf. Recent Trends
Electron., Inf. Commun. Technol. (RTEICT), Bangalore, India, May 2016,
pp. 1603–1606, doi: 10.1109/RTEICT.2016.7808103.

[22] W. Song, M. Li, W. Gao, D. Huang, Z. Ma, A. Liotta, and C. Perra,
‘‘Automatic sea-ice classification of SAR images based on spatial and
temporal features learning,’’ IEEE Trans. Geosci. Remote Sens., vol. 59,
no. 12, pp. 9887–9901, Dec. 2021, doi: 10.1109/TGRS.2020.3049031.

70214 VOLUME 11, 2023

http://dx.doi.org/10.1109/ICMIM48759.2020.9299034
http://dx.doi.org/10.1109/IWMTS54901.2022.9832438
http://dx.doi.org/10.1109/ICEAA.2019.8879272
http://dx.doi.org/10.1109/TIM.2020.2980801
http://dx.doi.org/10.1109/LGRS.2015.2484260
http://dx.doi.org/10.1177/14759217211054350
http://dx.doi.org/10.1109/TMI.2019.2937762
http://dx.doi.org/10.23919/EuCAP48036.2020.9135194
http://dx.doi.org/10.1109/ACCESS.2019.2912169
http://dx.doi.org/10.1109/AP-S/USNC-URSI47032.2022.9887155
http://dx.doi.org/10.1109/AP-S/USNC-URSI47032.2022.9887155
http://dx.doi.org/10.1109/ACCESS.2021.3067458
http://dx.doi.org/10.1109/TAP.2020.3013745
http://dx.doi.org/10.1109/ICIP46576.2022.9897190
http://dx.doi.org/10.1109/IGARSS47720.2021.9553669
http://dx.doi.org/10.1109/IGARSS47720.2021.9553669
http://dx.doi.org/10.1109/ICEAA.2019.8879356
http://dx.doi.org/10.1109/JSTARS.2022.3155406
http://dx.doi.org/10.1109/LGRS.2022.3184067
http://dx.doi.org/10.1109/TGRS.2019.2931626
http://dx.doi.org/10.1109/RTEICT.2016.7808103
http://dx.doi.org/10.1109/TGRS.2020.3049031


P. T. Hien, I.-P. Hong: Millimeter Wave SAR Imaging Denoising and Classification

[23] L. Ding, K. Zheng, D. Lin, Y. Chen, B. Liu, J. Li, and L. Bruzzone,
‘‘MP-ResNet: Multipath residual network for the semantic segmentation
of high-resolution PolSAR images,’’ IEEE Geosci. Remote Sens. Lett.,
vol. 19, 2022, Art. no. 4014205, doi: 10.1109/LGRS.2021.3079925.

[24] J. Wang, T. Zheng, P. Lei, and X. Bai, ‘‘Ground target classification in
noisy SAR images using convolutional neural networks,’’ IEEE J. Sel.
Topics Appl. Earth Observ. Remote Sens., vol. 11, no. 11, pp. 4180–4192,
Nov. 2018, doi: 10.1109/JSTARS.2018.2871556.

[25] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, ‘‘Generative adversarial nets,’’ in
Proc. Adv. Neural Inf. Process. Syst., 2014, pp. 1–9.

[26] C. Mao, L. Huang, Y. Xiao, F. He, and Y. Liu, ‘‘Target recog-
nition of SAR image based on CN-GAN and CNN in complex
environment,’’ IEEE Access, vol. 9, pp. 39608–39617, 2021, doi:
10.1109/ACCESS.2021.3064362.

[27] L. Li, C. Wang, H. Zhang, and B. Zhang, ‘‘SAR image ship object gen-
eration and classification with improved residual conditional generative
adversarial network,’’ IEEE Geosci. Remote Sens. Lett., vol. 19, pp. 1–5,
2022, doi: 10.1109/LGRS.2020.3016692.

[28] J. Guo, B. Lei, C. Ding, and Y. Zhang, ‘‘Synthetic aperture radar image
synthesis by using generative adversarial nets,’’ IEEEGeosci. Remote Sens.
Lett., vol. 14, no. 7, pp. 1111–1115, Jul. 2017.

