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ABSTRACT Storytelling is a remarkable human skill that plays a significant role in learning and experi-
encing everyday life. Developing narratives is central to human mental health development, simultaneously
encapsulating broad details such as psychology, morality and common sense. Contemporary deep-learning
algorithms require similar skills to be able to tell a story from a visual perspective. However, most algorithms
function at a superficial or factual level, aligning descriptive text with images in a one-to-one manner without
considering the temporal relation. Stories are more expressive in style, language and content, involving
imaginary concepts not explicit in the images. An ideal deep learning system should learn and develop
cohesive, meaningful, and causal stories. Unfortunately, most existing storytelling methods are trained and
evaluated on a single dataset, i.e., the VIsual STorytelling (VIST) dataset. Multiple datasets are essential to
test the generalization ability of algorithms. We bridge the gap and present a new dataset for expressive
and coherent story creation. We present the Sequential Storytelling Image Dataset (SSID, http://ieee-
dataport.org/documents/sequential-storytelling-image-dataset-ssid) consisting of open-source video frames
accompanied by story-like annotations.We provide four annotations (stories) for each set of five images. The
image sets are collected manually from publicly available videos in three domains: documentaries, lifestyle,
and movies, and then annotated manually using Amazon Mechanical Turk. We perform a detailed analysis
and benchmarking of the current VIST dataset and our new SSID dataset and show that both datasets exhibit
high variance within their multiple ground truth stories corresponding to the same image set. Moreover,
our dataset achieves lower mean average scores across all metrics, meaning that the ground truth stories
of our dataset are more diverse. Finally, we train and evaluate existing state-of-the-art rhetorical storytelling
methods on both datasets and show that our dataset is more challenging and requires sophisticated techniques
to accurately detect a significant variety of events.

INDEX TERMS Storytelling, visual understanding dataset, image and video captioning, computer vision,
sequential storytelling image dataset (SSID).

I. INTRODUCTION
Visual storytelling refers to the manner of describing a set
of images rather than a single image, also known as ‘‘multi-
image captioning’’ [1], [2], [3]. Visual Storytelling Task
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(VST) takes a set of images as input and aims to generate
a coherent story relevant to the input images. VST has a
wide range of potential applications in our daily life, such
as assisting visually disabled people in better comprehending
everyday events and the contents of photos found on the
Internet. It also exemplifies the sophisticated creativity that
an artificial intelligence system can achieve.
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FIGURE 1. Illustrating the differences between the typical visual
captioning/description and storytelling approaches. Each image is
captioned with a single description in the first block. The second block
represents the narrative sentences as a story for the same set of images.

The most comparable research problems to visual sto-
rytelling are image and video captioning problems. The
availability of numerous public datasets for these two prob-
lems has contributed significantly to the rapid development of
related methodologies over the past years. Image captioning
datasets cannot be directly used for storytelling since, in these
datasets, each image is described individually, and there is no
logical connection between the sentences. Visual storytelling
reliesmore on narrative structure than textual captioning from
the linguistic perspective. In addition, maintaining coherency
in the manner in which the story is described is challenging
due to the fact that the images have significant perceptual
variations when gathered collectively. Therefore, collecting
and annotating datasets for visual storytelling methods acces-
sible to the public will positively impact the development of
solutions for this type of problem. Figure 1 illustrates the
differences between describing a set of images in two ways.
The traditional image captioning approach is shown in the
blue box, indicating that the sentences are unrelated and not
composed in a story-like fashion. On the other hand, the
green-highlighted box demonstrates the storytelling method,
which explains a set of images so that all of the sentences are
written in a manner that is consistent, relevant and written in
the style of a story.

The vast majority of visual storytelling models are trained
and evaluated on the VIST dataset released by Microsoft
Research [4]. Hence, there is a limitation of datasets that
are accessible to the public for advancing research in this
direction. It is not possible to test the generality of solutions
when only one dataset is available for testing. In addition, the
VIST dataset images were collected using the Flickr albums
API and reorganized into a set of images of previously shot
photos. Hence, the VIST dataset image sets inherently lack
coherence.

In this paper, we are motivated to develop a dataset for
visual storytelling produced from images collected from

open-source videos. Compared to VIST, our dataset images
are collected as a set of five images from open-source videos
where continuous scenes inherently have logical coherence.
To construct our storytelling dataset, two fundamental pro-
cesses need to be performed. The first process is to gather
the images, and there should be five images of a sequence
event in a set. In this dataset, we focused on three video cate-
gories: narrative movies, lifestyle documentaries, and media
appearances from everyday life events. It is noteworthy to
highlight that VIST dataset comprises two distinct categories
of data, namely, descriptions in isolation and stories in a
sequence. Indeed, the dataset employs identical images with
varying annotation styles. In contrast, we used a different col-
lection of images in SSID dataset that followed an identical
annotation style, namely a story presented in a sequential
format. In SSID dataset, we took five screenshots/frames
and sorted them to form a story. The second process in
creating the dataset is the annotation process. The annotations
must be written using a story writing style. For this purpose,
we used Amazon Mechanical Turk (AMT). We uploaded all
the collected sets of images to the Amazon server so AMT
workers could write a story for each captured set of images.
Finally, we checked whether each written story was coherent
and relevant to the images in the set. Incoherent or irrelevant
stories were re-written or removed from the dataset.

The following is a summary of our contributions:
• We propose a novel Sequential Storytelling Images
Dataset (SSID)1 consisting of sets of images collected
from open-source videos along with the corresponding
descriptions in the form of a coherent story. Each set
consists of five images accompanied by five connected
sentences structured as a story.

• To demonstrate that the proposed dataset is beneficial in
resolving issues related to visual storytelling, we bench-
mark various storytelling models recently published on
our new dataset. We present the results of all auto-
matic evaluation metrics, such as BLEU-1, BLEU-2,
BLEU-3, BLEU-4, ROUGE-L, and METEOR, for our
SSID dataset and the existing VIST dataset.

• We comprehensively analyze the ground truth annota-
tions accompanied by both storytelling datasets. For this,
each annotated narrative is retrieved and contrasted with
other associated narratives for the same set of images.
This is possible because multiple annotators annotate
each set of images with a story. We report the average of
means and standard deviations to show the significant,
problematic variations that exist in the ground truth
annotations. Section VI-B includes additional details.

• We showcase the quality of the proposed dataset by
incorporating human evaluation measures and compar-
ing it to the existing VIST dataset, which is the only
publicly available dataset.

The subsequent sections of this study are organized as
follows. Section II provides detailed background on visual

1https://dx.doi.org/10.21227/dbr9-dq51
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FIGURE 2. An example of the VIST dataset, which consists of two types of
image sets: Description In Isolation (DII), in which each image is
described in isolation, and Description In Sequence (SIS), in which each
image set is described in a narrative fashion [4].

description techniques, including the limitations of image
and video captioning datasets and methods in describing a
sequence of images as a story. Section III presents the pro-
posed SSID dataset construction, including image collection
domain, methodology, and image annotation, which serves as
a valuable resource for future researchers seeking to construct
similar datasets. Section IV illustrates all existing state-of-
the-art models and experimental settings used to evaluate
our proposed dataset. Section V presents the comparison
of results of state-of-the-art methods. Section VI includes
detailed experimental discussions, including time complex-
ity, ground truth variance, and qualitative analysis. Finally,
Section VII explains the limitations of the study and our
future works, and Section VIII concludes the paper.

II. VISUAL DESCRIPTION LITERATURE REVIEW
This section includes a literature review of recent trends in
publicly accessible datasets for visual description techniques.
The effectiveness of a visual description dataset may indeed
contribute to the algorithm’s overall effectiveness. In addi-
tion, we investigate the approaches most similar to visual
storytelling and why they fail to explain a set of images,
including image captioning and video captioning. Finally, the
most recent approaches to visual storytelling are highlighted
and discussed.

A. IMAGE CAPTIONING
1) DATASETS
Image captioning datasets cover multiple subjects such as
daily scene images [5], [6], [7], human activities [8], [9],
[10], etc. The most common dataset, i.e., the daily scene
annotated images, is split into training, validation and testing.

TheMSCOCO [5], Multi30K-CLID [6], and AIC [7] datasets
comprise a total of five human-written annotations for
each image. Similarly, the human activities datasets include
Flickr8k [8], Flickr30k [9] and PASCAL 1K [10]. All these
datasets have a set of five annotations associated with each
image. Moreover, the image captioning methods employ the
datasets that have topics of news [11], still natural [12], blind
view [13], novel objects [14] and fashion items [15]. Unfortu-
nately, all available image captioning datasets are constructed
as unconnected sentences, limiting their use in storytelling
techniques.

2) TECHNIQUES
A single frame or an image paired with a single sentence is an
example of image captioning. Image captioning algorithms
can be classified further into rule-based methods [16] and
deep learning-based methods [17], [18]. Rule-based methods
are classical approaches that use template-based algorithms
to recognize a predefined and limited collection of patterns,
actions, and factors inside an image and describe them in
natural language. Advanced techniques rely on deep learning
and other advanced concepts, such as reinforcement learn-
ing [19], semantic attribute integration [20], attention [21],
and subject and object modelling [22]. Due to advancements
in deep learning and the availability of larger datasets [23], the
aforementioned image captioning techniques show superior
performance. However, when designing a story for a set of
images, none of these techniques seems particularly effective.

B. VIDEO CAPTIONING
1) DATASETS
Standard video captioning datasets for video captioning algo-
rithms are organized in a multi-frame manner, equivalent to
datasets for visual storytelling covering a variety of topics,
including cooking [24], [25], [26], movies [27], humans [28]
and social media [29]. The accessibility of annotated datasets
to be utilized in video captioning has been the primary impe-
tus behind the rapid development of this field of study. Only
a minority of the mentioned datasets contain various phrases
or paragraphs for each video sample, while the majority only
provide a single description of each video. Although video
captioning datasets help train a model to describe multiple
frames in a sequence, visual storytelling algorithms require a
set of images with corresponding connected sentences struc-
tured to generate a description more in the form of a story
than a general description. This is because visual storytelling
algorithms are expected to generate a story-like description
rather than a general one.