[29] K. Wang, G. Zhang, Y. Leng, and H. Leung, ‘‘Synthetic aperture radar
image generation with deep generative models,’’ IEEE Geosci. Remote
Sens. Lett., vol. 16, no. 6, pp. 912–916, Jun. 2019.

[30] Y. Li, R. Fu, X. Meng, W. Jin, and F. Shao, ‘‘A SAR-to-optical
image translation method based on conditional generation adversarial
network (cGAN),’’ IEEE Access, vol. 8, pp. 60338–60343, 2020, doi:
10.1109/ACCESS.2020.2977103.

[31] J. Noa Turnes, J. D. B. Castro, D. L. Torres, P. J. S. Vega, R. Q. Feitosa,
and P. N. Happ, ‘‘Atrous cGAN for SAR to optical image transla-
tion,’’ IEEE Geosci. Remote Sens. Lett., vol. 19, pp. 1–5, 2022, doi:
10.1109/LGRS.2020.3031199.

[32] K. Doi, K. Sakurada, M. Onishi, and A. Iwasaki, ‘‘GAN-based SAR-to-
optical image translation with region information,’’ in Proc. IEEE Int.
Geosci. Remote Sens. Symp. (IGARSS), Waikoloa, HI, USA, Sep. 2020,
pp. 2069–2072, doi: 10.1109/IGARSS39084.2020.9323085.

[33] J. Laviada, G. Álvarez-Narciandi, and F. Las-Heras, ‘‘Artifact mitigation
for high-resolution near-field SAR images bymeans of conditional genera-
tive adversarial networks,’’ IEEE Trans. Instrum. Meas., vol. 71, pp. 1–11,
2022, doi: 10.1109/TIM.2022.3200107.

[34] H. Kim, S. You, B. J. Jeong, and W. Byun, ‘‘Azimuth angle resolution
improvement technique with neural network,’’ in Proc. Int. Conf. Inf.
Commun. Technol. Converg. (ICTC), Oct. 2020, pp. 1384–1387.

[35] Z. Xu, H. Li, Q. Shi, H. Wang, M. Wei, J. Shi, and Y. Shao,
‘‘Effect analysis and spectral weighting optimization of sidelobe reduc-
tion on SAR image understanding,’’ IEEE J. Sel. Topics Appl. Earth
Observ. Remote Sens., vol. 12, no. 9, pp. 3434–3444, Sep. 2019, doi:
10.1109/JSTARS.2019.2925420.

[36] J. M. Lopez-Sahcnez and J. Fortuny-Guasch, ‘‘3-D radar imaging using
rangemigration techniques,’’ IEEE Trans. Antennas Propag., vol. 48, no. 5,
pp. 728–737, May 2000, doi: 10.1109/8.855491.

[37] Z. Yang and Y. R. Zheng, ‘‘Near-field 3-D synthetic aperture radar imag-
ing via compressed sensing,’’ in Proc. IEEE Int. Conf. Acoust., Speech
Signal Process. (ICASSP), Kyoto, Japan, Mar. 2012, pp. 2513–2516, doi:
10.1109/ICASSP.2012.6288427.

[38] H. Weyl, ‘‘Ausbreitung elektromagnetischer Wellen über einem ebenen
Leiter,’’ Ann. Phys., vol. 365, no. 21, pp. 481–500, 1919.

[39] Z. Xu, Q. Shi, Y. Chen, W. Feng, Y. Shao, L. Sun, and X. Huang, ‘‘Non-
stationary speckle reduction in high resolution SAR images,’’Digit. Signal
Process., vol. 73, pp. 72–82, Feb. 2018.

[40] Z. Xu, ‘‘Wavelength-resolution SAR speckle model,’’ IEEE
Geosci. Remote Sens. Lett., vol. 19, pp. 1–5, 2022, doi:
10.1109/LGRS.2022.3145996.

[41] D. I. Alves, B. G. Palm, M. I. Pettersson, V. T. Vu, R. Machado,
B. F. Uchôa-Filho, P. Dammert, and H. Hellsten, ‘‘A statistical analysis
for wavelength-resolution SAR image stacks,’’ IEEEGeosci. Remote Sens.
Lett., vol. 17, no. 2, pp. 227–231, Feb. 2020.