2) TECHNIQUES
Video captioning is an extension of the image captioning
field that may explain consecutive keyframes (i.e., a video)
in a single sentence. Standard video captioning approaches
utilize encoder-decoder architecture, similar to visual story-
telling techniques. In order to extract visual features from
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FIGURE 3. The overall process of collecting the open-source images for our proposed dataset. We require three conditions, lighting being an essential
one for our image collection. If the light is low, we keep moving the video clip fifteen seconds forward until the lighting condition becomes standard; at
this point, we select a frame and repeat the process until we collect five images. This procedure is performed manually. We repeat the process using
videos from documentaries, movies and lifestyles to generate a large dataset of 5 sequential image sets.

the continuous stream of input images, an encoder using a
2D/3D CNN is utilized. A decoder, typically known as a
language model based on a recurrent neural network [30],
[31] or a transformer [32], captures these characteristics
and transforms them into sentences in the chosen language.
Standard video captioning methods use different strategies
to boost the accuracy of the video captioning framework,
such as object and action modelling [32], [33], [34], Fourier
transform [35], attention mechanism [36], [37], and semantic
attribute learning [38], [39].

C. STORYTELLING
1) DATASETS
On the Visual storytelling side, shifting from a single image
to multi-images in context enables us to construct artifi-
cial intelligence (AI) that can logically deduce knowledge
about a visual moment based on what it has previously
seen. The first illustrations of utilizing a description that
included multiple images were discovered in blog posts.
While tourists visit destinations such as New York City and
Disneyland, they capture several photos to memorialize the
special moments. Researchers formulated multi-image anal-
ysis to learn the relationship between image streams and text
sequences [40], [41]. To the best of our knowledge, visual
storytelling (VIST) [4] is the first publicly available dataset
that allows the training of models for generating stories from
a set of images. The VIST dataset includes two categories: a
description in isolation (DII) and a story in sequence (SIS).
Both collections have five images and five corresponding
sentences. However, the DII-type is constructed as a sin-
gle image caption, meaning that all sentences are unrelated

to a story. In comparison, the SIS-type is structured as a
five-sentence story corresponding to a set of images as shown
in Figure 2. Since 2016, all published research articles have
been trained and evaluated only on the VIST dataset. There-
fore, the ability of the published methods to generalize to
other data has not been tested.

2) TECHNIQUES
Narration is one of the first behaviors humans have engaged
in, and very recently, due to technological advances in com-
puters and algorithms. It has also been the subject of a
considerable proportion of empirical research. Visual sto-
rytelling approaches can assist in interpreting the activities
shown in a set of images and describing these images in a
single paragraph of multiple sentences [42], leveraged with
ranking and retrieval networks, which concatenates sequence
image features to generate their brief description [41]. The
Coherent Recurrent Convolutional Network (CRCN) [43]
was established to improve the fluency with which vari-
ous phrases crossed a set of images. Critical components
of this deep learning network include the Long Short Term
Memory (LSTM) networks [31]. In addition, the reward func-
tions method emphasizes the fundamental role that rewards
perform in behaviourism [44]. Encoder-decoder architecture-
based frameworks enhance visual characteristics and gener-
ate a story of multiple sequences [45], [46]. Furthermore,
utilizing Recurrent Neural Networks (RNNs) incorporated
with the Mogrifier technique to improve modulation has
increased the relevance, coherence, and impressiveness of
the constructed story [47], [48]. All current methods suc-
cessfully generate grammatically correct stories from a set of
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images. However, these generated stories are not as good as
human-written stories. The primary purpose of this study is
to investigate and analyze the overall state-of-the-art achieve-
ments in storytelling methodologies in general, as well as to
benchmark recent techniques on a new storytelling dataset.

III. DATASET CONSTRUCTION
This section covers the strategy behind the construction of our
Sequential Storytelling Images Dataset (SSID). To initiate,
we manually screen capture images (video frames) from
open-source videos. Afterward, each of these sets of images
was annotated through the Amazon Mechanical Turk (AMT)
service. Details of the dataset organization are given below.

A. DATASET IMAGE DOMAIN
To generate multiple story-based sentences from a set of
images, the first step is to construct a collection of images
with story-based ground truths that can be used to train and
evaluate a machine-learning model. YouTube is an excellent
source for this purpose as it is the world’s largest collection
of videos. Within our proposed sequential images, we nar-
rowed the emphasis of our video search to three categories:
documentaries, lifestyle videos, and movies.

1) DOCUMENTARIES
Documentary videos are typically non-fictional motion pic-
tures meant to depict reality, generally for instructing,
educating or maintaining a historical record. Documentary
videos can also be used as historical records. Such videos are
often filmed in an informal style, which allows us to capture
a better glimpse of naturalistic environments. In addition,
we considered that most of the videos are shot during the
day, ensuring that the screenshots we take have good lighting,
as shown in Figure 4 (Documentary Image Sample).

2) LIFESTYLE VIDEOS
Lifestyle videos reflect everyday life and are intended to be
photorealistic scenes. These videos show creators filming
themselves going about their daily liveswith their belongings,
friends, and family members. We chose movies of people
living different lifestyles, such as in a home, traveling and/or
shopping. Figure 4 shows a sample of family trip images.

3) MOVIES
In this particular category, the essential factor is choosing a
film that reflects a true story; hence, we did not include any
science fiction, horror, fantasy, or cartoon videos. Therefore,
silent and non-fiction films were chosen because they fea-
ture scenes with real people performing real-life activities.
Figure 4 illustrates an example set from movies.

B. IMAGE CAPTURING PROCESS
Figure 3 illustrates the process of collecting the
open-source images. First, video frames are played as

FIGURE 4. Our proposed dataset comprises image sets containing
sequences of five images collected from three distinct video categories,
namely, documentaries, lifestyle videos, and movies.

IN = (I1, I2, . . . , IN ), where

I = [I1, I2, . . . , IN ] s.t. IN ∈ RH×W×C . (1)

In the above equation, the term ‘‘I’’ represents the selected
frames, i.e., (image) every fifteen seconds from the open-
source video, where N ∈ {1, 2, 3, 4, 5} is a collection of
five images with H×W×C (Height × Width × Channels)
shape that provides a distinctive representation of our pro-
posed dataset. We use H×W×C = 224× 224×3. During the
collection of the dataset’s images, the lighting conditions of
the movie are essential. In the beginning, we manually check
the lighting condition of the first image, and if it is below a
certain threshold, we fast forward 50 seconds until we have
N= 1 image with acceptable lighting. Next, we manually fast
forward 15 seconds and check the lighting condition of the
next image. If the lighting is above the threshold, we select
that image, and if it is below the threshold, we fast forward
15 seconds again to ensure that the subsequent scene transi-
tion in the video accurately conveys the intended narrative,
and it is imperative to present it in a manner that effec-
tively portrays an image story. We repeat this process until
our set has five images. Our final representation is a set of
five images, which conveys stream-specific information and
sequences of related visual activities. The procedures above
are performed through human effort while carefully watching
all video clips, resulting in a significant expenditure of time.
Based on our personal experiences, it has been determined
that the ideal duration for transitioning between scenes in a
video and displaying the subsequent image is approximately
15 seconds.

C. IMAGE ANNOTATION PROCESS
The next stage was data annotation. We presented the sets of
five images to crowd workers through AMT, asking them to
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write appropriate stories relevant to the images. Details are
given below:

1) AMAZON MECHANICAL TURK (AMT)
AMT is a paid online tool that assists companies and
researchers in annotating data by distributing it to workers
around the world through the Internet. AMT has become
very popular for generating labeled data for training and
validatingmachine learningmodels.We used the image anno-
tation service to create image descriptions as narration for our
proposed dataset.

2) IMAGE REPRESENTATION
At AMT, the images of our proposed dataset were displayed
in a web form as a succession of five images followed by
five blank text boxes. Figure 4 is an example of ordering the
dataset images, where each set of images represents a single
movie scene. For the crowd workers to be able to complete
the form, we required them to write their descriptions in a
manner that is relevant, cohesive, informative, and story-like
in their sentence structure. Each of the five sentences should
be connected to reflect the images’ subject matter. Addition-
ally, we generated four ground truth stories for each set of
five images. We randomized the order of the forms to ensure
that multiple workers could create the narratives for a single
set of images.

3) PRUNING STORIES
We read all responses (i.e., stories) carefully and accepted
them only if they fulfilled our criteria outlined in Part III-C2.
Otherwise, we rejected the story and sent it to other workers
in the queue for rewriting. Overall, the workers on AMT
spent around five to eleven minutes finishing each story. The
complete annotation work was accomplished in 1,852 hours.

D. DATASET ORGANIZATION AND SAMPLES
The images obtained from videos on YouTube were saved
in a folder with a unique ID for each image. For instance,
images 1 through 5 provide the collection of the first set of
images, while images 6 through 10 present the following set
of images in a similar fashion. A JSON file organized all
the images while including the ground truth corresponding
to each image. The structure of the JSON file is as follows:

{
"annotations":
[[{"storylet_id": Int,

"storytext": str,
"youtube_image_id": int,
"album_id": int,
"story_id": int,
"image_order": int }]

}

where storylet_id is the unique story identifier, and story-
text is a string value consisting of the story’s first sentence.

FIGURE 5. Most existing methods are encoder-decoder-based. The
encoder uses a pre-trained CNN to extract visual information from the
input images. The decoder component contains the language model, e.g.,
a Long Short-term Memory (LSTM) unit, where the story is formed.

youtube_image_id , album_id , and story_id are integer val-
ues containing the ID for each complete story. Finally,
image_order represents the image’s position within the set
of images.

The SSID dataset is comprised of 17,365 images, which
resulted in a total of 3,473 unique sets of five images. Each
set of images is associated with four ground truths, resulting
in a total of 13,892 unique ground truths (i.e., written sto-
ries). And each ground truth is composed of five connected
sentences written in the form of a story. Table 1 summarizes
the collection number of images in each split, including the
total count of sentences in each division.

IV. DATASET EXPERIMENTS SETTING
This section provides the most recent storytelling models in
the literature, which we utilized to evaluate our proposed
dataset. Furthermore, the training method and hardware are
discussed, followed by different evaluation metrics.