[42] G. Álvarez-Narciandi, M. López-Portugués, F. Las-Heras, and J. Lavi-
ada, ‘‘Freehand, agile, and high-resolution imaging with compact
mm-wave radar,’’ IEEE Access, vol. 7, pp. 95516–95526, 2019, doi:
10.1109/ACCESS.2019.2929522.

[43] M. Garcia-Fernandez, Y. Alvarez-Lopez, and F. L. Heras, ‘‘3D-
SAR processing of UAV-mounted GPR measurements: Dealing
with non-uniform sampling,’’ in Proc. 14th Eur. Conf. Antennas
Propag. (EuCAP), Copenhagen, Denmark, Mar. 2020, pp. 1–5, doi:
10.23919/EuCAP48036.2020.9135650.

[44] P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros, ‘‘Image-to-image translation
with conditional adversarial networks,’’ 2016, arXiv:1611.07004.

[45] J. Zhang, M. Guo, and J. Fan, ‘‘A novel generative adversarial net for
calligraphic tablet images denoising,’’ Multimedia Tools Appl., vol. 79,
nos. 1–2, pp. 119–140, Jan. 2020.

[46] K. He, X. Zhang, S. Ren, and J. Sun, ‘‘Deep residual learning for
image recognition,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recog-
nit. (CVPR), Las Vegas, NV, USA, Jun. 2016, pp. 770–778, doi:
10.1109/CVPR.2016.90.

[47] M. E. Yanik and M. Torlak, ‘‘Near-field MIMO-SAR millimeter-wave
imaging with sparsely sampled aperture data,’’ IEEE Access, vol. 7,
pp. 31801–31819, 2019, doi: 10.1109/ACCESS.2019.2902859.

[48] (2023). mmWave Radar Sensors. [Online]. Available:
http://www.ti.com/sensors/mmwave/overview.html

PHAM THE HIEN received the B.E. degree
in communication and networking from the Ho
Chi Minh City University of Transport, Vietnam,
in 2012, and the M.E. degree in information and
communication engineering fromKongjuNational
University, South Korea, in 2022, where he is
currently pursuing the Ph.D. degree in informa-
tion and communication engineering. His major
research interests include non-destructive testing,
communication and networking, wireless commu-

nication systems, synthetic aperture radar imaging, machine learning, and
optimization methods.

IC-PYO HONG (Member, IEEE) received the
B.S., M.S., and Ph.D. degrees in electron-
ics engineering from Yonsei University, Seoul,
South Korea, in 1994, 1996, and 2000, respec-
tively. From 2000 to 2003, he was with the
Information and Communication Division, Sam-
sung Electronics Company, Suwon, South Korea,
where he was a Senior Engineer with CDMA
Mobile Research. He was a Visiting Scholar with
Texas A&M University, College Station, TX,

USA, in 2006; and Syracuse University, Syracuse, NY, USA, in 2012. Since
2003, he has been with the Department of Information and Communication
Engineering, Kongju National University, Cheonan, South Korea, where he
is currently a Professor. His research interests include numerical techniques
in electromagnetics, periodic electromagnetic structures, and their applica-
tions in wireless communications.

VOLUME 11, 2023 70215

http://dx.doi.org/10.1109/LGRS.2021.3079925
http://dx.doi.org/10.1109/JSTARS.2018.2871556
http://dx.doi.org/10.1109/ACCESS.2021.3064362
http://dx.doi.org/10.1109/LGRS.2020.3016692
http://dx.doi.org/10.1109/ACCESS.2020.2977103
http://dx.doi.org/10.1109/LGRS.2020.3031199
http://dx.doi.org/10.1109/IGARSS39084.2020.9323085
http://dx.doi.org/10.1109/TIM.2022.3200107
http://dx.doi.org/10.1109/JSTARS.2019.2925420
http://dx.doi.org/10.1109/8.855491
http://dx.doi.org/10.1109/ICASSP.2012.6288427
http://dx.doi.org/10.1109/LGRS.2022.3145996
http://dx.doi.org/10.1109/ACCESS.2019.2929522
http://dx.doi.org/10.23919/EuCAP48036.2020.9135650
http://dx.doi.org/10.1109/CVPR.2016.90
http://dx.doi.org/10.1109/ACCESS.2019.2902859