A. EXISTING FRAMEWORK VARIANTS
The general architectural overview of most existing
storytelling techniques is presented in Figure 5. The Encoder-
Decoder technique drives the majority of these method-
ological approaches. First, a Convolutional Neural Network
(CNN) is utilized to extract the features vector from the
image. After that, a language model serves as a decoder to
generate grammatically correct sentences. Overall, we choose
the five most recent approaches to test our proposed dataset,
which are as follows:

1) GLACNet
GLocal Attention Cascading Networks for Multi-image
Cued Story Generation (GLACNet) [49] is the pio-
neering approach evaluated on the VIST dataset. The
encoder-decoder approach is the key to this method’s success.
The encoder is composed of a ResNet-152 network, and its
purpose is to extract a deep feature vector from a set of
images. After that, the extracted features are successively
input into the bi-LSTM to ensure that the image context is
re-reflected accurately across the whole narration. Finally,
a LSTM decoder implemented as a language model generates
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TABLE 1. The proposed SSID dataset contains a total of 17,365 images collected from open-source videos. Additionally, each set of images (i.e., Album) is
accompanied by at least five sentences of annotations. In addition, each set of images has four ground truth stories, resulting in 13892 unique stories.

a story consisting of five sentences representing one of the
five input images.

2) CAMT
Encoder-decoder strategy, such as the one outlined for the
GLACNet model in Section IV-A1, are also utilized by
Contextualise, Attend, Modulate and Tell (CAMT) [47].
In addition, CAMT improves the story generated by combin-
ing the language model with a Mogrifier LSTM. This helped
to obtain state-of-art results on the VIST dataset at the time
of publication.

3) SAES
The theory of object detection techniques contributed
to the overall improvement of the story that Semantic
Attribute Enriched Storytelling (SAES) [48] generated from
a sequence of images. That method employs YOLOv5 output
represented as a multi-hot vector containing object detection
information as well as noun attribute recognition. After that,
these feature vectors are concatenated with the image features
using ResNet-152. Using such as approach, the model has a
more detailed representation of the images. As a direct result,
the generated stories are improved in relevance, coherence
and informational content.

4) ViT
Malakan et al., [50] replaced the standard CNN with Vision
Transformer, which divides each image into 16× 16 patches.
The overall architecture includes the Vision Transformer
(ViT) as the visual encoder, the Bidirectional-LSTM as a
decoder and the standard LSTM unit enhanced by the Mogri-
fier LSTM. These modules work harmoniously to generate
a story from a set of images and improve performance
on several automatic evaluation metrics, including BLEU-2,
BLEU-3, ROUGE-L, and METEOR.

B. EXPERIMENTAL SETUP DETAILS
We trained themodels discussed in Section IV-A from scratch
on our proposed dataset. The dataset provided a vocabulary
size of 3,890 after being processed through a threshold of
8 for the minimal number of words. In addition, we tokenized
each piece of extracted vocabulary with the assistance of the
Natural Language Toolkit (NLTK) package in Python. During
the training process, we utilized all the parameters proposed
in [50] and configured them as: image feature size = 1024;
dimension of word embedding= 265; the number of layers in
LSTM= 2; and the number of Mogrifier steps in LSTM = 5.

TABLE 2. Experimental setup and parameters’ details for each model
trained on SSID dataset.

Finally, the learning rate is set at 10−3, and the weight decay
is set at e−5 to prevent overfitting during the training stage.
Table 2 persents a summary of all parameters applied in these
experiments.

In order to ensure equitable experiments across all models,
SSID dataset was randomly divided into three discrete sub-
sets: a training set consisting of 90% of the data, a validation
set consisting of 5%, and a testing set consisting of 5% of
the data as detailed in Table 1. Each model was subjected
to the same experimental setup during the training procedure.
The same testing set was ultimately used to evaluate all results
presented in Table 4.

C. HARDWARE USED
The training was performed on a desktop computer equipped
with an Intel i9 3.60GHz processor with 16 cores and an
RTX 2080 Ti NVIDIA GeForce graphics card with 12 GB
of memory. We trained each model individually for over
40 epochs, using a 32-patch size, ensuring that we efficiently
utilized the available RAM.

D. AUTOMATIC EVALUATION METRICS
Human judgment is the most reliable evaluation method
for determining the quality of the stories that are
machine-generated because of the challenging nature of the
storytelling problem. However, human evaluation is time-
consuming. Hence, automatic evaluation metrics, although
problematic [54], are still beneficial for efficiently bench-
marking the progress in this direction. In this study, we have
selected the most popular automatic evaluation metrics as
follows:

1) BLEU
a: BILINGUAL EVALUATION UNDERSTUDY
(BLEU) [55] evaluates the machine language models by
utilizing n-grams to compare a set of reference texts to
machine-generated text. It is considered the most effective
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TABLE 3. A comparison of recently published methods on the Visual Storytelling Dataset (VIST). Quantitative results were obtained using seven different
automated measures of evaluation. ‘‘-’’ indicates that the authors of the corresponding study did not publish the results. Higher scores represent higher
accuracy, and the results in bold represent the best scores [50].

TABLE 4. A comparison of recently published methods on our proposed dataset (SSID). Quantitative results were obtained using six different automated
measures of evaluation. ‘‘-’’ indicates that the authors of the corresponding study did not publish the results. The higher scores represent higher accuracy,
and the results in bold represent the best scores.

method for measuring the efficacy of approaches consisting
of a few sentences and various variants. BLEU has multiple
evaluation metrics, including BLEU-1, BLEU-2, BLEU-3,
and BLEU-4, all chosen to evaluate our proposed dataset.

2) CIDEr
a: CONSENSUS-BASED IMAGE DESCRIPTION EVALUATION
(CIDEr) [56] is developed to compare the similarity of several
reference sets of sentences to the machine-generated one.
Furthermore, it is a significant measure for image captioning
techniques because it captures the characteristics of language
similarity, grammaticality, importance, saliency, and accu-
racy score of precision and recall.

3) ROUGE
a: RECALL-ORIENTED UNDERSTUDY FOR GISTING
EVALUATION
(ROUGE) [57] comprises of several types, including
ROUGE-1, ROUGE-2, ROUGE-W, ROUGE-L andROUGE-
SU4. We have selected ROUGE-L as reported in [57] to
efficiently evaluate machine-generated stories with multiple
sentences.

4) METEOR
a: METRIC FOR EVALUATION OF TRANSLATION WITH
EXPLICIT ORDERING
(METEOR) [58] assigns ratings to hypotheses for machine
translation by aligning themwith one or more reference trans-
lations. The alignment of words and phrases is determined

by exact, stem, synonym, and paraphrased matches. Segment
and system-level metric scores are computed based on the
alignments between hypothesis-reference pairings. It is most
suitable for assessing efficiency at the sentence level of the
generated story since it analyses the words’ synonyms and
their matchings with the text references.

V. RESULT COMPARISON
We perform extensive experiments to evaluate our story-
telling dataset. First, we analyze the datasets’ annotations,
including the average means and standard deviations for
VIST and our proposed SSID datasets, a measurement of the
datasets’ human evaluations, and a comparison of a ground
truth sample from VIST and our proposed SSID datasets, and
conclude by illustrating state-of-the-art model results over the
mentioned datasets.

A. HUMAN EVALUATION
Given the inherent flaws in the automatic evaluation metrics,
we also conducted human evaluations to assess the quality of
the ground truth stories of the two datasets, i.e., VIST and
SSID. First, we used a random selection process to extract
twenty-five ground truth stories from the VIST dataset and
our proposed dataset. Using Google Form service, we con-
ducted a survey in which all of these stories and the associated
image sets were presented (one set at a time) to human eval-
uators. Based on the three criteria: coherence, relevance, and
informativeness, fifty participants were tasked with ranking
and evaluating each story on a scale from one to five (worst
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FIGURE 6. The within ground truth variance in the VIST and our datasets. In VIST, each image set has five ground truth stories, whereas our dataset
contains only four. We compare each ground truth story against the others. The means and standard deviations are also listed in the Table. The mean
scores for our dataset are lower, indicating that our dataset has more diverse stories. Both datasets have high variance in the stories.

TABLE 5. Comparative analysis of the time complexity is performed in the Encoder-Decoder components of the investigated storytelling model using the
floating-point operations per second (FLOPs). For each module, FLOPs is calculated separately and then the time complexity of each module is summed
together to determine the total time complexity. ‘‘-’’ indicates that the authors of the corresponding study did not include the module in their
methodology. The aforementioned terms denote the numerical values of B for Billion, M for Million, and K for Thousand.

TABLE 6. Human evaluation survey investigations of Fifty ground truth
stories extracted from the VIST dataset and our proposed dataset.
Participants ranked each story from 1 to 5 (worst to best). Our proposed
dataset surpasses the VIST dataset in every category, including relevance,
coherence, and informative story.

to best). The survey results are summarized in Table 6. These
results demonstrate that both datasets received almost the
same rating. However, our proposed dataset outweighs the
VIST dataset in all three evaluation criteria.

B. EXISTING MODELS COMPARISON
To demonstrate the efficacy of our proposed dataset,
we retrain and evaluate a wide range of existing state-of-the-
art storytelling models discussed in section IV-A on SSID.
The following are details of our experiments:

1) MACHINE GENERATED-STORY SAMPLES
Figure 7 presents predicted stories based on a set of images
from our proposed dataset, as well as the ground truth story.
It can be observed that the existing models can predict gram-
matically correct phrases containing a variety of narratives or
concepts. The emphasized shades of green indicates that the
generated sentence part is relevant to the image content. For
instance, the first predicted sentence in each scenario contains

VOLUME 11, 2023 70813



Z. M. Malakan et al.: Sequential Vision to Language as Story: A Storytelling Dataset and Benchmarking

FIGURE 7. Variations in the stories generated by the most prevalent storytelling techniques for the same set of images after training them
on our proposed dataset. The highlighted green shows that these words are relevant to the associated image. The highlighted red indicates
words that do not apply to the corresponding image or are commonly predicted words. Automatic evaluation metrics BLEU-1, ROUGE-L,
and METEOR are provided to compare the relative performance.

the word ‘‘room’’, which accurately reflects the first image.
Similarly, SAES [48], which has improved with the object
detection model, can correctly relate the second sentence to
the story by showing that a female is associated with an
object.

The emphasized red indicates that the generated sen-
tence part does not correlate with the corresponding image.
For instance, SAES [48] with object detection and a noun
attribute model predicts the word ‘‘dog’’ in the fifth sentence,
despite the reality that the fifth image is not related to theword
‘‘dog’’. Similarly, ViT’s model predicts the word ‘‘speaking’’
in the second sentence, the word ‘‘man’’ in the fourth sen-
tence, and the word ‘‘talking’’ in the fifth sentence, which
results in an incoherent story. Due to the difficulties above,
it becomes evident that our proposed dataset is more chal-
lenging and necessitates a model that can detect numerous
events accurately.

2) MACHINE GENERATED-STORY SCORES
For quantitative comprehension analysis, Figure 7 demon-
strates the performance of each story generated by var-
ious approaches in addition to the ground truth. First,
we compared the automatic evaluation metrics, BLEU-1,

ROUGE-L, and METEOR, to each generated story. The
SAES w/OD model outperforms all other models, scoring
0.951 points in BLEU-1 and 0.257 points in ROUGE-L. The
CAMT model achieves a score of 0.257 in the ROUGE-L
metric, which is identical to the performance of the SAES
w/OD model. However, the CAMT model does not perform
sufficiently in the other metrics. In addition, SAES improved
via object detection and noun attribute learning, obtaining
0.204 points, which allowed it to succeed in the METEOR
metric and surpass all other models.

Each image set in the proposed dataset has four ground
truth annotations (Human Generated Story or HGS). For
illustrative and comparative analysis, one of these HGSs is
showcased in Figure 7 (Green box), which is obtained by
comparing it to other HGSs of the considered image set.
Compared to the other stories generated by state-of-the-art
techniques, the HGS story received the worst performance
across all of the specified automatic evaluation metrics. This
indicates that all models can learn and fully comprehend
the ground truths provided during models’ training. As a
summary of the analysis, a wide variety of HGS, also known
as high variance stories, would assist fundamental algo-
rithms such as sequence encoder-decoders in learning and
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FIGURE 8. A comparative case between the VIST dataset and our
proposed dataset. Automatic evaluation metrics such as BLEU-1,
ROUGE-L, and METEOR are presented for both samples.

comprehending more effectively to generate better stories
based on sequential vision.

3) STATE-OF-THE-ART RESULTS COMPARISON
Table 3 presents the state-of-the-art storytelling scores on
the VIST dataset. It shows that ViT outperforms other sto-
rytelling approaches for ROUGE-L, METEOR, BLEU-2 and
BLEU-3. In comparison, CAMT continues to perform supe-
rior in BLEU-4, scoring 0.184 points. Moreover, ReCo-EL
improved through multiple Recurrent neural networks and
achieved the highest score of 0.086 for CIDEr.

To determine how effectively the storytelling frameworks
will perform on our proposed dataset, we retrained and
evaluated the models that are publicly available. Table 4
shows that the SAES model achieved superior results in all
of the automatic evaluation metrics that were investigated,
including BLEU-1, BLEU-2, BLEU-3, BLEU-4, ROUGE-L
and METEOR. In general, the scores of SAES reduced on
our SSID dataset (Table 4) compared to the VIST dataset
(Table 3). This shows that our proposed dataset is more
challenging and necessitates a more advanced model that can
distinguish between each visual object, activity, and event and
then connect all of these components into a single coherent
story.

VI. DETAILED DISCUSSION
This section of the paper has undertaken a comprehen-
sive analysis of the performance of the existing storytelling
models that were experimentally evaluated. To better
understand the computational requirements of processing
visual description, the time complexity of each model was

meticulously examined. Furthermore, both storytelling
datasets were subjected to a rigorous analysis, utilizing
standard statistical measures such as the mean and standard
deviation. Finally, a qualitative analysis of the ground truth
samples from both datasets was conducted to gain further
insights into the quality and accuracy of the datasets.

A. TIME COMPLEXITY OF EXISTING TECHNIQUE
In this study, we compare the time complexity of the
Encoder-Decoder parts of each storytelling model using
floating-point operations per second (FLOPs). The initial
stage of visual representation involves the extraction of fea-
tures from a set of images. Specifically, ResNet-152 [59]
exhibits a time complexity of approximately 11.3 billion
FLOPs per image when employing a 224 × 224 input size.
For Vision Transformer (ViT) [60], the time complexity of
the linear projection FLOPs is calculated as (p2d), where p
denotes the dimensionality of the resized image patch (in
this case, p = 16), and d refers to the dimensionality of
the patch embeddings (in this case, d = 768). The total
FLOPs for all image patches equal (np2d), where n is the
number of patches. The final time complexity of image size
of 224 × 224 with a patch size of 16 × 16 is approxi-
mately 724,775,936 FLOPs. The object detection component
employs the YOLOv5 algorithm [61], characterized by a
computational complexity of 27 million FLOPs per image.
Given the batch size of one embodiment, the total computa-
tional effort required for processing a single batch of images
using YOLOv5 can be expressed as 27 million FLOPs per
batch. The last part of the encoder is the bi-LSTM. Accord-
ing to the experimental sittings mentioned in Section IV-B,
the total time complexity of sequence length of 64 is (2 ×

1024)2 × 64 × 32) = (2, 147, 483, 648)FLOPs. The last
component is the decoder utilizing Mogrifier-LSTM [62]
with 5 rounds of mogrifications. The time complexity with
a sequence length of 64 can be approximated as (N 2

× D2),
where N is the number of time steps, and D is the hidden
size. This can be calculated as follows (642 × 10242) =

(4, 194, 304, 000)FLOPs. The last part of the decoder is the
standard LSTM [63] unit to generate the story. The time
complexity can be donated as (N 2), where N is each time
step that requires two matrix multiplications (one for the
input and one for the previous state) of size N × N . As the
sequence length is 64, the time complexity is calculated as
(642) = (4096)FLOPs.
Table 5 presents a comprehensive comparison of the time

complexity of the experimented models. Notably, SAES
model demonstrates the highest FLOPs of 17.7 billion, sug-
gesting a significantly increased computational complexity
level. Conversely, ViT model exhibits a considerably lower
time complexity of 6.35 billion FLOPs which is approxi-
mately one-third of SAES model. Despite this difference, the
evaluation results in Table 4 indicate that ViTmodel performs
comparable to the SAES model. It is worth noting that SAES
model is an intricate architecture that incorporates both object
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detection and noun attribute. It exhibits high time complexity
and achieves the highest evaluation results among the models
compared in Table 4.

B. STORYTELLING DATASETS ANALYSIS
Due to the brilliance of the humanmind, one set of images can
inspire multiple narratives. As a result, a high-variance image
description can be produced by constructing a storytelling
dataset consisting of five ground truth stories. In this exper-
iment, we developed a loop method to extract the multiple
ground truth stories for each set of images from the VIST
and our proposed dataset to analyze the variations within the
ground truth stories. We automatically compared one story
from each group to the remaining ones. For instance, for
each set of images, the first ground truth story is taken and
compared to the rest of the ground truth stories for each
dataset. This is then repeated for the second story, and so on.
Figure 6 illustrates the results of this experiment. We report
all the automatic evaluation metrics scores (discussed in
Section IV-D) for each set of stories. These scores include
BLEU-1 to 4, ROUGE-L, and METEOR. From these scores,
the average means and standard deviations are also summa-
rized in a table in Figure 6.

Plots in Figure 6 present the ground truth variances for
both VIST and our proposed datasets for each automatic
evaluation metric. In both datasets, the conceptual ground
truth appears to have a significant variability according to all
the metrics. To quantitatively analyze the VIST dataset and
our proposed dataset, the Table in Figure 6 depicts each auto-
matic evaluation parameter’s mean and standard deviation.
Based on the findings, we observe that the VIST dataset’s
ground truths achieved the highest average of means across
all evaluatedmetrics, including BLEU-1 to 4, ROUGE-L, and
METEOR. Our proposed dataset receives a lower average
of means, indicating that it contains a broader diversity of
ground truths. Based on the average of standard deviations,
the consistency of both datasets is significantly close to each
other; however, our proposed dataset obtains less in the aver-
age of standard deviations across BLEU-2, BLEU-3, and
BLEU-4, indicating that the majority of ground truths are
annotated slightly different. In particular, for the most con-
tributed indicator at the sentence level [58], METEOR, VIST
dataset showed higher averages in both average of means and
standard deviations than our dataset indicates higher struc-
tured sentences. In summary, these results indicate that our
proposed dataset contains scenarios (i.e., ground truth stories)
with a high variation due to the natural manner of story
authoring. In addition, the conducted experiment indicates
that our proposed dataset is more challenging and, as a result,
requires more effective storytelling strategies.

C. DATASETS GROUND TRUTH ANALYSIS
Figure 8 is an illustration of human-written ground truth
extracted from a set of images from our proposed dataset
and VIST dataset. Both sets of images feature diverse visual
content, allowing for the creation of distinct stories. However,

our ground truth is more informative and challenging. For
instance, image two in our story indicates that there will be
a birthday party, which the image itself does not convey but
is expected by image four, which depicts a person holding
a balloon. Finally, all ground truths are evaluated alongside
linked references to demonstrate their relevance and con-
sistency. Our proposed dataset’s ground truth scores around
10 points higher than BLEU and ROUGE-L measures and
approximately 26 points higher than VIST in METEOR.

VII. LIMITATION AND FUTURE OUTLOOK
It is important to mention that this study has its limitations.
The most prominent of which pertains to the time-consuming
nature of the image construction process. The selection of
images for each visual sequence story required careful con-
sideration during the capture phase from YouTube videos.
Each image set was manually selected to ensure that it
accurately represented a cohesive and meaningful story. Fur-
thermore, the size of the dataset is limited, which may have
implications for the overall performance of machine learning
models trained on it. Despite these limitations, the present
study serves as an essential starting point for researchers
seeking to improve the sequential vision description dataset.
This work may involve expanding the size of the storytelling
dataset, which could enhance the accuracy and effectiveness
of machine learning models trained on the dataset.

In the future, one of our goals is to increase the size of
our dataset from YouTube by including additional images to
cover more visual content. These images will be annotated by
individuals with higher proficiency in English or rephrased
using a large language model such as GPT-4 [64] so that
the sentences are well connected and the story is coherent
in the ground truth annotations. In addition, approaches to
storytelling that can establish various events and activities
with a stream of visual scenes are expected to be investigated.

VIII. CONCLUSION
This research introduced a new storytelling dataset contribut-
ing to the multi-image description technique. Our storytelling
dataset consists of image sets manually taken from Youtube
videos in specific areas, such as documentaries, people’s
Lifestyles and movies. We leveraged Amazon Mechanical
Turk (AMT) service to annotate these image sets as story
descriptions. After exhaustive studies on VIST and our
proposed dataset, we discovered a correlation with signif-
icant variance between both datasets. In addition, existing
cutting-edge algorithms are trained and assessed using our
proposed dataset. In conclusion, the exhaustive analysis and
experiment reveal that our dataset is more challenging and
necessitates advanced storytelling approaches to portray the
relationship between a set of images.
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